code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase_ : Optional[Any] = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[str] = XLMProphetNetTokenizer _UpperCamelCase : Dict = False _UpperCamelCase : Optional[int] = True def lowercase ( self: Any ) -> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = XLMProphetNetTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self: List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = "[PAD]" UpperCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1012 ) def lowercase ( self: str ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase ( self: List[Any] ) -> str: """simple docstring""" UpperCamelCase_ = XLMProphetNetTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase ( self: Dict ) -> int: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = "Hello World!" UpperCamelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
713
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , "env" ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings UpperCamelCase_ = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_SCREAMING_SNAKE_CASE , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_SCREAMING_SNAKE_CASE , py_version="py36" , ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Any ) -> List[Any]: """simple docstring""" TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.create_estimator(_SCREAMING_SNAKE_CASE ) # run training estimator.fit() # result dataframe UpperCamelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _SCREAMING_SNAKE_CASE )
371
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowercase : Dict =float('''nan''') class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: A : Any =sys.stdout A : str =open(lowerCAmelCase_ , 'a' ) def __getattr__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return getattr(self.stdout , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: self.stdout.write(lowerCAmelCase_ ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' , '' , lowerCAmelCase_ , 0 , re.M ) ) def A__ ( lowercase: Optional[int]=80, lowercase: List[str]=False ) -> List[str]: A : List[str] =[] # deal with critical env vars A : Optional[int] =['CUDA_VISIBLE_DEVICES'] for key in env_keys: A : int =os.environ.get(snake_case__, snake_case__ ) if val is not None: cmd.append(F'{key}={val}' ) # python executable (not always needed if the script is executable) A : Any =sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(snake_case__ ) # now the normal args cmd += list(map(shlex.quote, sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes A : int =[] A : Tuple ='' while len(snake_case__ ) > 0: current_line += F'{cmd.pop(0 )} ' if len(snake_case__ ) == 0 or len(snake_case__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case__ ) A : Tuple ='' return "\\\n".join(snake_case__ ) def A__ ( lowercase: Optional[Any], lowercase: List[Any] ) -> Optional[int]: # unwrap multi-line input A : Optional[Any] =re.sub(r'[\\\n]+', ' ', args.base_cmd ) # remove --output_dir if any and set our own A : Union[str, Any] =re.sub('--output_dir\s+[^\s]+', '', args.base_cmd ) args.base_cmd += F' --output_dir {output_dir}' # ensure we have --overwrite_output_dir A : Tuple =re.sub('--overwrite_output_dir\s+', '', args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def A__ ( lowercase: int, lowercase: Any, lowercase: Tuple, lowercase: Dict, lowercase: List[Any], lowercase: Dict, lowercase: List[str] ) -> List[str]: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0, 100 ) for k in metric_keys}, **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )}, ) A : Union[str, Any] =subprocess.run(snake_case__, capture_output=snake_case__, text=snake_case__ ) if verbose: print('STDOUT', result.stdout ) print('STDERR', result.stderr ) # save the streams A : Dict =variation.replace(' ', '-' ) with open(Path(snake_case__ ) / F'log.{prefix}.stdout.txt', 'w' ) as f: f.write(result.stdout ) with open(Path(snake_case__ ) / F'log.{prefix}.stderr.txt', 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(F'{output_dir}/all_results.json', 'r', encoding='utf-8' ) as f: A : str =json.load(snake_case__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def A__ ( lowercase: Tuple, lowercase: List[Any], lowercase: Tuple, lowercase: List[Any], lowercase: Union[str, Any], lowercase: int, lowercase: Any, lowercase: List[Any], lowercase: Optional[Any], lowercase: Any, ) -> Tuple: A : str =[] A : Union[str, Any] =[] A : int =F'{id}: {variation:<{longest_variation_len}}' A : Tuple =F'{preamble}: ' A : List[str] =set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case__ ), desc=snake_case__, leave=snake_case__ ): A : Any =process_run_single( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) A : Tuple =single_run_metrics[target_metric_key] if not math.isnan(snake_case__ ): metrics.append(snake_case__ ) results.append(snake_case__ ) outcome += "✓" else: outcome += "✘" A : Optional[int] =F'\33[2K\r{outcome}' if len(snake_case__ ) > 0: A : Dict ={k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} A : Union[str, Any] =round(mean_metrics[target_metric_key], 2 ) A : int =F'{outcome} {mean_target}' if len(snake_case__ ) > 1: results_str += F' {tuple(round(snake_case__, 2 ) for x in results )}' print(snake_case__ ) A : List[Any] =variation return mean_metrics else: print(snake_case__ ) return {variation_key: variation, target_metric_key: nan} def A__ ( ) -> Tuple: A : List[str] =torch.cuda.get_device_properties(torch.device('cuda' ) ) return F'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def A__ ( lowercase: Dict, lowercase: str, lowercase: Any, lowercase: Optional[Any], lowercase: Optional[int] ) -> Optional[int]: A : Any =pd.DataFrame(snake_case__ ) A : List[Any] ='variation' A : List[Any] ='diff_%' A : Any =nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan A : Optional[Any] =df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case__ ): # as a fallback, use the minimal value as the sentinel A : Tuple =df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case__ ): A : List[str] =df.apply( lambda lowercase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0, axis='columns', ) # re-order columns A : int =[variation_key, target_metric_key, diff_key, *report_metric_keys] A : Any =df.reindex(snake_case__, axis='columns' ) # reorder cols # capitalize A : Tuple =df.rename(str.capitalize, axis='columns' ) # make the cols as narrow as possible A : Any =df.rename(lambda lowercase : c.replace('_', '<br>' ), axis='columns' ) A : List[str] =df.rename(lambda lowercase : c.replace('_', '\n' ), axis='columns' ) A : int =['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case__, floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case__, floatfmt='.2f' )] print('\n\n'.join(snake_case__ ) ) def A__ ( ) -> Tuple: A : Any =argparse.ArgumentParser() parser.add_argument( '--base-cmd', default=snake_case__, type=snake_case__, required=snake_case__, help='Base cmd', ) parser.add_argument( '--variations', default=snake_case__, type=snake_case__, nargs='+', required=snake_case__, help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'', ) parser.add_argument( '--base-variation', default=snake_case__, type=snake_case__, help='Baseline variation to compare to. if None the minimal target value will be used to compare against', ) parser.add_argument( '--target-metric-key', default=snake_case__, type=snake_case__, required=snake_case__, help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second', ) parser.add_argument( '--report-metric-keys', default='', type=snake_case__, help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples', ) parser.add_argument( '--repeat-times', default=1, type=snake_case__, help='How many times to re-run each variation - an average will be reported', ) parser.add_argument( '--output_dir', default='output_benchmark', type=snake_case__, help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked', ) parser.add_argument( '--verbose', default=snake_case__, action='store_true', help='Whether to show the outputs of each run or just the benchmark progress', ) A : Tuple =parser.parse_args() A : Dict =args.output_dir Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) A : Tuple =get_base_command(snake_case__, snake_case__ ) # split each dimension into its --foo variations A : List[str] =[list(map(str.strip, re.split(r'\|', snake_case__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty A : Any =list(map(str.strip, map(' '.join, itertools.product(*snake_case__ ) ) ) ) A : int =max(len(snake_case__ ) for x in variations ) # split wanted keys A : Dict =args.report_metric_keys.split() # capture prints into a log file for convenience A : Dict =F'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(F'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(F'and this script\'s output is also piped into {report_fn}' ) A : Dict =Tee(snake_case__ ) print(F'\n*** Running {len(snake_case__ )} benchmarks:' ) print(F'Base command: {" ".join(snake_case__ )}' ) A : List[str] ='variation' A : List[str] =[] for id, variation in enumerate(tqdm(snake_case__, desc='Total completion: ', leave=snake_case__ ) ): A : Union[str, Any] =base_cmd + variation.split() results.append( process_run( id + 1, snake_case__, snake_case__, snake_case__, snake_case__, args.target_metric_key, snake_case__, args.repeat_times, snake_case__, args.verbose, ) ) process_results(snake_case__, args.target_metric_key, snake_case__, args.base_variation, snake_case__ ) if __name__ == "__main__": main()
305
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : """simple docstring""" lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__lowerCAmelCase )} , ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class a : """simple docstring""" lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) lowerCamelCase :bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) lowerCamelCase :bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) lowerCamelCase :bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) lowerCamelCase :float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) lowerCamelCase :float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) lowerCamelCase :int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) lowerCamelCase :int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) lowerCamelCase :bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def snake_case ( snake_case__ :DataTrainingArguments , snake_case__ :PreTrainedTokenizer , snake_case__ :bool = False , snake_case__ :Optional[str] = None , ) -> Optional[int]: def _dataset(snake_case__ :Optional[int] , snake_case__ :Optional[int]=None): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""") return LineByLineWithRefDataset( tokenizer=snake_case__ , file_path=snake_case__ , block_size=args.block_size , ref_path=snake_case__ , ) return LineByLineTextDataset(tokenizer=snake_case__ , file_path=snake_case__ , block_size=args.block_size) else: return TextDataset( tokenizer=snake_case__ , file_path=snake_case__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=snake_case__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file) elif args.train_data_files: return ConcatDataset([_dataset(snake_case__) for f in glob(args.train_data_files)]) else: return _dataset(args.train_data_file , args.train_ref_file) def snake_case ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) _A , _A , _A = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""") # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , snake_case__) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _A = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: _A = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: _A = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""") if model_args.tokenizer_name: _A = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: _A = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""") if model_args.model_name_or_path: _A = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path) , config=snake_case__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""") _A = AutoModelWithLMHead.from_config(snake_case__) model.resize_token_embeddings(len(snake_case__)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""") if data_args.block_size <= 0: _A = tokenizer.max_len # Our input block size will be the max possible for the model else: _A = min(data_args.block_size , tokenizer.max_len) # Get datasets _A = ( get_dataset(snake_case__ , tokenizer=snake_case__ , cache_dir=model_args.cache_dir) if training_args.do_train else None ) _A = ( get_dataset(snake_case__ , tokenizer=snake_case__ , evaluate=snake_case__ , cache_dir=model_args.cache_dir) if training_args.do_eval else None ) if config.model_type == "xlnet": _A = DataCollatorForPermutationLanguageModeling( tokenizer=snake_case__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _A = DataCollatorForWholeWordMask( tokenizer=snake_case__ , mlm_probability=data_args.mlm_probability) else: _A = DataCollatorForLanguageModeling( tokenizer=snake_case__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability) # Initialize our Trainer _A = Trainer( model=snake_case__ , args=snake_case__ , data_collator=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , prediction_loss_only=snake_case__ , ) # Training if training_args.do_train: _A = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=snake_case__) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation _A = {} if training_args.do_eval: logger.info("""*** Evaluate ***""") _A = trainer.evaluate() _A = math.exp(eval_output["""eval_loss"""]) _A = {"""perplexity""": perplexity} _A = os.path.join(training_args.output_dir , """eval_results_lm.txt""") if trainer.is_world_master(): with open(snake_case__ , """w""") as writer: logger.info("""***** Eval results *****""") for key in sorted(result.keys()): logger.info(""" %s = %s""" , snake_case__ , str(result[key])) writer.write("""%s = %s\n""" % (key, str(result[key]))) results.update(snake_case__) return results def snake_case ( snake_case__ :Dict) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
401
0
from __future__ import annotations lowerCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: a__ : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) ) ] # the reference grid a__ : List[Any] = 1 a__ : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCamelCase ) ) ] # the action grid a__ : List[Any] = init[0] a__ : Optional[Any] = init[1] a__ : Union[str, Any] = 0 a__ : List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell a__ : int = [[f, g, x, y]] a__ : int = False # flag that is set when search is complete a__ : Union[str, Any] = False # flag set if we can't find expand while not found and not resign: if len(__UpperCamelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() a__ : Union[str, Any] = cell.pop() a__ : Tuple = next_cell[2] a__ : str = next_cell[3] a__ : List[str] = next_cell[1] if x == goal[0] and y == goal[1]: a__ : List[str] = True else: for i in range(len(__UpperCamelCase ) ): # to try out different valid actions a__ : Any = x + DIRECTIONS[i][0] a__ : int = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: a__ : Dict = g + cost a__ : Optional[int] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) a__ : int = 1 a__ : List[Any] = i a__ : Optional[int] = [] a__ : Any = goal[0] a__ : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: a__ : str = x - DIRECTIONS[action[x][y]][0] a__ : List[str] = y - DIRECTIONS[action[x][y]][1] a__ : Dict = xa a__ : Any = ya invpath.append([x, y] ) a__ : str = [] for i in range(len(__UpperCamelCase ) ): path.append(invpath[len(__UpperCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase = [0, 0] # all coordinates are given in format [y,x] lowerCamelCase = [len(grid) - 1, len(grid[0]) - 1] lowerCamelCase = 1 # the cost map which pushes the path closer to the goal lowerCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase = 99 lowerCamelCase , lowerCamelCase = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
207
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> int: a__ : List[Any] = prime_factors(__UpperCamelCase ) if is_square_free(__UpperCamelCase ): return -1 if len(__UpperCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
207
1
def _A ( __snake_case :int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = [1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0, 0 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 for _ in range(1 , __snake_case ): __SCREAMING_SNAKE_CASE = min(__snake_case , __snake_case , __snake_case ) ugly_nums.append(__snake_case ) if next_num == next_a: ia += 1 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_00) = }""")
693
def _A ( __snake_case :int ) -> int: """simple docstring""" assert isinstance(__snake_case , __snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: __SCREAMING_SNAKE_CASE = f'''The input value of [n={number}] has to be > 0''' raise ValueError(__snake_case ) else: __SCREAMING_SNAKE_CASE = sylvester(number - 1 ) __SCREAMING_SNAKE_CASE = num - 1 __SCREAMING_SNAKE_CASE = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
693
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): '''simple docstring''' super().__init__( __UpperCamelCase , question_encoder_tokenizer=__UpperCamelCase , generator_tokenizer=__UpperCamelCase , index=__UpperCamelCase , init_retrieval=__UpperCamelCase , ) __a : int = None def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __a : Any = self._infer_socket_ifname() # avoid clash with the NCCL port __a : Any = str(distributed_port + 1 ) __a : Optional[int] = dist.new_group(ranks=__UpperCamelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __lowerCamelCase ( self ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=torch.floataa ): '''simple docstring''' __a : Tuple = torch.empty(__UpperCamelCase , dtype=__UpperCamelCase ) dist.scatter(__UpperCamelCase , src=0 , scatter_list=__UpperCamelCase , group=self.process_group ) return target_tensor def __lowerCamelCase ( self ): '''simple docstring''' __a : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __a : int = next((addr for addr in addrs if addr.startswith("""e""" )) , __UpperCamelCase ) return ifname def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if not dist.is_initialized(): __a : List[Any] = self._main_retrieve(__UpperCamelCase , __UpperCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCamelCase ) # distributed training __a : List[Any] = dist.get_world_size(group=self.process_group ) # gather logic __a : str = None if self._is_main(): __a : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__UpperCamelCase )] dist.gather(torch.tensor(__UpperCamelCase ) , dst=0 , gather_list=__UpperCamelCase , group=self.process_group ) # scatter logic __a : Optional[Any] = question_hidden_states.shape[0] __a : List[str] = [] __a : List[Any] = [] if self._is_main(): assert len(__UpperCamelCase ) == world_size __a : Tuple = self._main_retrieve(torch.cat(__UpperCamelCase ).numpy() , __UpperCamelCase ) __a : Optional[Any] = torch.tensor(__UpperCamelCase ), torch.tensor(__UpperCamelCase ) __a : str = self._chunk_tensor(__UpperCamelCase , __UpperCamelCase ) __a : Any = self._chunk_tensor(__UpperCamelCase , __UpperCamelCase ) __a : Union[str, Any] = self._scattered(__UpperCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) __a : Any = self._scattered(__UpperCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__UpperCamelCase )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A = """UperNetConfig""" class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = False , __UpperCAmelCase = 1 , ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Optional[int] = nn.Convad( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , bias=__UpperCAmelCase , dilation=__UpperCAmelCase , ) lowerCAmelCase__ :Any = nn.BatchNormad(__UpperCAmelCase ) lowerCAmelCase__ :int = nn.ReLU() def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.conv(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = self.batch_norm(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.activation(__UpperCAmelCase ) return output class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Optional[int] = [ nn.AdaptiveAvgPoolad(__UpperCAmelCase ), UperNetConvModule(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = input for layer in self.layers: lowerCAmelCase__ :Any = layer(__UpperCAmelCase ) return hidden_state class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Union[str, Any] = pool_scales lowerCAmelCase__ :Union[str, Any] = align_corners lowerCAmelCase__ :List[str] = in_channels lowerCAmelCase__ :Any = channels lowerCAmelCase__ :Optional[int] = [] for i, pool_scale in enumerate(__UpperCAmelCase ): lowerCAmelCase__ :List[Any] = UperNetPyramidPoolingBlock(pool_scale=__UpperCAmelCase , in_channels=__UpperCAmelCase , channels=__UpperCAmelCase ) self.blocks.append(__UpperCAmelCase ) self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = [] for ppm in self.blocks: lowerCAmelCase__ :Optional[Any] = ppm(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = nn.functional.interpolate( __UpperCAmelCase , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(__UpperCAmelCase ) return ppm_outs class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Union[str, Any] = config lowerCAmelCase__ :List[str] = config.pool_scales # e.g. (1, 2, 3, 6) lowerCAmelCase__ :str = in_channels lowerCAmelCase__ :Optional[int] = config.hidden_size lowerCAmelCase__ :Optional[Any] = False lowerCAmelCase__ :Tuple = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCAmelCase__ :Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCAmelCase__ :List[str] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCAmelCase__ :str = nn.ModuleList() lowerCAmelCase__ :Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCAmelCase__ :str = UperNetConvModule(__UpperCAmelCase , self.channels , kernel_size=1 ) lowerCAmelCase__ :Optional[int] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__UpperCAmelCase ) self.fpn_convs.append(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def snake_case ( self ): '''simple docstring''' self.apply(self._init_weights ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = inputs[-1] lowerCAmelCase__ :Optional[int] = [x] psp_outs.extend(self.psp_modules(__UpperCAmelCase ) ) lowerCAmelCase__ :Dict = torch.cat(__UpperCAmelCase , dim=1 ) lowerCAmelCase__ :Dict = self.bottleneck(__UpperCAmelCase ) return output def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__UpperCAmelCase ) ) # build top-down path lowerCAmelCase__ :Any = len(__UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase__ :Dict = laterals[i - 1].shape[2:] lowerCAmelCase__ :int = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__UpperCAmelCase , mode='bilinear' , align_corners=self.align_corners ) # build outputs lowerCAmelCase__ :int = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase__ :Optional[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) lowerCAmelCase__ :List[Any] = torch.cat(__UpperCAmelCase , dim=1 ) lowerCAmelCase__ :Union[str, Any] = self.fpn_bottleneck(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.classifier(__UpperCAmelCase ) return output class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 ): '''simple docstring''' super().__init__() lowerCAmelCase__ :int = config lowerCAmelCase__ :Tuple = config.auxiliary_in_channels lowerCAmelCase__ :List[str] = config.auxiliary_channels lowerCAmelCase__ :Optional[Any] = config.auxiliary_num_convs lowerCAmelCase__ :Dict = config.auxiliary_concat_input lowerCAmelCase__ :Union[str, Any] = in_index lowerCAmelCase__ :str = (kernel_size // 2) * dilation lowerCAmelCase__ :Dict = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) ) if self.num_convs == 0: lowerCAmelCase__ :str = nn.Identity() else: lowerCAmelCase__ :Tuple = nn.Sequential(*__UpperCAmelCase ) if self.concat_input: lowerCAmelCase__ :Any = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=kernel_size // 2 ) lowerCAmelCase__ :Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def snake_case ( self ): '''simple docstring''' self.apply(self._init_weights ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = encoder_hidden_states[self.in_index] lowerCAmelCase__ :Any = self.convs(__UpperCAmelCase ) if self.concat_input: lowerCAmelCase__ :str = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCAmelCase__ :Tuple = self.classifier(__UpperCAmelCase ) return output class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[Any] = UperNetConfig __magic_name__ :List[str] = """pixel_values""" __magic_name__ :Any = True def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def snake_case ( self ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Optional[Any] = value __A = R""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __A = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , a , ) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCAmelCase__ :Union[str, Any] = UperNetHead(__UpperCAmelCase , in_channels=self.backbone.channels ) lowerCAmelCase__ :Optional[int] = UperNetFCNHead(__UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def snake_case ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ): '''simple docstring''' lowerCAmelCase__ :List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ :str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ :str = output_attentions if output_attentions is not None else self.config.output_attentions lowerCAmelCase__ :List[Any] = self.backbone.forward_with_filtered_kwargs( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , output_attentions=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = outputs.feature_maps lowerCAmelCase__ :Optional[Any] = self.decode_head(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = nn.functional.interpolate(__UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=__UpperCAmelCase ) lowerCAmelCase__ :int = None if self.auxiliary_head is not None: lowerCAmelCase__ :Union[str, Any] = self.auxiliary_head(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = nn.functional.interpolate( __UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss lowerCAmelCase__ :List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCAmelCase__ :Optional[int] = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCAmelCase__ :Any = (logits,) + outputs[1:] else: lowerCAmelCase__ :List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
93
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
201
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A ( UpperCAmelCase , UpperCAmelCase ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _snake_case : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _snake_case : Tuple = torch.permute(UpperCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCAmelCase ): # linear layer _snake_case : str = flax_key_tuple[:-1] + ("weight",) _snake_case : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case : List[str] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if "metadata" in layer: _snake_case : Union[str, Any] = layer.split("metadata" ) _snake_case : Dict = "".join(split_layer[0] )[:-1] _snake_case : Union[str, Any] = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _snake_case : Tuple = layer.split("kvstore" ) _snake_case : Optional[Any] = "".join(split_layer[0] )[:-1] _snake_case : List[str] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _snake_case : Any = layer.split("/" ) _snake_case : List[Any] = "/".join(split_layer[:-1] ) _snake_case : Tuple = (split_layer[-1],) if "kvstore/path" in layer: _snake_case : Optional[Any] = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _snake_case : List[str] = "file" else: _snake_case : Tuple = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A ( UpperCAmelCase , UpperCAmelCase ): _snake_case : Tuple = rename_keys(UpperCAmelCase ) _snake_case : List[str] = {} for k, v in current_block.items(): _snake_case : Optional[int] = v _snake_case : Tuple = new_current_block torch.save(UpperCAmelCase , UpperCAmelCase ) def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = WEIGHTS_NAME ): _snake_case : Tuple = convert_file_size_to_int(UpperCAmelCase ) _snake_case : str = [] _snake_case : Union[str, Any] = {} _snake_case : Dict = 0 _snake_case : Any = 0 os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _snake_case : int = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _snake_case : Optional[Any] = flatten_dict(UpperCAmelCase , sep="/" ) _snake_case : List[str] = {} for layer in checkpoint_info.keys(): _snake_case , _snake_case , _snake_case : Any = get_key_and_tensorstore_dict( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if curr_real_layer_name in all_layers: _snake_case : str = content else: _snake_case : str = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _snake_case : Tuple = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _snake_case : str = torch.tensor(UpperCAmelCase ) _snake_case : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _snake_case , _snake_case : Tuple = rename_base_flax_keys(tuple(key.split("/" ) ) , UpperCAmelCase ) _snake_case : Dict = "/".join(UpperCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _snake_case : Dict = os.path.join( UpperCAmelCase , weights_name.replace(".bin" , F"""-{len(UpperCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(UpperCAmelCase , UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _snake_case : Dict = {} _snake_case : Any = 0 _snake_case : Optional[int] = raw_weights.to(getattr(UpperCAmelCase , UpperCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _snake_case : List[str] = os.path.join(UpperCAmelCase , weights_name.replace(".bin" , F"""-{len(UpperCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(UpperCAmelCase , UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _snake_case : Dict = {} _snake_case : str = {} for idx, shard in enumerate(UpperCAmelCase ): _snake_case : Dict = weights_name.replace( ".bin" , F"""-{idx+1:05d}-of-{len(UpperCAmelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d} _snake_case : Tuple = os.path.join(UpperCAmelCase , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(UpperCAmelCase , os.path.join(UpperCAmelCase , UpperCAmelCase ) ) _snake_case : Dict = shard for key in shard: _snake_case : int = shard_file # Add the metadata _snake_case : Union[str, Any] = {"total_size": total_size} _snake_case : str = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , "w" , encoding="utf-8" ) as f: _snake_case : Tuple = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + "\n" f.write(UpperCAmelCase ) return metadata, index if __name__ == "__main__": __lowerCAmelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __lowerCAmelCase :Tuple = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _snake_case : List[str] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _snake_case : str = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _snake_case : Tuple = TaTokenizer.from_pretrained("t5-small" ) _snake_case : str = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _snake_case : Tuple = tokenizer(UpperCAmelCase , return_tensors="pt" ).input_ids _snake_case : Any = model.generate(UpperCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
278
import sys import turtle def A ( UpperCAmelCase , UpperCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) __lowerCAmelCase :Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') __lowerCAmelCase :Optional[int] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
278
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __UpperCAmelCase : List[str] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' __UpperCAmelCase : List[str] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' __UpperCAmelCase : Union[str, Any] = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): return float((preds == labels).mean() ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : int = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) _a : List[Any] = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : str = float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] ) _a : str = float(spearmanr(UpperCamelCase_ , UpperCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def snake_case_ ( self : Dict ) -> Union[str, Any]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def snake_case_ ( self : Optional[int] , __snake_case : Any , __snake_case : Any ) -> Union[str, Any]: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(__snake_case , __snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
471
import math def lowerCamelCase_ ( UpperCamelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( UpperCamelCase_ = 0.1 ): _a : int = 3 _a : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(UpperCamelCase_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
471
1
def lowercase ( __A : List[Any] , __A : Optional[int] , __A : int ) -> List[Any]: '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(SCREAMING_SNAKE_CASE_ , n - 1 , SCREAMING_SNAKE_CASE_ ) * a) % mod else: snake_case : List[str] = binary_exponentiation(SCREAMING_SNAKE_CASE_ , n / 2 , SCREAMING_SNAKE_CASE_ ) return (b * b) % mod # a prime number __lowercase : Optional[int] = 701 __lowercase : Tuple = 1_000_000_000 __lowercase : List[Any] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
702
from __future__ import annotations from collections import Counter from random import random class _A : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case : Optional[Any] = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_ ) if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = probability def snake_case_ ( self ): '''simple docstring''' return list(self.connections ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Union[str, Any] = 0 snake_case : Optional[int] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowercase ( __A : str , __A : list[tuple[str, str, float]] , __A : int ) -> dict[str, int]: '''simple docstring''' snake_case : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__A , __A , __A ) snake_case : Dict = Counter(graph.get_nodes() ) snake_case : int = start for _ in range(__A ): snake_case : Optional[int] = graph.transition(__A ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
315
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : int = {'UserAgent': UserAgent().random} def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> dict: """simple docstring""" UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , a__ : str ): UpperCAmelCase = f"https://www.instagram.com/{username}/" UpperCAmelCase = self.get_json() def __snake_case ( self : Any ): UpperCAmelCase = requests.get(self.url , headers=a__ ).text UpperCAmelCase = BeautifulSoup(a__ , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def __snake_case ( self : Tuple ): return self.user_data["username"] @property def __snake_case ( self : List[str] ): return self.user_data["full_name"] @property def __snake_case ( self : int ): return self.user_data["biography"] @property def __snake_case ( self : Tuple ): return self.user_data["business_email"] @property def __snake_case ( self : Union[str, Any] ): return self.user_data["external_url"] @property def __snake_case ( self : str ): return self.user_data["edge_followed_by"]["count"] @property def __snake_case ( self : List[Any] ): return self.user_data["edge_follow"]["count"] @property def __snake_case ( self : List[str] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __snake_case ( self : List[str] ): return self.user_data["profile_pic_url_hd"] @property def __snake_case ( self : Union[str, Any] ): return self.user_data["is_verified"] @property def __snake_case ( self : int ): return self.user_data["is_private"] def __snake_case ( SCREAMING_SNAKE_CASE_ : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(SCREAMING_SNAKE_CASE_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , SCREAMING_SNAKE_CASE_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : Optional[int] = InstagramUser('github') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
51
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} __UpperCAmelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class __UpperCAmelCase ( _UpperCamelCase ): def __init__( self : str , a_ : Dict , a_ : List[str]=False , a_ : Any=True , a_ : int=False , a_ : Union[str, Any]="<s>" , a_ : Optional[int]="</s>" , a_ : int="<unk>" , a_ : List[Any]="<sep>" , a_ : Dict="<pad>" , a_ : Any="<cls>" , a_ : Optional[Any]="<mask>" , a_ : int=["<eop>", "<eod>"] , a_ : Optional[Dict[str, Any]] = None , **a_ : int , ) -> None: '''simple docstring''' a__ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token a__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a__ : Union[str, Any] = 3 a__ : Dict = do_lower_case a__ : Union[str, Any] = remove_space a__ : int = keep_accents a__ : str = vocab_file a__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) a__ : Optional[int] = jieba a__ : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Tuple = self.__dict__.copy() a__ : Union[str, Any] = None return state def __setstate__( self : Tuple , a_ : int ) -> List[str]: '''simple docstring''' a__ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : str = {} a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : List[Any] , a_ : Optional[Any] ) -> List[str]: '''simple docstring''' if self.remove_space: a__ : Union[str, Any] = " ".join(inputs.strip().split() ) else: a__ : Optional[Any] = inputs a__ : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: a__ : Union[str, Any] = unicodedata.normalize("NFKD" , a_ ) a__ : Union[str, Any] = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: a__ : List[Any] = outputs.lower() return outputs def UpperCAmelCase ( self : Any , a_ : str ) -> List[str]: '''simple docstring''' a__ : Optional[Any] = self.preprocess_text(a_ ) a__ : Dict = self.sp_model.encode(a_ , out_type=a_ ) a__ : Optional[Any] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__ : List[str] = cur_pieces[1:] else: a__ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def UpperCAmelCase ( self : int , a_ : Dict ) -> int: '''simple docstring''' return self.sp_model.PieceToId(a_ ) def UpperCAmelCase ( self : Dict , a_ : Tuple ) -> List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(a_ ) def UpperCAmelCase ( self : Union[str, Any] , a_ : List[Any] ) -> str: '''simple docstring''' a__ : Optional[Any] = "".join(a_ ).replace(a_ , " " ).strip() return out_string def UpperCAmelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[Any] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def UpperCAmelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self : Dict , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__ : Optional[int] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a__ : int = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def UpperCAmelCase ( self : str , *a_ : Union[str, Any] , **a_ : Any ) -> int: '''simple docstring''' a__ : Optional[int] = super()._decode(*a_ , **a_ ) a__ : Tuple = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
642
0
"""simple docstring""" from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : Any = num_of_nodes __a : Optional[Any] = [] __a : Union[str, Any] = {} def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: __a : str = self.find_component(_lowerCamelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if component_size[u_node] <= component_size[v_node]: __a : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __a : Optional[Any] = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _lowerCamelCase ( self ): __a : List[Any] = [] __a : Optional[Any] = 0 __a : List[str] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __a : List[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __a , __a , __a : Optional[int] = edge __a : str = self.m_component[u] __a : Optional[int] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __a : List[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase , _lowerCamelCase ): __a , __a , __a : Optional[Any] = edge __a : List[Any] = self.m_component[u] __a : str = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __a : Dict = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __A ( ) -> Tuple: pass if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __A ( a_ :Tuple) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_) def __A ( a_ :Any) -> int: from transformers.testing_utils import pytest_terminal_summary_main __a : str = terminalreporter.config.getoption('''--make-reports''') if make_reports: pytest_terminal_summary_main(a_ , id=a_)
101
0
import os import numpy import onnx def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = a.name _lowerCAmelCase : int = b.name _lowerCAmelCase : str = "" _lowerCAmelCase : Any = "" _lowerCAmelCase : List[str] = a == b _lowerCAmelCase : Tuple = name_a _lowerCAmelCase : Optional[Any] = name_b return res def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = list(model.graph.initializer ) _lowerCAmelCase : str = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowerCAmelCase : Optional[int] = inits[i].name _lowerCAmelCase : Any = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = os.path.dirname(_lowerCamelCase ) _lowerCAmelCase : int = os.path.basename(_lowerCamelCase ) _lowerCAmelCase : List[Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : int = list(model.graph.initializer ) _lowerCAmelCase : Any = set() _lowerCAmelCase : Tuple = {} _lowerCAmelCase : Any = [] _lowerCAmelCase : int = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) _lowerCAmelCase : List[Any] = inits[j].data_type _lowerCAmelCase : List[Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , _lowerCamelCase ) total_reduced_size += mem_size _lowerCAmelCase : List[Any] = inits[i].name _lowerCAmelCase : Optional[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: _lowerCAmelCase : Any = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) _lowerCAmelCase : List[Any] = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = "optimized_" + model_file_name _lowerCAmelCase : int = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
500
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( a): lowerCamelCase__ = (UniPCMultistepScheduler,) lowerCamelCase__ = (('num_inference_steps', 25),) def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__a) return config def snake_case__ ( self, __a=0, **__a): '''simple docstring''' _lowerCAmelCase : str = dict(self.forward_default_kwargs) _lowerCAmelCase : Union[str, Any] = kwargs.pop("num_inference_steps", __a) _lowerCAmelCase : List[str] = self.dummy_sample _lowerCAmelCase : List[Any] = 0.1 * sample _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : List[str] = self.get_scheduler_config(**__a) _lowerCAmelCase : List[str] = scheduler_class(**__a) scheduler.set_timesteps(__a) # copy over dummy past residuals _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a) _lowerCAmelCase : Optional[Any] = scheduler_class.from_pretrained(__a) new_scheduler.set_timesteps(__a) # copy over dummy past residuals _lowerCAmelCase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase : Dict = sample, sample for t in range(__a, time_step + scheduler.config.solver_order + 1): _lowerCAmelCase : Dict = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : int = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, __a=0, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs) _lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps", __a) _lowerCAmelCase : Dict = self.dummy_sample _lowerCAmelCase : List[str] = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**__a) scheduler.set_timesteps(__a) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a) _lowerCAmelCase : Tuple = scheduler_class.from_pretrained(__a) # copy over dummy past residuals new_scheduler.set_timesteps(__a) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : Any = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : List[Any] = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Optional[Any] = new_scheduler.step(__a, __a, __a, **__a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, __a=None, **__a): '''simple docstring''' if scheduler is None: _lowerCAmelCase : List[Any] = self.scheduler_classes[0] _lowerCAmelCase : List[Any] = self.get_scheduler_config(**__a) _lowerCAmelCase : str = scheduler_class(**__a) _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config(**__a) _lowerCAmelCase : Optional[Any] = scheduler_class(**__a) _lowerCAmelCase : int = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter scheduler.set_timesteps(__a) for i, t in enumerate(scheduler.timesteps): _lowerCAmelCase : Tuple = model(__a, __a) _lowerCAmelCase : Union[str, Any] = scheduler.step(__a, __a, __a).prev_sample return sample def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs) _lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps", __a) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : int = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**__a) _lowerCAmelCase : List[str] = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(__a, "set_timesteps"): scheduler.set_timesteps(__a) elif num_inference_steps is not None and not hasattr(__a, "set_timesteps"): _lowerCAmelCase : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] _lowerCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.timesteps[5] _lowerCAmelCase : Tuple = scheduler.timesteps[6] _lowerCAmelCase : int = scheduler.step(__a, __a, __a, **__a).prev_sample _lowerCAmelCase : Optional[Any] = scheduler.step(__a, __a, __a, **__a).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = UniPCMultistepScheduler(**self.get_scheduler_config()) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=__a) _lowerCAmelCase : List[str] = torch.mean(torch.abs(__a)) assert abs(result_mean.item() - 0.2_464) < 1E-3 _lowerCAmelCase : Tuple = DPMSolverSinglestepScheduler.from_config(scheduler.config) _lowerCAmelCase : Any = DEISMultistepScheduler.from_config(scheduler.config) _lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(scheduler.config) _lowerCAmelCase : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config) _lowerCAmelCase : Any = self.full_loop(scheduler=__a) _lowerCAmelCase : Any = torch.mean(torch.abs(__a)) assert abs(result_mean.item() - 0.2_464) < 1E-3 def snake_case__ ( self): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__a) def snake_case__ ( self): '''simple docstring''' self.check_over_configs(thresholding=__a) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__a, prediction_type=__a, sample_max_value=__a, solver_order=__a, solver_type=__a, ) def snake_case__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def snake_case__ ( self): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__a, solver_type=__a, prediction_type=__a, ) _lowerCAmelCase : Optional[int] = self.full_loop( solver_order=__a, solver_type=__a, prediction_type=__a, ) assert not torch.isnan(__a).any(), "Samples have nan numbers" def snake_case__ ( self): '''simple docstring''' self.check_over_configs(lower_order_final=__a) self.check_over_configs(lower_order_final=__a) def snake_case__ ( self): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__a, time_step=0) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.full_loop() _lowerCAmelCase : str = torch.mean(torch.abs(__a)) assert abs(result_mean.item() - 0.2_464) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.full_loop(prediction_type="v_prediction") _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(__a)) assert abs(result_mean.item() - 0.1_014) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : Union[str, Any] = self.get_scheduler_config(thresholding=__a, dynamic_thresholding_ratio=0) _lowerCAmelCase : Optional[int] = scheduler_class(**__a) _lowerCAmelCase : str = 10 _lowerCAmelCase : List[str] = self.dummy_model() _lowerCAmelCase : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(__a) for i, t in enumerate(scheduler.timesteps): _lowerCAmelCase : Dict = model(__a, __a) _lowerCAmelCase : List[str] = scheduler.step(__a, __a, __a).prev_sample assert sample.dtype == torch.floataa def snake_case__ ( self, **__a): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config(**__a) _lowerCAmelCase : List[Any] = scheduler_class(**__a) scheduler.set_timesteps(scheduler.config.num_train_timesteps) assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps
500
1
"""simple docstring""" from typing import List import numpy as np def lowerCamelCase__ ( _lowerCamelCase : str ) -> List[str]: lowerCamelCase_ = {key: len(A_ ) for key, value in gen_kwargs.items() if isinstance(A_ , A_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) lowerCamelCase_ = max(lists_lengths.values() , default=0 ) return max(1 , A_ ) def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any ) -> Tuple: lowerCamelCase_ = [] for group_idx in range(A_ ): lowerCamelCase_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowerCamelCase_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowerCamelCase_ = range(A_ , start + num_shards_to_add ) shards_indices_per_group.append(A_ ) return shards_indices_per_group def lowerCamelCase__ ( _lowerCamelCase : Dict , _lowerCamelCase : List[Any] ) -> int: lowerCamelCase_ = _number_of_shards_in_gen_kwargs(A_ ) if num_shards == 1: return [dict(A_ )] else: lowerCamelCase_ = _distribute_shards(num_shards=A_ , max_num_jobs=A_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(A_ , A_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(A_ ) ) ] def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] ) -> int: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , A_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowerCamelCase__ ( _lowerCamelCase : Dict , _lowerCamelCase : Dict ) -> Optional[int]: lowerCamelCase_ = {len(A_ ) for value in gen_kwargs.values() if isinstance(A_ , A_ )} lowerCamelCase_ = {} for size in list_sizes: lowerCamelCase_ = list(range(A_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowerCamelCase_ = dict(A_ ) for key, value in shuffled_kwargs.items(): if isinstance(A_ , A_ ): lowerCamelCase_ = [value[i] for i in indices_per_size[len(A_ )]] return shuffled_kwargs
710
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: while a != 0: lowerCamelCase_ , lowerCamelCase_ = b % a, a return b def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: if gcd(_lowerCamelCase , _lowerCamelCase ) != 1: lowerCamelCase_ = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1, 0, a lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0, 1, m while va != 0: lowerCamelCase_ = ua // va lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
137
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _A: """simple docstring""" def __init__( self ): __A : List[str] = '' __A : str = '' __A : Union[str, Any] = [] __A : str = 0 __A : str = 256 __A : str = 0 __A : Any = 0 __A : List[Any] = 0 __A : Optional[Any] = 0 def UpperCAmelCase_ ( self , _A ): __A : Dict = cva.imread(_A , 0 ) __A : int = copy.deepcopy(self.img ) __A , __A , __A : Union[str, Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) __A : str = np.sum(_A ) for i in range(len(_A ) ): __A : Any = x[i] / self.k self.sk += prk __A : Union[str, Any] = (self.L - 1) * self.sk if self.rem != 0: __A : Dict = int(last % last ) __A : Union[str, Any] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_A ) __A : Dict = int(np.ma.count(self.img ) / self.img[1].size ) __A : str = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __A : Dict = self.img[j][i] if num != self.last_list[num]: __A : Optional[int] = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase : Tuple = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') UpperCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
239
from importlib import import_module from .logging import get_logger UpperCAmelCase : Union[str, Any] = get_logger(__name__) class _A: """simple docstring""" def __init__( self , _A , _A=None ): __A : Union[str, Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , _A , getattr(_A , _A ) ) __A : Optional[int] = module._original_module if isinstance(_A , _PatchedModuleObj ) else module class _A: """simple docstring""" UpperCamelCase : Union[str, Any] = [] def __init__( self , _A , _A , _A , _A=None ): __A : List[Any] = obj __A : Dict = target __A : Optional[int] = new __A : Optional[Any] = target.split('.' )[0] __A : Tuple = {} __A : Dict = attrs or [] def __enter__( self ): *__A , __A : str = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_A ) ): try: __A : Union[str, Any] = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __A : Union[str, Any] = getattr(self.obj , _A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_A , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __A : Optional[Any] = obj_attr # patch at top level setattr(self.obj , _A , _PatchedModuleObj(_A , attrs=self.attrs ) ) __A : List[str] = getattr(self.obj , _A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_A , _A , _PatchedModuleObj(getattr(_A , _A , _A ) , attrs=self.attrs ) ) __A : str = getattr(_A , _A ) # finally set the target attribute setattr(_A , _A , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __A : Union[str, Any] = getattr(import_module('.'.join(_A ) ) , _A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _A ) is attr_value: __A : Union[str, Any] = getattr(self.obj , _A ) setattr(self.obj , _A , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __A : Tuple = globals()['__builtins__'][target_attr] setattr(self.obj , _A , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self , *_A ): for attr in list(self.original ): setattr(self.obj , _A , self.original.pop(_A ) ) def UpperCAmelCase_ ( self ): self.__enter__() self._active_patches.append(self ) def UpperCAmelCase_ ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
239
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
548
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCAmelCase ): UpperCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCAmelCase ): UpperCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = FlaxBertModel.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCAmelCase ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() @slow def _lowerCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = FlaxRobertaModel.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCAmelCase ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""bert-base""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase , revision="""aaaaaa""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex(__lowerCAmelCase , """Use `from_pt=True` to load this model""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
548
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = (UniPCMultistepScheduler,) lowerCamelCase__ = (("num_inference_steps", 2_5),) def _snake_case ( self : Optional[int] , **__lowerCamelCase : int ): SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__lowerCamelCase ) return config def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Optional[Any]=0 , **__lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample for t in range(__lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self : int , __lowerCamelCase : Tuple=0 , **__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self : Any , __lowerCamelCase : str=None , **__lowerCamelCase : str ): if scheduler is None: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCamelCase , "set_timesteps" ): scheduler.set_timesteps(__lowerCamelCase ) elif num_inference_steps is not None and not hasattr(__lowerCamelCase , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.timesteps[5] SCREAMING_SNAKE_CASE = scheduler.timesteps[6] SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self : int ): # make sure that iterating over schedulers with same config names gives same results # for defaults SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def _snake_case ( self : Any ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def _snake_case ( self : List[str] ): self.check_over_configs(thresholding=__lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , ) def _snake_case ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = self.full_loop( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , ) assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers" def _snake_case ( self : Tuple ): self.check_over_configs(lower_order_final=__lowerCamelCase ) self.check_over_configs(lower_order_final=__lowerCamelCase ) def _snake_case ( self : List[str] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCamelCase , time_step=0 ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=__lowerCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa def _snake_case ( self : Optional[int] , **__lowerCamelCase : List[str] ): for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neox" def __init__( self : Optional[int] , __lowerCamelCase : List[str]=50432 , __lowerCamelCase : int=6144 , __lowerCamelCase : Optional[Any]=44 , __lowerCamelCase : Tuple=64 , __lowerCamelCase : Optional[int]=24576 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Any=0.25 , __lowerCamelCase : List[Any]=10000 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : str , ): super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = rotary_pct SCREAMING_SNAKE_CASE = rotary_emb_base SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = use_parallel_residual SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _snake_case ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
16
1
_lowerCamelCase = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
710
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCamelCase = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") _lowerCamelCase = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCamelCase = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCamelCase = sorted(arg_to_scheduler.keys()) _lowerCamelCase = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class _SCREAMING_SNAKE_CASE (pl.LightningModule ): def __init__( self : Dict , UpperCamelCase : argparse.Namespace , UpperCamelCase : str=None , UpperCamelCase : Tuple="base" , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : int , )->Dict: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List[Any] = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : Dict = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase , **UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : PretrainedConfig = config __SCREAMING_SNAKE_CASE : Any = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , UpperCamelCase , UpperCamelCase ): assert hasattr(self.config , UpperCamelCase ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config , UpperCamelCase , getattr(self.hparams , UpperCamelCase ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : PreTrainedTokenizer = tokenizer __SCREAMING_SNAKE_CASE : str = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : Optional[int] = model def __snake_case ( self : Dict , *UpperCamelCase : Dict , **UpperCamelCase : Union[str, Any] )->Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = self.model_type.from_pretrained(*UpperCamelCase , **UpperCamelCase ) def __snake_case ( self : Optional[Any] )->Tuple: __SCREAMING_SNAKE_CASE : Tuple = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE : List[str] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def __snake_case ( self : int )->Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.model __SCREAMING_SNAKE_CASE : Any = ["bias", "LayerNorm.weight"] __SCREAMING_SNAKE_CASE : Optional[int] = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE : Dict = Adafactor( UpperCamelCase , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase , relative_step=UpperCamelCase ) else: __SCREAMING_SNAKE_CASE : Tuple = AdamW( UpperCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE : List[Any] = optimizer __SCREAMING_SNAKE_CASE : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def __snake_case ( self : Dict , UpperCamelCase : Any , UpperCamelCase : Any )->Optional[Any]: return self.validation_step(UpperCamelCase , UpperCamelCase ) def __snake_case ( self : List[Any] , UpperCamelCase : Tuple )->List[Any]: return self.validation_end(UpperCamelCase ) def __snake_case ( self : str )->int: __SCREAMING_SNAKE_CASE : Union[str, Any] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __snake_case ( self : Union[str, Any] , UpperCamelCase : Tuple )->Optional[Any]: if stage == "test": __SCREAMING_SNAKE_CASE : List[str] = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = len(self.train_dataloader().dataset ) def __snake_case ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : bool = False )->List[Any]: raise NotImplementedError("You must implement this for your task" ) def __snake_case ( self : List[Any] )->Union[str, Any]: return self.train_loader def __snake_case ( self : Tuple )->Union[str, Any]: return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def __snake_case ( self : Optional[Any] )->Any: return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def __snake_case ( self : int , UpperCamelCase : List[str] )->int: return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( UpperCamelCase , list(filter(UpperCamelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __snake_case ( self : Union[str, Any] , UpperCamelCase : Dict[str, Any] )->None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.output_dir.joinpath("best_tfmr" ) __SCREAMING_SNAKE_CASE : List[Any] = self.step_count self.model.save_pretrained(UpperCamelCase ) self.tokenizer.save_pretrained(UpperCamelCase ) @staticmethod def __snake_case ( UpperCamelCase : Any , UpperCamelCase : Optional[Any] )->List[str]: parser.add_argument( "--model_name_or_path" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=UpperCamelCase , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=UpperCamelCase , type=UpperCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(UpperCamelCase ).parent / "test_run" / "cache" ) , type=UpperCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=UpperCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=UpperCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=UpperCamelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=UpperCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=UpperCamelCase , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=UpperCamelCase , metavar=UpperCamelCase , type=UpperCamelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=UpperCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=UpperCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=UpperCamelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=UpperCamelCase , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=UpperCamelCase ) parser.add_argument("--train_batch_size" , default=3_2 , type=UpperCamelCase ) parser.add_argument("--eval_batch_size" , default=3_2 , type=UpperCamelCase ) parser.add_argument("--adafactor" , action="store_true" ) class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple )->Tuple: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] )->Tuple: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase ) class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Dict )->List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.lr_schedulers[0]["scheduler"] __SCREAMING_SNAKE_CASE : Optional[int] = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase ) def __snake_case ( self : Tuple , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule )->Union[str, Any]: rank_zero_info("***** Validation results *****" ) __SCREAMING_SNAKE_CASE : Optional[Any] = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) def __snake_case ( self : str , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule )->Optional[Any]: rank_zero_info("***** Test results *****" ) __SCREAMING_SNAKE_CASE : List[Any] = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE : List[str] = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(UpperCamelCase , "w" ) as writer: for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) def _lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : int ): """simple docstring""" parser.add_argument( "--output_dir" , default=str(Path(__lowerCamelCase ).parent / "test_run" / "model_checkpoints" ) , type=__lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowerCamelCase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=__lowerCamelCase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=__lowerCamelCase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=__lowerCamelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=__lowerCamelCase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(__lowerCamelCase ).parent / "test_run" / "dummy-train-data" ) , type=__lowerCamelCase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def _lowerCAmelCase ( __lowerCamelCase : BaseTransformer , __lowerCamelCase : argparse.Namespace , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=[] , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Any , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE : List[str] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE : Tuple = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__lowerCamelCase ) if logging_callback is None: __SCREAMING_SNAKE_CASE : List[str] = LoggingCallback() __SCREAMING_SNAKE_CASE : str = {} if args.fpaa: __SCREAMING_SNAKE_CASE : Any = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE : List[Any] = "auto" __SCREAMING_SNAKE_CASE : List[Any] = "ddp" __SCREAMING_SNAKE_CASE : List[str] = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Optional[int] = "auto" __SCREAMING_SNAKE_CASE : Optional[int] = pl.Trainer.from_argparse_args( __lowerCamelCase , weights_summary=__lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCamelCase , ) if args.do_train: trainer.fit(__lowerCamelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
447
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE : Dict = 16 SCREAMING_SNAKE_CASE : Optional[Any] = 32 def _UpperCamelCase ( lowerCAmelCase__: Accelerator ,lowerCAmelCase__: int = 16 ) -> str: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(lowerCAmelCase__: List[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ = datasets.map( __lowerCAmelCase ,batched=__lowerCAmelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(lowerCAmelCase__: Any ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ = 8 else: SCREAMING_SNAKE_CASE_ = None return tokenizer.pad( __lowerCAmelCase ,padding='longest' ,max_length=__lowerCAmelCase ,pad_to_multiple_of=__lowerCAmelCase ,return_tensors='pt' ,) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets['train'] ,shuffle=__lowerCAmelCase ,collate_fn=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__lowerCAmelCase ,collate_fn=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,drop_last=(accelerator.mixed_precision == 'fp8') ,) return train_dataloader, eval_dataloader def _UpperCamelCase ( lowerCAmelCase__: List[str] ,lowerCAmelCase__: Optional[int] ) -> int: # Initialize accelerator SCREAMING_SNAKE_CASE_ = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ = config["""lr"""] SCREAMING_SNAKE_CASE_ = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE_ = int(config['seed'] ) SCREAMING_SNAKE_CASE_ = int(config['batch_size'] ) SCREAMING_SNAKE_CASE_ = evaluate.load('glue' ,'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_ = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_ = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = get_dataloaders(__lowerCAmelCase ,__lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' ,return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ = AdamW(params=model.parameters() ,lr=__lowerCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase ,num_warmup_steps=100 ,num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ = accelerator.prepare( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.loss SCREAMING_SNAKE_CASE_ = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__lowerCAmelCase ,references=__lowerCAmelCase ,) SCREAMING_SNAKE_CASE_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,__lowerCAmelCase ) def _UpperCamelCase ( ) -> Tuple: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' ,type=__lowerCAmelCase ,default=__lowerCAmelCase ,choices=['no', 'fp16', 'bf16', 'fp8'] ,help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' ,) parser.add_argument('--cpu' ,action='store_true' ,help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase ,__lowerCAmelCase ) if __name__ == "__main__": main()
294
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> Optional[int]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __lowerCamelCase ( __lowerCAmelCase : str ) -> Union[str, Any]: __UpperCamelCase : Dict = _TestCommandArgs(dataset=__lowerCAmelCase , all_configs=__lowerCAmelCase , save_infos=__lowerCAmelCase ) __UpperCamelCase : List[Any] = TestCommand(*__lowerCAmelCase ) test_command.run() __UpperCamelCase : Any = os.path.join(__lowerCAmelCase , """README.md""" ) assert os.path.exists(__lowerCAmelCase ) __UpperCamelCase : Optional[int] = DatasetInfosDict.from_directory(__lowerCAmelCase ) __UpperCamelCase : List[Any] = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2351563, """num_examples""": 10000, }, { """name""": """validation""", """num_bytes""": 238418, """num_examples""": 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = getattr(dataset_infos["""default"""] , __lowerCAmelCase ), getattr(expected_dataset_infos["""default"""] , __lowerCAmelCase ) if key == "num_bytes": assert is_apercent_close(__lowerCAmelCase , __lowerCAmelCase ) elif key == "splits": assert list(__lowerCAmelCase ) == list(__lowerCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
269
0
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A: Union[str, Any] = tuple[int, int] class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : set[int] = vertices UpperCAmelCase : dict[EdgeT, int] = { (min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCAmelCase : List[str] = weight def SCREAMING_SNAKE_CASE ( self ) -> Graph: '''simple docstring''' UpperCAmelCase : Graph = Graph({min(self.vertices )} , {} ) UpperCAmelCase : EdgeT UpperCAmelCase : int UpperCAmelCase : EdgeT UpperCAmelCase : int while len(subgraph.vertices ) < len(self.vertices ): UpperCAmelCase : Union[str, Any] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCAmelCase : Optional[Any] = edge UpperCAmelCase : Any = weight subgraph.add_edge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return subgraph def _snake_case ( UpperCamelCase : str = "p107_network.txt" ): UpperCAmelCase : str = os.path.abspath(os.path.dirname(UpperCamelCase ) ) UpperCAmelCase : str = os.path.join(UpperCamelCase , UpperCamelCase ) UpperCAmelCase : dict[EdgeT, int] = {} UpperCAmelCase : list[str] UpperCAmelCase : int UpperCAmelCase : int with open(UpperCamelCase ) as f: UpperCAmelCase : Dict = f.read().strip().split("""\n""" ) UpperCAmelCase : List[Any] = [line.split(""",""" ) for line in data] for edgea in range(1 , len(UpperCamelCase ) ): for edgea in range(UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCAmelCase : Any = int(adjaceny_matrix[edgea][edgea] ) UpperCAmelCase : Graph = Graph(set(range(len(UpperCamelCase ) ) ) , UpperCamelCase ) UpperCAmelCase : Graph = graph.prims_algorithm() UpperCAmelCase : int = sum(graph.edges.values() ) UpperCAmelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
716
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : Any = year % 19 UpperCAmelCase : Any = year % 4 UpperCAmelCase : str = year % 7 UpperCAmelCase : Union[str, Any] = math.floor(year / 100 ) UpperCAmelCase : Optional[Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCAmelCase : int = leap_day_inhibits / 4 UpperCAmelCase : int = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCAmelCase : Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase : int = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCAmelCase : Tuple = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase , 4 , 18 ) else: return datetime(UpperCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): A: Any = "will be" if year > datetime.now().year else "was" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
359
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class lowercase ( unittest.TestCase ): def lowercase__ ( self : Any ): if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_lowercase , ) assert hasattr(self , '''env''' ) def lowercase__ ( self : Any , _lowercase : List[str] ): # configuration for running training on smdistributed Model Parallel SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''enabled''': True, '''processes_per_host''': 8, } SCREAMING_SNAKE_CASE__ : List[str] = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } SCREAMING_SNAKE_CASE__ : int = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} SCREAMING_SNAKE_CASE__ : Optional[int] = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=_lowercase , instance_type=self.instance_type , debugger_hook_config=_lowercase , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=_lowercase , py_version='''py36''' , ) def lowercase__ ( self : Optional[int] , _lowercase : Union[str, Any] ): TrainingJobAnalytics(_lowercase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self : str , _lowercase : Optional[Any] ): # create estimator SCREAMING_SNAKE_CASE__ : Tuple = self.create_estimator(_lowercase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE__ : Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE__ : str = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowercase )
35
"""simple docstring""" __UpperCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' # Return True if there is node that has not iterated. a__ : int = [False] * len(lowerCAmelCase__ ) a__ : Optional[Any] = [s] a__ : Optional[int] = True while queue: a__ : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase__ ) a__ : Any = True a__ : Union[str, Any] = u return visited[t] def lowercase__ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] ) -> Any: '''simple docstring''' a__ : Any = [-1] * (len(lowerCAmelCase__ )) a__ : Any = 0 a__ : List[str] = [] a__ : Tuple = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = float("Inf" ) a__ : Optional[int] = sink while s != source: # Find the minimum value in select path a__ : Union[str, Any] = min(lowerCAmelCase__ , graph[parent[s]][s] ) a__ : List[str] = parent[s] max_flow += path_flow a__ : List[str] = sink while v != source: a__ : int = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow a__ : List[str] = parent[v] for i in range(len(lowerCAmelCase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
642
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCAmelCase : int = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[Any] = ['pixel_values'] def __init__( self : int , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : Optional[Any] , ) -> None: super().__init__(**__snake_case ) _a : Union[str, Any] = size if size is not None else {'''shortest_edge''': 224} _a : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case ) _a : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a : Any = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='''crop_size''' ) _a : Any = do_resize _a : Dict = size _a : Optional[Any] = resample _a : int = do_center_crop _a : int = crop_size _a : str = do_rescale _a : Tuple = rescale_factor _a : Tuple = do_normalize _a : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD _a : Any = do_convert_rgb def snake_case_ ( self : str , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ) -> np.ndarray: _a : Dict = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _a : List[Any] = get_resize_output_image_size(__snake_case , size=size['''shortest_edge'''] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def snake_case_ ( self : Dict , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Tuple , ) -> np.ndarray: _a : List[Any] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def snake_case_ ( self : Tuple , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : int , ) -> Any: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def snake_case_ ( self : str , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Any , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def snake_case_ ( self : List[str] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : int = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **__snake_case : Optional[int] , ) -> PIL.Image.Image: _a : int = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : str = get_size_dict(__snake_case , param_name='''size''' , default_to_square=__snake_case ) _a : str = resample if resample is not None else self.resample _a : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop _a : List[str] = crop_size if crop_size is not None else self.crop_size _a : str = get_size_dict(__snake_case , param_name='''crop_size''' , default_to_square=__snake_case ) _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _a : Optional[int] = image_mean if image_mean is not None else self.image_mean _a : Union[str, Any] = image_std if image_std is not None else self.image_std _a : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a : Optional[Any] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a : List[str] = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. _a : Dict = [to_numpy_array(__snake_case ) for image in images] if do_resize: _a : Any = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: _a : Dict = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: _a : Optional[int] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] _a : int = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] _a : int = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
249
from __future__ import annotations import numpy as np def lowerCamelCase_ ( UpperCamelCase_ ): return np.maximum(0 , UpperCamelCase_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
249
1
import qiskit def __magic_name__ ( lowercase , lowercase ) -> qiskit.result.counts.Counts: """simple docstring""" lowercase_ : Dict = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register lowercase_ : str = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowercase_ : List[Any] = qiskit.execute(lowercase , lowercase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
458
UpperCAmelCase_ = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} UpperCAmelCase_ = ["""a""", """b""", """c""", """d""", """e"""] def __magic_name__ ( lowercase , lowercase , lowercase ) -> Union[str, Any]: """simple docstring""" lowercase_ : Tuple = start # add current to visited visited.append(lowercase ) lowercase_ : Any = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowercase_ : List[str] = topological_sort(lowercase , lowercase , lowercase ) # if all neighbors visited add current to sort sort.append(lowercase ) # if all vertices haven't been visited select a new one to visit if len(lowercase ) != len(lowercase ): for vertice in vertices: if vertice not in visited: lowercase_ : Optional[Any] = topological_sort(lowercase , lowercase , lowercase ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort("""a""", [], []) print(sort)
458
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase ( __snake_case ): snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "OwlViTImageProcessor" snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , a_=None , a_=None , **a_ ): lowerCAmelCase : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _lowercase , ) lowerCAmelCase : str = kwargs.pop("feature_extractor" ) lowerCAmelCase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_lowercase , _lowercase ) def __call__( self , a_=None , a_=None , a_=None , a_="max_length" , a_="np" , **a_ ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_lowercase , _lowercase ) or (isinstance(_lowercase , _lowercase ) and not isinstance(text[0] , _lowercase )): lowerCAmelCase : Any = [self.tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase , **_lowercase )] elif isinstance(_lowercase , _lowercase ) and isinstance(text[0] , _lowercase ): lowerCAmelCase : Optional[Any] = [] # Maximum number of queries across batch lowerCAmelCase : str = max([len(_lowercase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_lowercase ) != max_num_queries: lowerCAmelCase : int = t + [""" """] * (max_num_queries - len(_lowercase )) lowerCAmelCase : Dict = self.tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase , **_lowercase ) encodings.append(_lowercase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": lowerCAmelCase : Union[str, Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCAmelCase : Union[str, Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase : Union[str, Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCAmelCase : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase : List[str] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) lowerCAmelCase : int = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase : List[str] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCAmelCase : Dict = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) lowerCAmelCase : List[str] = BatchEncoding() lowerCAmelCase : Union[str, Any] = input_ids lowerCAmelCase : str = attention_mask if query_images is not None: lowerCAmelCase : int = BatchEncoding() lowerCAmelCase : str = self.image_processor( _lowercase , return_tensors=_lowercase , **_lowercase ).pixel_values lowerCAmelCase : Union[str, Any] = query_pixel_values if images is not None: lowerCAmelCase : List[Any] = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if text is not None and images is not None: lowerCAmelCase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase ) def _lowerCamelCase ( self , *a_ , **a_ ): return self.image_processor.post_process(*_lowercase , **_lowercase ) def _lowerCamelCase ( self , *a_ , **a_ ): return self.image_processor.post_process_object_detection(*_lowercase , **_lowercase ) def _lowerCamelCase ( self , *a_ , **a_ ): return self.image_processor.post_process_image_guided_detection(*_lowercase , **_lowercase ) def _lowerCamelCase ( self , *a_ , **a_ ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _lowerCamelCase ( self , *a_ , **a_ ): return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def _lowerCamelCase ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowercase , ) return self.image_processor_class @property def _lowerCamelCase ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowercase , ) return self.image_processor
719
'''simple docstring''' def __A ( a_ : int ): if not isinstance(a_ ,a_ ): lowerCAmelCase : Dict = f'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 0: return False lowerCAmelCase : Dict = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
551
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "spiece.model"} UpperCamelCase__ = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } UpperCamelCase__ = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } UpperCamelCase__ = "▁" class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Union[str, Any] = VOCAB_FILES_NAMES snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase = None , **__lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCamelCase__ = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = remove_space UpperCamelCase__ = keep_accents UpperCamelCase__ = vocab_file UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def _lowerCamelCase ( self ): return len(self.sp_model ) def _lowerCamelCase ( self ): UpperCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): UpperCamelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , __lowerCAmelCase ): if self.remove_space: UpperCamelCase__ = """ """.join(inputs.strip().split() ) else: UpperCamelCase__ = inputs UpperCamelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCamelCase__ = unicodedata.normalize("""NFKD""" , __lowerCAmelCase ) UpperCamelCase__ = """""".join([c for c in outputs if not unicodedata.combining(__lowerCAmelCase )] ) if self.do_lower_case: UpperCamelCase__ = outputs.lower() return outputs def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = self.preprocess_text(__lowerCAmelCase ) UpperCamelCase__ = self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) UpperCamelCase__ = [] for piece in pieces: if len(__lowerCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCamelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase__ = cur_pieces[1:] else: UpperCamelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCAmelCase ) else: new_pieces.append(__lowerCAmelCase ) return new_pieces def _lowerCamelCase ( self , __lowerCAmelCase ): return self.sp_model.PieceToId(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): return self.sp_model.IdToPiece(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = [] UpperCamelCase__ = """""" UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) UpperCamelCase__ = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not os.path.isdir(__lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , """wb""" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
619
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case : List[str] = VQModel snake_case : Dict = """sample""" @property def _lowerCamelCase ( self , __lowerCAmelCase=(32, 32) ): UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) return {"sample": image} @property def _lowerCamelCase ( self ): return (3, 32, 32) @property def _lowerCamelCase ( self ): return (3, 32, 32) def _lowerCamelCase ( self ): UpperCamelCase__ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) UpperCamelCase__ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self ): UpperCamelCase__ = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(__lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCamelCase__ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCamelCase__ = image.to(__lowerCAmelCase ) with torch.no_grad(): UpperCamelCase__ = model(__lowerCAmelCase ).sample UpperCamelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) )
619
1
"""simple docstring""" def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return number | (1 << position) def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return number & ~(1 << position) def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return number ^ (1 << position) def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
612
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch UpperCamelCase = True except ImportError: UpperCamelCase = False try: from torch.hub import _get_torch_home UpperCamelCase = _get_torch_home() except ImportError: UpperCamelCase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) UpperCamelCase = os.path.join(torch_cache_home, """transformers""") UpperCamelCase = """https://cdn.huggingface.co""" UpperCamelCase = """https://s3.amazonaws.com/models.huggingface.co/bert""" UpperCamelCase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) UpperCamelCase = os.path.join(PATH, """config.yaml""") UpperCamelCase = os.path.join(PATH, """attributes.txt""") UpperCamelCase = os.path.join(PATH, """objects.txt""") UpperCamelCase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) UpperCamelCase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) UpperCamelCase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) UpperCamelCase = """pytorch_model.bin""" UpperCamelCase = """config.yaml""" def lowerCAmelCase ( UpperCamelCase_: List[str]=OBJECTS , UpperCamelCase_: str=ATTRIBUTES ) -> str: '''simple docstring''' _a = [] with open(UpperCamelCase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _a = [] with open(UpperCamelCase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase ( UpperCamelCase_: Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a = OrderedDict() with open(UpperCamelCase_ , "rb" ) as f: _a = pkl.load(UpperCamelCase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _a = ckp.pop(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): _a = torch.tensor(UpperCamelCase_ ) else: assert isinstance(UpperCamelCase_ , torch.tensor ), type(UpperCamelCase_ ) _a = v return r class lowercase_ : A__ : Tuple = {} def __init__( self , a_ , a_ = "root" , a_=0 ) ->Optional[Any]: '''simple docstring''' _a = name _a = level _a = {} for k, v in dictionary.items(): if v is None: raise ValueError() _a = copy.deepcopy(a_ ) _a = copy.deepcopy(a_ ) if isinstance(a_ , a_ ): _a = Config(a_ , name=a_ , level=level + 1 ) _a = v setattr(self , a_ , a_ ) _a = d def __repr__( self ) ->Optional[int]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , a_ , a_ ) ->str: '''simple docstring''' _a = val _a = val _a = key.split("." ) _a = len(a_ ) - 1 _a = self._pointer if len(a_ ) > 1: for i, l in enumerate(a_ ): if hasattr(self , a_ ) and isinstance(getattr(self , a_ ) , a_ ): setattr(getattr(self , a_ ) , ".".join(levels[i:] ) , a_ ) if l == last_level: _a = val else: _a = pointer[l] def lowerCamelCase__ ( self ) ->int: '''simple docstring''' return self._pointer def lowerCamelCase__ ( self , a_ , a_ ) ->Any: '''simple docstring''' with open(f'''{file_name}''' , "w" ) as stream: dump(a_ , a_ ) def lowerCamelCase__ ( self , a_ , a_ ) ->int: '''simple docstring''' with open(f'''{file_name}''' , "w" ) as stream: json.dump(a_ , a_ ) @staticmethod def lowerCamelCase__ ( a_ ) ->Union[str, Any]: '''simple docstring''' with open(a_ ) as stream: _a = load(a_ , Loader=a_ ) return data def __str__( self ) ->List[Any]: '''simple docstring''' _a = " " if self._name != "root": _a = f'''{t * (self._level-1)}{self._name}:\n''' else: _a = "" _a = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(a_ , a_ ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(a_ ).__name__})\n''' _a = level return r[:-1] @classmethod def lowerCamelCase__ ( cls , a_ , **a_ ) ->Tuple: '''simple docstring''' _a , _a = cls.get_config_dict(a_ , **a_ ) return cls(a_ ) @classmethod def lowerCamelCase__ ( cls , a_ , **a_ ) ->List[Any]: '''simple docstring''' _a = kwargs.pop("cache_dir" , a_ ) _a = kwargs.pop("force_download" , a_ ) _a = kwargs.pop("resume_download" , a_ ) _a = kwargs.pop("proxies" , a_ ) _a = kwargs.pop("local_files_only" , a_ ) if os.path.isdir(a_ ): _a = os.path.join(a_ , a_ ) elif os.path.isfile(a_ ) or is_remote_url(a_ ): _a = pretrained_model_name_or_path else: _a = hf_bucket_url(a_ , filename=a_ , use_cdn=a_ ) try: # Load from URL or cache if already cached _a = cached_path( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _a = Config.load_yaml(a_ ) except EnvironmentError: _a = "Can't load config for" raise EnvironmentError(a_ ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(a_ ), kwargs def lowerCAmelCase ( UpperCamelCase_: Optional[int] ) -> Tuple: '''simple docstring''' _a = torch.load("dump.pt" , map_location=in_tensor.device ) _a = in_tensor.numpy() _a = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(UpperCamelCase_ , UpperCamelCase_ , rtol=0.01 , atol=0.1 ), ( f'''{sum([1 for x in np.isclose(UpperCamelCase_ , UpperCamelCase_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowerCAmelCase ( UpperCamelCase_: str ) -> List[str]: '''simple docstring''' _a = urlparse(UpperCamelCase_ ) return parsed.scheme in ("http", "https") def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Dict=True ) -> str: '''simple docstring''' _a = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _a = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def lowerCAmelCase ( UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Tuple=0 , UpperCamelCase_: Union[str, Any]=None , ) -> List[str]: '''simple docstring''' _a = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): ua += "; " + "; ".join("{}/{}".format(UpperCamelCase_ , UpperCamelCase_ ) for k, v in user_agent.items() ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): ua += "; " + user_agent _a = {"user-agent": ua} if resume_size > 0: _a = "bytes=%d-" % (resume_size,) _a = requests.get(UpperCamelCase_ , stream=UpperCamelCase_ , proxies=UpperCamelCase_ , headers=UpperCamelCase_ ) if response.status_code == 416: # Range not satisfiable return _a = response.headers.get("Content-Length" ) _a = resume_size + int(UpperCamelCase_ ) if content_length is not None else None _a = tqdm( unit="B" , unit_scale=UpperCamelCase_ , total=UpperCamelCase_ , initial=UpperCamelCase_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(UpperCamelCase_ ) ) temp_file.write(UpperCamelCase_ ) progress.close() def lowerCAmelCase ( UpperCamelCase_: Optional[int] , UpperCamelCase_: str=None , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: int=10 , UpperCamelCase_: List[str]=False , UpperCamelCase_: int=None , UpperCamelCase_: List[str]=False , ) -> int: '''simple docstring''' if cache_dir is None: _a = TRANSFORMERS_CACHE if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) _a = None if not local_files_only: try: _a = requests.head(UpperCamelCase_ , allow_redirects=UpperCamelCase_ , proxies=UpperCamelCase_ , timeout=UpperCamelCase_ ) if response.status_code == 200: _a = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _a = url_to_filename(UpperCamelCase_ , UpperCamelCase_ ) # get cache path to put the file _a = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(UpperCamelCase_ ): return cache_path else: _a = [ file for file in fnmatch.filter(os.listdir(UpperCamelCase_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(UpperCamelCase_ ) > 0: return os.path.join(UpperCamelCase_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(UpperCamelCase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _a = cache_path + ".lock" with FileLock(UpperCamelCase_ ): # If the download just completed while the lock was activated. if os.path.exists(UpperCamelCase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _a = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(UpperCamelCase_ , "a+b" ) as f: yield f _a = _resumable_file_manager if os.path.exists(UpperCamelCase_ ): _a = os.stat(UpperCamelCase_ ).st_size else: _a = 0 else: _a = partial(tempfile.NamedTemporaryFile , dir=UpperCamelCase_ , delete=UpperCamelCase_ ) _a = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , UpperCamelCase_ , temp_file.name , ) http_get( UpperCamelCase_ , UpperCamelCase_ , proxies=UpperCamelCase_ , resume_size=UpperCamelCase_ , user_agent=UpperCamelCase_ , ) os.replace(temp_file.name , UpperCamelCase_ ) _a = {"url": url, "etag": etag} _a = cache_path + ".json" with open(UpperCamelCase_ , "w" ) as meta_file: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return cache_path def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: Dict=None ) -> Any: '''simple docstring''' _a = url.encode("utf-8" ) _a = shaaaa(UpperCamelCase_ ) _a = url_hash.hexdigest() if etag: _a = etag.encode("utf-8" ) _a = shaaaa(UpperCamelCase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowerCAmelCase ( UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Tuple=False , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: str=False , UpperCamelCase_: Dict=None , UpperCamelCase_: int=False , UpperCamelCase_: Dict=False , UpperCamelCase_: Any=False , ) -> List[str]: '''simple docstring''' if cache_dir is None: _a = TRANSFORMERS_CACHE if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) if is_remote_url(UpperCamelCase_ ): # URL, so get it from the cache (downloading if necessary) _a = get_from_cache( UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , user_agent=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) elif os.path.exists(UpperCamelCase_ ): # File, and it exists. _a = url_or_filename elif urlparse(UpperCamelCase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(UpperCamelCase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(UpperCamelCase_ ) ) if extract_compressed_file: if not is_zipfile(UpperCamelCase_ ) and not tarfile.is_tarfile(UpperCamelCase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _a , _a = os.path.split(UpperCamelCase_ ) _a = output_file.replace("." , "-" ) + "-extracted" _a = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ) and os.listdir(UpperCamelCase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _a = output_path + ".lock" with FileLock(UpperCamelCase_ ): shutil.rmtree(UpperCamelCase_ , ignore_errors=UpperCamelCase_ ) os.makedirs(UpperCamelCase_ ) if is_zipfile(UpperCamelCase_ ): with ZipFile(UpperCamelCase_ , "r" ) as zip_file: zip_file.extractall(UpperCamelCase_ ) zip_file.close() elif tarfile.is_tarfile(UpperCamelCase_ ): _a = tarfile.open(UpperCamelCase_ ) tar_file.extractall(UpperCamelCase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(UpperCamelCase_ ) ) return output_path_extracted return output_path def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: str="," ) -> Tuple: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): with open(UpperCamelCase_ ) as f: _a = eval(f.read() ) else: _a = requests.get(UpperCamelCase_ ) try: _a = requests.json() except Exception: _a = req.content.decode() assert data is not None, "could not connect" try: _a = eval(UpperCamelCase_ ) except Exception: _a = data.split("\n" ) req.close() return data def lowerCAmelCase ( UpperCamelCase_: Dict ) -> Union[str, Any]: '''simple docstring''' _a = requests.get(UpperCamelCase_ ) _a = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase ( UpperCamelCase_: int ) -> Tuple: '''simple docstring''' _a = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(UpperCamelCase_ ) with open(UpperCamelCase_ , "rb" ) as stream: _a = pkl.load(UpperCamelCase_ ) _a = weights.pop("model" ) _a = {} for k, v in model.items(): _a = torch.from_numpy(UpperCamelCase_ ) if "running_var" in k: _a = torch.tensor([0] ) _a = k.replace("running_var" , "num_batches_tracked" ) _a = zero return new def lowerCAmelCase ( ) -> str: '''simple docstring''' print(f'''{os.path.abspath(os.path.join(UpperCamelCase_ , os.pardir ) )}/demo.ipynb''' ) def lowerCAmelCase ( UpperCamelCase_: List[str] , UpperCamelCase_: List[str]="RGB" ) -> List[Any]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): _a = cva.imread(UpperCamelCase_ ) else: _a = get_image_from_url(UpperCamelCase_ ) assert img is not None, f'''could not connect to: {im}''' _a = cva.cvtColor(UpperCamelCase_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": _a = img[:, :, ::-1] return img def lowerCAmelCase ( UpperCamelCase_: Any , UpperCamelCase_: str=1 ) -> Any: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ))
612
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> int: while b: __A ,__A : str = b, a % b return a def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> int: return a if b == 0 else euclidean_gcd_recursive(__snake_case , a % b ) def _lowerCAmelCase ( ) -> Any: print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
8
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case : str = logging.get_logger(__name__) snake_case : List[str] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = '''deformable_detr''' UpperCAmelCase__ : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self :Optional[int] ,__snake_case :List[Any]=True ,__snake_case :str=None ,__snake_case :Optional[Any]=3 ,__snake_case :int=3_00 ,__snake_case :Optional[int]=10_24 ,__snake_case :Union[str, Any]=6 ,__snake_case :Optional[int]=10_24 ,__snake_case :List[str]=8 ,__snake_case :Optional[Any]=6 ,__snake_case :int=10_24 ,__snake_case :List[str]=8 ,__snake_case :List[str]=0.0 ,__snake_case :Optional[int]=True ,__snake_case :Any="relu" ,__snake_case :List[str]=2_56 ,__snake_case :List[str]=0.1 ,__snake_case :Dict=0.0 ,__snake_case :Optional[int]=0.0 ,__snake_case :List[Any]=0.02 ,__snake_case :Union[str, Any]=1.0 ,__snake_case :List[str]=True ,__snake_case :Union[str, Any]=False ,__snake_case :List[Any]="sine" ,__snake_case :Tuple="resnet50" ,__snake_case :Dict=True ,__snake_case :Tuple=False ,__snake_case :str=4 ,__snake_case :Union[str, Any]=4 ,__snake_case :List[Any]=4 ,__snake_case :Optional[Any]=False ,__snake_case :str=3_00 ,__snake_case :Tuple=False ,__snake_case :Union[str, Any]=1 ,__snake_case :str=5 ,__snake_case :str=2 ,__snake_case :Dict=1 ,__snake_case :Any=1 ,__snake_case :Union[str, Any]=5 ,__snake_case :Tuple=2 ,__snake_case :Any=0.1 ,__snake_case :str=0.25 ,__snake_case :int=False ,**__snake_case :Optional[int] ,) -> Tuple: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) a__ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__snake_case ,__snake_case ): a__ = backbone_config.get('model_type' ) a__ = CONFIG_MAPPING[backbone_model_type] a__ = config_class.from_dict(__snake_case ) a__ = use_timm_backbone a__ = backbone_config a__ = num_channels a__ = num_queries a__ = max_position_embeddings a__ = d_model a__ = encoder_ffn_dim a__ = encoder_layers a__ = encoder_attention_heads a__ = decoder_ffn_dim a__ = decoder_layers a__ = decoder_attention_heads a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = activation_function a__ = init_std a__ = init_xavier_std a__ = encoder_layerdrop a__ = auxiliary_loss a__ = position_embedding_type a__ = backbone a__ = use_pretrained_backbone a__ = dilation # deformable attributes a__ = num_feature_levels a__ = encoder_n_points a__ = decoder_n_points a__ = two_stage a__ = two_stage_num_proposals a__ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher a__ = class_cost a__ = bbox_cost a__ = giou_cost # Loss coefficients a__ = mask_loss_coefficient a__ = dice_loss_coefficient a__ = bbox_loss_coefficient a__ = giou_loss_coefficient a__ = eos_coefficient a__ = focal_alpha a__ = disable_custom_kernels super().__init__(is_encoder_decoder=__snake_case ,**__snake_case ) @property def lowerCamelCase__( self :Dict ) -> int: return self.encoder_attention_heads @property def lowerCamelCase__( self :int ) -> int: return self.d_model def lowerCamelCase__( self :List[str] ) -> str: a__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: a__ = self.backbone_config.to_dict() a__ = self.__class__.model_type return output
335
0
from collections import deque class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :str, snake_case :str, snake_case :int, snake_case :int): """simple docstring""" _lowercase =process_name # process name _lowercase =arrival_time # arrival time of the process # completion time of finished process or last interrupted time _lowercase =arrival_time _lowercase =burst_time # remaining burst time _lowercase =0 # total time of the process wait in ready queue _lowercase =0 # time from arrival time to completion time class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Dict, snake_case :int, snake_case :list[int], snake_case :deque[Process], snake_case :int, ): """simple docstring""" _lowercase =number_of_queues # time slice of queues that round robin algorithm applied _lowercase =time_slices # unfinished process is in this ready_queue _lowercase =queue # current time _lowercase =current_time # finished process is in this sequence queue _lowercase =deque() def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" _lowercase =[] for i in range(len(self.finish_queue)): sequence.append(self.finish_queue[i].process_name) return sequence def UpperCamelCase__ ( self :Any, snake_case :list[Process]): """simple docstring""" _lowercase =[] for i in range(len(__a)): waiting_times.append(queue[i].waiting_time) return waiting_times def UpperCamelCase__ ( self :Optional[int], snake_case :list[Process]): """simple docstring""" _lowercase =[] for i in range(len(__a)): turnaround_times.append(queue[i].turnaround_time) return turnaround_times def UpperCamelCase__ ( self :int, snake_case :list[Process]): """simple docstring""" _lowercase =[] for i in range(len(__a)): completion_times.append(queue[i].stop_time) return completion_times def UpperCamelCase__ ( self :Optional[int], snake_case :deque[Process]): """simple docstring""" return [q.burst_time for q in queue] def UpperCamelCase__ ( self :int, snake_case :Process): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCamelCase__ ( self :List[Any], snake_case :deque[Process]): """simple docstring""" _lowercase =deque() # sequence deque of finished process while len(__a) != 0: _lowercase =ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__a) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _lowercase =0 # set the process's turnaround time because it is finished _lowercase =self.current_time - cp.arrival_time # set the completion time _lowercase =self.current_time # add the process to queue that has finished queue finished.append(__a) self.finish_queue.extend(__a) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCamelCase__ ( self :Optional[int], snake_case :deque[Process], snake_case :int): """simple docstring""" _lowercase =deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__a)): _lowercase =ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__a) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _lowercase =self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__a) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _lowercase =0 # set the finish time _lowercase =self.current_time # update the process' turnaround time because it is finished _lowercase =self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__a) self.finish_queue.extend(__a) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCamelCase__ ( self :int): """simple docstring""" for i in range(self.number_of_queues - 1): _lowercase =self.round_robin( self.ready_queue, self.time_slices[i]) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue) return self.finish_queue if __name__ == "__main__": import doctest _SCREAMING_SNAKE_CASE = Process("P1", 0, 53) _SCREAMING_SNAKE_CASE = Process("P2", 0, 17) _SCREAMING_SNAKE_CASE = Process("P3", 0, 68) _SCREAMING_SNAKE_CASE = Process("P4", 0, 24) _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = [17, 25] _SCREAMING_SNAKE_CASE = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) _SCREAMING_SNAKE_CASE = Process("P1", 0, 53) _SCREAMING_SNAKE_CASE = Process("P2", 0, 17) _SCREAMING_SNAKE_CASE = Process("P3", 0, 68) _SCREAMING_SNAKE_CASE = Process("P4", 0, 24) _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = [17, 25] _SCREAMING_SNAKE_CASE = deque([Pa, Pa, Pa, Pa]) _SCREAMING_SNAKE_CASE = MLFQ(number_of_queues, time_slices, queue, 0) _SCREAMING_SNAKE_CASE = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
720
def _snake_case (_snake_case : str , _snake_case : str) -> float: def get_matched_characters(_snake_case : str , _snake_case : str) -> str: _lowercase =[] _lowercase =min(len(_stra) , len(_stra)) // 2 for i, l in enumerate(_stra): _lowercase =int(max(0 , i - limit)) _lowercase =int(min(i + limit + 1 , len(_stra))) if l in _stra[left:right]: matched.append(_snake_case) _lowercase =f'''{_stra[0:_stra.index(_snake_case)]} {_stra[_stra.index(_snake_case) + 1:]}''' return "".join(_snake_case) # matching characters _lowercase =get_matched_characters(_snake_case , _snake_case) _lowercase =get_matched_characters(_snake_case , _snake_case) _lowercase =len(_snake_case) # transposition _lowercase =( len([(ca, ca) for ca, ca in zip(_snake_case , _snake_case) if ca != ca]) // 2 ) if not match_count: _lowercase =0.0 else: _lowercase =( 1 / 3 * ( match_count / len(_snake_case) + match_count / len(_snake_case) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowercase =0 for ca, ca in zip(stra[:4] , stra[:4]): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
557
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : Any=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' lowercase__ : Tuple = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' lowercase__ : List[str] = nn.Parameter(lowerCamelCase__ ) def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : str ): # set torch weights for 1-to-1 comparison lowercase__ : int = np.asarray(weights[0] ) lowercase__ : Dict = np.asarray(weights[1] ) lowercase__ : int = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ): # set torch weights for 1-to-1 comparison lowercase__ : str = np.asarray(weights[0] ) lowercase__ : Any = np.asarray(weights[1] ) lowercase__ : Tuple = np.asarray(weights[2] ) lowercase__ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ): # layernorm 1 lowercase__ : Optional[int] = weights[0][0][0] lowercase__ : Union[str, Any] = np.asarray(layer_norm_a[0] ) lowercase__ : Optional[int] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowercase__ : int = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowercase__ : Union[str, Any] = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowercase__ : str = intermediate_weights[2] # layernorm 2 lowercase__ : Union[str, Any] = np.asarray(intermediate_weights[0][0] ) lowercase__ : int = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowercase__ : Optional[Any] = np.asarray(intermediate_weights[1][0] ) lowercase__ : Any = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowercase__ : Dict = np.asarray(intermediate_weights[4][0] ) lowercase__ : Dict = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] ): # reformer model lowercase__ : List[str] = torch_model.reformer # word embeds lowercase__ : Tuple = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowercase__ : Dict = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowercase__ : Optional[int] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' lowercase__ : List[Any] = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowercase__ : Any = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowercase__ : Any = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowercase__ : Union[str, Any] = np.asarray(weights[7][0] ) lowercase__ : Union[str, Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowercase__ : Tuple = np.asarray(weights[9][0] ) lowercase__ : List[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): # Initialise PyTorch model lowercase__ : str = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) lowercase__ : List[str] = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowercase__ : List[str] = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
200
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , ) -> int: lowercase__ : int = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : Union[str, Any] = num_channels lowercase__ : Tuple = image_size lowercase__ : str = min_resolution lowercase__ : Optional[Any] = max_resolution lowercase__ : Union[str, Any] = do_resize lowercase__ : Dict = size lowercase__ : Optional[Any] = do_normalize def UpperCAmelCase__( self ) -> Any: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" _a : List[Any] = ImageGPTImageProcessor if is_vision_available() else None def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : str = ImageGPTImageProcessingTester(self ) @property def UpperCAmelCase__( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__( self ) -> int: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """clusters""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_normalize""" ) ) def UpperCAmelCase__( self ) -> Any: lowercase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) lowercase__ : Optional[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Dict: lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Optional[int] = os.path.join(lowerCamelCase__ , """image_processor.json""" ) image_processor_first.to_json_file(lowerCamelCase__ ) lowercase__ : str = self.image_processing_class.from_json_file(lowerCamelCase__ ).to_dict() lowercase__ : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCamelCase__ ) lowercase__ : Union[str, Any] = self.image_processing_class.from_pretrained(lowerCamelCase__ ).to_dict() lowercase__ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def UpperCAmelCase__( self ) -> Dict: pass def _lowerCamelCase ( ): lowercase__ : Tuple = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase__ : Optional[int] = Image.open(dataset[4]["""file"""] ) lowercase__ : Union[str, Any] = Image.open(dataset[5]["""file"""] ) lowercase__ : Optional[int] = [imagea, imagea] return images @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__( self ) -> str: lowercase__ : Optional[int] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase__ : int = prepare_images() # test non-batched lowercase__ : int = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase__ : Any = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCamelCase__ ) # test batched lowercase__ : str = image_processing(lowerCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase__ : Optional[int] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCamelCase__ )
200
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : int=10 , SCREAMING_SNAKE_CASE__ : Optional[int]=[8, 16, 32, 64] , SCREAMING_SNAKE_CASE__ : int=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="relu" , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Dict=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE__ : List[str]=[2, 3, 4] , SCREAMING_SNAKE_CASE__ : List[str]=1 , ) -> Union[str, Any]: A : Tuple =parent A : List[Any] =batch_size A : Any =image_size A : int =num_channels A : str =embeddings_size A : Any =hidden_sizes A : Dict =depths A : Optional[int] =is_training A : Any =use_labels A : Optional[Any] =hidden_act A : Optional[Any] =num_labels A : Optional[Any] =scope A : str =len(SCREAMING_SNAKE_CASE__ ) A : Any =out_features A : List[Any] =out_indices A : Dict =num_groups def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: A : Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : List[Any] =None if self.use_labels: A : str =ids_tensor([self.batch_size] , self.num_labels ) A : List[str] =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Any: A : Any =BitModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : int =model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: A : List[Any] =self.num_labels A : List[str] =BitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Any =model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: A : Any =BitBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Any =model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A : Any =None A : int =BitBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Dict =model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: A : Optional[Any] =self.prepare_config_and_inputs() A , A , A : Tuple =config_and_inputs A : Optional[Any] ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Dict = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowercase : Union[str, Any] = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) lowercase : str = False lowercase : List[Any] = False lowercase : List[str] = False lowercase : str = False lowercase : str = False def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: A : List[str] =BitModelTester(self ) A : Tuple =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: return @unittest.skip(reason='Bit does not output attentions' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: pass def SCREAMING_SNAKE_CASE_ ( self : str ) -> int: A , A : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : int =model_class(SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : str =[*signature.parameters.keys()] A : List[Any] =['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: A : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]: A , A : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : str =model_class(config=SCREAMING_SNAKE_CASE__ ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ): A : Union[str, Any] =model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): A : Tuple =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) A : List[str] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A : Dict =self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A , A : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() A : Union[str, Any] =['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: A : str =layer_type A : Union[str, Any] =True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Union[str, Any] =True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict: pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: A : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : str =BitModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def A__ ( ) -> List[str]: A : Any =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: A : int =BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =self.default_image_processor A : str =prepare_img() A : List[Any] =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): A : Tuple =model(**SCREAMING_SNAKE_CASE__ ) # verify the logits A : List[str] =torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) A : List[str] =torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : int = (BitBackbone,) if is_torch_available() else () lowercase : Dict = BitConfig lowercase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: A : Any =BitModelTester(self )
661
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[str] = XLMRobertaTokenizer lowercase : Dict = XLMRobertaTokenizerFast lowercase : str = True lowercase : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: A : List[str] ='<pad>' A : int =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: A : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : str =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=True A : Optional[int] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=False A : List[Any] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name ) A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ ) A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ ) pickle.loads(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: if not self.test_rust_tokenizer: return A : Union[str, Any] =self.get_tokenizer() A : int =self.get_rust_tokenizer() A : List[str] ='I was born in 92000, and this is falsé.' A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.get_rust_tokenizer() A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: A : Any ='Hello World!' A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: A : Any =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A : int =[ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: # fmt: off A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
661
1
'''simple docstring''' def lowercase_ ( __A : int = 3 , __A : int = 7 , __A : int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" lowercase : Union[str, Any] =0 lowercase : List[Any] =1 for current_denominator in range(1 , limit + 1 ): lowercase : Dict =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowercase : Tuple =current_numerator lowercase : int =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
94
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } SCREAMING_SNAKE_CASE = '▁' # Segments (not really needed) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = '''left''' UpperCamelCase_ = XLNetTokenizer def __init__( self : int , UpperCAmelCase : Dict=None , UpperCAmelCase : str=None , UpperCAmelCase : str=False , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Optional[Any]="<sep>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : Optional[Any]="<cls>" , UpperCAmelCase : Dict="<mask>" , UpperCAmelCase : int=["<eop>", "<eod>"] , **UpperCAmelCase : List[Any] , ) -> List[str]: '''simple docstring''' lowercase : Dict =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Tuple =3 lowercase : Union[str, Any] =do_lower_case lowercase : Any =remove_space lowercase : int =keep_accents lowercase : int =vocab_file lowercase : Union[str, Any] =False if not self.vocab_file else True def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Union[str, Any] =[self.sep_token_id] lowercase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[int] =[self.sep_token_id] lowercase : Union[str, Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Dict =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
94
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _snake_case : List[str] = NewType('DataClass', Any) _snake_case : List[str] = NewType('DataClassType', Any) def _A ( __snake_case :List[Any] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def _A ( __snake_case :list ) -> Callable[[str], Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = {str(__snake_case ): choice for choice in choices} return lambda __snake_case : str_to_choice.get(__snake_case , __snake_case ) def _A ( *, __snake_case :Union[str, List[str]] = None , __snake_case :str = None , __snake_case :Any = dataclasses.MISSING , __snake_case :Callable[[], Any] = dataclasses.MISSING , __snake_case :dict = None , **__snake_case :Dict , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __SCREAMING_SNAKE_CASE = {} if aliases is not None: __SCREAMING_SNAKE_CASE = aliases if help is not None: __SCREAMING_SNAKE_CASE = help return dataclasses.field(metadata=__snake_case , default=__snake_case , default_factory=__snake_case , **__snake_case ) class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =42 def __init__( self, _a, **_a ) -> Optional[Any]: # To make the default appear when using --help if "formatter_class" not in kwargs: __SCREAMING_SNAKE_CASE = ArgumentDefaultsHelpFormatter super().__init__(**_a ) if dataclasses.is_dataclass(_a ): __SCREAMING_SNAKE_CASE = [dataclass_types] __SCREAMING_SNAKE_CASE = list(_a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_a ) @staticmethod def __lowerCAmelCase ( _a, _a ) -> str: __SCREAMING_SNAKE_CASE = f'''--{field.name}''' __SCREAMING_SNAKE_CASE = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type, _a ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) __SCREAMING_SNAKE_CASE = kwargs.pop("aliases", [] ) if isinstance(_a, _a ): __SCREAMING_SNAKE_CASE = [aliases] __SCREAMING_SNAKE_CASE = getattr(field.type, "__origin__", field.type ) if origin_type is Union or (hasattr(_a, "UnionType" ) and isinstance(_a, types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_a ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(_a ) not in field.type.__args__: # filter `str` in Union __SCREAMING_SNAKE_CASE = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __SCREAMING_SNAKE_CASE = getattr(field.type, "__origin__", field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __SCREAMING_SNAKE_CASE = ( field.type.__args__[0] if isinstance(_a, field.type.__args__[1] ) else field.type.__args__[1] ) __SCREAMING_SNAKE_CASE = getattr(field.type, "__origin__", field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __SCREAMING_SNAKE_CASE = {} if origin_type is Literal or (isinstance(field.type, _a ) and issubclass(field.type, _a )): if origin_type is Literal: __SCREAMING_SNAKE_CASE = field.type.__args__ else: __SCREAMING_SNAKE_CASE = [x.value for x in field.type] __SCREAMING_SNAKE_CASE = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: __SCREAMING_SNAKE_CASE = field.default else: __SCREAMING_SNAKE_CASE = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __SCREAMING_SNAKE_CASE = copy(_a ) # Hack because type=bool in argparse does not behave as we want. __SCREAMING_SNAKE_CASE = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __SCREAMING_SNAKE_CASE = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __SCREAMING_SNAKE_CASE = default # This tells argparse we accept 0 or 1 value after --field_name __SCREAMING_SNAKE_CASE = "?" # This is the value that will get picked if we do --field_name (without value) __SCREAMING_SNAKE_CASE = True elif isclass(_a ) and issubclass(_a, _a ): __SCREAMING_SNAKE_CASE = field.type.__args__[0] __SCREAMING_SNAKE_CASE = "+" if field.default_factory is not dataclasses.MISSING: __SCREAMING_SNAKE_CASE = field.default_factory() elif field.default is dataclasses.MISSING: __SCREAMING_SNAKE_CASE = True else: __SCREAMING_SNAKE_CASE = field.type if field.default is not dataclasses.MISSING: __SCREAMING_SNAKE_CASE = field.default elif field.default_factory is not dataclasses.MISSING: __SCREAMING_SNAKE_CASE = field.default_factory() else: __SCREAMING_SNAKE_CASE = True parser.add_argument(_a, *_a, **_a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __SCREAMING_SNAKE_CASE = False parser.add_argument(f'''--no_{field.name}''', action="store_false", dest=field.name, **_a ) def __lowerCAmelCase ( self, _a ) -> Optional[Any]: if hasattr(_a, "_argument_group_name" ): __SCREAMING_SNAKE_CASE = self.add_argument_group(dtype._argument_group_name ) else: __SCREAMING_SNAKE_CASE = self try: __SCREAMING_SNAKE_CASE = get_type_hints(_a ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_a ): __SCREAMING_SNAKE_CASE = ".".join(map(_a, sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(_a ): if not field.init: continue __SCREAMING_SNAKE_CASE = type_hints[field.name] self._parse_dataclass_field(_a, _a ) def __lowerCAmelCase ( self, _a=None, _a=False, _a=True, _a=None, _a=None, ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __SCREAMING_SNAKE_CASE = [] if args_filename: args_files.append(Path(_a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __SCREAMING_SNAKE_CASE = ArgumentParser() args_file_parser.add_argument(_a, type=_a, action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = args_file_parser.parse_known_args(args=_a ) __SCREAMING_SNAKE_CASE = vars(_a ).get(args_file_flag.lstrip("-" ), _a ) if cmd_args_file_paths: args_files.extend([Path(_a ) for p in cmd_args_file_paths] ) __SCREAMING_SNAKE_CASE = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __SCREAMING_SNAKE_CASE = file_args + args if args is not None else file_args + sys.argv[1:] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.parse_known_args(args=_a ) __SCREAMING_SNAKE_CASE = [] for dtype in self.dataclass_types: __SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(_a ) if f.init} __SCREAMING_SNAKE_CASE = {k: v for k, v in vars(_a ).items() if k in keys} for k in keys: delattr(_a, _a ) __SCREAMING_SNAKE_CASE = dtype(**_a ) outputs.append(_a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def __lowerCAmelCase ( self, _a, _a = False ) -> Tuple[DataClass, ...]: __SCREAMING_SNAKE_CASE = set(args.keys() ) __SCREAMING_SNAKE_CASE = [] for dtype in self.dataclass_types: __SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(_a ) if f.init} __SCREAMING_SNAKE_CASE = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __SCREAMING_SNAKE_CASE = dtype(**_a ) outputs.append(_a ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(_a )}''' ) return tuple(_a ) def __lowerCAmelCase ( self, _a, _a = False ) -> Tuple[DataClass, ...]: with open(Path(_a ), encoding="utf-8" ) as open_json_file: __SCREAMING_SNAKE_CASE = json.loads(open_json_file.read() ) __SCREAMING_SNAKE_CASE = self.parse_dict(_a, allow_extra_keys=_a ) return tuple(_a ) def __lowerCAmelCase ( self, _a, _a = False ) -> Tuple[DataClass, ...]: __SCREAMING_SNAKE_CASE = self.parse_dict(yaml.safe_load(Path(_a ).read_text() ), allow_extra_keys=_a ) return tuple(_a )
711
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =(DDIMParallelScheduler,) SCREAMING_SNAKE_CASE__ =(("""eta""", 0.0), ("""num_inference_steps""", 50)) def __lowerCAmelCase ( self, **_a ) -> Dict: __SCREAMING_SNAKE_CASE = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_a ) return config def __lowerCAmelCase ( self, **_a ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_a ) __SCREAMING_SNAKE_CASE = scheduler_class(**_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 10, 0.0 __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_a ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE = model(_a, _a ) __SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, _a ).prev_sample return sample def __lowerCAmelCase ( self ) -> List[Any]: for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_a ) __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(steps_offset=1 ) __SCREAMING_SNAKE_CASE = scheduler_class(**_a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps, torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def __lowerCAmelCase ( self ) -> List[str]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a, beta_end=_a ) def __lowerCAmelCase ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowerCAmelCase ( self ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __lowerCAmelCase ( self ) -> List[Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_a ) def __lowerCAmelCase ( self ) -> Optional[Any]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_a ) def __lowerCAmelCase ( self ) -> List[str]: self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_a, prediction_type=_a, sample_max_value=_a, ) def __lowerCAmelCase ( self ) -> Dict: for t in [1, 10, 49]: self.check_over_forward(time_step=_a ) def __lowerCAmelCase ( self ) -> Dict: for t, num_inference_steps in zip([1, 10, 50], [10, 50, 5_00] ): self.check_over_forward(time_step=_a, num_inference_steps=_a ) def __lowerCAmelCase ( self ) -> Any: for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_a, eta=_a ) def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20, 4_00 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80, 9_60 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87, 4_86 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99, 9_98 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 10, 0.0 scheduler.set_timesteps(_a ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = self.dummy_sample_deter + 0.1 __SCREAMING_SNAKE_CASE = self.dummy_sample_deter - 0.1 __SCREAMING_SNAKE_CASE = samplea.shape[0] __SCREAMING_SNAKE_CASE = torch.stack([samplea, samplea, samplea], dim=0 ) __SCREAMING_SNAKE_CASE = torch.arange(_a )[0:3, None].repeat(1, _a ) __SCREAMING_SNAKE_CASE = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) __SCREAMING_SNAKE_CASE = scheduler.batch_step_no_noise(_a, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ), _a ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def __lowerCAmelCase ( self ) -> int: __SCREAMING_SNAKE_CASE = self.full_loop() __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def __lowerCAmelCase ( self ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 __SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=_a, beta_start=0.01 ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: # We specify different beta, so that the first alpha is 0.99 __SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=_a, beta_start=0.01 ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_a ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
214
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
606
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
606
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=0.6 , lowerCamelCase=None , ) -> Tuple: '''simple docstring''' UpperCamelCase : Tuple = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Any = image_size UpperCamelCase : Dict = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : Optional[int] = is_training UpperCamelCase : Tuple = use_labels UpperCamelCase : Dict = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : Any = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Tuple = type_sequence_label_size UpperCamelCase : int = initializer_range UpperCamelCase : int = mask_ratio UpperCamelCase : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase : Any = (image_size // patch_size) ** 2 UpperCamelCase : List[str] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Tuple = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: '''simple docstring''' UpperCamelCase : List[Any] = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: '''simple docstring''' UpperCamelCase : Dict = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : List[Any] = model(lowerCamelCase ) UpperCamelCase : List[Any] = (self.image_size // self.patch_size) ** 2 UpperCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase : Dict = 1 UpperCamelCase : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Union[str, Any] = model(lowerCamelCase ) UpperCamelCase : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Any = self.prepare_config_and_inputs() UpperCamelCase : Any = config_and_inputs UpperCamelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __SCREAMING_SNAKE_CASE = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Optional[Any] = ViTMAEModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(lowerCamelCase ) UpperCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[Any] = [*signature.parameters.keys()] UpperCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: '''simple docstring''' np.random.seed(2 ) UpperCamelCase : List[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase : Optional[int] = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase : Dict = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase : Any = outputs[0].cpu().numpy() UpperCamelCase : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) UpperCamelCase : str = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans UpperCamelCase : Optional[Any] = after_outputs[0].cpu().numpy() UpperCamelCase : List[str] = 0 UpperCamelCase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def A__ ( ): '''simple docstring''' UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' np.random.seed(2 ) UpperCamelCase : Tuple = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowerCamelCase ) UpperCamelCase : str = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : int = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase : List[str] = ViTMAEConfig() UpperCamelCase : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits UpperCamelCase : Any = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) UpperCamelCase : Optional[int] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1e-4 ) )
708
'''simple docstring''' lowerCAmelCase_ = 0 # The first color of the flag. lowerCAmelCase_ = 1 # The second color of the flag. lowerCAmelCase_ = 2 # The third color of the flag. lowerCAmelCase_ = (red, white, blue) def A__ ( A : list): '''simple docstring''' if not sequence: return [] if len(A) == 1: return list(A) UpperCamelCase : Optional[int] = 0 UpperCamelCase : Any = len(A) - 1 UpperCamelCase : Union[str, Any] = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCamelCase , UpperCamelCase : List[str] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCamelCase , UpperCamelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: UpperCamelCase : Union[str, Any] = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(A) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = input('Enter numbers separated by commas:\n').strip() lowerCAmelCase_ = [int(item.strip()) for item in user_input.split(',')] print(f"""{dutch_national_flag_sort(unsorted)}""")
435
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _a ( ) -> Dict: a = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a ) a = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a ) env_command_parser(subparsers=a ) launch_command_parser(subparsers=a ) tpu_command_parser(subparsers=a ) test_command_parser(subparsers=a ) # Let's go a = parser.parse_args() if not hasattr(a , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a ) if __name__ == "__main__": main()
117
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str=100 , __UpperCAmelCase : List[str]=13 , __UpperCAmelCase : Optional[int]=30 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : str=True , __UpperCAmelCase : str=32 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : str=37 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Tuple=10 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : str=3 , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Union[str, Any]=[0, 1, 2, 3] , ) ->Dict: """simple docstring""" a = parent a = 100 a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = type_sequence_label_size a = initializer_range a = scope a = out_indices a = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ) ->List[Any]: """simple docstring""" a = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" a = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) ->Optional[int]: """simple docstring""" a = self.type_sequence_label_size a = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a = 1 a = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" a = self.num_labels a = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __snake_case = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = BeitModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" pass def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__UpperCAmelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" if not self.model_tester.is_training: return a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue a = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a = model(**__UpperCAmelCase ).loss loss.backward() def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a = False a = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a = model(**__UpperCAmelCase ).loss loss.backward() def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: a = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __lowerCAmelCase ( self : List[str] ) ->Optional[int]: """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> int: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(__UpperCAmelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos a = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) a = outputs.logits # verify the logits a = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1e-2 ) ) @slow def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(__UpperCAmelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) a = outputs.logits # verify the logits a = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) a = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" a = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( __UpperCAmelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) a = outputs.logits # verify the logits a = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) a = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) a = model.to(__UpperCAmelCase ) a = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) a = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) a = Image.open(ds[0]['''file'''] ) a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) a = outputs.logits # verify the logits a = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: a = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__UpperCAmelCase , ) else: a = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) a = model.to(__UpperCAmelCase ) a = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) a = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) a = Image.open(ds[0]['''file'''] ) a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) a = outputs.logits.detach().cpu() a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) a = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) a = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
117
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __lowerCamelCase ( ) -> str: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def __lowerCamelCase ( ) -> str: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case__ ): http_head("""https://huggingface.co""" )
703
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch UpperCamelCase = '''sshleifer/bart-tiny-random''' UpperCamelCase = '''patrickvonplaten/t5-tiny-random''' @require_torch class __UpperCAmelCase (unittest.TestCase ): @cached_property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(UpperCAmelCase_ ): create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=UpperCAmelCase_ , d=UpperCAmelCase_ )
569
0
import argparse import datetime def _UpperCAmelCase ( UpperCamelCase: Tuple ): """simple docstring""" __lowerCAmelCase = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__lowerCamelCase ) < 1_1: raise ValueError("Must be 10 characters long" ) # Get month __lowerCAmelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError("Month must be between 1 - 12" ) __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __lowerCAmelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError("Date must be between 1 - 31" ) # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(__lowerCamelCase ) , int(__lowerCamelCase ) , int(__lowerCamelCase ) ) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(__lowerCamelCase )[:2] ) __lowerCAmelCase = int(str(__lowerCamelCase )[2:] ) __lowerCAmelCase = int(2.6 * m - 5.39 ) __lowerCAmelCase = int(c / 4 ) __lowerCAmelCase = int(k / 4 ) __lowerCAmelCase = int(d + k ) __lowerCAmelCase = int(t + u + v + x ) __lowerCAmelCase = int(z - (2 * c) ) __lowerCAmelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __lowerCAmelCase = F"Your date {date_input}, is a {days[str(__lowerCamelCase )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) UpperCamelCase_ = parser.parse_args() zeller(args.date_input)
611
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase__ =5_0003 UpperCamelCase__ =5_0002 @require_sentencepiece @require_tokenizers class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def UpperCamelCase_ ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE : Union[str, Any] = PLBartTokenizer(__lowerCamelCase , language_codes="base" , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : str = PLBartTokenizer(__lowerCamelCase , language_codes="base" , keep_accents=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer.vocab_size _SCREAMING_SNAKE_CASE : List[str] = [tokenizer.convert_ids_to_tokens(__lowerCamelCase ) for x in range(end - 4 , __lowerCamelCase )] self.assertListEqual(__lowerCamelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) _SCREAMING_SNAKE_CASE : Dict = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _SCREAMING_SNAKE_CASE : Any = tokenizer(__lowerCamelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) , __lowerCamelCase , ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Any = PLBartTokenizer(__lowerCamelCase , language_codes="multi" , keep_accents=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = [tokenizer.convert_ids_to_tokens(__lowerCamelCase ) for x in range(end - 7 , __lowerCamelCase )] self.assertListEqual( __lowerCamelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) _SCREAMING_SNAKE_CASE : List[Any] = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _SCREAMING_SNAKE_CASE : int = tokenizer(__lowerCamelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) , __lowerCamelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def UpperCamelCase_ ( cls ) -> Dict: _SCREAMING_SNAKE_CASE : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) _SCREAMING_SNAKE_CASE : Tuple = 1 return cls def UpperCamelCase_ ( self ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) _SCREAMING_SNAKE_CASE : Dict = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] _SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : str = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = 1_0 _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = PLBartTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="pt" ) _SCREAMING_SNAKE_CASE : str = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __lowerCamelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _SCREAMING_SNAKE_CASE : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) _SCREAMING_SNAKE_CASE : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="pt" ) _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0 , return_tensors="pt" ) _SCREAMING_SNAKE_CASE : List[Any] = targets["input_ids"] _SCREAMING_SNAKE_CASE : Any = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
249
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A ( __lowercase ): def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , "depth_multiplier" ) ) class A : def __init__( self: str , _lowerCAmelCase: str , _lowerCAmelCase: List[Any]=13 , _lowerCAmelCase: Optional[int]=3 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Union[str, Any]=0.25 , _lowerCAmelCase: Optional[Any]=8 , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: int=1024 , _lowerCAmelCase: Optional[Any]=32 , _lowerCAmelCase: Dict="relu6" , _lowerCAmelCase: List[str]=0.1 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: Tuple=10 , _lowerCAmelCase: int=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =image_size UpperCAmelCase_ =depth_multiplier UpperCAmelCase_ =min_depth UpperCAmelCase_ =tf_padding UpperCAmelCase_ =int(last_hidden_size * depth_multiplier ) UpperCAmelCase_ =output_stride UpperCAmelCase_ =hidden_act UpperCAmelCase_ =classifier_dropout_prob UpperCAmelCase_ =use_labels UpperCAmelCase_ =is_training UpperCAmelCase_ =num_labels UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope def lowerCAmelCase__ ( self: int ) -> Any: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =MobileNetVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.num_labels UpperCAmelCase_ =MobileNetVaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: str ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _snake_case =( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) _snake_case =False _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =MobileNetVaModelTester(self ) UpperCAmelCase_ =MobileNetVaConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Optional[int] ) -> int: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def lowerCAmelCase__ ( self: Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Tuple ): UpperCAmelCase_ =model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase_ =outputs.hidden_states UpperCAmelCase_ =26 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ =MobileNetVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self: Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(_lowerCAmelCase ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
714
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: Tuple=13 , _lowerCAmelCase: Tuple=7 , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: List[Any]=99 , _lowerCAmelCase: str=24 , _lowerCAmelCase: List[str]=2 , _lowerCAmelCase: List[str]=6 , _lowerCAmelCase: Optional[int]=37 , _lowerCAmelCase: Dict="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: List[str]=0.1 , _lowerCAmelCase: List[str]=512 , _lowerCAmelCase: List[str]=16 , _lowerCAmelCase: List[str]=2 , _lowerCAmelCase: Tuple=0.02 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: Optional[int]=1000 , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_input_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_labels UpperCAmelCase_ =scope UpperCAmelCase_ =range_bbox def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ =bbox[i, j, 3] UpperCAmelCase_ =bbox[i, j, 1] UpperCAmelCase_ =t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ =bbox[i, j, 2] UpperCAmelCase_ =bbox[i, j, 0] UpperCAmelCase_ =t UpperCAmelCase_ =None if self.use_input_mask: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =None UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase__ ( self: List[str] ) -> Any: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: str , _lowerCAmelCase: List[str] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[int] , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =LiltModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , bbox=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , bbox=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.num_labels UpperCAmelCase_ =LiltForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model( _lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =LiltForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model( _lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) =config_and_inputs UpperCAmelCase_ ={ "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): _snake_case =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _snake_case =( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Any , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any] ) -> Tuple: '''simple docstring''' return True def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =LiltModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ =type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Tuple ) -> int: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ =LiltModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch @slow class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.tensor([[1, 2]] , device=_lowerCAmelCase ) UpperCAmelCase_ =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase ) UpperCAmelCase_ =torch.Size([1, 2, 768] ) UpperCAmelCase_ =torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=_lowerCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _lowerCAmelCase , atol=1e-3 ) )
550
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCamelCase__ : def __init__( self : Union[str, Any] , lowercase__ : List[Any] , lowercase__ : Dict=99 , lowercase__ : List[Any]=13 , lowercase__ : Union[str, Any]=7 , lowercase__ : int=9 , lowercase__ : List[str]=True , lowercase__ : str=True , lowercase__ : Any=False , lowercase__ : int=32 , lowercase__ : Any=5 , lowercase__ : int=4 , lowercase__ : int=37 , lowercase__ : List[str]=8 , lowercase__ : Optional[int]=0.1 , lowercase__ : List[Any]=0.0_0_2 , lowercase__ : str=1 , lowercase__ : List[str]=0 , lowercase__ : Optional[int]=0 , lowercase__ : List[str]=None , lowercase__ : Any=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = encoder_seq_length _lowerCAmelCase = decoder_seq_length # For common tests _lowerCAmelCase = self.decoder_seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = d_ff _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = dropout_rate _lowerCAmelCase = initializer_factor _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = decoder_start_token_id _lowerCAmelCase = None _lowerCAmelCase = decoder_layers def SCREAMING_SNAKE_CASE__ ( self : str ): return TaConfig.from_pretrained('google/umt5-base' ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : int , lowercase__ : int=None , lowercase__ : str=None , lowercase__ : int=None , lowercase__ : Optional[int]=None , lowercase__ : List[Any]=None , ): if attention_mask is None: _lowerCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowercase__ ) if decoder_head_mask is None: _lowerCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowercase__ ) if cross_attn_head_mask is None: _lowerCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowercase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase = self.get_config() _lowerCAmelCase = config.num_attention_heads _lowerCAmelCase = self.prepare_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, input_dict def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : List[str] , lowercase__ : str , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Dict , ): _lowerCAmelCase = UMTaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( input_ids=lowercase__ , decoder_input_ids=lowercase__ , attention_mask=lowercase__ , decoder_attention_mask=lowercase__ , ) _lowerCAmelCase = model(input_ids=lowercase__ , decoder_input_ids=lowercase__ ) _lowerCAmelCase = result.last_hidden_state _lowerCAmelCase = result.past_key_values _lowerCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowercase__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : str , lowercase__ : List[Any] , ): _lowerCAmelCase = UMTaModel(config=lowercase__ ).get_decoder().to(lowercase__ ).eval() # first forward pass _lowerCAmelCase = model(lowercase__ , use_cache=lowercase__ ) _lowerCAmelCase = model(lowercase__ ) _lowerCAmelCase = model(lowercase__ , use_cache=lowercase__ ) self.parent.assertTrue(len(lowercase__ ) == len(lowercase__ ) ) self.parent.assertTrue(len(lowercase__ ) == len(lowercase__ ) + 1 ) _lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = model(lowercase__ )['last_hidden_state'] _lowerCAmelCase = model(lowercase__ , past_key_values=lowercase__ )['last_hidden_state'] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Tuple , lowercase__ : Dict , ): _lowerCAmelCase = UMTaModel(config=lowercase__ ).to(lowercase__ ).half().eval() _lowerCAmelCase = model(**lowercase__ )['last_hidden_state'] self.parent.assertFalse(torch.isnan(lowercase__ ).any().item() ) @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCamelCase__ =(UMTaForConditionalGeneration,) if is_torch_available() else () UpperCamelCase__ =( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCamelCase__ =True UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =True UpperCamelCase__ =True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCamelCase__ =[0.8, 0.9] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = UMTaModel(config_and_inputs[0] ).to(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowercase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=lowercase__ , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = config_and_inputs[0] _lowerCAmelCase = UMTaForConditionalGeneration(lowercase__ ).eval() model.to(lowercase__ ) _lowerCAmelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=lowercase__ ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase__ ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase__ ), } for attn_name, (name, mask) in zip(lowercase__ , head_masking.items() ): _lowerCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _lowerCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=lowercase__ ) _lowerCAmelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=lowercase__ , return_dict_in_generate=lowercase__ , **lowercase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step _lowerCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def SCREAMING_SNAKE_CASE__ ( self : Any ): pass @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=lowercase__ ).to(lowercase__ ) _lowerCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=lowercase__ , legacy=lowercase__ ) _lowerCAmelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _lowerCAmelCase = tokenizer(lowercase__ , return_tensors='pt' , padding=lowercase__ ).input_ids # fmt: off _lowerCAmelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(lowercase__ , lowercase__ ) _lowerCAmelCase = model.generate(input_ids.to(lowercase__ ) ) _lowerCAmelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _lowerCAmelCase = tokenizer.batch_decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
192
from __future__ import annotations from random import choice def _lowerCamelCase ( snake_case ): return choice(snake_case ) def _lowerCamelCase ( snake_case , snake_case ): _lowerCAmelCase = random_pivot(snake_case ) # partition based on pivot # linear time _lowerCAmelCase = [e for e in lst if e < pivot] _lowerCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case ) < k - 1: return kth_number(snake_case , k - len(snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
192
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) ->Any: UpperCAmelCase = OmegaConf.load(lowerCAmelCase_ ) if display: print(yaml.dump(OmegaConf.to_container(lowerCAmelCase_ ) ) ) return config def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ) ->str: if conf_path is None: UpperCAmelCase = """./model_checkpoints/vqgan_only.yaml""" UpperCAmelCase = load_config(lowerCAmelCase_ , display=lowerCAmelCase_ ) UpperCAmelCase = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase = """./model_checkpoints/vqgan_only.pt""" UpperCAmelCase = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) if ".ckpt" in ckpt_path: UpperCAmelCase = sd["""state_dict"""] model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) del sd return model def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Tuple: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = model.encode(lowerCAmelCase_ ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) UpperCAmelCase = model.decode(lowerCAmelCase_ ) return xrec def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) ->Tuple: UpperCAmelCase , UpperCAmelCase = string.rsplit(""".""" , 1 ) if reload: UpperCAmelCase = importlib.import_module(lowerCAmelCase_ ) importlib.reload(lowerCAmelCase_ ) return getattr(importlib.import_module(lowerCAmelCase_ , package=lowerCAmelCase_ ) , cls ) def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[Any]: if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True ) ->Optional[int]: UpperCAmelCase = instantiate_from_config(lowerCAmelCase_ ) if sd is not None: model.load_state_dict(lowerCAmelCase_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->int: # load the specified checkpoint if ckpt: UpperCAmelCase = torch.load(lowerCAmelCase_ , map_location="""cpu""" ) UpperCAmelCase = pl_sd["""global_step"""] print(F"""loaded model from global step {global_step}.""" ) else: UpperCAmelCase = {"""state_dict""": None} UpperCAmelCase = None UpperCAmelCase = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCAmelCase_ , eval_mode=lowerCAmelCase_ )["""model"""] return model, global_step
627
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class __lowercase ( __snake_case ): UpperCamelCase = '''nllb-moe''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any]=1_2_8_1_1_2 , __lowerCamelCase : Dict=1_0_2_4 , __lowerCamelCase : Optional[int]=1_2 , __lowerCamelCase : Union[str, Any]=4_0_9_6 , __lowerCamelCase : List[str]=1_6 , __lowerCamelCase : List[str]=1_2 , __lowerCamelCase : int=4_0_9_6 , __lowerCamelCase : Tuple=1_6 , __lowerCamelCase : str=0.05 , __lowerCamelCase : List[str]=0.05 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : str="relu" , __lowerCamelCase : Dict=1_0_2_4 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Any=False , __lowerCamelCase : Tuple="float32" , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=1_2_8 , __lowerCamelCase : List[str]=6_4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : str=0.001 , __lowerCamelCase : Optional[int]=0.001 , __lowerCamelCase : Tuple="all" , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Dict=0.2 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=False , **__lowerCamelCase : str , ) -> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = router_z_loss_coef UpperCAmelCase = router_aux_loss_coef UpperCAmelCase = decoder_sparse_step UpperCAmelCase = encoder_sparse_step UpperCAmelCase = num_experts UpperCAmelCase = expert_capacity UpperCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) UpperCAmelCase = router_dtype UpperCAmelCase = router_ignore_padding_tokens UpperCAmelCase = batch_prioritized_routing UpperCAmelCase = second_expert_policy UpperCAmelCase = normalize_router_prob_before_dropping UpperCAmelCase = moe_eval_capacity_token_fraction UpperCAmelCase = moe_token_dropout UpperCAmelCase = output_router_logits super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
627
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase : List[Any] ={ '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] =[ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
228
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase : Dict =parse(importlib.metadata.version('''torch''')) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) UpperCamelCase__ : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ : List[str] = parse(importlib.metadata.version(__lowerCAmelCase ) ) return operation(__lowerCAmelCase , parse(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: return compare_versions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
228
1
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for line in lines: SCREAMING_SNAKE_CASE__ = re.sub(R"""#.*""" , """""" , snake_case__ ) # remove comments if line: filtered_lines.append(snake_case__ ) SCREAMING_SNAKE_CASE__ = """\n""".join(snake_case__ ) # Make a hash from all this code SCREAMING_SNAKE_CASE__ = full_str.encode("""utf-8""" ) return shaaaa(snake_case__ ).hexdigest() # get importable module names and hash for caching A_ : Optional[int] = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions A_ : Tuple = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) A_ : str = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name A_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
616
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Dict = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase (A__ ): lowerCamelCase__ : int = 'unispeech' def __init__( self : Union[str, Any] , __UpperCAmelCase : List[Any]=3_2 , __UpperCAmelCase : Union[str, Any]=7_6_8 , __UpperCAmelCase : Tuple=1_2 , __UpperCAmelCase : Dict=1_2 , __UpperCAmelCase : Optional[Any]=3_0_7_2 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Union[str, Any]=1e-5 , __UpperCAmelCase : List[Any]="group" , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCAmelCase : List[str]=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase : int=(1_0, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase : str=False , __UpperCAmelCase : Any=1_2_8 , __UpperCAmelCase : str=1_6 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Union[str, Any]=0.05 , __UpperCAmelCase : str=1_0 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : Tuple=1_0 , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Tuple=3_2_0 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Any=1_0_0 , __UpperCAmelCase : str=2_5_6 , __UpperCAmelCase : Dict=2_5_6 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : List[str]="mean" , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : str=2_5_6 , __UpperCAmelCase : Dict=8_0 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Any=0.5 , **__UpperCAmelCase : List[str] , ) -> Tuple: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = feat_extract_norm SCREAMING_SNAKE_CASE__ = feat_extract_activation SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = conv_bias SCREAMING_SNAKE_CASE__ = num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ = len(self.conv_dim ) SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = feat_proj_dropout SCREAMING_SNAKE_CASE__ = final_dropout SCREAMING_SNAKE_CASE__ = layerdrop SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_ctc_classes SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = do_stable_layer_norm SCREAMING_SNAKE_CASE__ = use_weighted_layer_sum SCREAMING_SNAKE_CASE__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ = apply_spec_augment SCREAMING_SNAKE_CASE__ = mask_time_prob SCREAMING_SNAKE_CASE__ = mask_time_length SCREAMING_SNAKE_CASE__ = mask_time_min_masks SCREAMING_SNAKE_CASE__ = mask_feature_prob SCREAMING_SNAKE_CASE__ = mask_feature_length SCREAMING_SNAKE_CASE__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE__ = num_codevectors_per_group SCREAMING_SNAKE_CASE__ = num_codevector_groups SCREAMING_SNAKE_CASE__ = contrastive_logits_temperature SCREAMING_SNAKE_CASE__ = feat_quantizer_dropout SCREAMING_SNAKE_CASE__ = num_negatives SCREAMING_SNAKE_CASE__ = codevector_dim SCREAMING_SNAKE_CASE__ = proj_codevector_dim SCREAMING_SNAKE_CASE__ = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE__ = ctc_loss_reduction SCREAMING_SNAKE_CASE__ = ctc_zero_infinity # pretraining loss SCREAMING_SNAKE_CASE__ = replace_prob @property def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
616
1
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCamelCase__: int = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : str=768 ) -> Optional[int]: super().__init__(__snake_case ) UpperCAmelCase : Dict = proj_size UpperCAmelCase : List[Any] = CLIPVisionModel(__snake_case ) UpperCAmelCase : Tuple = PaintByExampleMapper(__snake_case ) UpperCAmelCase : Optional[int] = nn.LayerNorm(config.hidden_size ) UpperCAmelCase : Any = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any]=False ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.model(pixel_values=__snake_case ) UpperCAmelCase : Optional[Any] = clip_output.pooler_output UpperCAmelCase : Tuple = self.mapper(latent_states[:, None] ) UpperCAmelCase : str = self.final_layer_norm(__snake_case ) UpperCAmelCase : Optional[Any] = self.proj_out(__snake_case ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Dict , __snake_case : Optional[Any] ) -> Tuple: super().__init__() UpperCAmelCase : List[Any] = (config.num_hidden_layers + 1) // 5 UpperCAmelCase : Any = config.hidden_size UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : Any = nn.ModuleList( [ BasicTransformerBlock(__snake_case , __snake_case , __snake_case , activation_fn='''gelu''' , attention_bias=__snake_case ) for _ in range(__snake_case ) ] ) def A ( self : List[Any] , __snake_case : Any ) -> Any: for block in self.blocks: UpperCAmelCase : Dict = block(__snake_case ) return hidden_states
127
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ) -> Dict: # Return True if there is node that has not iterated. UpperCAmelCase : List[Any] = [False] * len(_lowerCAmelCase ) UpperCAmelCase : Tuple = [] queue.append(_lowerCAmelCase ) UpperCAmelCase : List[Any] = True while queue: UpperCAmelCase : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = True UpperCAmelCase : int = u return visited[t] def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> List[str]: # This array is filled by BFS and to store path UpperCAmelCase : Tuple = [-1] * (len(_lowerCAmelCase )) UpperCAmelCase : Tuple = 0 while bfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Optional[int] = float('''Inf''' ) UpperCAmelCase : Tuple = sink while s != source: # Find the minimum value in select path UpperCAmelCase : Tuple = min(_lowerCAmelCase , graph[parent[s]][s] ) UpperCAmelCase : Optional[Any] = parent[s] max_flow += path_flow UpperCAmelCase : Union[str, Any] = sink while v != source: UpperCAmelCase : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase : Any = parent[v] return max_flow UpperCamelCase__: List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCamelCase__ , UpperCamelCase__: Optional[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
127
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A_ : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = state_dict.pop(snake_case__ ) SCREAMING_SNAKE_CASE__ = val def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE__ = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value return new_state_dict def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:2_56, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:2_56] SCREAMING_SNAKE_CASE__ = in_proj_weight[2_56:5_12, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[2_56:5_12] SCREAMING_SNAKE_CASE__ = in_proj_weight[-2_56:, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:2_56, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:2_56] SCREAMING_SNAKE_CASE__ = in_proj_weight[2_56:5_12, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[2_56:5_12] SCREAMING_SNAKE_CASE__ = in_proj_weight[-2_56:, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE__ = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight_cross_attn[:2_56, :] SCREAMING_SNAKE_CASE__ = in_proj_bias_cross_attn[:2_56] SCREAMING_SNAKE_CASE__ = in_proj_weight_cross_attn[2_56:5_12, :] SCREAMING_SNAKE_CASE__ = in_proj_bias_cross_attn[2_56:5_12] SCREAMING_SNAKE_CASE__ = in_proj_weight_cross_attn[-2_56:, :] SCREAMING_SNAKE_CASE__ = in_proj_bias_cross_attn[-2_56:] def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = image.size SCREAMING_SNAKE_CASE__ = max(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ = 8_00 if "detection" in checkpoint_url else 10_00 SCREAMING_SNAKE_CASE__ = target_max_size / current_max_size SCREAMING_SNAKE_CASE__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F.to_tensor(snake_case__ ) SCREAMING_SNAKE_CASE__ = F.normalize(snake_case__ , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' logger.info("""Converting model...""" ) # load original state dict SCREAMING_SNAKE_CASE__ = torch.hub.load_state_dict_from_url(snake_case__ , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ = rename_backbone_keys(snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE__ = "model." for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): SCREAMING_SNAKE_CASE__ = state_dict.pop(snake_case__ ) SCREAMING_SNAKE_CASE__ = val # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE__ = 15 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = {0: "table", 1: "table rotated"} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE__ = 1_25 SCREAMING_SNAKE_CASE__ = 6 SCREAMING_SNAKE_CASE__ = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = DetrImageProcessor( format="""coco_detection""" , max_size=8_00 if """detection""" in checkpoint_url else 10_00 ) SCREAMING_SNAKE_CASE__ = TableTransformerForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion SCREAMING_SNAKE_CASE__ = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" SCREAMING_SNAKE_CASE__ = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=snake_case__ ) SCREAMING_SNAKE_CASE__ = Image.open(snake_case__ ).convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = normalize(resize(snake_case__ , snake_case__ ) ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = model(snake_case__ ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE__ = (1, 15, 3) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: SCREAMING_SNAKE_CASE__ = (1, 1_25, 7) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) SCREAMING_SNAKE_CASE__ = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(snake_case__ ) image_processor.push_to_hub(snake_case__ ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A_ : Any = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
721
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A_ : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='cifar10' ,metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'The column name of the images in the files.'} ) lowerCamelCase__ : Optional[str] = field(default=A__ ,metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase__ : Optional[str] = field(default=A__ ,metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase__ : Optional[float] = field( default=0.1_5 ,metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE__ = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE__ = self.validation_dir SCREAMING_SNAKE_CASE__ = data_files if data_files else None @dataclass class lowerCamelCase : lowerCamelCase__ : str = field( default=A__ ,metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCamelCase__ : str = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) lowerCamelCase__ : str = field(default=A__ ,metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) lowerCamelCase__ : float = field( default=0.7_5 ,metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class lowerCamelCase (A__ ): lowerCamelCase__ : float = field( default=1E-3 ,metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , snake_case__ , snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. SCREAMING_SNAKE_CASE__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE__ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case__ ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE__ = ds["""train"""].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE__ = split["""train"""] SCREAMING_SNAKE_CASE__ = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE__ = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case__ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: SCREAMING_SNAKE_CASE__ = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case__ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: SCREAMING_SNAKE_CASE__ = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining(snake_case__ ) if training_args.do_train: SCREAMING_SNAKE_CASE__ = ds["""train"""].column_names else: SCREAMING_SNAKE_CASE__ = ds["""validation"""].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE__ = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE__ = """image""" elif "img" in column_names: SCREAMING_SNAKE_CASE__ = """img""" else: SCREAMING_SNAKE_CASE__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE__ = image_processor.size["""shortest_edge"""] else: SCREAMING_SNAKE_CASE__ = (image_processor.size["""height"""], image_processor.size["""width"""]) SCREAMING_SNAKE_CASE__ = Compose( [ Lambda(lambda snake_case__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(snake_case__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(snake_case__ ): SCREAMING_SNAKE_CASE__ = [transforms(snake_case__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE__ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE__ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case__ ) # Compute absolute learning rate SCREAMING_SNAKE_CASE__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE__ = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer SCREAMING_SNAKE_CASE__ = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE__ = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE__ = last_checkpoint SCREAMING_SNAKE_CASE__ = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE__ = trainer.evaluate() trainer.log_metrics("""eval""" , snake_case__ ) trainer.save_metrics("""eval""" , snake_case__ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE__ = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) def A ( snake_case__ ): '''simple docstring''' main() if __name__ == "__main__": main()
616
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __snake_case ( __magic_name__ ): @staticmethod @abstractmethod def _snake_case ( UpperCamelCase_ ) -> Dict: raise NotImplementedError() @abstractmethod def _snake_case ( self ) -> List[Any]: raise NotImplementedError()
368
0
def __lowerCAmelCase ( __lowerCamelCase : List[Any] ) -> float: if edge <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError("""Length must be a positive.""" ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowerCAmelCase ( __lowerCamelCase : Dict ) -> float: if edge <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError("""Length must be a positive.""" ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
704
import math from numpy import inf from scipy.integrate import quad def __lowerCAmelCase ( __lowerCamelCase : float ) -> float: if num <= 0: raise ValueError("""math domain error""" ) return quad(__lowerCamelCase , 0 , __lowerCamelCase , args=(__lowerCamelCase) )[0] def __lowerCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) -> float: return math.pow(__lowerCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
456
0
def UpperCAmelCase_ ( _A ): '''simple docstring''' if len(_A ) <= 1: return [tuple(_A )] SCREAMING_SNAKE_CASE__ = [] def generate(_A , _A ): SCREAMING_SNAKE_CASE__ = [0] * n res.append(tuple(_A ) ) SCREAMING_SNAKE_CASE__ = 0 while i < n: if c[i] < i: if i % 2 == 0: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = arr[i], arr[0] else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = arr[i], arr[c[i]] res.append(tuple(_A ) ) c[i] += 1 SCREAMING_SNAKE_CASE__ = 0 else: SCREAMING_SNAKE_CASE__ = 0 i += 1 generate(len(_A ) , _A ) return res if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() _SCREAMING_SNAKE_CASE : Optional[int] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
493
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 a = None def UpperCAmelCase_ ( _A , _A=0.9_9_9 , _A="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) SCREAMING_SNAKE_CASE__ = [] for i in range(_A ): SCREAMING_SNAKE_CASE__ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class UpperCAmelCase__ ( A__ , A__ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Dict , __lowerCamelCase : int = 1000 , __lowerCamelCase : float = 0.0001 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : str = "linear" , __lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : int = 0 , __lowerCamelCase : str = "epsilon" , __lowerCamelCase : float = 1.0 , **__lowerCamelCase : str , ) -> Optional[Any]: if kwargs.get('''set_alpha_to_one''' , __lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: SCREAMING_SNAKE_CASE__ = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE__ = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE__ = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) SCREAMING_SNAKE_CASE__ = 1.0 - self.betas SCREAMING_SNAKE_CASE__ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. SCREAMING_SNAKE_CASE__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE__ = 1.0 # setable values SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.arange(0 , __lowerCamelCase ).copy().astype(np.intaa ) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ) -> torch.FloatTensor: return sample def lowercase_ ( self : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ) -> Union[str, Any]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) SCREAMING_SNAKE_CASE__ = num_inference_steps SCREAMING_SNAKE_CASE__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ = (np.arange(0 , __lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) self.timesteps += self.config.steps_offset def lowercase_ ( self : List[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float = 0.0 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) SCREAMING_SNAKE_CASE__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process SCREAMING_SNAKE_CASE__ = self.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) SCREAMING_SNAKE_CASE__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE__ = model_output elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE__ = model_output SCREAMING_SNAKE_CASE__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output SCREAMING_SNAKE_CASE__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def __len__( self : List[str] ) -> Union[str, Any]: return self.config.num_train_timesteps
493
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case ( self ): UpperCAmelCase__ : str = 1 UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : Tuple = (32, 32) UpperCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def __snake_case ( self ): def extract(*UpperCamelCase_ , **UpperCamelCase_ ): class a : def __init__( self ): UpperCAmelCase__ : Dict = torch.ones([0] ) def __snake_case ( self , UpperCamelCase_ ): self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def __snake_case ( self ): UpperCAmelCase__ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Any = self.dummy_cond_unet UpperCAmelCase__ : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = self.dummy_vae UpperCAmelCase__ : Any = self.dummy_text_encoder UpperCAmelCase__ : Tuple = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCAmelCase__ : str = 77 UpperCAmelCase__ : Tuple = self.dummy_image.to(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCAmelCase__ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase__ : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = "A painting of a squirrel eating a burger" UpperCAmelCase__ : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) UpperCAmelCase__ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase__ , ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) UpperCAmelCase__ : List[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : Dict = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __snake_case ( self ): UpperCAmelCase__ : str = self.dummy_cond_unet UpperCAmelCase__ : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = self.dummy_vae UpperCAmelCase__ : Tuple = self.dummy_text_encoder UpperCAmelCase__ : Optional[int] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCAmelCase__ : Optional[Any] = 77 UpperCAmelCase__ : Any = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 UpperCAmelCase__ : Any = unet.half() UpperCAmelCase__ : List[str] = vae.half() UpperCAmelCase__ : Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase__ : List[str] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase__ : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase__ : Any = "A painting of a squirrel eating a burger" UpperCAmelCase__ : Any = torch.manual_seed(0 ) UpperCAmelCase__ : int = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __snake_case ( self ): UpperCAmelCase__ : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase__ : Optional[Any] = init_image.resize((760, 504) ) UpperCAmelCase__ : Optional[int] = "BAAI/AltDiffusion" UpperCAmelCase__ : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : str = "A fantasy landscape, trending on artstation" UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type='np' , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] UpperCAmelCase__ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) UpperCAmelCase__ : Dict = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): UpperCAmelCase__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCAmelCase__ : Any = init_image.resize((768, 512) ) UpperCAmelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) UpperCAmelCase__ : Optional[Any] = "BAAI/AltDiffusion" UpperCAmelCase__ : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : Tuple = "A fantasy landscape, trending on artstation" UpperCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase__ : Dict = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type='np' , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
709
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class a ( lowercase ): UpperCamelCase : List[Any] = """deit""" def __init__( self , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3_072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_=224 , UpperCamelCase_=16 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=16 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : Optional[Any] = qkv_bias UpperCAmelCase__ : Dict = encoder_stride class a ( lowercase ): UpperCamelCase : Optional[int] = version.parse("""1.11""" ) @property def __snake_case ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __snake_case ( self ): return 1E-4
254
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
411
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int =BioGptTokenizer a_ : Any =False def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _snake_case : List[str] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Tuple = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] _snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(UpperCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : Any , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = 'lower newer' _snake_case : Optional[int] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) _snake_case : Tuple = 'lower' _snake_case : Optional[Any] = ['low', 'er</w>'] _snake_case : Any = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = tokens + ['<unk>'] _snake_case : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Optional[int] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _snake_case : Any = tokenizer.encode('sequence builders' , add_special_tokens=UpperCamelCase ) _snake_case : Union[str, Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCamelCase ) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
411
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __A ( unittest.TestCase ): def A__ ( self :str ): '''simple docstring''' __magic_name__ : List[str] =[[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Optional[int] =DisjunctiveConstraint(__snake_case ) self.assertTrue(isinstance(dc.token_ids , __snake_case ) ) with self.assertRaises(__snake_case ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__snake_case ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Union[str, Any] =[[1, 2], [1, 2, 3, 4]] with self.assertRaises(__snake_case ): DisjunctiveConstraint(__snake_case ) # fails here def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[str] =[[1, 2, 3], [1, 2, 4]] __magic_name__ : Any =DisjunctiveConstraint(__snake_case ) __magic_name__ : int =dc.update(1 ) __magic_name__ : Optional[int] =stepped is True and completed is False and reset is False self.assertTrue(__snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ : Union[str, Any] =dc.update(2 ) __magic_name__ : Tuple =stepped is True and completed is False and reset is False self.assertTrue(__snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ : List[str] =dc.update(3 ) __magic_name__ : Dict =stepped is True and completed is True and reset is False self.assertTrue(__snake_case ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Union[str, Any] =[[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : List[str] =DisjunctiveConstraint(__snake_case ) __magic_name__ : Union[str, Any] =dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ : List[str] =dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ : Tuple =dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ : Tuple =dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ : str =dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ : Union[str, Any] =dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ : Dict =dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
708
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class __A ( UpperCamelCase__ ): UpperCamelCase = """pix2struct_text_model""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :List[Any] , __snake_case :Dict=5_02_44 , __snake_case :Dict=7_68 , __snake_case :Union[str, Any]=64 , __snake_case :Union[str, Any]=20_48 , __snake_case :List[Any]=12 , __snake_case :Any=12 , __snake_case :str=32 , __snake_case :Dict=1_28 , __snake_case :Optional[int]=0.1 , __snake_case :Any=1E-6 , __snake_case :Optional[int]=1.0 , __snake_case :List[Any]="gelu_new" , __snake_case :Any=0 , __snake_case :Tuple=False , __snake_case :Any=0 , __snake_case :int=1 , __snake_case :Dict=False , __snake_case :Optional[Any]=True , **__snake_case :Dict , ): '''simple docstring''' __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Optional[int] =d_kv __magic_name__ : Dict =d_ff __magic_name__ : Tuple =num_layers __magic_name__ : str =num_heads __magic_name__ : Optional[Any] =relative_attention_num_buckets __magic_name__ : List[Any] =relative_attention_max_distance __magic_name__ : str =dropout_rate __magic_name__ : Optional[Any] =layer_norm_epsilon __magic_name__ : Union[str, Any] =initializer_factor __magic_name__ : Tuple =use_cache __magic_name__ : Any =eos_token_id __magic_name__ : int =decoder_start_token_id # for backwards compatibility __magic_name__ : Union[str, Any] =dense_act_fn super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , tie_word_embeddings=__snake_case , is_decoder=__snake_case , **__snake_case , ) @classmethod def A__ ( cls :Union[str, Any] , __snake_case :Union[str, os.PathLike] , **__snake_case :Any ): '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __magic_name__ , __magic_name__ : Optional[Any] =cls.get_config_dict(__snake_case , **__snake_case ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": __magic_name__ : Tuple =config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__snake_case , **__snake_case ) class __A ( UpperCamelCase__ ): UpperCamelCase = """pix2struct_vision_model""" def __init__( self :Union[str, Any] , __snake_case :Tuple=7_68 , __snake_case :Any=7_68 , __snake_case :Tuple=20_48 , __snake_case :Dict=64 , __snake_case :List[str]=12 , __snake_case :str=12 , __snake_case :str="gelu_new" , __snake_case :Optional[int]=1E-6 , __snake_case :Optional[int]=0.0 , __snake_case :Any=0.0 , __snake_case :Any=1E-10 , __snake_case :List[str]=1.0 , __snake_case :Tuple=40_96 , __snake_case :Optional[int]=32 , __snake_case :Union[str, Any]=1_28 , **__snake_case :Optional[int] , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : Union[str, Any] =hidden_size __magic_name__ : Dict =patch_embed_hidden_size __magic_name__ : Tuple =d_ff __magic_name__ : str =dropout_rate __magic_name__ : str =num_hidden_layers __magic_name__ : Dict =num_attention_heads __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =initializer_factor __magic_name__ : str =attention_dropout __magic_name__ : Union[str, Any] =layer_norm_eps __magic_name__ : List[str] =dense_act_fn __magic_name__ : List[str] =seq_len __magic_name__ : str =relative_attention_num_buckets __magic_name__ : Optional[int] =relative_attention_max_distance __magic_name__ : List[str] =d_kv @classmethod def A__ ( cls :Optional[Any] , __snake_case :Union[str, os.PathLike] , **__snake_case :Any ): '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __magic_name__ , __magic_name__ : Optional[int] =cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": __magic_name__ : int =config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__snake_case , **__snake_case ) class __A ( UpperCamelCase__ ): UpperCamelCase = """pix2struct""" UpperCamelCase = True def __init__( self :Union[str, Any] , __snake_case :Optional[int]=None , __snake_case :List[Any]=None , __snake_case :Optional[Any]=1.0 , __snake_case :Tuple=0.02 , __snake_case :str=False , __snake_case :List[str]=False , __snake_case :str=True , **__snake_case :List[str] , ): '''simple docstring''' super().__init__(tie_word_embeddings=__snake_case , is_encoder_decoder=__snake_case , **__snake_case ) if text_config is None: __magic_name__ : int ={} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: __magic_name__ : str ={} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) __magic_name__ : Union[str, Any] =PixaStructTextConfig(**__snake_case ) __magic_name__ : str =PixaStructVisionConfig(**__snake_case ) __magic_name__ : int =self.text_config.decoder_start_token_id __magic_name__ : Optional[Any] =self.text_config.pad_token_id __magic_name__ : str =self.text_config.eos_token_id __magic_name__ : int =initializer_factor __magic_name__ : List[Any] =initializer_range __magic_name__ : Dict =self.initializer_range __magic_name__ : Union[str, Any] =self.initializer_range __magic_name__ : Tuple =is_vqa @classmethod def A__ ( cls :Optional[int] , __snake_case :PixaStructTextConfig , __snake_case :PixaStructVisionConfig , **__snake_case :List[str] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__snake_case ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Union[str, Any] =copy.deepcopy(self.__dict__ ) __magic_name__ : Any =self.text_config.to_dict() __magic_name__ : List[str] =self.vision_config.to_dict() __magic_name__ : Optional[int] =self.__class__.model_type return output
367
0
def UpperCAmelCase_ (_lowerCAmelCase : list[int] ): __UpperCamelCase : str = len(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): for j in range(i + 1 , _lowerCAmelCase ): if numbers[j] < numbers[i]: __UpperCamelCase , __UpperCamelCase : List[str] = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase : int = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Optional[int] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
327
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _lowerCAmelCase : Optional[int] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _lowerCAmelCase : List[Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class A_ ( _a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = RoFormerTokenizer def __init__( self: str ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: int="[UNK]" ,__lowerCAmelCase: List[str]="[SEP]" ,__lowerCAmelCase: List[str]="[PAD]" ,__lowerCAmelCase: List[Any]="[CLS]" ,__lowerCAmelCase: List[Any]="[MASK]" ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,tokenizer_file=__lowerCAmelCase ,do_lower_case=__lowerCAmelCase ,unk_token=__lowerCAmelCase ,sep_token=__lowerCAmelCase ,pad_token=__lowerCAmelCase ,cls_token=__lowerCAmelCase ,mask_token=__lowerCAmelCase ,tokenize_chinese_chars=__lowerCAmelCase ,strip_accents=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" ,__lowerCAmelCase ) != do_lower_case or pre_tok_state.get("strip_accents" ,__lowerCAmelCase ) != strip_accents ): _lowerCamelCase : Dict = getattr(__lowerCAmelCase ,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = do_lower_case _lowerCamelCase : Optional[Any] = strip_accents _lowerCamelCase : List[Any] = pre_tok_class(**__lowerCAmelCase ) _lowerCamelCase : int = do_lower_case def __getstate__( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : List[str] = BertPreTokenizer() return state def __setstate__( self: Any ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : Any = d _lowerCamelCase : List[Any] = self.__dict__["_tokenizer"].get_vocab() _lowerCamelCase : List[str] = PreTokenizer.custom(JiebaPreTokenizer(__lowerCAmelCase ) ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any]=None ): '''simple docstring''' _lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self: List[str] ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: Optional[List[int]] = None ): '''simple docstring''' _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self: Tuple ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[str] = None ): '''simple docstring''' _lowerCamelCase : str = self._tokenizer.model.save(__lowerCAmelCase ,name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: str=False ,**__lowerCAmelCase: Optional[Any] ,): '''simple docstring''' _lowerCamelCase : List[str] = BertPreTokenizer() return super().save_pretrained(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase )
386
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_a ) class A_ ( _a ): lowerCAmelCase__ = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase__ = Features({'image': Image()} ) lowerCAmelCase__ = Features({'labels': ClassLabel} ) lowerCAmelCase__ = "image" lowerCAmelCase__ = "labels" def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,__lowerCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _lowerCamelCase : List[Any] = copy.deepcopy(self ) _lowerCamelCase : Union[str, Any] = self.label_schema.copy() _lowerCamelCase : Optional[int] = features[self.label_column] _lowerCamelCase : Tuple = label_schema return task_template @property def _lowercase ( self: int ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
386
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a ={ """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
652
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[List[PIL.Image.Image], np.ndarray] _UpperCAmelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
652
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : int ): warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
700
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = ["""pixel_values"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 8 , **SCREAMING_SNAKE_CASE : Dict , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : str = do_rescale lowercase__ : Optional[Any] = rescale_factor lowercase__ : Any = do_pad lowercase__ : Optional[Any] = pad_size def snake_case ( self : str , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Optional[int] ): return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ): lowercase__ , lowercase__ : str = get_image_size(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = (old_height // size + 1) * size - old_height lowercase__ : List[Any] = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : ImageInput , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE : Dict , ): lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : str = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[int] = pad_size if pad_size is not None else self.pad_size lowercase__ : Tuple = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. lowercase__ : Any = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowercase__ : Any = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_pad: lowercase__ : Tuple = [self.pad(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] lowercase__ : Optional[Any] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
81
0
def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase): raise ValueError("""multiplicative_persistence() only accepts integral values""") if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""") a__ : List[Any] = 0 a__ : Optional[int] = str(_lowercase) while len(_lowercase) != 1: a__ : Tuple = [int(_lowercase) for i in num_string] a__ : List[str] = 1 for i in range(0 , len(_lowercase)): total *= numbers[i] a__ : Any = str(_lowercase) steps += 1 return steps def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase): raise ValueError("""additive_persistence() only accepts integral values""") if num < 0: raise ValueError("""additive_persistence() does not accept negative values""") a__ : Dict = 0 a__ : Optional[Any] = str(_lowercase) while len(_lowercase) != 1: a__ : List[str] = [int(_lowercase) for i in num_string] a__ : Optional[int] = 0 for i in range(0 , len(_lowercase)): total += numbers[i] a__ : Optional[int] = str(_lowercase) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
136
from __future__ import annotations import math from collections.abc import Callable def lowerCAmelCase_ ( _lowercase : Callable[[int | float], int | float] , _lowercase : int | float , _lowercase : int | float , _lowercase : int = 100 , ) -> float: """simple docstring""" a__ : List[str] = x_start a__ : Union[str, Any] = fnc(_lowercase) a__ : Optional[Any] = 0.0 for _ in range(_lowercase): # Approximates curve as a sequence of linear lines and sums their length a__ : str = (x_end - x_start) / steps + xa a__ : Union[str, Any] = fnc(_lowercase) length += math.hypot(xa - xa , fxa - fxa) # Increment step a__ : Tuple = xa a__ : Optional[int] = fxa return length if __name__ == "__main__": def lowerCAmelCase_ ( _lowercase : List[str]) -> str: """simple docstring""" return math.sin(10 * x) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _lowercase : Optional[Any] =10 while i <= 10_0000: print(f'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
136
1
'''simple docstring''' from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :List[str] = '''dandelin/vilt-b32-finetuned-vqa''' lowerCamelCase_ :List[Any] = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) lowerCamelCase_ :List[str] = '''image_qa''' lowerCamelCase_ :Dict = AutoProcessor lowerCamelCase_ :Union[str, Any] = AutoModelForVisualQuestionAnswering lowerCamelCase_ :int = ['''image''', '''text'''] lowerCamelCase_ :Dict = ['''text'''] def __init__( self , *snake_case_ , **snake_case_ ): '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*snake_case_ , **snake_case_ ) def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' return self.pre_processor(snake_case_ , snake_case_ , return_tensors='pt' ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' with torch.no_grad(): return self.model(**snake_case_ ).logits def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
718
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Tuple = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ :Any = '''FlavaImageProcessor''' lowerCamelCase_ :List[str] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) UpperCAmelCase_ : Optional[int] = kwargs.pop('feature_extractor' ) UpperCAmelCase_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case_ , snake_case_ ) UpperCAmelCase_ : Optional[int] = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = False , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: UpperCAmelCase_ : int = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) if images is not None: UpperCAmelCase_ : Optional[Any] = self.image_processor( snake_case_ , return_image_mask=snake_case_ , return_codebook_pixels=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) if text is not None and images is not None: encoding.update(snake_case_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = self.tokenizer.model_input_names UpperCAmelCase_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , ) return self.image_processor_class @property def _UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , ) return self.image_processor
389
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=99 , UpperCamelCase_=13 , UpperCamelCase_=16 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=2 , UpperCamelCase_=32 , UpperCamelCase_=4 , UpperCamelCase_=4 , UpperCamelCase_=30 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=None , ) -> str: __lowercase : int = parent __lowercase : Tuple = batch_size __lowercase : Optional[Any] = decoder_seq_length # For common tests __lowercase : str = self.decoder_seq_length __lowercase : Dict = is_training __lowercase : int = use_attention_mask __lowercase : Dict = use_labels __lowercase : Dict = vocab_size __lowercase : Optional[Any] = d_model __lowercase : List[str] = d_model __lowercase : Any = decoder_layers __lowercase : Any = decoder_layers __lowercase : Optional[Any] = decoder_ffn_dim __lowercase : Union[str, Any] = decoder_attention_heads __lowercase : Dict = decoder_attention_heads __lowercase : str = eos_token_id __lowercase : List[str] = bos_token_id __lowercase : Union[str, Any] = pad_token_id __lowercase : Union[str, Any] = decoder_start_token_id __lowercase : Dict = use_cache __lowercase : Dict = max_position_embeddings __lowercase : List[str] = None __lowercase : Dict = decoder_seq_length __lowercase : Tuple = 2 __lowercase : Optional[Any] = 1 def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowercase : Union[str, Any] = None if self.use_attention_mask: __lowercase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowercase : Union[str, Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowercase : str = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> str: __lowercase : Optional[int] = True __lowercase : Tuple = TrOCRDecoder(config=A_ ).to(A_ ).eval() __lowercase : Optional[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowercase : int = model(A_ , use_cache=A_ ) __lowercase : Optional[int] = model(A_ ) __lowercase : Any = model(A_ , use_cache=A_ ) self.parent.assertTrue(len(A_ ) == len(A_ ) ) self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 ) __lowercase : str = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids __lowercase : Optional[int] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowercase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : List[str] = model(A_ )['''last_hidden_state'''] __lowercase : Dict = model(A_ , past_key_values=A_ )['''last_hidden_state'''] # select random slice __lowercase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : Optional[Any] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowercase : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A_ , A_ , atol=1E-3 ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : str = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase ,__lowercase : Dict = config_and_inputs __lowercase : Any = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCamelCase =(TrOCRForCausalLM,) if is_torch_available() else () UpperCamelCase ={"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} UpperCamelCase =True UpperCamelCase =False def _lowerCamelCase ( self ) -> Any: __lowercase : Tuple = TrOCRStandaloneDecoderModelTester(self , is_training=A_ ) __lowercase : Tuple = ConfigTester(self , config_class=A_ ) def _lowerCamelCase ( self ) -> Optional[int]: pass def _lowerCamelCase ( self ) -> List[Any]: pass def _lowerCamelCase ( self ) -> Optional[int]: pass def _lowerCamelCase ( self ) -> int: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A_ ) def _lowerCamelCase ( self ) -> Tuple: return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowerCamelCase ( self ) -> Any: pass
76
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _A : Optional[int] = object() # For specifying empty leaf dict `{}` _A : Tuple = object() def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: SCREAMING_SNAKE_CASE__ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(lowerCAmelCase_ ) - len(lowerCAmelCase_ ) + 1 ): SCREAMING_SNAKE_CASE__ = [x.match(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , ks[i:] )] if matches and all(lowerCAmelCase_ ): return True return False def __snake_case ( lowerCAmelCase_ ) -> int: def replace(lowerCAmelCase_ , lowerCAmelCase_ ): for rule, replacement in rules: if _match(lowerCAmelCase_ , lowerCAmelCase_ ): return replacement return val return replace def __snake_case ( ) -> Optional[int]: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , lowerCAmelCase_ )), (("transformer", "wte", "embedding"), P('''mp''' , lowerCAmelCase_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCAmelCase_ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , lowerCAmelCase_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCAmelCase_ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , lowerCAmelCase_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __snake_case ( lowerCAmelCase_ ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = _get_partition_rules() SCREAMING_SNAKE_CASE__ = _replacement_rules(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {k: _unmatched for k in flatten_dict(lowerCAmelCase_ )} SCREAMING_SNAKE_CASE__ = {k: replace(lowerCAmelCase_ , lowerCAmelCase_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCAmelCase_ ) )
100
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A_ ( __a ): '''simple docstring''' def __init__( self , _A = 101) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = length def __len__( self) -> str: """simple docstring""" return self.length def __getitem__( self , _A) -> Any: """simple docstring""" return i class A_ : '''simple docstring''' def __call__( self , _A) -> Optional[Any]: """simple docstring""" return {"input_ids": torch.tensor(a_), "labels": torch.tensor(a_)} class A_ ( nn.Module ): '''simple docstring''' def __init__( self) -> Any: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase : Optional[int] = nn.Linear(120 , 80) def snake_case__ ( self , _A , _A=None) -> Any: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class A_ ( __a ): '''simple docstring''' @require_torch_neuroncore def snake_case__ ( self) -> Tuple: """simple docstring""" _UpperCAmelCase : int = f'''--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '''.split() _UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : int = f'''--output_dir {output_dir}'''.split() _UpperCAmelCase : List[Any] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class A_ ( __a ): '''simple docstring''' @require_torch_multi_gpu def snake_case__ ( self) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = f'''--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '''.split() _UpperCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Tuple = f'''--output_dir {output_dir}'''.split() _UpperCAmelCase : Optional[int] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' F'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE = DummyDataset(dataset_length) def _lowerCamelCase ( __A : EvalPrediction ) -> Dict: _UpperCAmelCase : Tuple = list(range(len(snake_case__ ) ) ) _UpperCAmelCase : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} SCREAMING_SNAKE_CASE = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE = None
706
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/dummy-config.json') class A_ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = 0 def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''')) def snake_case__ ( self) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = AutoConfig.from_pretrained('''bert-base-uncased''') self.assertIsInstance(_A , _A) def snake_case__ ( self) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(_A) self.assertIsInstance(_A , _A) def snake_case__ ( self) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_A) self.assertIsInstance(_A , _A) def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : str = AutoConfig.for_model('''roberta''') self.assertIsInstance(_A , _A) def snake_case__ ( self) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _UpperCAmelCase : str = os.path.join(_A , '''fake-roberta''') os.makedirs(_A , exist_ok=_A) with open(os.path.join(_A , '''config.json''') , '''w''') as f: f.write(json.dumps({})) _UpperCAmelCase : Any = AutoConfig.from_pretrained(_A) self.assertEqual(type(_A) , _A) def snake_case__ ( self) -> List[Any]: """simple docstring""" try: AutoConfig.register('''custom''' , _A) # Wrong model type will raise an error with self.assertRaises(_A): AutoConfig.register('''model''' , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): AutoConfig.register('''bert''' , _A) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase : Tuple = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_A) _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier'''): _UpperCAmelCase : Tuple = AutoConfig.from_pretrained('''bert-base''') def snake_case__ ( self) -> int: """simple docstring""" with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(_A , revision='''aaaaaa''') def snake_case__ ( self) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( _A , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): _UpperCAmelCase : List[str] = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''') def snake_case__ ( self) -> List[str]: """simple docstring""" with self.assertRaises(_A): _UpperCAmelCase : Dict = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''') # If remote code is disabled, we can't load this config. with self.assertRaises(_A): _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_A) _UpperCAmelCase : int = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_A) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''') # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_A) _UpperCAmelCase : Any = AutoConfig.from_pretrained(_A , trust_remote_code=_A) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''') def snake_case__ ( self) -> Tuple: """simple docstring""" class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = "new-model" try: AutoConfig.register('''new-model''' , _A) # If remote code is not set, the default is to use local _UpperCAmelCase : List[str] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''') self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''') # If remote code is disabled, we load the local one. _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_A) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''') # If remote is enabled, we load from the Hub _UpperCAmelCase : Dict = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_A) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''') finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
186
0
import numpy as np def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[Any]: return np.where(vector > 0 , snake_case__ , (alpha * (np.exp(snake_case__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
312
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowerCAmelCase :Any = logging.get_logger(__name__) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Union[str, Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __magic_name__ : Dict = json.loads(lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __magic_name__ : List[Any] = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __magic_name__ : List[Any] = json.loads(lowerCAmelCase ) if not mpi_options.get('sagemaker_mpi_enabled' , lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _A , ) @cached_property def __lowerCAmelCase ( self : Dict ) -> "torch.device": logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: __magic_name__ : Any = torch.device('cpu' ) __magic_name__ : List[str] = 0 elif is_sagemaker_model_parallel_available(): __magic_name__ : Any = smp.local_rank() __magic_name__ : List[Any] = torch.device('cuda' , _A ) __magic_name__ : List[str] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) __magic_name__ : Optional[Any] = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) __magic_name__ : Dict = torch.device('cuda' , self.local_rank ) __magic_name__ : int = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __magic_name__ : Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __magic_name__ : str = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) __magic_name__ : List[str] = torch.device('cuda' , self.local_rank ) __magic_name__ : Union[str, Any] = 1 if device.type == "cuda": torch.cuda.set_device(_A ) return device @property def __lowerCAmelCase ( self : Tuple ) -> int: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __lowerCAmelCase ( self : Optional[int] ) -> Dict: return not is_sagemaker_model_parallel_available() @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: return False
561
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _UpperCAmelCase ( a : Tuple ): snake_case__ = VideoMAEConfig() set_architecture_configs(a , a ) if "finetuned" not in model_name: snake_case__ = False if "finetuned" in model_name: snake_case__ = """huggingface/label-files""" if "kinetics" in model_name: snake_case__ = 400 snake_case__ = """kinetics400-id2label.json""" elif "ssv2" in model_name: snake_case__ = 174 snake_case__ = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) snake_case__ = json.load(open(hf_hub_download(a , a , repo_type="""dataset""" ) , """r""" ) ) snake_case__ = {int(a ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( a : str , a : str ): if "small" in model_name: snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 16 snake_case__ = 12 snake_case__ = 3 snake_case__ = 192 snake_case__ = 768 elif "large" in model_name: snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 snake_case__ = 12 snake_case__ = 8 snake_case__ = 512 snake_case__ = 2048 elif "huge" in model_name: snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 snake_case__ = 12 snake_case__ = 8 snake_case__ = 640 snake_case__ = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _UpperCAmelCase ( a : Dict ): if "encoder." in name: snake_case__ = name.replace("""encoder.""" , """""" ) if "cls_token" in name: snake_case__ = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: snake_case__ = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: snake_case__ = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: snake_case__ = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: snake_case__ = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: snake_case__ = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: snake_case__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: snake_case__ = name.replace("""attn""" , """attention.self""" ) if "attn" in name: snake_case__ = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: snake_case__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: snake_case__ = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: snake_case__ = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: snake_case__ = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case__ = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case__ = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: snake_case__ = name.replace("""head""" , """classifier""" ) return name def _UpperCAmelCase ( a : List[str] , a : Union[str, Any] ): for key in orig_state_dict.copy().keys(): snake_case__ = orig_state_dict.pop(a ) if key.startswith("""encoder.""" ): snake_case__ = key.replace("""encoder.""" , """""" ) if "qkv" in key: snake_case__ = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): snake_case__ = config.decoder_hidden_size snake_case__ = int(key_split[2] ) snake_case__ = """decoder.decoder_layers.""" if "weight" in key: snake_case__ = val[:dim, :] snake_case__ = val[dim : dim * 2, :] snake_case__ = val[-dim:, :] else: snake_case__ = config.hidden_size snake_case__ = int(key_split[1] ) snake_case__ = """videomae.encoder.layer.""" if "weight" in key: snake_case__ = val[:dim, :] snake_case__ = val[dim : dim * 2, :] snake_case__ = val[-dim:, :] else: snake_case__ = val return orig_state_dict def _UpperCAmelCase ( ): snake_case__ = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) snake_case__ = np.load(a ) return list(a ) def _UpperCAmelCase ( a : Optional[Any] , a : List[str] , a : Optional[Any] , a : Dict ): snake_case__ = get_videomae_config(a ) if "finetuned" in model_name: snake_case__ = VideoMAEForVideoClassification(a ) else: snake_case__ = VideoMAEForPreTraining(a ) # download original checkpoint, hosted on Google Drive snake_case__ = """pytorch_model.bin""" gdown.cached_download(a , a , quiet=a ) snake_case__ = torch.load(a , map_location="""cpu""" ) if "model" in files: snake_case__ = files["""model"""] else: snake_case__ = files["""module"""] snake_case__ = convert_state_dict(a , a ) model.load_state_dict(a ) model.eval() # verify model on basic input snake_case__ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) snake_case__ = prepare_video() snake_case__ = image_processor(a , return_tensors="""pt""" ) if "finetuned" not in model_name: snake_case__ = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) snake_case__ = torch.load(a ) snake_case__ = model(**a ) snake_case__ = outputs.logits snake_case__ = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case__ = torch.Size([1, 174] ) snake_case__ = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case__ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case__ = torch.Size([1, 400] ) snake_case__ = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case__ = torch.Size([1, 174] ) snake_case__ = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": snake_case__ = torch.Size([1, 1408, 1536] ) snake_case__ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case__ = torch.Size([1, 174] ) snake_case__ = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , a , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , a , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case__ = outputs.loss assert torch.allclose(a , a , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a ) model.save_pretrained(a ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(a , organization="""nielsr""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a__ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
708
import math from collections.abc import Iterator from itertools import takewhile def _UpperCAmelCase ( a : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( ): snake_case__ = 2 while True: if is_prime(a ): yield num num += 1 def _UpperCAmelCase ( a : int = 200_0000 ): return sum(takewhile(lambda a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
99
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : int=64 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=37 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=5_12 , SCREAMING_SNAKE_CASE__ : str=16 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Any=None , ) -> Any: A : Optional[Any] =parent A : Dict =batch_size A : Dict =seq_length A : Tuple =is_training A : Tuple =use_input_mask A : Optional[Any] =use_token_type_ids A : Dict =use_labels A : int =vocab_size A : Any =hidden_size A : Union[str, Any] =embedding_size A : Any =num_hidden_layers A : List[str] =num_attention_heads A : List[str] =intermediate_size A : Union[str, Any] =hidden_act A : str =hidden_dropout_prob A : Optional[Any] =attention_probs_dropout_prob A : str =max_position_embeddings A : Optional[Any] =type_vocab_size A : Optional[Any] =type_sequence_label_size A : Dict =initializer_range A : List[str] =num_labels A : Any =num_choices A : Optional[Any] =scope def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: A : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : List[str] =None if self.use_input_mask: A : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) A : Any =None if self.use_token_type_ids: A : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : Any =None A : Union[str, Any] =None A : str =None if self.use_labels: A : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) A : List[str] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: A : int =MobileBertModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : List[Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) A : Dict =model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) A : Dict =model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> str: A : List[str] =MobileBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: A : str =MobileBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Tuple =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: A : Any =MobileBertForPreTraining(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : List[str] =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , next_sentence_label=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: A : int =MobileBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : List[Any] =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: A : List[str] =self.num_labels A : List[str] =MobileBertForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Any =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any: A : Tuple =self.num_labels A : Dict =MobileBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Optional[int] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: A : Union[str, Any] =self.num_choices A : Optional[int] =MobileBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Any =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : List[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Dict =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]: A : Optional[Any] =self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : Optional[Any] =config_and_inputs A : Optional[Any] ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Any = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowercase : List[Any] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowercase : Any = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> Optional[Any]: A : List[Any] =super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): A : Dict =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) A : List[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]: A : str =MobileBertModelTester(self ) A : Optional[int] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: A : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Any: A : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[Any]: A : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: A : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: A : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: A : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]: A : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def A__ ( lowercase: int ) -> Any: return torch.tensor( lowercase, dtype=torch.long, device=lowercase, ) _lowercase : List[str] =1E-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: A : Optional[Any] =MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(SCREAMING_SNAKE_CASE__ ) A : Dict =_long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): A : Tuple =model(SCREAMING_SNAKE_CASE__ )[0] A : Optional[int] =torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) A : str =torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=SCREAMING_SNAKE_CASE__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE A : Optional[Any] =torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) A : Union[str, Any] =torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
305
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any]=False ) -> Dict: if isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ): A : int =len(set_a.intersection(lowercase ) ) if alternative_union: A : Tuple =len(lowercase ) + len(lowercase ) else: A : Any =len(set_a.union(lowercase ) ) return intersection / union if isinstance(lowercase, (list, tuple) ) and isinstance(lowercase, (list, tuple) ): A : int =[element for element in set_a if element in set_b] if alternative_union: A : Union[str, Any] =len(lowercase ) + len(lowercase ) return len(lowercase ) / union else: A : Optional[Any] =set_a + [element for element in set_b if element not in set_a] return len(lowercase ) / len(lowercase ) return len(lowercase ) / len(lowercase ) return None if __name__ == "__main__": _lowercase : str ={'''a''', '''b''', '''c''', '''d''', '''e'''} _lowercase : List[Any] ={'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
305
1
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase__ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase , _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' super().__init__( __A , question_encoder_tokenizer=__A , generator_tokenizer=__A , index=__A , init_retrieval=__A , ) __a : Union[str, Any] = None def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __a : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port __a : int = str(distributed_port + 1 ) __a : Any = dist.new_group(ranks=__A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCAmelCase__(self ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase=torch.floataa ): '''simple docstring''' __a : Dict = torch.empty(__A , dtype=__A ) dist.scatter(__A , src=0 , scatter_list=__A , group=self.process_group ) return target_tensor def lowerCAmelCase__(self ): '''simple docstring''' __a : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __a : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , __A ) return ifname def lowerCAmelCase__(self , _lowercase , _lowercase ): '''simple docstring''' if not dist.is_initialized(): __a : Dict = self._main_retrieve(__A , __A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__A ) # distributed training __a : Optional[Any] = dist.get_world_size(group=self.process_group ) # gather logic __a : Optional[int] = None if self._is_main(): __a : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__A )] dist.gather(torch.tensor(__A ) , dst=0 , gather_list=__A , group=self.process_group ) # scatter logic __a : List[Any] = question_hidden_states.shape[0] __a : Optional[int] = [] __a : Dict = [] if self._is_main(): assert len(__A ) == world_size __a : Union[str, Any] = self._main_retrieve(torch.cat(__A ).numpy() , __A ) __a : Union[str, Any] = torch.tensor(__A ), torch.tensor(__A ) __a : Optional[int] = self._chunk_tensor(__A , __A ) __a : Any = self._chunk_tensor(__A , __A ) __a : Optional[int] = self._scattered(__A , [n_queries, n_docs] , target_type=torch.intaa ) __a : Optional[int] = self._scattered(__A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__A )
711
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ): '''simple docstring''' __a : Any = 1.0 if scale is None else scale __a : str = 0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def lowerCAmelCase__(self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def lowerCAmelCase__(self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def lowerCAmelCase__(self ): '''simple docstring''' return self.variance.sqrt() class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' super().__init__(**_lowercase ) __a : str = args_dim __a : List[Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) __a : Dict = domain_map def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : List[Any] = [proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase ): '''simple docstring''' super().__init__() __a : Optional[int] = function def lowerCAmelCase__(self , _lowercase , *_lowercase ): '''simple docstring''' return self.function(_lowercase , *_lowercase ) class SCREAMING_SNAKE_CASE__ : _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__(self , _lowercase = 1 ): '''simple docstring''' __a : Optional[int] = dim __a : str = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = None , ): '''simple docstring''' __a : Tuple = self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def lowerCAmelCase__(self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def lowerCAmelCase__(self ): '''simple docstring''' return len(self.event_shape ) @property def lowerCAmelCase__(self ): '''simple docstring''' return 0.0 def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowerCAmelCase__(self , *_lowercase ): '''simple docstring''' raise NotImplementedError() @staticmethod def lowerCAmelCase__(_lowercase ): '''simple docstring''' return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __a : Optional[Any] = 2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase ): '''simple docstring''' __a : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase ): '''simple docstring''' __a : Union[str, Any] = cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a , __a : Optional[Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = None ): '''simple docstring''' __a , __a : List[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
63
0
import qiskit def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register UpperCamelCase :Optional[int] = qiskit.QuantumCircuit(UpperCAmelCase_ , UpperCAmelCase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCamelCase :Union[str, Any] = qiskit.execute(UpperCAmelCase_ , UpperCAmelCase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
658
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings snake_case__ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase ( __lowerCamelCase ): a__: bool = field(default=__lowerCamelCase , metadata={"""help""": """Whether to use SortishSampler or not."""} ) a__: bool = field( default=__lowerCamelCase , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) a__: Optional[int] = field( default=__lowerCamelCase , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) a__: Optional[int] = field( default=__lowerCamelCase , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=__lowerCamelCase , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def _lowerCAmelCase ( self : List[str] ): lowercase : Union[str, Any] = super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): lowercase : Tuple = v.to_dict() return d
583
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = {} class __A ( UpperCamelCase__ ): UpperCamelCase = """llama""" UpperCamelCase = ["""past_key_values"""] def __init__( self :List[Any] , __snake_case :Optional[int]=3_20_00 , __snake_case :Optional[int]=40_96 , __snake_case :Optional[Any]=1_10_08 , __snake_case :int=32 , __snake_case :Any=32 , __snake_case :str=None , __snake_case :int="silu" , __snake_case :Any=20_48 , __snake_case :Optional[Any]=0.02 , __snake_case :Optional[int]=1E-6 , __snake_case :Dict=True , __snake_case :List[Any]=0 , __snake_case :List[Any]=1 , __snake_case :Tuple=2 , __snake_case :Union[str, Any]=1 , __snake_case :Dict=False , __snake_case :int=None , **__snake_case :Dict , ): '''simple docstring''' __magic_name__ : Optional[Any] =vocab_size __magic_name__ : Optional[int] =max_position_embeddings __magic_name__ : int =hidden_size __magic_name__ : Tuple =intermediate_size __magic_name__ : Tuple =num_hidden_layers __magic_name__ : List[str] =num_attention_heads # for backward compatibility if num_key_value_heads is None: __magic_name__ : Optional[int] =num_attention_heads __magic_name__ : List[str] =num_key_value_heads __magic_name__ : List[str] =hidden_act __magic_name__ : List[str] =initializer_range __magic_name__ : List[Any] =rms_norm_eps __magic_name__ : Any =pretraining_tp __magic_name__ : List[Any] =use_cache __magic_name__ : Any =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , tie_word_embeddings=__snake_case , **__snake_case , ) def A__ ( self :Tuple ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) __magic_name__ : Tuple =self.rope_scaling.get("""type""" , __snake_case ) __magic_name__ : List[str] =self.rope_scaling.get("""factor""" , __snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__snake_case , __snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
367
import pytest import datasets # Import fixture modules as plugins UpperCAmelCase_ : Union[str, Any] = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def lowerCAmelCase_ ( lowerCamelCase ): config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __magic_name__ : Tuple =tmp_path_factory.getbasetemp() / """cache""" __magic_name__ : Optional[int] =test_hf_cache_home / """datasets""" __magic_name__ : List[str] =test_hf_cache_home / """metrics""" __magic_name__ : List[str] =test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(lowerCamelCase ) ) __magic_name__ : Optional[Any] =test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(lowerCamelCase ) ) __magic_name__ : Tuple =test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCamelCase ) ) @pytest.fixture(autouse=lowerCamelCase , scope="""session""" ) def lowerCAmelCase_ ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): # don't take tests into account when counting downloads monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , lowerCamelCase )
367
1
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if not nums: return 0 __SCREAMING_SNAKE_CASE = nums[0] __SCREAMING_SNAKE_CASE = 0 for num in nums[1:]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
682
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f"""{test_file} instead.""" ) __SCREAMING_SNAKE_CASE = components[-1] if not test_fn.endswith("py" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace(".py" , "" )] __SCREAMING_SNAKE_CASE = ".".join(lowerCAmelCase_ ) return test_module_path def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_module_path(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = importlib.import_module(lowerCAmelCase_ ) return test_module def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = get_test_module(lowerCAmelCase_ ) for attr in dir(lowerCAmelCase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = get_test_module(lowerCAmelCase_ ) for attr in dir(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , "all_model_classes" , [] ) if len(lowerCAmelCase_ ) > 0: test_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = test_class() if hasattr(lowerCAmelCase_ , "setUp" ): test.setUp() __SCREAMING_SNAKE_CASE = None if hasattr(lowerCAmelCase_ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __SCREAMING_SNAKE_CASE = test.model_tester.__class__ return model_tester def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for test_class in test_classes: __SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(lowerCAmelCase_ ) if tester_class is not None: tester_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(lowerCAmelCase_ ) for test_class in test_classes} return test_tester_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_model_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { model_class: get_test_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in model_classes } return model_test_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_model_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { model_class: get_tester_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in model_classes } return model_to_tester_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return o elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return o.__name__ elif isinstance(lowerCAmelCase_ , (list, tuple) ): return [to_json(lowerCAmelCase_ ) for x in o] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {to_json(lowerCAmelCase_ ): to_json(lowerCAmelCase_ ) for k, v in o.items()} else: return o
682
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = 'philschmid/bart-large-cnn-samsum' UpperCAmelCase : List[Any] = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) UpperCAmelCase : str = 'summarizer' UpperCAmelCase : Union[str, Any] = AutoTokenizer UpperCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM UpperCAmelCase : List[Any] = ['text'] UpperCAmelCase : List[str] = ['text'] def snake_case_ ( self : Dict , __snake_case : Tuple ) -> Tuple: return self.pre_processor(__snake_case , return_tensors='''pt''' , truncation=__snake_case ) def snake_case_ ( self : Optional[Any] , __snake_case : int ) -> List[str]: return self.model.generate(**__snake_case )[0] def snake_case_ ( self : List[str] , __snake_case : int ) -> List[str]: return self.pre_processor.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )
249
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase : def __init__( self : Tuple , __snake_case : str = None , __snake_case : uuid.UUID = None , __snake_case : Union[str, Any]=None , __snake_case : str=None ) -> List[str]: if not conversation_id: _a : Optional[int] = uuid.uuida() if past_user_inputs is None: _a : int = [] if generated_responses is None: _a : str = [] _a : uuid.UUID = conversation_id _a : List[str] = past_user_inputs _a : List[str] = generated_responses _a : Optional[str] = text def __eq__( self : str , __snake_case : Optional[Any] ) -> str: if not isinstance(__snake_case , __snake_case ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def snake_case_ ( self : Dict , __snake_case : str , __snake_case : bool = False ) -> str: if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) _a : Optional[Any] = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _a : Optional[Any] = text def snake_case_ ( self : Optional[int] ) -> Optional[Any]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _a : Union[str, Any] = None def snake_case_ ( self : int , __snake_case : str ) -> Any: self.generated_responses.append(__snake_case ) def snake_case_ ( self : Any ) -> Dict: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any] ) -> Union[str, Any]: _a : Tuple = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _a : Optional[Any] = '''user''' if is_user else '''bot''' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( SCREAMING_SNAKE_CASE , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , *__snake_case : Optional[int] , **__snake_case : Any ) -> Dict: super().__init__(*__snake_case , **__snake_case ) if self.tokenizer.pad_token_id is None: _a : Tuple = self.tokenizer.eos_token def snake_case_ ( self : Any , __snake_case : int=None , __snake_case : int=None , __snake_case : Union[str, Any]=None , **__snake_case : Optional[int] ) -> Any: _a : Any = {} _a : Optional[int] = {} _a : Tuple = {} if min_length_for_response is not None: _a : Any = min_length_for_response if minimum_tokens is not None: _a : str = minimum_tokens if "max_length" in generate_kwargs: _a : str = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _a : Optional[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__snake_case ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , __snake_case : Union[Conversation, List[Conversation]] , __snake_case : Union[str, Any]=0 , **__snake_case : Tuple ) -> Optional[int]: _a : List[str] = super().__call__(__snake_case , num_workers=__snake_case , **__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) == 1: return outputs[0] return outputs def snake_case_ ( self : List[Any] , __snake_case : Conversation , __snake_case : Optional[Any]=32 ) -> Dict[str, Any]: if not isinstance(__snake_case , __snake_case ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): _a : str = self.tokenizer._build_conversation_input_ids(__snake_case ) else: # If the tokenizer cannot handle conversations, we default to only the old version _a : Any = self._legacy_parse_and_tokenize(__snake_case ) if self.framework == "pt": _a : List[str] = torch.LongTensor([input_ids] ) elif self.framework == "tf": _a : Optional[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def snake_case_ ( self : str , __snake_case : Any , __snake_case : Optional[int]=10 , **__snake_case : Optional[int] ) -> int: _a : Optional[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) _a : List[str] = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _a : Optional[Any] = max_length - minimum_tokens _a : List[Any] = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: _a : int = model_inputs['''attention_mask'''][:, -trim:] _a : Any = model_inputs.pop('''conversation''' ) _a : int = max_length _a : Any = self.model.generate(**__snake_case , **__snake_case ) if self.model.config.is_encoder_decoder: _a : List[Any] = 1 else: _a : Union[str, Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def snake_case_ ( self : List[Any] , __snake_case : Dict , __snake_case : Dict=True ) -> Optional[int]: _a : int = model_outputs['''output_ids'''] _a : int = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case , ) _a : Optional[Any] = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__snake_case ) return conversation def snake_case_ ( self : List[Any] , __snake_case : Conversation ) -> Dict: _a : Any = self.tokenizer.eos_token_id _a : Dict = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) if len(__snake_case ) > self.tokenizer.model_max_length: _a : int = input_ids[-self.tokenizer.model_max_length :] return input_ids
249
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCamelCase( _A : Any , _A : List[str]=() , _A : List[str]=None , _A : Dict="no" , _A : List[str]="29500" ): '''simple docstring''' UpperCAmelCase__ : int = False UpperCAmelCase__ : List[str] = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase__ : List[str] = True elif "IPython" in sys.modules: UpperCAmelCase__ : List[Any] = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase__ : Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , _A ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase__ : Tuple = 8 UpperCAmelCase__ : Optional[Any] = PrepareForLaunch(_A , distributed_type='''TPU''' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(_A , args=_A , nprocs=_A , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*_A ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_A , master_addr='''127.0.01''' , master_port=_A , mixed_precision=_A ): UpperCAmelCase__ : str = PrepareForLaunch(_A , distributed_type='''MULTI_GPU''' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(_A , args=_A , nprocs=_A , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase__ : Union[str, Any] = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*_A ) def __UpperCamelCase( _A : List[str] , _A : Optional[Any]=() , _A : str=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_A , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase__ : Optional[int] = PrepareForLaunch(_A , debug=_A ) start_processes(_A , args=_A , nprocs=_A , start_method='''fork''' )
614
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = AutoencoderKL UpperCAmelCase_ : Any = '''sample''' UpperCAmelCase_ : List[str] = 1E-2 @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : Optional[int] = 3 UpperCAmelCase__ : Tuple = (32, 32) UpperCAmelCase__ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return (3, 32, 32) @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return (3, 32, 32) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : List[Any] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' ,'''Gradient checkpointing skipped on MPS''' ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase__ : Any = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase__ : Optional[int] = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase__ : Optional[int] = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase__ : int = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase__ : Union[str, Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase__ : Union[str, Any] = dict(model.named_parameters() ) UpperCAmelCase__ : int = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase__ : Tuple = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) UpperCAmelCase__ : Optional[Any] = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase__ : Optional[Any] = torch.manual_seed(0 ) else: UpperCAmelCase__ : Tuple = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase__ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase__ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : str = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase__ : int = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase__ : int = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase__ : List[Any] = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: UpperCAmelCase__ : Optional[Any] = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ,lowerCamelCase_=0 ,lowerCamelCase_=(4, 3, 512, 512) ,lowerCamelCase_=False ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = torch.floataa if fpaa else torch.floataa UpperCAmelCase__ : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def lowerCAmelCase__ ( self ,lowerCamelCase_="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_=False ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = '''fp16''' if fpaa else None UpperCAmelCase__ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase__ : List[Any] = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder='''vae''' ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def lowerCAmelCase__ ( self ,lowerCamelCase_=0 ) -> Optional[Any]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_sd_vae_model() UpperCAmelCase__ : str = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase__ : Dict = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : Tuple = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase__ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase__ : Tuple = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase__ : Tuple = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase__ : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase__ : List[str] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> str: '''simple docstring''' UpperCAmelCase__ : Any = self.get_sd_vae_model() UpperCAmelCase__ : Optional[int] = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase__ : str = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase__ : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Dict = self.get_sd_vae_model() UpperCAmelCase__ : Dict = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase__ : Optional[int] = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase__ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : int = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase__ : str = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : Dict = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase__ : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase__ : Any = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : Any = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase__ : int = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_sd_vae_model() UpperCAmelCase__ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase__ : Tuple = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase__ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Any = self.get_sd_vae_model() UpperCAmelCase__ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase__ : Tuple = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase__ : List[str] = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase__ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
614
1
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return getitem, k def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' return setitem, k, v def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' return delitem, k def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' try: return fun(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ), None except Exception as e: return None, e _SCREAMING_SNAKE_CASE = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) _SCREAMING_SNAKE_CASE = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] _SCREAMING_SNAKE_CASE = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] _SCREAMING_SNAKE_CASE = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] _SCREAMING_SNAKE_CASE = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _SCREAMING_SNAKE_CASE = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE_ ) == str(SCREAMING_SNAKE_CASE_ ) assert set(SCREAMING_SNAKE_CASE_ ) == set(SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) assert set(my.items() ) == set(py.items() ) def __a(): '''simple docstring''' def is_public(SCREAMING_SNAKE_CASE_ : str ) -> bool: return not name.startswith("_" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE_ )} assert dict_public_names > hash_public_names
489
'''simple docstring''' import math def __a(SCREAMING_SNAKE_CASE_ : int = 100 ): '''simple docstring''' _lowerCAmelCase = sum(i * i for i in range(1 , n + 1 ) ) _lowerCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
489
1
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a : Optional[Any] = "pt" elif is_tf_available(): a : List[Any] = "tf" else: a : List[Any] = "jax" class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = PerceiverTokenizer SCREAMING_SNAKE_CASE__ : List[str] = False def A_ ( self ): '''simple docstring''' super().setUp() UpperCAmelCase : List[str] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A_ ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def A_ ( self , **snake_case ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def A_ ( self , snake_case , snake_case=False , snake_case=2_0 , snake_case=5 ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for i in range(len(snake_case ) ): try: UpperCAmelCase : int = tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase : Optional[int] = list(filter(lambda snake_case : re.match(r"^[ a-zA-Z]+$" , t[1] ) , snake_case ) ) UpperCAmelCase : Any = list(filter(lambda snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=snake_case ) , snake_case ) ) if max_length is not None and len(snake_case ) > max_length: UpperCAmelCase : Optional[Any] = toks[:max_length] if min_length is not None and len(snake_case ) < min_length and len(snake_case ) > 0: while len(snake_case ) < min_length: UpperCAmelCase : Any = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase : Dict = [t[0] for t in toks] # Ensure consistency UpperCAmelCase : Any = tokenizer.decode(snake_case , clean_up_tokenization_spaces=snake_case ) if " " not in output_txt and len(snake_case ) > 1: UpperCAmelCase : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case ) ) if with_prefix_space: UpperCAmelCase : Union[str, Any] = " " + output_txt UpperCAmelCase : Dict = tokenizer.encode(snake_case , add_special_tokens=snake_case ) return output_txt, output_ids def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.perceiver_tokenizer UpperCAmelCase : Tuple = "Unicode €." UpperCAmelCase : int = tokenizer(snake_case ) UpperCAmelCase : Tuple = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded["input_ids"] , snake_case ) # decoding UpperCAmelCase : Optional[Any] = tokenizer.decode(snake_case ) self.assertEqual(snake_case , "[CLS]Unicode €.[SEP]" ) UpperCAmelCase : Tuple = tokenizer("e è é ê ë" ) UpperCAmelCase : str = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded["input_ids"] , snake_case ) # decoding UpperCAmelCase : Dict = tokenizer.decode(snake_case ) self.assertEqual(snake_case , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.perceiver_tokenizer UpperCAmelCase : Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off UpperCAmelCase : List[str] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on UpperCAmelCase : Dict = tokenizer(snake_case , padding=snake_case , return_tensors=snake_case ) self.assertIsInstance(snake_case , snake_case ) if FRAMEWORK != "jax": UpperCAmelCase : List[Any] = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(snake_case , snake_case ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.perceiver_tokenizer UpperCAmelCase : Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase : List[Any] = tokenizer(snake_case , padding=snake_case , return_tensors=snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , snake_case ) self.assertIn("attention_mask" , snake_case ) self.assertNotIn("decoder_input_ids" , snake_case ) self.assertNotIn("decoder_attention_mask" , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.perceiver_tokenizer UpperCAmelCase : int = [ "Summary of the text.", "Another summary.", ] UpperCAmelCase : List[Any] = tokenizer( text_target=snake_case , max_length=3_2 , padding="max_length" , truncation=snake_case , return_tensors=snake_case ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test UpperCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : Any = " He is very happy, UNwant\u00E9d,running" UpperCAmelCase : int = tokenizer.encode(snake_case , add_special_tokens=snake_case ) tokenizer.save_pretrained(snake_case ) UpperCAmelCase : List[str] = tokenizer.__class__.from_pretrained(snake_case ) UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) shutil.rmtree(snake_case ) UpperCAmelCase : Dict = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase : str = tempfile.mkdtemp() UpperCAmelCase : int = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) UpperCAmelCase : int = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase : List[str] = tokenizer.encode(snake_case , add_special_tokens=snake_case ) tokenizer.save_pretrained(snake_case ) UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(snake_case ) UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) UpperCAmelCase : Optional[int] = tokenizer.__class__.from_pretrained(snake_case , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case ) with open(os.path.join(snake_case , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase : Union[str, Any] = json.load(snake_case ) with open(os.path.join(snake_case , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase : Any = json.load(snake_case ) UpperCAmelCase : str = [f"<extra_id_{i}>" for i in range(1_2_5 )] UpperCAmelCase : List[Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] UpperCAmelCase : List[str] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(snake_case , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case , snake_case ) with open(os.path.join(snake_case , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case , snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase : Optional[Any] = tokenizer_class.from_pretrained( snake_case , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase : Optional[int] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=snake_case )] UpperCAmelCase : Optional[int] = tokenizer_class.from_pretrained( snake_case , additional_special_tokens=snake_case , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , "�" ) def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.get_tokenizers(fast=snake_case , do_lower_case=snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase : List[Any] = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] UpperCAmelCase : int = tokenizer.convert_tokens_to_string(snake_case ) self.assertIsInstance(snake_case , snake_case )
679
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') lowerCAmelCase__ = TypeVar('''U''') class __snake_case ( Generic[T, U]): def __init__( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Any = key _lowerCamelCase : List[str] = val _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Any = None def __repr__( self : List[Any] ): """simple docstring""" return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class __snake_case ( Generic[T, U]): def __init__( self : List[str] ): """simple docstring""" _lowerCamelCase : str = DoubleLinkedListNode(A__ , A__ ) _lowerCamelCase : Optional[Any] = DoubleLinkedListNode(A__ , A__ ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.rear, self.head def __repr__( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[str] = ['''DoubleLinkedList'''] _lowerCamelCase : Optional[int] = self.head while node.next is not None: rep.append(str(A__ ) ) _lowerCamelCase : int = node.next rep.append(str(self.rear ) ) return ",\n ".join(A__ ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCamelCase : str = node _lowerCamelCase : Optional[Any] = previous _lowerCamelCase : Optional[Any] = node _lowerCamelCase : Tuple = self.rear def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Any ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCamelCase : Union[str, Any] = node.next _lowerCamelCase : List[Any] = node.prev _lowerCamelCase : int = None _lowerCamelCase : Optional[Any] = None return node class __snake_case ( Generic[T, U]): snake_case__ : Dict = {} def __init__( self : Optional[int] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = DoubleLinkedList() _lowerCamelCase : Optional[int] = capacity _lowerCamelCase : Dict = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Optional[Any] = {} def __repr__( self : List[Any] ): """simple docstring""" return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self : Optional[Any] , __lowerCAmelCase : Any ): """simple docstring""" return key in self.cache def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Dict ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCamelCase : List[Any] = self.cache[key] _lowerCamelCase : Optional[int] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(A__ ) return node.val self.miss += 1 return None def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCamelCase : List[str] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(A__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCamelCase : str = DoubleLinkedListNode(A__ , A__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCamelCase : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCamelCase : Optional[int] = value self.list.add(A__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : int , __lowerCAmelCase : Optional[Any] = 1_2_8 ): """simple docstring""" def cache_decorator_inner(__lowerCAmelCase : Optional[Any] ) -> Callable[..., U]: def cache_decorator_wrapper(*__lowerCAmelCase : Tuple ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCamelCase : Any = LRUCache(A__ ) _lowerCamelCase : Any = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCamelCase : str = func(*A__ ) cls.decorator_function_to_instance_map[func].put(args[0] , A__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(A__ , '''cache_info''' , A__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" def snake_case_ ( A_ : int = 10, A_ : int = 22 ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = range(1, A_ ) _lowerCamelCase : Dict = range(1, A_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
598
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = ['pixel_values'] def __init__( self : Optional[Any] ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,**_snake_case : List[Any] ,) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase__ : Optional[int] = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) lowercase__ : Any = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} lowercase__ : str = get_size_dict(__SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) lowercase__ : Dict = do_resize lowercase__ : str = size lowercase__ : Any = resample lowercase__ : Optional[int] = do_rescale lowercase__ : List[str] = rescale_factor lowercase__ : Union[str, Any] = do_center_crop lowercase__ : Optional[int] = crop_size lowercase__ : List[str] = do_flip_channel_order def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PIL.Image.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[Any] ,) -> np.ndarray: """simple docstring""" lowercase__ : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase__ : List[Any] = get_resize_output_image_size(__SCREAMING_SNAKE_CASE ,size=size['''shortest_edge'''] ,default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ,resample=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[str] ,) -> np.ndarray: """simple docstring""" lowercase__ : int = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__SCREAMING_SNAKE_CASE ,size=(size['''height'''], size['''width''']) ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Tuple ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> Any: """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : List[str] ,_snake_case : np.ndarray ,_snake_case : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """simple docstring""" return flip_channel_order(__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Dict ,_snake_case : ImageInput ,_snake_case : bool = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : float = None ,_snake_case : bool = None ,_snake_case : Dict[str, int] = None ,_snake_case : bool = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : Optional[Any] ,) -> PIL.Image.Image: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase__ : Union[str, Any] = size if size is not None else self.size lowercase__ : int = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) lowercase__ : Dict = crop_size if crop_size is not None else self.crop_size lowercase__ : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) lowercase__ : Union[str, Any] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowercase__ : Optional[int] = [self.resize(image=__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ,resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowercase__ : Tuple = [self.center_crop(image=__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowercase__ : Union[str, Any] = [self.rescale(image=__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase__ : Dict = [self.flip_channel_order(image=__SCREAMING_SNAKE_CASE ) for image in images] lowercase__ : Any = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) for image in images] lowercase__ : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE ,tensor_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Any ,_snake_case : Dict ,_snake_case : List[Tuple] = None ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): lowercase__ : Dict = target_sizes.numpy() lowercase__ : List[Any] = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase__ : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='''bilinear''' ,align_corners=__SCREAMING_SNAKE_CASE ) lowercase__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: lowercase__ : Tuple = logits.argmax(dim=1 ) lowercase__ : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
560
from __future__ import annotations from collections.abc import Iterator class _A : """simple docstring""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> None: __UpperCAmelCase =value __UpperCAmelCase =None __UpperCAmelCase =None class _A : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Node ) -> None: __UpperCAmelCase =tree def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
68
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __magic_name__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["OwlViTFeatureExtractor"] __magic_name__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
248
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _lowerCAmelCase ( UpperCamelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = 2 while True: if is_prime(UpperCamelCase_ ): yield num num += 1 def _lowerCAmelCase ( UpperCamelCase_ = 200_0000 ): return sum(takewhile(lambda UpperCamelCase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
248
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( a ): def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCamelCase , "width_multiplier" ) ) class lowercase : def __init__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int=13 , _UpperCamelCase : List[str]=64 , _UpperCamelCase : Any=2 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : int="swish" , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : List[Any]=0.0_2 , _UpperCamelCase : Tuple=True , _UpperCamelCase : str=True , _UpperCamelCase : int=10 , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Optional[Any]=0.2_5 , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : List[str]=0.0 , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = make_divisible(512 * width_multiplier , divisor=8 ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = conv_kernel_size SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = classifier_dropout_prob SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = width_multiplier SCREAMING_SNAKE_CASE = ffn_dropout SCREAMING_SNAKE_CASE = attn_dropout def __snake_case( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case( self : List[str] ) -> Any: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __snake_case( self : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileViTVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileViTVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case( self : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase__ : Optional[Any] = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ : Optional[int] = False lowercase__ : int = False lowercase__ : Optional[int] = False lowercase__ : Optional[Any] = False def __snake_case( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileViTVaModelTester(self ) SCREAMING_SNAKE_CASE = MobileViTVaConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def __snake_case( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def __snake_case( self : Any ) -> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __snake_case( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(_UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ): SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 5 self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE = 2 for i in range(len(_UpperCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) @slow def __snake_case( self : Dict ) -> Tuple: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = MobileViTVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : Any ) -> Any: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def __snake_case( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def __snake_case( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) SCREAMING_SNAKE_CASE = model.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=_UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def __snake_case( self : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) SCREAMING_SNAKE_CASE = model.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase )
403
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowercase ( a ): lowercase__ : Any = """altclip_text_model""" def __init__( self : str , _UpperCamelCase : Dict=250_002 , _UpperCamelCase : List[Any]=1_024 , _UpperCamelCase : str=24 , _UpperCamelCase : str=16 , _UpperCamelCase : Tuple=4_096 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : int=514 , _UpperCamelCase : int=1 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : Union[str, Any]=0.0_2 , _UpperCamelCase : Union[str, Any]=1e-05 , _UpperCamelCase : Optional[int]=1 , _UpperCamelCase : Any=0 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : Optional[Any]="absolute" , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Union[str, Any]=768 , **_UpperCamelCase : Optional[int] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = project_dim class lowercase ( a ): lowercase__ : Any = """altclip_vision_model""" def __init__( self : Dict , _UpperCamelCase : Optional[int]=768 , _UpperCamelCase : Optional[int]=3_072 , _UpperCamelCase : List[Any]=512 , _UpperCamelCase : Union[str, Any]=12 , _UpperCamelCase : List[Any]=12 , _UpperCamelCase : int=3 , _UpperCamelCase : List[Any]=224 , _UpperCamelCase : Optional[int]=32 , _UpperCamelCase : Optional[Any]="quick_gelu" , _UpperCamelCase : int=1e-5 , _UpperCamelCase : str=0.0 , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : Any=1.0 , **_UpperCamelCase : Dict , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def __snake_case( cls : Tuple , _UpperCamelCase : Union[str, os.PathLike] , **_UpperCamelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": SCREAMING_SNAKE_CASE = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class lowercase ( a ): lowercase__ : Dict = """altclip""" lowercase__ : Any = True def __init__( self : int , _UpperCamelCase : Tuple=None , _UpperCamelCase : Any=None , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : int=2.6_5_9_2 , **_UpperCamelCase : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.pop("text_config_dict" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = kwargs.pop("vision_config_dict" , _UpperCamelCase ) super().__init__(**_UpperCamelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: SCREAMING_SNAKE_CASE = {} # This is the complete result when using `text_config_dict`. SCREAMING_SNAKE_CASE = AltCLIPTextConfig(**_UpperCamelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: SCREAMING_SNAKE_CASE = ( F"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " F"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: SCREAMING_SNAKE_CASE = ( F"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " F"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(_UpperCamelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: SCREAMING_SNAKE_CASE = {} # This is the complete result when using `vision_config_dict`. SCREAMING_SNAKE_CASE = AltCLIPVisionConfig(**_UpperCamelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: SCREAMING_SNAKE_CASE = { str(_UpperCamelCase ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: SCREAMING_SNAKE_CASE = ( F"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " F"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: SCREAMING_SNAKE_CASE = ( F"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " F"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(_UpperCamelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) SCREAMING_SNAKE_CASE = AltCLIPTextConfig(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = AltCLIPVisionConfig(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = logit_scale_init_value SCREAMING_SNAKE_CASE = 1.0 @classmethod def __snake_case( cls : Union[str, Any] , _UpperCamelCase : AltCLIPTextConfig , _UpperCamelCase : AltCLIPVisionConfig , **_UpperCamelCase : int ) -> Optional[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
403
1
def _lowercase ( a__ : str , a__ : Dict ) -> int: """simple docstring""" _UpperCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _UpperCamelCase = n - k # Calculate C(n,k) for i in range(__A ): result *= n - i result //= i + 1 return result def _lowercase ( a__ : List[Any] ) -> str: """simple docstring""" return binomial_coefficient(2 * node_count , __A ) // (node_count + 1) def _lowercase ( a__ : Tuple ) -> Tuple: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) _UpperCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def _lowercase ( a__ : Tuple ) -> Optional[Any]: """simple docstring""" return catalan_number(__A ) * factorial(__A ) if __name__ == "__main__": __lowerCAmelCase = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
715
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( lowercase , unittest.TestCase ): __lowercase : Union[str, Any] = AlbertTokenizer __lowercase : Any = AlbertTokenizerFast __lowercase : Dict = True __lowercase : Union[str, Any] = True __lowercase : str = True def lowercase ( self ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = AlbertTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , lowerCamelCase_ ) -> List[str]: """simple docstring""" _UpperCamelCase = "this is a test" _UpperCamelCase = "this is a test" return input_text, output_text def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = "<pad>" _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(lowerCamelCase_ ) , 3_00_00 ) def lowercase ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def lowercase ( self ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = "I was born in 92000, and this is falsé." _UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = AlbertTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _UpperCamelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [48, 25, 21, 12_89] ) _UpperCamelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def lowercase ( self ) -> str: """simple docstring""" _UpperCamelCase = AlbertTokenizer(lowerCamelCase_ ) _UpperCamelCase = tokenizer.encode("sequence builders" ) _UpperCamelCase = tokenizer.encode("multi-sequence build" ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
589
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase = '''src/diffusers''' _lowercase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _lowercase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _lowercase = spec.loader.load_module() def UpperCamelCase ( snake_case__ , snake_case__): return line.startswith(snake_case__) or len(snake_case__) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , snake_case__) is not None def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Tuple = object_name.split(".") lowerCAmelCase_ : Union[str, Any] = 0 # First let's find the module where our object lives. lowerCAmelCase_ : Union[str, Any] = parts[i] while i < len(snake_case__) and not os.path.isfile(os.path.join(snake_case__ , F'''{module}.py''')): i += 1 if i < len(snake_case__): lowerCAmelCase_ : Dict = os.path.join(snake_case__ , parts[i]) if i >= len(snake_case__): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''') with open(os.path.join(snake_case__ , F'''{module}.py''') , "r" , encoding="utf-8" , newline="\n") as f: lowerCAmelCase_ : Optional[Any] = f.readlines() # Now let's find the class / func in the code! lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : int = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case__) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case__): raise ValueError(F''' {object_name} does not match any function or class in {module}.''') # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCAmelCase_ : Union[str, Any] = line_index while line_index < len(snake_case__) and _should_continue(lines[line_index] , snake_case__): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowerCAmelCase_ : List[str] = lines[start_index:line_index] return "".join(snake_case__) _lowercase = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _lowercase = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') _lowercase = re.compile(r'''<FILL\s+[^>]*>''') def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = code.split("\n") lowerCAmelCase_ : Any = 0 while idx < len(snake_case__) and len(lines[idx]) == 0: idx += 1 if idx < len(snake_case__): return re.search(R"^(\s*)\S" , lines[idx]).groups()[0] return "" def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = len(get_indent(snake_case__)) > 0 if has_indent: lowerCAmelCase_ : Dict = F'''class Bla:\n{code}''' lowerCAmelCase_ : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=snake_case__) lowerCAmelCase_ : Optional[Any] = black.format_str(snake_case__ , mode=snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = style_docstrings_in_code(snake_case__) return result[len("class Bla:\n") :] if has_indent else result def UpperCamelCase ( snake_case__ , snake_case__=False): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n") as f: lowerCAmelCase_ : Tuple = f.readlines() lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Union[str, Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case__): lowerCAmelCase_ : Optional[int] = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = search.groups() lowerCAmelCase_ : int = find_code_in_diffusers(snake_case__) lowerCAmelCase_ : Dict = get_indent(snake_case__) lowerCAmelCase_ : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCAmelCase_ : str = theoretical_indent lowerCAmelCase_ : Union[str, Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCAmelCase_ : Optional[int] = True while line_index < len(snake_case__) and should_continue: line_index += 1 if line_index >= len(snake_case__): break lowerCAmelCase_ : Dict = lines[line_index] lowerCAmelCase_ : List[str] = _should_continue(snake_case__ , snake_case__) and re.search(F'''^{indent}# End copy''' , snake_case__) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowerCAmelCase_ : Dict = lines[start_index:line_index] lowerCAmelCase_ : Optional[int] = "".join(snake_case__) # Remove any nested `Copied from` comments to avoid circular copies lowerCAmelCase_ : List[Any] = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(snake_case__) is None] lowerCAmelCase_ : Optional[Any] = "\n".join(snake_case__) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case__) > 0: lowerCAmelCase_ : List[str] = replace_pattern.replace("with" , "").split(",") lowerCAmelCase_ : Tuple = [_re_replace_pattern.search(snake_case__) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pattern.groups() lowerCAmelCase_ : int = re.sub(snake_case__ , snake_case__ , snake_case__) if option.strip() == "all-casing": lowerCAmelCase_ : List[str] = re.sub(obja.lower() , obja.lower() , snake_case__) lowerCAmelCase_ : int = re.sub(obja.upper() , obja.upper() , snake_case__) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCAmelCase_ : List[Any] = blackify(lines[start_index - 1] + theoretical_code) lowerCAmelCase_ : Union[str, Any] = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: lowerCAmelCase_ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCAmelCase_ : Union[str, Any] = start_index + 1 if overwrite and len(snake_case__) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''') with open(snake_case__ , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(snake_case__) return diffs def UpperCamelCase ( snake_case__ = False): lowerCAmelCase_ : Tuple = glob.glob(os.path.join(snake_case__ , "**/*.py") , recursive=snake_case__) lowerCAmelCase_ : int = [] for filename in all_files: lowerCAmelCase_ : Union[str, Any] = is_copy_consistent(snake_case__ , snake_case__) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = "\n".join(snake_case__) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.") if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase = parser.parse_args() check_copies(args.fix_and_overwrite)
659
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'swinv2' UpperCamelCase_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[Any] ,lowerCAmelCase__ : Optional[int]=2_24 ,lowerCAmelCase__ : Dict=4 ,lowerCAmelCase__ : Dict=3 ,lowerCAmelCase__ : List[Any]=96 ,lowerCAmelCase__ : Optional[Any]=[2, 2, 6, 2] ,lowerCAmelCase__ : Optional[Any]=[3, 6, 12, 24] ,lowerCAmelCase__ : Optional[int]=7 ,lowerCAmelCase__ : Dict=4.0 ,lowerCAmelCase__ : Dict=True ,lowerCAmelCase__ : str=0.0 ,lowerCAmelCase__ : Tuple=0.0 ,lowerCAmelCase__ : str=0.1 ,lowerCAmelCase__ : List[str]="gelu" ,lowerCAmelCase__ : Union[str, Any]=False ,lowerCAmelCase__ : Dict=0.02 ,lowerCAmelCase__ : int=1e-5 ,lowerCAmelCase__ : List[str]=32 ,**lowerCAmelCase__ : Tuple ,) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : Dict = num_channels lowerCAmelCase_ : Optional[int] = embed_dim lowerCAmelCase_ : Optional[Any] = depths lowerCAmelCase_ : Any = len(lowerCAmelCase__ ) lowerCAmelCase_ : str = num_heads lowerCAmelCase_ : List[str] = window_size lowerCAmelCase_ : List[str] = mlp_ratio lowerCAmelCase_ : Dict = qkv_bias lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = drop_path_rate lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : Any = use_absolute_embeddings lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : Tuple = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) lowerCAmelCase_ : str = (0, 0, 0, 0)
659
1
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def a__ ( ): UpperCAmelCase_ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) UpperCAmelCase_ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase__ ) DownloadCommand.register_subcommand(lowerCAmelCase__ ) EnvironmentCommand.register_subcommand(lowerCAmelCase__ ) RunCommand.register_subcommand(lowerCAmelCase__ ) ServeCommand.register_subcommand(lowerCAmelCase__ ) UserCommands.register_subcommand(lowerCAmelCase__ ) AddNewModelCommand.register_subcommand(lowerCAmelCase__ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase__ ) LfsCommands.register_subcommand(lowerCAmelCase__ ) PTtoTFCommand.register_subcommand(lowerCAmelCase__ ) # Let's go UpperCAmelCase_ = parser.parse_args() if not hasattr(lowerCAmelCase__ , "func" ): parser.print_help() exit(1 ) # Run UpperCAmelCase_ = args.func(lowerCAmelCase__ ) service.run() if __name__ == "__main__": main()
14
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
"""simple docstring""" from collections import defaultdict class __lowerCAmelCase : '''simple docstring''' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): UpperCamelCase_ =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCamelCase_ =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] UpperCamelCase_ =defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCamelCase_ =(1 << len(UpperCamelCase_ )) - 1 def UpperCamelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: str ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCamelCase_ =self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCamelCase_ =total_ways_util return self.dp[mask][task_no] def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any ): # Store the list of persons for each task for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": A_ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. A_ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
391
"""simple docstring""" import string def _UpperCamelCase ( A ): UpperCamelCase_ ="" for i in sequence: UpperCamelCase_ =ord(A ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _UpperCamelCase ( A ): UpperCamelCase_ =string.ascii_letters UpperCamelCase_ =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(A )] if c in letters else c for c in sequence ) def _UpperCamelCase ( ): from timeit import timeit print("Running performance benchmarks..." ) UpperCamelCase_ ="from string import printable ; from __main__ import atbash, atbash_slow" print(f"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=A )} seconds""" ) print(f"""> atbash(): {timeit("atbash(printable)" , setup=A )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
391
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __A ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return max(metric_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , "r" ).readlines()] __SCREAMING_SNAKE_CASE : int = [] if args.gold_data_mode == "qa": __SCREAMING_SNAKE_CASE : Union[str, Any] = pd.read_csv(_SCREAMING_SNAKE_CASE , sep="\t" , header=_SCREAMING_SNAKE_CASE ) for answer_list in data[1]: __SCREAMING_SNAKE_CASE : Optional[Any] = ast.literal_eval(_SCREAMING_SNAKE_CASE ) answers.append(_SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , "r" ).readlines()] __SCREAMING_SNAKE_CASE : Union[str, Any] = [[reference] for reference in references] __SCREAMING_SNAKE_CASE : List[Any] = 0 for prediction, ground_truths in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Dict = 1_0_0.0 * em / total __SCREAMING_SNAKE_CASE : str = 1_0_0.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def __A ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = args.k __SCREAMING_SNAKE_CASE : str = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , "r" ).readlines()] __SCREAMING_SNAKE_CASE : Any = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , "r" ).readlines()] __SCREAMING_SNAKE_CASE : List[Any] = 0 for hypo, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Tuple = set(hypo.split("\t" )[:k] ) __SCREAMING_SNAKE_CASE : List[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __SCREAMING_SNAKE_CASE : str = 1_0_0.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def __A ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" def strip_title(_SCREAMING_SNAKE_CASE : Optional[int] ): if title.startswith("\"" ): __SCREAMING_SNAKE_CASE : Optional[Any] = title[1:] if title.endswith("\"" ): __SCREAMING_SNAKE_CASE : Dict = title[:-1] return title __SCREAMING_SNAKE_CASE : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="pt" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , )["input_ids"].to(args.device ) __SCREAMING_SNAKE_CASE : Tuple = rag_model.rag.question_encoder(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[int] = question_enc_outputs[0] __SCREAMING_SNAKE_CASE : int = rag_model.retriever( _SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __SCREAMING_SNAKE_CASE : List[Any] = [] for docs in all_docs: __SCREAMING_SNAKE_CASE : int = [strip_title(_SCREAMING_SNAKE_CASE ) for title in docs["title"]] provenance_strings.append("\t".join(_SCREAMING_SNAKE_CASE ) ) return provenance_strings def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" with torch.no_grad(): __SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="pt" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict.input_ids.to(args.device ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict.attention_mask.to(args.device ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rag_model.generate( # rag_model overwrites generate _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __SCREAMING_SNAKE_CASE : Dict = rag_model.retriever.generator_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info("Q: {} - A: {}".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return answers def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=_SCREAMING_SNAKE_CASE , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=_SCREAMING_SNAKE_CASE , choices=["exact", "compressed", "legacy"] , type=_SCREAMING_SNAKE_CASE , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=_SCREAMING_SNAKE_CASE , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=_SCREAMING_SNAKE_CASE , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=_SCREAMING_SNAKE_CASE , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=_SCREAMING_SNAKE_CASE , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=_SCREAMING_SNAKE_CASE , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=_SCREAMING_SNAKE_CASE , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=_SCREAMING_SNAKE_CASE , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=_SCREAMING_SNAKE_CASE , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=5_0 , type=_SCREAMING_SNAKE_CASE , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() __SCREAMING_SNAKE_CASE : int = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __A ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = {} if args.model_type is None: __SCREAMING_SNAKE_CASE : Dict = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): __SCREAMING_SNAKE_CASE : List[str] = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration __SCREAMING_SNAKE_CASE : Tuple = args.n_docs if args.index_name is not None: __SCREAMING_SNAKE_CASE : Optional[int] = args.index_name if args.index_path is not None: __SCREAMING_SNAKE_CASE : int = args.index_path else: __SCREAMING_SNAKE_CASE : List[str] = BartForConditionalGeneration __SCREAMING_SNAKE_CASE : int = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : str = get_scores if args.eval_mode == "e2e" else get_precision_at_k __SCREAMING_SNAKE_CASE : int = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_SCREAMING_SNAKE_CASE ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): __SCREAMING_SNAKE_CASE : Dict = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[int] = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , retriever=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: __SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: __SCREAMING_SNAKE_CASE : Any = [] for line in tqdm(_SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(_SCREAMING_SNAKE_CASE ) == args.eval_batch_size: __SCREAMING_SNAKE_CASE : Any = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("\n".join(_SCREAMING_SNAKE_CASE ) + "\n" ) preds_file.flush() __SCREAMING_SNAKE_CASE : Tuple = [] if len(_SCREAMING_SNAKE_CASE ) > 0: __SCREAMING_SNAKE_CASE : List[str] = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("\n".join(_SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowercase = get_args() main(args)
564
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __A ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return EnvironmentCommand() class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def a_ ( a__ ): __SCREAMING_SNAKE_CASE : int = parser.add_parser("env" ) download_parser.set_defaults(func=a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Any = huggingface_hub.__version__ __SCREAMING_SNAKE_CASE : Dict = "not installed" __SCREAMING_SNAKE_CASE : Dict = "NA" if is_torch_available(): import torch __SCREAMING_SNAKE_CASE : List[str] = torch.__version__ __SCREAMING_SNAKE_CASE : List[str] = torch.cuda.is_available() __SCREAMING_SNAKE_CASE : Optional[Any] = "not installed" if is_transformers_available(): import transformers __SCREAMING_SNAKE_CASE : str = transformers.__version__ __SCREAMING_SNAKE_CASE : List[str] = "not installed" if is_accelerate_available(): import accelerate __SCREAMING_SNAKE_CASE : List[str] = accelerate.__version__ __SCREAMING_SNAKE_CASE : Union[str, Any] = "not installed" if is_xformers_available(): import xformers __SCREAMING_SNAKE_CASE : List[Any] = xformers.__version__ __SCREAMING_SNAKE_CASE : int = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a__ ) ) return info @staticmethod def a_ ( a__ ): return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
564
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 class snake_case_ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = (1_6, 3_2, 9_6, 2_5_6) __UpperCamelCase = jnp.floataa def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase__ =nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) UpperCAmelCase__ =[] for i in range(len(self.block_out_channels ) - 1 ): UpperCAmelCase__ =self.block_out_channels[i] UpperCAmelCase__ =self.block_out_channels[i + 1] UpperCAmelCase__ =nn.Conv( A_, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(A_ ) UpperCAmelCase__ =nn.Conv( A_, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(A_ ) UpperCAmelCase__ =blocks UpperCAmelCase__ =nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, A_ ) -> Any: UpperCAmelCase__ =self.conv_in(A_ ) UpperCAmelCase__ =nn.silu(A_ ) for block in self.blocks: UpperCAmelCase__ =block(A_ ) UpperCAmelCase__ =nn.silu(A_ ) UpperCAmelCase__ =self.conv_out(A_ ) return embedding @flax_register_to_config class snake_case_ ( nn.Module, a, a ): '''simple docstring''' __UpperCamelCase = 3_2 __UpperCamelCase = 4 __UpperCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __UpperCamelCase = False __UpperCamelCase = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) __UpperCamelCase = 2 __UpperCamelCase = 8 __UpperCamelCase = None __UpperCamelCase = 1_2_8_0 __UpperCamelCase = 0.0 __UpperCamelCase = False __UpperCamelCase = jnp.floataa __UpperCamelCase = True __UpperCamelCase = 0 __UpperCamelCase = "rgb" __UpperCamelCase = (1_6, 3_2, 9_6, 2_5_6) def __UpperCAmelCase ( self, A_ ) -> FrozenDict: # init input tensors UpperCAmelCase__ =(1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase__ =jnp.zeros(A_, dtype=jnp.floataa ) UpperCAmelCase__ =jnp.ones((1,), dtype=jnp.intaa ) UpperCAmelCase__ =jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa ) UpperCAmelCase__ =(1, 3, self.sample_size * 8, self.sample_size * 8) UpperCAmelCase__ =jnp.zeros(A_, dtype=jnp.floataa ) UpperCAmelCase__ , UpperCAmelCase__ =jax.random.split(A_ ) UpperCAmelCase__ ={"params": params_rng, "dropout": dropout_rng} return self.init(A_, A_, A_, A_, A_ )["params"] def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =self.block_out_channels UpperCAmelCase__ =block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase__ =self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase__ =nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time UpperCAmelCase__ =FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) UpperCAmelCase__ =FlaxTimestepEmbedding(A_, dtype=self.dtype ) UpperCAmelCase__ =FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) UpperCAmelCase__ =self.only_cross_attention if isinstance(A_, A_ ): UpperCAmelCase__ =(only_cross_attention,) * len(self.down_block_types ) if isinstance(A_, A_ ): UpperCAmelCase__ =(num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase__ =[] UpperCAmelCase__ =[] UpperCAmelCase__ =block_out_channels[0] UpperCAmelCase__ =nn.Conv( A_, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(A_ ) for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase__ =output_channel UpperCAmelCase__ =block_out_channels[i] UpperCAmelCase__ =i == len(A_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase__ =FlaxCrossAttnDownBlockaD( in_channels=A_, out_channels=A_, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: UpperCAmelCase__ =FlaxDownBlockaD( in_channels=A_, out_channels=A_, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(A_ ) for _ in range(self.layers_per_block ): UpperCAmelCase__ =nn.Conv( A_, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(A_ ) if not is_final_block: UpperCAmelCase__ =nn.Conv( A_, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(A_ ) UpperCAmelCase__ =down_blocks UpperCAmelCase__ =controlnet_down_blocks # mid UpperCAmelCase__ =block_out_channels[-1] UpperCAmelCase__ =FlaxUNetMidBlockaDCrossAttn( in_channels=A_, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) UpperCAmelCase__ =nn.Conv( A_, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, A_, A_, A_, A_, A_ = 1.0, A_ = True, A_ = False, ) -> Union[FlaxControlNetOutput, Tuple]: UpperCAmelCase__ =self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCAmelCase__ =jnp.flip(A_, axis=1 ) # 1. time if not isinstance(A_, jnp.ndarray ): UpperCAmelCase__ =jnp.array([timesteps], dtype=jnp.intaa ) elif isinstance(A_, jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase__ =timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase__ =jnp.expand_dims(A_, 0 ) UpperCAmelCase__ =self.time_proj(A_ ) UpperCAmelCase__ =self.time_embedding(A_ ) # 2. pre-process UpperCAmelCase__ =jnp.transpose(A_, (0, 2, 3, 1) ) UpperCAmelCase__ =self.conv_in(A_ ) UpperCAmelCase__ =jnp.transpose(A_, (0, 2, 3, 1) ) UpperCAmelCase__ =self.controlnet_cond_embedding(A_ ) sample += controlnet_cond # 3. down UpperCAmelCase__ =(sample,) for down_block in self.down_blocks: if isinstance(A_, A_ ): UpperCAmelCase__ , UpperCAmelCase__ =down_block(A_, A_, A_, deterministic=not train ) else: UpperCAmelCase__ , UpperCAmelCase__ =down_block(A_, A_, deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCAmelCase__ =self.mid_block(A_, A_, A_, deterministic=not train ) # 5. contronet blocks UpperCAmelCase__ =() for down_block_res_sample, controlnet_block in zip(A_, self.controlnet_down_blocks ): UpperCAmelCase__ =controlnet_block(A_ ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase__ =controlnet_down_block_res_samples UpperCAmelCase__ =self.controlnet_mid_block(A_ ) # 6. scaling UpperCAmelCase__ =[sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A_, mid_block_res_sample=A_ )
625
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowerCAmelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> int: for pegasus_name, hf_name in PATTERNS: _SCREAMING_SNAKE_CASE : Optional[int] = k.replace(__A , __A ) return k def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> PegasusForConditionalGeneration: _SCREAMING_SNAKE_CASE : List[str] = DEFAULTS.copy() cfg_kwargs.update(__A ) _SCREAMING_SNAKE_CASE : Dict = PegasusConfig(**__A ) _SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(__A ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.model.state_dict() _SCREAMING_SNAKE_CASE : Union[str, Any] = {} for k, v in tf_weights.items(): _SCREAMING_SNAKE_CASE : Dict = rename_state_dict_key(__A ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _SCREAMING_SNAKE_CASE : Union[str, Any] = v.T _SCREAMING_SNAKE_CASE : Any = torch.tensor(__A , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _SCREAMING_SNAKE_CASE : int = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _SCREAMING_SNAKE_CASE : Dict = mapping['''shared.weight'''] _SCREAMING_SNAKE_CASE : List[str] = mapping['''shared.weight'''] _SCREAMING_SNAKE_CASE : Optional[int] = {k: torch.zeros_like(__A ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__A ) _SCREAMING_SNAKE_CASE : List[str] = torch_model.model.load_state_dict(__A , strict=__A ) _SCREAMING_SNAKE_CASE : Optional[int] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase_(__SCREAMING_SNAKE_CASE="./ckpt/aeslc/model.ckpt-32000" )-> Dict: _SCREAMING_SNAKE_CASE : Dict = tf.train.list_variables(__A ) _SCREAMING_SNAKE_CASE : str = {} _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(__A , desc="""converting tf checkpoint to dict""" ): _SCREAMING_SNAKE_CASE : int = any(pat in name for pat in ignore_name ) if skip_key: continue _SCREAMING_SNAKE_CASE : List[Any] = tf.train.load_variable(__A , __A ) _SCREAMING_SNAKE_CASE : Tuple = array return tf_weights def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: _SCREAMING_SNAKE_CASE : Any = Path(__A ).parent.name _SCREAMING_SNAKE_CASE : List[Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] _SCREAMING_SNAKE_CASE : List[str] = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__A ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__A ) # convert model _SCREAMING_SNAKE_CASE : str = get_tf_weights_as_numpy(__A ) _SCREAMING_SNAKE_CASE : List[Any] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _SCREAMING_SNAKE_CASE : Tuple = task_specific_params _SCREAMING_SNAKE_CASE : Optional[Any] = convert_pegasus(__A , __A ) torch_model.save_pretrained(__A ) _SCREAMING_SNAKE_CASE : int = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__A , Path(__A ) / """pytorch_model.bin""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() if args.save_dir is None: lowerCAmelCase_ = Path(args.tf_ckpt_path).parent.name lowerCAmelCase_ = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
708
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _snake_case ( __snake_case ): """simple docstring""" a = "facebook/bart-large-mnli" a = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a = "text_classifier" a = AutoTokenizer a = AutoModelForSequenceClassification a = ["text", ["text"]] a = ["text"] def _lowerCAmelCase ( self : int): """simple docstring""" super().setup() _SCREAMING_SNAKE_CASE : Any = self.model.config _SCREAMING_SNAKE_CASE : Any = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail"""): _SCREAMING_SNAKE_CASE : List[Any] = int(_A) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""") def _lowerCAmelCase ( self : Optional[Any] , _A : Tuple , _A : List[str]): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = labels return self.pre_processor( [text] * len(_A) , [f"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def _lowerCAmelCase ( self : Tuple , _A : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : str = outputs.logits _SCREAMING_SNAKE_CASE : List[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
635
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase = concatenate_datasets __lowerCamelCase = DownloadConfig __lowerCamelCase = DownloadManager __lowerCamelCase = DownloadMode __lowerCamelCase = DownloadConfig __lowerCamelCase = DownloadMode __lowerCamelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
96
from itertools import count def _A ( SCREAMING_SNAKE_CASE : int = 50 ): """simple docstring""" a__ : Union[str, Any] =[1] * min_block_length for n in count(SCREAMING_SNAKE_CASE ): fill_count_functions.append(1 ) for block_length in range(SCREAMING_SNAKE_CASE , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_000_000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
563
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
718
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ : List[str] = logging.getLogger(__name__) @dataclass class __UpperCamelCase : """simple docstring""" _lowercase : str _lowercase : List[str] _lowercase : Optional[List[str]] @dataclass class __UpperCamelCase : """simple docstring""" _lowercase : List[int] _lowercase : List[int] _lowercase : Optional[List[int]] = None _lowercase : Optional[List[int]] = None class __UpperCamelCase ( _lowercase ): """simple docstring""" _lowercase : Any = '''train''' _lowercase : Any = '''dev''' _lowercase : Optional[Any] = '''test''' class __UpperCamelCase : """simple docstring""" @staticmethod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[InputExample]: raise NotImplementedError @staticmethod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE ) -> List[str]: raise NotImplementedError @staticmethod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=-1_0_0 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=True , ) -> List[InputFeatures]: a__ = {label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} a__ = [] for ex_index, example in enumerate(SCREAMING_SNAKE_CASE ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d of %d''' , SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) a__ = [] a__ = [] for word, label in zip(example.words , example.labels ): a__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(SCREAMING_SNAKE_CASE ) > 0: tokens.extend(SCREAMING_SNAKE_CASE ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(SCREAMING_SNAKE_CASE ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. a__ = tokenizer.num_special_tokens_to_add() if len(SCREAMING_SNAKE_CASE ) > max_seq_length - special_tokens_count: a__ = tokens[: (max_seq_length - special_tokens_count)] a__ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] a__ = [sequence_a_segment_id] * len(SCREAMING_SNAKE_CASE ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: a__ = [cls_token] + tokens a__ = [pad_token_label_id] + label_ids a__ = [cls_token_segment_id] + segment_ids a__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. a__ = [1 if mask_padding_with_zero else 0] * len(SCREAMING_SNAKE_CASE ) # Zero-pad up to the sequence length. a__ = max_seq_length - len(SCREAMING_SNAKE_CASE ) if pad_on_left: a__ = ([pad_token] * padding_length) + input_ids a__ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask a__ = ([pad_token_segment_id] * padding_length) + segment_ids a__ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(SCREAMING_SNAKE_CASE ) == max_seq_length assert len(SCREAMING_SNAKE_CASE ) == max_seq_length assert len(SCREAMING_SNAKE_CASE ) == max_seq_length assert len(SCREAMING_SNAKE_CASE ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(SCREAMING_SNAKE_CASE ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: a__ = None features.append( InputFeatures( input_ids=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __UpperCamelCase ( _lowercase ): """simple docstring""" _lowercase : List[InputFeatures] _lowercase : int = nn.CrossEntropyLoss().ignore_index def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE = Split.train , ) -> List[str]: # Load data features from cache or dataset file a__ = os.path.join( SCREAMING_SNAKE_CASE , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(SCREAMING_SNAKE_CASE ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a__ = cached_features_file + '''.lock''' with FileLock(SCREAMING_SNAKE_CASE ): if os.path.exists(SCREAMING_SNAKE_CASE ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) a__ = torch.load(SCREAMING_SNAKE_CASE ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) a__ = token_classification_task.read_examples_from_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # TODO clean up all this to leverage built-in features of tokenizers a__ = token_classification_task.convert_examples_to_features( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=SCREAMING_SNAKE_CASE , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"Saving features into cached file {cached_features_file}" ) torch.save(self.features , SCREAMING_SNAKE_CASE ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , SCREAMING_SNAKE_CASE ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class __UpperCamelCase : """simple docstring""" _lowercase : List[InputFeatures] _lowercase : int = -1_00 def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE = Split.train , ) -> Union[str, Any]: a__ = token_classification_task.read_examples_from_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # TODO clean up all this to leverage built-in features of tokenizers a__ = token_classification_task.convert_examples_to_features( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=SCREAMING_SNAKE_CASE , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: a__ = tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: a__ = tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def _UpperCAmelCase ( self ) -> int: a__ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) -> int: return len(self.features ) def __getitem__( self , SCREAMING_SNAKE_CASE ) -> InputFeatures: return self.features[i]
148
0
from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[int] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "mctct" def __init__( self : Union[str, Any] , __a : int=8_065 , __a : Optional[Any]=1_536 , __a : int=36 , __a : Tuple=6_144 , __a : Optional[Any]=4 , __a : str=384 , __a : int=920 , __a : Union[str, Any]=1e-5 , __a : Tuple=0.3 , __a : List[Any]="relu" , __a : int=0.02 , __a : Optional[int]=0.3 , __a : Optional[int]=0.3 , __a : Any=1 , __a : str=0 , __a : Union[str, Any]=2 , __a : str=1 , __a : Optional[int]=0.3 , __a : List[Any]=1 , __a : List[Any]=(7,) , __a : List[str]=(3,) , __a : Any=80 , __a : Union[str, Any]=1 , __a : Dict=None , __a : str="sum" , __a : Optional[Any]=False , **__a : Dict , ) ->Optional[Any]: super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) lowerCamelCase_ : int = vocab_size lowerCamelCase_ : Union[str, Any] = hidden_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : Optional[int] = intermediate_size lowerCamelCase_ : int = num_attention_heads lowerCamelCase_ : str = attention_head_dim lowerCamelCase_ : Tuple = max_position_embeddings lowerCamelCase_ : Dict = layer_norm_eps lowerCamelCase_ : Union[str, Any] = layerdrop lowerCamelCase_ : Optional[Any] = hidden_act lowerCamelCase_ : Optional[int] = initializer_range lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Optional[Any] = bos_token_id lowerCamelCase_ : Any = eos_token_id lowerCamelCase_ : Optional[int] = conv_glu_dim lowerCamelCase_ : Union[str, Any] = conv_dropout lowerCamelCase_ : int = num_conv_layers lowerCamelCase_ : List[Any] = input_feat_per_channel lowerCamelCase_ : Union[str, Any] = input_channels lowerCamelCase_ : int = conv_channels lowerCamelCase_ : Optional[int] = ctc_loss_reduction lowerCamelCase_ : Optional[int] = ctc_zero_infinity # prevents config testing fail with exporting to json lowerCamelCase_ : List[Any] = list(__a ) lowerCamelCase_ : Any = list(__a ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
278
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer snake_case__ : Dict = logging.getLogger(__name__) def __lowerCamelCase ( ) -> Any: lowerCamelCase_ : str = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=A__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=A__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=A__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=A__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=A__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=A__ , type=A__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=A__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=A__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) lowerCamelCase_ : Optional[int] = parser.parse_args() return args def __lowerCamelCase ( A__ : Tuple ) -> str: def fn(A__ : Dict ): return tokenizer(examples["""text"""] ) return fn def __lowerCamelCase ( A__ : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase_ : Dict = [] for i in range(len(tokenized_data["""input_ids"""] ) ): lowerCamelCase_ : List[str] = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } lowerCamelCase_ : Optional[int] = tf.train.Features(feature=A__ ) lowerCamelCase_ : Tuple = tf.train.Example(features=A__ ) lowerCamelCase_ : Optional[Any] = example.SerializeToString() records.append(A__ ) return records def __lowerCamelCase ( A__ : Tuple ) -> Union[str, Any]: lowerCamelCase_ : int = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCamelCase_ : str = min(len(A__ ) , args.limit ) lowerCamelCase_ : Dict = dataset.select(range(A__ ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) lowerCamelCase_ : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCamelCase_ : Optional[int] = os.path.join(args.output_dir , args.split ) if not os.path.exists(A__ ): os.makedirs(A__ ) else: lowerCamelCase_ : Any = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCamelCase_ : List[str] = tokenize_function(A__ ) lowerCamelCase_ : List[Any] = dataset.map(A__ , batched=A__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(A__ : Union[str, Any] ): # Concatenate all texts. lowerCamelCase_ : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCamelCase_ : Union[str, Any] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCamelCase_ : Union[str, Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCamelCase_ : List[str] = { k: [t[i : i + args.max_length] for i in range(0 , A__ , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCamelCase_ : Optional[int] = dataset_tokenized.map(A__ , batched=A__ , batch_size=1000 , num_proc=4 ) lowerCamelCase_ : List[str] = 0 lowerCamelCase_ : Tuple = 0 for shard in range(0 , len(A__ ) , args.shard_size ): lowerCamelCase_ : Union[str, Any] = grouped_dataset[shard : shard + args.shard_size] lowerCamelCase_ : Optional[int] = len(dataset_snapshot["""input_ids"""] ) lowerCamelCase_ : List[str] = os.path.join(A__ , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) lowerCamelCase_ : Optional[int] = get_serialized_examples(A__ ) with tf.io.TFRecordWriter(A__ ) as out_file: for i in range(len(A__ ) ): lowerCamelCase_ : Dict = serialized_examples[i] out_file.write(A__ ) print("""Wrote file {} containing {} records""".format(A__ , A__ ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(f'''Total {args.split} records: {total_records}''' , file=A__ ) if __name__ == "__main__": snake_case__ : str = parse_args() main(args)
278
1
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ) -> None: """simple docstring""" lowerCamelCase_ : str = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCamelCase_ : Optional[int] = Vector() def __UpperCamelCase ( self : List[str] ) -> None: """simple docstring""" lowerCamelCase_ : Union[str, Any] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase_ ) , '''(0,0,0,0,0,1)''' ) def __UpperCamelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCamelCase_ : str = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase_ ) , 4 ) def __UpperCamelCase ( self : Union[str, Any] ) -> None: """simple docstring""" lowerCamelCase_ : int = Vector([1, 2] ) lowerCamelCase_ : Any = Vector([1, 2, 3, 4, 5] ) lowerCamelCase_ : Union[str, Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCamelCase_ : List[str] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def __UpperCamelCase ( self : str ) -> None: """simple docstring""" lowerCamelCase_ : Any = Vector([1, 2, 3] ) lowerCamelCase_ : Tuple = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __UpperCamelCase ( self : List[str] ) -> None: """simple docstring""" lowerCamelCase_ : List[str] = Vector([1, 2, 3] ) lowerCamelCase_ : List[Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __UpperCamelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCamelCase_ : List[str] = Vector([1, 2, 3] ) lowerCamelCase_ : str = Vector([2, -1, 4] ) # for test of dot product lowerCamelCase_ : List[Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def __UpperCamelCase ( self : List[str] ) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def __UpperCamelCase ( self : str ) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def __UpperCamelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCamelCase_ : Union[str, Any] = Vector([1, 2, 3] ) lowerCamelCase_ : List[Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase_ , UpperCamelCase_ ) ) , '''(3,4,7)''' ) def __UpperCamelCase ( self : str ) -> None: """simple docstring""" lowerCamelCase_ : int = Vector([1, 0, 0, 0, 0, 0] ) lowerCamelCase_ : Dict = x.copy() self.assertEqual(str(UpperCamelCase_ ) , str(UpperCamelCase_ ) ) def __UpperCamelCase ( self : Dict ) -> None: """simple docstring""" lowerCamelCase_ : str = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase_ ) , '''(0,1,0)''' ) def __UpperCamelCase ( self : Union[str, Any] ) -> None: """simple docstring""" lowerCamelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCamelCase_ ) ) def __UpperCamelCase ( self : int ) -> None: """simple docstring""" lowerCamelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase_ : Optional[Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase_ , UpperCamelCase_ ) ) def __UpperCamelCase ( self : Dict ) -> None: """simple docstring""" lowerCamelCase_ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase_ : List[Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase_ , UpperCamelCase_ ) ) def __UpperCamelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCamelCase_ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __UpperCamelCase ( self : str ) -> None: """simple docstring""" lowerCamelCase_ : List[Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCamelCase_ : Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def __UpperCamelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCamelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCamelCase_ ) ) def __UpperCamelCase ( self : Dict ) -> None: """simple docstring""" lowerCamelCase_ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __UpperCamelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCamelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase_ : Tuple = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def __UpperCamelCase ( self : List[str] ) -> None: """simple docstring""" lowerCamelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase_ : int = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def __UpperCamelCase ( self : int ) -> None: """simple docstring""" self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
418
'''simple docstring''' def __snake_case (__UpperCAmelCase = 3 , __UpperCAmelCase = 7 , __UpperCAmelCase = 1000000 ): """simple docstring""" lowerCamelCase_ : Any = 0 lowerCamelCase_ : Tuple = 1 for current_denominator in range(1 , limit + 1 ): lowerCamelCase_ : str = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCamelCase_ : Any = current_numerator lowerCamelCase_ : Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
418
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Union[str, Any] = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' from math import factorial def __snake_case ( _UpperCAmelCase : int = 100): return sum(map(_UpperCAmelCase, str(factorial(_UpperCAmelCase)))) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
212
0
snake_case : Any = {str(digit): digit**5 for digit in range(1_0)} def snake_case__ ( __lowercase ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__lowercase ) ) def snake_case__ ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(__lowercase ) ) if __name__ == "__main__": print(solution())
709
import requests snake_case : int = '' # <-- Put your OpenWeatherMap appid here! snake_case : int = 'https://api.openweathermap.org/data/2.5/' def snake_case__ ( __lowercase = "Chicago" , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "weather" , params=locals() ).json() def snake_case__ ( __lowercase = "Kolkata, India" , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "forecast" , params=locals() ).json() def snake_case__ ( __lowercase = 55.68 , __lowercase = 12.57 , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: snake_case : int = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
182
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants snake_case : Optional[Any] = 300 # TEMPERATURE (unit = K) def lowercase__ ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
566
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( __UpperCamelCase : int ): '''simple docstring''' return EnvironmentCommand() def lowercase__ ( __UpperCamelCase : Tuple ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class lowerCamelCase__( snake_case_ ): @staticmethod def __magic_name__ ( __UpperCAmelCase ): """simple docstring""" __lowercase = parser.add_parser("""env""" ) download_parser.set_defaults(func=__UpperCAmelCase ) download_parser.add_argument( """--accelerate-config_file""" , default=__UpperCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __UpperCAmelCase , *__UpperCAmelCase ): """simple docstring""" __lowercase = accelerate_config_file def __magic_name__ ( self ): """simple docstring""" __lowercase = """not installed""" if is_safetensors_available(): import safetensors __lowercase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors __lowercase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __lowercase = """not installed""" __lowercase = __lowercase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __lowercase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__UpperCAmelCase ): __lowercase = load_config_from_file(self._accelerate_config_file ).to_dict() __lowercase = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else F'''\t{accelerate_config}''' ) __lowercase = """not installed""" __lowercase = """NA""" if is_torch_available(): import torch __lowercase = torch.__version__ __lowercase = torch.cuda.is_available() __lowercase = """not installed""" __lowercase = """NA""" if is_tf_available(): import tensorflow as tf __lowercase = tf.__version__ try: # deprecated in v2.1 __lowercase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __lowercase = bool(tf.config.list_physical_devices("""GPU""" ) ) __lowercase = """not installed""" __lowercase = """not installed""" __lowercase = """not installed""" __lowercase = """NA""" if is_flax_available(): import flax import jax import jaxlib __lowercase = flax.__version__ __lowercase = jax.__version__ __lowercase = jaxlib.__version__ __lowercase = jax.lib.xla_bridge.get_backend().platform __lowercase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'''{safetensors_version}''', """Accelerate version""": F'''{accelerate_version}''', """Accelerate config""": F'''{accelerate_config_str}''', """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": F'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": F'''{flax_version} ({jax_backend})''', """Jax version""": F'''{jax_version}''', """JaxLib version""": F'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def __magic_name__ ( __UpperCAmelCase ): """simple docstring""" return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
566
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class A_ : def __init__( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any]=13 , snake_case__ : List[Any]=7 , snake_case__ : List[Any]=True , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : List[str]=True , snake_case__ : Tuple=99 , snake_case__ : Optional[Any]=64 , snake_case__ : int=5 , snake_case__ : List[Any]=4 , snake_case__ : Optional[Any]=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Dict=5_12 , snake_case__ : str=16 , snake_case__ : Any=2 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : str=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE__ ( self : int ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = self.prepare_config_and_inputs() lowercase = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Any ): lowercase = GPTNeoXModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ , attention_mask=snake_case__ ) lowercase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): lowercase = True lowercase = GPTNeoXModel(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): lowercase = GPTNeoXForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any ): lowercase = self.num_labels lowercase = GPTNeoXForQuestionAnswering(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : str ): lowercase = self.num_labels lowercase = GPTNeoXForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Any , snake_case__ : int ): lowercase = self.num_labels lowercase = GPTNeoXForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Any ): lowercase = True lowercase = GPTNeoXForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass lowercase = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase = model(snake_case__ , attention_mask=snake_case__ , output_hidden_states=snake_case__ ) lowercase = output_from_no_past["hidden_states"][0] lowercase = model( snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] # select random slice lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _A :List[str] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _A :Dict = (GPTNeoXForCausalLM,) if is_torch_available() else () _A :Optional[int] = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _A :Any = False _A :List[str] = False _A :Any = False _A :Tuple = False def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowercase = GPTNeoXModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case__ , hidden_size=64 , num_attention_heads=8 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case__ , snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): # This regression test was failing with PyTorch < 1.3 lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase = None self.model_tester.create_and_check_model_as_decoder(snake_case__ , snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case__ , snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : Optional[Any] ): lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = ids_tensor([1, 10] , config.vocab_size ) lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase = GPTNeoXModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() lowercase = original_model(snake_case__ ).last_hidden_state lowercase = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase = {"type": scaling_type, "factor": 10.0} lowercase = GPTNeoXModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() lowercase = scaled_model(snake_case__ ).last_hidden_state lowercase = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) @require_torch class A_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: lowercase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case__ ) lowercase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowercase = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" lowercase = model.generate(**snake_case__ , do_sample=snake_case__ , max_new_tokens=20 ) lowercase = tokenizer.batch_decode(snake_case__ )[0] self.assertEqual(snake_case__ , snake_case__ )
714
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for param, grad_param in zip(model_a.parameters() ,model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): model.train() lowercase = model(lowerCAmelCase__ ) lowercase = F.mse_loss(lowerCAmelCase__ ,target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase__ ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__=False ): set_seed(42 ) lowercase = RegressionModel() lowercase = deepcopy(lowerCAmelCase__ ) lowercase = RegressionDataset(length=80 ) lowercase = DataLoader(lowerCAmelCase__ ,batch_size=16 ) model.to(accelerator.device ) if sched: lowercase = AdamW(params=model.parameters() ,lr=1E-3 ) lowercase = AdamW(params=ddp_model.parameters() ,lr=1E-3 ) lowercase = LambdaLR(lowerCAmelCase__ ,lr_lambda=lambda lowerCAmelCase__ : epoch**0.65 ) lowercase = LambdaLR(lowerCAmelCase__ ,lr_lambda=lambda lowerCAmelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: lowercase , lowercase , lowercase , lowercase = accelerator.prepare(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) else: lowercase , lowercase = accelerator.prepare(lowerCAmelCase__ ,lowerCAmelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCamelCase__ ( lowerCAmelCase__ ): # Test when on a single CPU or GPU that the context manager does nothing lowercase , lowercase , lowercase = get_training_setup(lowerCAmelCase__ ) # Use a single batch lowercase , lowercase = next(iter(lowerCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase , lowercase = accelerator.gather((ddp_input, ddp_target) ) lowercase , lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase__ ): step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) else: # Sync grads step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad ,ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] def UpperCamelCase__ ( lowerCAmelCase__ ): # Test on distributed setup that context manager behaves properly lowercase , lowercase , lowercase = get_training_setup(lowerCAmelCase__ ) # Use a single batch lowercase , lowercase = next(iter(lowerCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase , lowercase = accelerator.gather((ddp_input, ddp_target) ) lowercase , lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase__ ): step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) else: # Sync grads step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] def UpperCamelCase__ ( lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowercase = Accelerator( split_batches=lowerCAmelCase__ ,dispatch_batches=lowerCAmelCase__ ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase , lowercase , lowercase = get_training_setup(lowerCAmelCase__ ) for iteration, batch in enumerate(lowerCAmelCase__ ): lowercase , lowercase = batch.values() # Gather the distributed inputs and targs for the base model lowercase , lowercase = accelerator.gather((ddp_input, ddp_target) ) lowercase , lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase__ ): step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] GradientState._reset_state() def UpperCamelCase__ ( lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowercase = Accelerator( split_batches=lowerCAmelCase__ ,dispatch_batches=lowerCAmelCase__ ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = get_training_setup(lowerCAmelCase__ ,lowerCAmelCase__ ) for iteration, batch in enumerate(lowerCAmelCase__ ): lowercase , lowercase = batch.values() # Gather the distributed inputs and targs for the base model lowercase , lowercase = accelerator.gather((ddp_input, ddp_target) ) lowercase , lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase__ ): step_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase__ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def UpperCamelCase__ ( ): lowercase = Accelerator() lowercase = RegressionDataset(length=80 ) lowercase = DataLoader(lowerCAmelCase__ ,batch_size=16 ) lowercase = RegressionDataset(length=96 ) lowercase = DataLoader(lowerCAmelCase__ ,batch_size=16 ) lowercase , lowercase = accelerator.prepare(lowerCAmelCase__ ,lowerCAmelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase__ ) if iteration < len(lowerCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase__ ) if batch_num < len(lowerCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCamelCase__ ( ): lowercase = Accelerator() lowercase = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(lowerCAmelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(lowerCAmelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ ,f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" ,) test_gradient_accumulation(lowerCAmelCase__ ,lowerCAmelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" ,"""2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ ,"""`split_batches=False`, `dispatch_batches=False`**""" ,) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ ,f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" ,) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCamelCase__ ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
72
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A( unittest.TestCase ): @property def lowercase__ ( self : Optional[int] ): torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowercase__ ( self : Dict ): torch.manual_seed(0 ) lowerCamelCase_ = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowercase__ ( self : Tuple ): torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(UpperCamelCase__ ) def lowercase__ ( self : int ): lowerCamelCase_ = self.dummy_uncond_unet lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vq_model lowerCamelCase_ = LDMPipeline(unet=UpperCamelCase__ , vqvae=UpperCamelCase__ , scheduler=UpperCamelCase__ ) ldm.to(UpperCamelCase__ ) ldm.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = ldm(generator=UpperCamelCase__ , num_inference_steps=2 , output_type="""numpy""" ).images lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = ldm(generator=UpperCamelCase__ , num_inference_steps=2 , output_type="""numpy""" , return_dict=UpperCamelCase__ )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase_ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) lowerCamelCase_ = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __A( unittest.TestCase ): def lowercase__ ( self : str ): lowerCamelCase_ = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(UpperCamelCase__ ) ldm.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = ldm(generator=UpperCamelCase__ , num_inference_steps=5 , output_type="""numpy""" ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowerCamelCase_ = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) lowerCamelCase_ = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
272
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :int ): _a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "depth_multiplier" ) ) class __snake_case : """simple docstring""" def __init__( self :Dict , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Tuple=13 , UpperCamelCase__ :Optional[int]=3 , UpperCamelCase__ :int=32 , UpperCamelCase__ :List[Any]=0.25 , UpperCamelCase__ :Optional[int]=8 , UpperCamelCase__ :List[Any]=True , UpperCamelCase__ :Any=1_024 , UpperCamelCase__ :List[Any]=32 , UpperCamelCase__ :Union[str, Any]="relu6" , UpperCamelCase__ :List[Any]=0.1 , UpperCamelCase__ :Any=0.02 , UpperCamelCase__ :int=True , UpperCamelCase__ :str=True , UpperCamelCase__ :List[Any]=10 , UpperCamelCase__ :Tuple=None , ): _a = parent _a = batch_size _a = num_channels _a = image_size _a = depth_multiplier _a = min_depth _a = tf_padding _a = int(last_hidden_size * depth_multiplier ) _a = output_stride _a = hidden_act _a = classifier_dropout_prob _a = use_labels _a = is_training _a = num_labels _a = initializer_range _a = scope def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Dict , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Union[str, Any] ): _a = MobileNetVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self :str , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :List[Any] , UpperCamelCase__ :Any , UpperCamelCase__ :Union[str, Any] ): _a = self.num_labels _a = MobileNetVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :str ): _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : str = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): _a = MobileNetVaModelTester(self ) _a = MobileNetVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self :str ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def SCREAMING_SNAKE_CASE_ ( self :Any ): pass def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(UpperCamelCase__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): def check_hidden_states_output(UpperCamelCase__ :Optional[int] , UpperCamelCase__ :List[str] , UpperCamelCase__ :str ): _a = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) _a = outputs.hidden_states _a = 26 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = MobileNetVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __a ( ): """simple docstring""" _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(UpperCamelCase__ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _a = model(**UpperCamelCase__ ) # verify the logits _a = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _a = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) )
388
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Optional[int] = logging.get_logger(__name__) __a : int = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : int = '''gpt_neox_japanese''' def __init__( self : Tuple , __UpperCAmelCase : Tuple=32000 , __UpperCAmelCase : Union[str, Any]=2560 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : int=1.00 , __UpperCAmelCase : Any=10000 , __UpperCAmelCase : List[str]=2048 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : List[Any]=1E-5 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=31996 , __UpperCAmelCase : Any=31999 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[int]=0.0 , **__UpperCAmelCase : Optional[Any] , ) -> List[Any]: """simple docstring""" super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_multiple_size UpperCamelCase_ = hidden_act UpperCamelCase_ = rotary_pct UpperCamelCase_ = rotary_emb_base UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = use_cache UpperCamelCase_ = attention_dropout UpperCamelCase_ = hidden_dropout
559
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A ( lowerCamelCase_ , lowerCamelCase_ ): @register_to_config def __init__( self : Optional[int] , __UpperCAmelCase : int = 128 , __UpperCAmelCase : int = 256 , __UpperCAmelCase : float = 2_000.0 , __UpperCAmelCase : int = 768 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 64 , __UpperCAmelCase : int = 2048 , __UpperCAmelCase : float = 0.1 , ) -> List[str]: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Sequential( nn.Linear(__UpperCAmelCase , d_model * 4 , bias=__UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__UpperCAmelCase ) , nn.SiLU() , ) UpperCamelCase_ = nn.Embedding(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase_ = False UpperCamelCase_ = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) UpperCamelCase_ = nn.Dropout(p=__UpperCAmelCase ) UpperCamelCase_ = nn.ModuleList() for lyr_num in range(__UpperCAmelCase ): # FiLM conditional T5 decoder UpperCamelCase_ = DecoderLayer(d_model=__UpperCAmelCase , d_kv=__UpperCAmelCase , num_heads=__UpperCAmelCase , d_ff=__UpperCAmelCase , dropout_rate=__UpperCAmelCase ) self.decoders.append(__UpperCAmelCase ) UpperCamelCase_ = TaLayerNorm(__UpperCAmelCase ) UpperCamelCase_ = nn.Dropout(p=__UpperCAmelCase ) UpperCamelCase_ = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) def lowercase__ ( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : int ) -> Any: """simple docstring""" UpperCamelCase_ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowercase__ ( self : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any ) -> int: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCamelCase_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCamelCase_ = self.conditioning_emb(__UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCamelCase_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCamelCase_ = torch.broadcast_to( torch.arange(__UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCamelCase_ = self.position_encoding(__UpperCAmelCase ) UpperCamelCase_ = self.continuous_inputs_projection(__UpperCAmelCase ) inputs += position_encodings UpperCamelCase_ = self.dropout(__UpperCAmelCase ) # decoder: No padding present. UpperCamelCase_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCamelCase_ = [(x, self.encoder_decoder_mask(__UpperCAmelCase , __UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCamelCase_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCamelCase_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCamelCase_ = lyr( __UpperCAmelCase , conditioning_emb=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )[0] UpperCamelCase_ = self.decoder_norm(__UpperCAmelCase ) UpperCamelCase_ = self.post_dropout(__UpperCAmelCase ) UpperCamelCase_ = self.spec_out(__UpperCAmelCase ) return spec_out class A ( nn.Module ): def __init__( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : str=1E-6 ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__UpperCAmelCase , d_kv=__UpperCAmelCase , num_heads=__UpperCAmelCase , dropout_rate=__UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__UpperCAmelCase , d_kv=__UpperCAmelCase , num_heads=__UpperCAmelCase , dropout_rate=__UpperCAmelCase , layer_norm_epsilon=__UpperCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__UpperCAmelCase , d_ff=__UpperCAmelCase , dropout_rate=__UpperCAmelCase , layer_norm_epsilon=__UpperCAmelCase ) ) def lowercase__ ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : int=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.layer[0]( __UpperCAmelCase , conditioning_emb=__UpperCAmelCase , attention_mask=__UpperCAmelCase , ) if encoder_hidden_states is not None: UpperCamelCase_ = torch.where(encoder_attention_mask > 0 , 0 , -1E1_0 ).to( encoder_hidden_states.dtype ) UpperCamelCase_ = self.layer[1]( __UpperCAmelCase , key_value_states=__UpperCAmelCase , attention_mask=__UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer UpperCamelCase_ = self.layer[-1](__UpperCAmelCase , __UpperCAmelCase ) return (hidden_states,) class A ( nn.Module ): def __init__( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> str: """simple docstring""" super().__init__() UpperCamelCase_ = TaLayerNorm(__UpperCAmelCase ) UpperCamelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCAmelCase ) UpperCamelCase_ = Attention(query_dim=__UpperCAmelCase , heads=__UpperCAmelCase , dim_head=__UpperCAmelCase , out_bias=__UpperCAmelCase , scale_qk=__UpperCAmelCase ) UpperCamelCase_ = nn.Dropout(__UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : List[Any]=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.layer_norm(__UpperCAmelCase ) if conditioning_emb is not None: UpperCamelCase_ = self.FiLMLayer(__UpperCAmelCase , __UpperCAmelCase ) # Self-attention block UpperCamelCase_ = self.attention(__UpperCAmelCase ) UpperCamelCase_ = hidden_states + self.dropout(__UpperCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> Any: """simple docstring""" super().__init__() UpperCamelCase_ = Attention(query_dim=__UpperCAmelCase , heads=__UpperCAmelCase , dim_head=__UpperCAmelCase , out_bias=__UpperCAmelCase , scale_qk=__UpperCAmelCase ) UpperCamelCase_ = TaLayerNorm(__UpperCAmelCase , eps=__UpperCAmelCase ) UpperCamelCase_ = nn.Dropout(__UpperCAmelCase ) def lowercase__ ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Tuple=None , ) -> str: """simple docstring""" UpperCamelCase_ = self.layer_norm(__UpperCAmelCase ) UpperCamelCase_ = self.attention( __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) UpperCamelCase_ = hidden_states + self.dropout(__UpperCAmelCase ) return layer_output class A ( nn.Module ): def __init__( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" super().__init__() UpperCamelCase_ = TaDenseGatedActDense(d_model=__UpperCAmelCase , d_ff=__UpperCAmelCase , dropout_rate=__UpperCAmelCase ) UpperCamelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCAmelCase ) UpperCamelCase_ = TaLayerNorm(__UpperCAmelCase , eps=__UpperCAmelCase ) UpperCamelCase_ = nn.Dropout(__UpperCAmelCase ) def lowercase__ ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=None ) -> str: """simple docstring""" UpperCamelCase_ = self.layer_norm(__UpperCAmelCase ) if conditioning_emb is not None: UpperCamelCase_ = self.film(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase_ = self.DenseReluDense(__UpperCAmelCase ) UpperCamelCase_ = hidden_states + self.dropout(__UpperCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) UpperCamelCase_ = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) UpperCamelCase_ = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) UpperCamelCase_ = nn.Dropout(__UpperCAmelCase ) UpperCamelCase_ = NewGELUActivation() def lowercase__ ( self : List[str] , __UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.act(self.wi_a(__UpperCAmelCase ) ) UpperCamelCase_ = self.wi_a(__UpperCAmelCase ) UpperCamelCase_ = hidden_gelu * hidden_linear UpperCamelCase_ = self.dropout(__UpperCAmelCase ) UpperCamelCase_ = self.wo(__UpperCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=1E-6 ) -> str: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.ones(__UpperCAmelCase ) ) UpperCamelCase_ = eps def lowercase__ ( self : Any , __UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__UpperCAmelCase ) UpperCamelCase_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCamelCase_ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class A ( nn.Module ): def lowercase__ ( self : List[Any] , __UpperCAmelCase : torch.Tensor ) -> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__UpperCAmelCase , 3.0 )) )) class A ( nn.Module ): def __init__( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ) -> Any: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Linear(__UpperCAmelCase , out_features * 2 , bias=__UpperCAmelCase ) def lowercase__ ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.scale_bias(__UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = torch.chunk(__UpperCAmelCase , 2 , -1 ) UpperCamelCase_ = x * (1 + scale) + shift return x
559
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __magic_name__ ( __a : int , __a : List[str]=False ): '''simple docstring''' UpperCamelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __magic_name__ ( __a : Optional[int] , __a : Tuple , __a : List[str]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ = """""" else: UpperCamelCase__ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ = in_proj_bias[: config.hidden_size] UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = in_proj_bias[-config.hidden_size :] def __magic_name__ ( __a : Any ): '''simple docstring''' UpperCamelCase__ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__a , __a ) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__a , __a ) def __magic_name__ ( __a : int , __a : Any , __a : List[str] ): '''simple docstring''' UpperCamelCase__ = dct.pop(__a ) UpperCamelCase__ = val def __magic_name__ ( __a : int , __a : Any ): '''simple docstring''' UpperCamelCase__ = ViTMSNConfig() UpperCamelCase__ = 1_000 UpperCamelCase__ = """datasets/huggingface/label-files""" UpperCamelCase__ = """imagenet-1k-id2label.json""" UpperCamelCase__ = json.load(open(hf_hub_download(__a , __a ) , """r""" ) ) UpperCamelCase__ = {int(__a ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: UpperCamelCase__ = 384 UpperCamelCase__ = 1_536 UpperCamelCase__ = 6 elif "l16" in checkpoint_url: UpperCamelCase__ = 1_024 UpperCamelCase__ = 4_096 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 0.1 elif "b4" in checkpoint_url: UpperCamelCase__ = 4 elif "l7" in checkpoint_url: UpperCamelCase__ = 7 UpperCamelCase__ = 1_024 UpperCamelCase__ = 4_096 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 0.1 UpperCamelCase__ = ViTMSNModel(__a ) UpperCamelCase__ = torch.hub.load_state_dict_from_url(__a , map_location="""cpu""" )["""target_encoder"""] UpperCamelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__a ) UpperCamelCase__ = create_rename_keys(__a , base_model=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , base_model=__a ) model.load_state_dict(__a ) model.eval() UpperCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ = Image.open(requests.get(__a , stream=__a ).raw ) UpperCamelCase__ = ViTImageProcessor( size=config.image_size , image_mean=__a , image_std=__a ) UpperCamelCase__ = image_processor(images=__a , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) UpperCamelCase__ = model(**__a ) UpperCamelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: UpperCamelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: UpperCamelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __a , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__a ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
513
from __future__ import annotations from collections.abc import Generator def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = {} UpperCamelCase__ = 2 while True: UpperCamelCase__ = factor_map.pop(__a , __a ) if factor: UpperCamelCase__ = factor + prime while x in factor_map: x += factor UpperCamelCase__ = factor else: UpperCamelCase__ = prime yield prime prime += 1 def __magic_name__ ( __a : float = 1E1_0 ): '''simple docstring''' UpperCamelCase__ = sieve() UpperCamelCase__ = 1 while True: UpperCamelCase__ = next(__a ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__a ) n += 2 if __name__ == "__main__": print(solution())
513
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _lowercase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : List[Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } _lowercase : Any = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } _lowercase : Optional[int] = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : List[Any] = PRETRAINED_INIT_CONFIGURATION __magic_name__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = ElectraTokenizer def __init__( self : int , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]="[UNK]" , lowerCAmelCase : Any="[SEP]" , lowerCAmelCase : Dict="[PAD]" , lowerCAmelCase : Tuple="[CLS]" , lowerCAmelCase : str="[MASK]" , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Union[str, Any] , )-> int: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowerCAmelCase , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowerCAmelCase ) UpperCAmelCase = do_lower_case def a__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int=None )-> List[Any]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : List[str] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """gptj""" _SCREAMING_SNAKE_CASE = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , UpperCamelCase__ : List[Any]=5_0_4_0_0 , UpperCamelCase__ : int=2_0_4_8 , UpperCamelCase__ : Dict=4_0_9_6 , UpperCamelCase__ : Dict=2_8 , UpperCamelCase__ : str=1_6 , UpperCamelCase__ : Union[str, Any]=6_4 , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]="gelu_new" , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : str=1E-5 , UpperCamelCase__ : Tuple=0.0_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Union[str, Any]=5_0_2_5_6 , UpperCamelCase__ : int=5_0_2_5_6 , UpperCamelCase__ : int=False , **UpperCamelCase__ : Tuple , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_embd UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = n_inner UpperCamelCase = rotary_dim UpperCamelCase = activation_function UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = use_cache UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id super().__init__( bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : PretrainedConfig , UpperCamelCase__ : str = "default" , UpperCamelCase__ : List[PatchingSpec] = None , UpperCamelCase__ : bool = False , ): """simple docstring""" super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , 'pad_token_id' , UpperCamelCase__ ): # TODO: how to do that better? UpperCamelCase = 0 @property def A ( self : Tuple ): """simple docstring""" UpperCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) UpperCamelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def A ( self : List[str] ): """simple docstring""" return self._config.n_layer @property def A ( self : str ): """simple docstring""" return self._config.n_head def A ( self : List[Any] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() UpperCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] UpperCamelCase = common_inputs['attention_mask'] if self.use_past: UpperCamelCase = ordered_inputs['attention_mask'].dtype UpperCamelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def A ( self : int ): """simple docstring""" return 1_3
430
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase_( a__ ): """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , a__ , ) if isinstance(a__ , torch.Tensor ): return image elif isinstance(a__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = image[0].size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 SCREAMING_SNAKE_CASE : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE : Union[str, Any] = np.concatenate(a__ , axis=0 ) SCREAMING_SNAKE_CASE : int = np.array(a__ ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE : Any = image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE : int = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Any = torch.cat(a__ , dim=0 ) return image def UpperCAmelCase_( a__ ): """simple docstring""" if isinstance(a__ , torch.Tensor ): return mask elif isinstance(a__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Optional[int] = [mask] if isinstance(mask[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = mask[0].size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE : str = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] SCREAMING_SNAKE_CASE : Dict = np.concatenate(a__ , axis=0 ) SCREAMING_SNAKE_CASE : str = mask.astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(a__ ) elif isinstance(mask[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Any = torch.cat(a__ , dim=0 ) return mask class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : UNetaDModel __SCREAMING_SNAKE_CASE : RePaintScheduler def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 250 , _lowerCamelCase = 0.0 , _lowerCamelCase = 10 , _lowerCamelCase = 10 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , ) ->Union[ImagePipelineOutput, Tuple]: SCREAMING_SNAKE_CASE : List[str] = image SCREAMING_SNAKE_CASE : Union[str, Any] = _preprocess_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = original_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE : List[Any] = _preprocess_mask(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) SCREAMING_SNAKE_CASE : str = original_image.shape SCREAMING_SNAKE_CASE : List[Any] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.device ) SCREAMING_SNAKE_CASE : Union[str, Any] = eta SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.timesteps[0] + 1 SCREAMING_SNAKE_CASE : int = generator[0] if isinstance(_lowerCamelCase , _lowerCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual SCREAMING_SNAKE_CASE : Any = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.undo_step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = t SCREAMING_SNAKE_CASE : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
333
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE : int = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE : Optional[Any] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE : List[str] = RagConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE : List[Any] = question_encoder_config SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained_question_encoder_generator( a__ , a__ , config=a__ ) rag_model.save_pretrained(a__ ) # Sanity check. model_class.from_pretrained(a__ ) # Save tokenizers. SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(a__ ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(a__ ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) a__ : Dict = parser.parse_args() a__ : Tuple = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
333
1
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase (a_ :Tuple , a_ :Union[str, Any] , a_ :str , a_ :Tuple , a_ :Tuple) -> str: for attribute in key.split('''.'''): lowercase :List[str] = getattr(a_ , a_) if weight_type is not None: lowercase :List[str] = getattr(a_ , a_).shape else: lowercase :Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase :Optional[Any] = value elif weight_type == "weight_g": lowercase :str = value elif weight_type == "weight_v": lowercase :int = value elif weight_type == "bias": lowercase :Dict = value else: lowercase :Optional[int] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""") def lowerCamelCase (a_ :Optional[int] , a_ :Optional[Any]) -> str: lowercase :Any = [] lowercase :int = fairseq_model.state_dict() lowercase :Optional[Any] = hf_model.feature_extractor lowercase :Tuple = hf_model.adapter for name, value in fairseq_dict.items(): lowercase :int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) lowercase :Optional[Any] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.''']): load_adapter(a_ , a_ , a_ , a_) lowercase :List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]: lowercase :Tuple = True if "*" in mapped_key: lowercase :int = name.split(a_)[0].split('''.''')[-2] lowercase :Optional[Any] = mapped_key.replace('''*''' , a_) if "weight_g" in name: lowercase :List[str] = '''weight_g''' elif "weight_v" in name: lowercase :Optional[int] = '''weight_v''' elif "bias" in name: lowercase :str = '''bias''' elif "weight" in name: lowercase :int = '''weight''' else: lowercase :List[str] = None set_recursively(a_ , a_ , a_ , a_ , a_) continue if not is_used: unused_weights.append(a_) logger.warning(F"""Unused weights: {unused_weights}""") def lowerCamelCase (a_ :int , a_ :Tuple , a_ :Tuple , a_ :Dict , a_ :Any) -> List[Any]: lowercase :int = full_name.split('''conv_layers.''')[-1] lowercase :Optional[Any] = name.split('''.''') lowercase :List[Any] = int(items[0]) lowercase :Any = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase :int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase :str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase :List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase :List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") else: unused_weights.append(a_) def lowerCamelCase (a_ :List[Any] , a_ :List[str] , a_ :int , a_ :Any) -> Any: lowercase :Union[str, Any] = full_name.split('''adaptor.''')[-1] lowercase :Optional[int] = name.split('''.''') if items[1].isdigit(): lowercase :List[str] = int(items[1]) else: lowercase :Tuple = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowercase :Optional[Any] = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""") if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowercase :Dict = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowercase :Dict = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""") if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowercase :Optional[int] = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""") elif isinstance(a_ , a_): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowercase :List[str] = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""") elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowercase :int = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""") else: unused_weights.append(a_) def lowerCamelCase (a_ :Dict) -> str: lowercase , lowercase :Any = emb.weight.shape lowercase :Union[str, Any] = nn.Linear(a_ , a_ , bias=a_) lowercase :Union[str, Any] = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase (a_ :List[Any] , a_ :Optional[int] , a_ :Union[str, Any] , a_ :str , a_ :List[str] , a_ :Optional[int] , a_ :Any , a_ :Union[str, Any] , a_ :List[str] , a_ :Optional[Any] , a_ :Any , ) -> str: lowercase :Optional[Any] = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) lowercase :Optional[int] = MBartConfig.from_pretrained(a_) # load model lowercase , lowercase , lowercase :Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''')[:-1]), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowercase :Any = model[0].eval() # load feature extractor lowercase :Any = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_) # set weights for wav2vec2 encoder lowercase :Any = WavaVecaModel(a_) recursively_load_weights_wavaveca(model.encoder , a_) # load decoder weights lowercase :List[Any] = MBartForCausalLM(a_) lowercase , lowercase :Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""") logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""") lowercase :Tuple = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_) lowercase :Tuple = False lowercase :Union[str, Any] = MBartaaTokenizer(a_) tokenizer.save_pretrained(a_) lowercase :Tuple = hf_wavavec.config.to_dict() lowercase :Union[str, Any] = tokenizer.pad_token_id lowercase :Optional[Any] = tokenizer.bos_token_id lowercase :Optional[int] = tokenizer.eos_token_id lowercase :Optional[Any] = '''mbart50''' lowercase :List[str] = '''wav2vec2''' lowercase :Optional[int] = tokenizer.eos_token_id lowercase :List[str] = 25_0004 lowercase :List[str] = tokenizer.eos_token_id lowercase :int = SpeechEncoderDecoderConfig.from_dict(a_) hf_wavavec.save_pretrained(a_) feature_extractor.save_pretrained(a_) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1_024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250_004, type=int, help='''`decoder_start_token_id` of model config''') UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
677
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _lowerCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _lowerCAmelCase ( lowercase : Optional[int] , lowercase : tuple , lowercase : Path , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : int=False , ) ->Tuple: """simple docstring""" output_path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , use_external_data_format=lowercase , enable_onnx_checker=lowercase , opset_version=lowercase , ) else: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , opset_version=lowercase , ) @torch.no_grad() def _lowerCAmelCase ( lowercase : str , lowercase : str , lowercase : int , lowercase : bool = False ) ->Union[str, Any]: """simple docstring""" lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase__ = '''cpu''' lowercase__ = Path(lowercase ) # VAE DECODER lowercase__ = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) lowercase__ = vae_decoder.config.latent_channels # forward only through the decoder part lowercase__ = vae_decoder.decode onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , 2_5 , 2_5 ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=lowercase , ) del vae_decoder if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _lowerCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
161
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCAmelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=__A , ) def _snake_case ( self , __A , __A ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def _snake_case ( self , __A , __A ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) class UpperCAmelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=__A , ) def _snake_case ( self , __A , __A ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def _snake_case ( self , __A , __A ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) def lowercase_( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def lowercase_( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' @require_beam def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase : int = DummyBeamDataset(cache_dir=__A , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) lowerCamelCase : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , __A ) self.assertEqual(dset["train"].info.splits["train"].num_examples , __A ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _snake_case ( self ): """simple docstring""" import apache_beam as beam lowerCamelCase : Union[str, Any] = beam.io.parquetio.WriteToParquet lowerCamelCase : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase : int = DummyBeamDataset(cache_dir=__A , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: lowerCamelCase : Dict = partial(__A , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __A , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( __A , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) lowerCamelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , __A ) self.assertEqual(dset["train"].info.splits["train"].num_examples , __A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _snake_case ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase : Optional[int] = DummyBeamDataset(cache_dir=__A ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase : List[Any] = NestedBeamDataset(cache_dir=__A , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) lowerCamelCase : Union[str, Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , __A ) self.assertEqual(dset["train"].info.splits["train"].num_examples , __A ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
231
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _snake_case = logging.get_logger(__name__) _snake_case = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off _snake_case = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] _snake_case = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = "whisper" __A : List[str] = ["past_key_values"] __A : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __A=5_1865 , __A=80 , __A=6 , __A=4 , __A=6 , __A=4 , __A=1536 , __A=1536 , __A=0.0 , __A=0.0 , __A=5_0257 , __A=True , __A=True , __A="gelu" , __A=256 , __A=0.0 , __A=0.0 , __A=0.0 , __A=0.02 , __A=False , __A=1500 , __A=448 , __A=5_0256 , __A=5_0256 , __A=5_0256 , __A=None , __A=[220, 5_0256] , __A=False , __A=256 , __A=False , __A=0.05 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=0 , __A=7 , **__A , ): """simple docstring""" lowerCamelCase : List[str] = vocab_size lowerCamelCase : Optional[Any] = num_mel_bins lowerCamelCase : List[Any] = d_model lowerCamelCase : List[Any] = encoder_layers lowerCamelCase : Optional[Any] = encoder_attention_heads lowerCamelCase : Optional[int] = decoder_layers lowerCamelCase : int = decoder_attention_heads lowerCamelCase : Any = decoder_ffn_dim lowerCamelCase : int = encoder_ffn_dim lowerCamelCase : Union[str, Any] = dropout lowerCamelCase : Dict = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : Optional[Any] = activation_function lowerCamelCase : Optional[Any] = init_std lowerCamelCase : List[Any] = encoder_layerdrop lowerCamelCase : str = decoder_layerdrop lowerCamelCase : Optional[Any] = use_cache lowerCamelCase : Tuple = encoder_layers lowerCamelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase : str = max_source_positions lowerCamelCase : List[str] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCamelCase : Optional[int] = classifier_proj_size lowerCamelCase : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Optional[int] = apply_spec_augment lowerCamelCase : str = mask_time_prob lowerCamelCase : Union[str, Any] = mask_time_length lowerCamelCase : Union[str, Any] = mask_time_min_masks lowerCamelCase : Any = mask_feature_prob lowerCamelCase : Any = mask_feature_length lowerCamelCase : Dict = mask_feature_min_masks lowerCamelCase : List[str] = median_filter_width super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , suppress_tokens=__A , begin_suppress_tokens=__A , **__A , ) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' @property def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase : List[str] = {0: "batch"} else: lowerCamelCase : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__A , direction="inputs" ) return common_inputs def _snake_case ( self , __A , __A = -1 , __A = -1 , __A = False , __A = None , __A = 2_2050 , __A = 5.0 , __A = 220 , ): """simple docstring""" lowerCamelCase : Any = OrderedDict() lowerCamelCase : List[str] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__A , framework=__A , sampling_rate=__A , time_duration=__A , frequency=__A , ) lowerCamelCase : Any = encoder_inputs["input_features"].shape[2] lowerCamelCase : Optional[Any] = encoder_sequence_length // 2 if self.use_past else seq_length lowerCamelCase : str = super().generate_dummy_inputs( preprocessor.tokenizer , __A , __A , __A , __A ) lowerCamelCase : List[Any] = encoder_inputs.pop("input_features" ) lowerCamelCase : Dict = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowerCamelCase : List[str] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _snake_case ( self ): """simple docstring""" return 1e-3
231
1
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def A_ ( snake_case__ ) -> List[Any]: return EnvironmentCommand() def A_ ( snake_case__ ) -> Any: return EnvironmentCommand(args.accelerate_config_file ) class A( lowerCamelCase__ ): """simple docstring""" @staticmethod def _UpperCamelCase( SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" _UpperCamelCase :str = parser.add_parser('''env''' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) download_parser.add_argument( '''--accelerate-config_file''' , default=SCREAMING_SNAKE_CASE__ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" _UpperCamelCase :Optional[Any] = accelerate_config_file def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :Dict = '''not installed''' if is_safetensors_available(): import safetensors _UpperCamelCase :Dict = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors _UpperCamelCase :Dict = f"{safetensors.__version__} but is ignored because of PyTorch version too old." _UpperCamelCase :List[Any] = '''not installed''' _UpperCamelCase :str = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _UpperCamelCase :Union[str, Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :List[str] = load_config_from_file(self._accelerate_config_file ).to_dict() _UpperCamelCase :Optional[Any] = ( '''\n'''.join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else f"\t{accelerate_config}" ) _UpperCamelCase :Optional[int] = '''not installed''' _UpperCamelCase :List[str] = '''NA''' if is_torch_available(): import torch _UpperCamelCase :Optional[Any] = torch.__version__ _UpperCamelCase :List[str] = torch.cuda.is_available() _UpperCamelCase :str = '''not installed''' _UpperCamelCase :int = '''NA''' if is_tf_available(): import tensorflow as tf _UpperCamelCase :int = tf.__version__ try: # deprecated in v2.1 _UpperCamelCase :Tuple = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _UpperCamelCase :List[Any] = bool(tf.config.list_physical_devices('''GPU''' ) ) _UpperCamelCase :List[Any] = '''not installed''' _UpperCamelCase :List[Any] = '''not installed''' _UpperCamelCase :List[str] = '''not installed''' _UpperCamelCase :Optional[int] = '''NA''' if is_flax_available(): import flax import jax import jaxlib _UpperCamelCase :Tuple = flax.__version__ _UpperCamelCase :str = jax.__version__ _UpperCamelCase :List[Any] = jaxlib.__version__ _UpperCamelCase :Any = jax.lib.xla_bridge.get_backend().platform _UpperCamelCase :List[str] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f"{safetensors_version}", '''Accelerate version''': f"{accelerate_version}", '''Accelerate config''': f"{accelerate_config_str}", '''PyTorch version (GPU?)''': f"{pt_version} ({pt_cuda_available})", '''Tensorflow version (GPU?)''': f"{tf_version} ({tf_cuda_available})", '''Flax version (CPU?/GPU?/TPU?)''': f"{flax_version} ({jax_backend})", '''Jax version''': f"{jax_version}", '''JaxLib version''': f"{jaxlib_version}", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(SCREAMING_SNAKE_CASE__ ) ) return info @staticmethod def _UpperCamelCase( SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" return "\n".join([f"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
355
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def A_ ( snake_case__ ) -> str: return 1 / (1 + np.exp(-z )) def A_ ( snake_case__ , snake_case__ ) -> str: return (-y * np.log(snake_case__ ) - (1 - y) * np.log(1 - h )).mean() def A_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: _UpperCamelCase :Tuple = np.dot(snake_case__ , snake_case__ ) return np.sum(y * scores - np.log(1 + np.exp(snake_case__ ) ) ) def A_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=7_00_00 ) -> Optional[int]: _UpperCamelCase :Union[str, Any] = np.zeros(x.shape[1] ) for iterations in range(snake_case__ ): _UpperCamelCase :Optional[int] = np.dot(snake_case__ , snake_case__ ) _UpperCamelCase :Tuple = sigmoid_function(snake_case__ ) _UpperCamelCase :Optional[Any] = np.dot(x.T , h - y ) / y.size _UpperCamelCase :int = theta - alpha * gradient # updating the weights _UpperCamelCase :Union[str, Any] = np.dot(snake_case__ , snake_case__ ) _UpperCamelCase :Dict = sigmoid_function(snake_case__ ) _UpperCamelCase :Optional[int] = cost_function(snake_case__ , snake_case__ ) if iterations % 1_00 == 0: print(f"loss: {j} \t" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ :Union[str, Any] = datasets.load_iris() UpperCamelCase__ :Dict = iris.data[:, :2] UpperCamelCase__ :Any = (iris.target != 0) * 1 UpperCamelCase__ :Tuple = 0.1 UpperCamelCase__ :List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print("""theta: """, theta) # printing the theta i.e our weights vector def A_ ( snake_case__ ) -> Optional[Any]: return sigmoid_function( np.dot(snake_case__ , snake_case__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((UpperCamelCase__) , (UpperCamelCase__)) :Union[str, Any] = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) :Tuple = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ :List[Any] = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ :List[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
355
1
import collections import importlib.util import os import re from pathlib import Path _a : List[str] = 'src/transformers' # Matches is_xxx_available() _a : Union[str, Any] = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _a : Tuple = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _a : List[Any] = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _a : Optional[int] = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _a : Dict = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _a : Any = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _a : int = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _a : int = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _a : List[str] = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _a : Optional[Any] = re.compile(R"^\s*try:") # Catches a line with else: _a : Tuple = re.compile(R"^\s*else:") def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" if _re_test_backend.search(__UpperCamelCase ) is None: return None __UpperCAmelCase : Dict = [b[0] for b in _re_backend.findall(__UpperCamelCase )] backends.sort() return "_and_".join(__UpperCamelCase ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCAmelCase : str = f.readlines() __UpperCAmelCase : Optional[Any] = 0 while line_index < len(__UpperCamelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCamelCase ): return None # First grab the objects without a specific backend in _import_structure __UpperCAmelCase : Union[str, Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: __UpperCAmelCase : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCamelCase ): __UpperCAmelCase : Dict = _re_one_line_import_struct.search(__UpperCamelCase ).groups()[0] __UpperCAmelCase : str = re.findall("\[([^\]]+)\]" , __UpperCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue __UpperCAmelCase : Union[str, Any] = _re_import_struct_key_value.search(__UpperCamelCase ) if single_line_import_search is not None: __UpperCAmelCase : Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 __UpperCAmelCase : List[Any] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. __UpperCAmelCase : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): __UpperCAmelCase : Tuple = lines[line_index] if _re_import_struct_add_one.search(__UpperCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCamelCase ) is not None: __UpperCAmelCase : Dict = _re_import_struct_add_many.search(__UpperCamelCase ).groups()[0].split(", " ) __UpperCAmelCase : Optional[Any] = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif _re_between_brackets.search(__UpperCamelCase ) is not None: __UpperCAmelCase : int = _re_between_brackets.search(__UpperCamelCase ).groups()[0].split(", " ) __UpperCAmelCase : str = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif _re_quote_object.search(__UpperCamelCase ) is not None: objects.append(_re_quote_object.search(__UpperCamelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 __UpperCAmelCase : Any = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __UpperCAmelCase : Union[str, Any] = [] while ( line_index < len(__UpperCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): __UpperCAmelCase : Optional[int] = lines[line_index] __UpperCAmelCase : Union[str, Any] = _re_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 __UpperCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. __UpperCAmelCase : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCAmelCase : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): __UpperCAmelCase : Tuple = lines[line_index] __UpperCAmelCase : Optional[Any] = _re_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 __UpperCAmelCase : List[str] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" def find_duplicates(lowerCamelCase__ ): return [k for k, v in collections.Counter(__UpperCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __UpperCAmelCase : Any = [] for key in import_dict_objects.keys(): __UpperCAmelCase : Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __UpperCAmelCase : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __UpperCAmelCase : List[Any] = '''base imports''' if key == '''none''' else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _lowercase ( ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : List[Any] = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: __UpperCAmelCase : Tuple = os.path.join(__UpperCamelCase , "__init__.py" ) __UpperCAmelCase : str = parse_init(__UpperCamelCase ) if objects is not None: __UpperCAmelCase : int = analyze_results(*__UpperCamelCase ) if len(__UpperCamelCase ) > 0: __UpperCAmelCase : Any = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(__UpperCamelCase ) ) if len(__UpperCamelCase ) > 0: raise ValueError("\n\n".join(__UpperCamelCase ) ) def _lowercase ( ) -> List[str]: """simple docstring""" __UpperCAmelCase : Any = [] for path, directories, files in os.walk(__UpperCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__UpperCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCamelCase ) / folder).glob("*.py" ) ) ) == 0: continue __UpperCAmelCase : List[str] = str((Path(__UpperCamelCase ) / folder).relative_to(__UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = short_path.replace(os.path.sep , "." ) submodules.append(__UpperCamelCase ) for fname in files: if fname == "__init__.py": continue __UpperCAmelCase : Union[str, Any] = str((Path(__UpperCamelCase ) / fname).relative_to(__UpperCamelCase ) ) __UpperCAmelCase : List[Any] = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__UpperCamelCase ) return submodules _a : Tuple = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def _lowercase ( ) -> str: """simple docstring""" __UpperCAmelCase : List[Any] = importlib.util.spec_from_file_location( "transformers" , os.path.join(__UpperCamelCase , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __UpperCAmelCase : Optional[Any] = spec.loader.load_module() __UpperCAmelCase : Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCamelCase ) > 0: __UpperCAmelCase : List[Any] = '''\n'''.join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=128 , _lowerCAmelCase=32 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> str: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self ) -> str: ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = NezhaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Optional[int]: _lowerCAmelCase = True _lowerCAmelCase = NezhaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: _lowerCAmelCase = NezhaForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = NezhaForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = NezhaForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , next_sentence_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = NezhaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.num_labels _lowerCAmelCase = NezhaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.num_labels _lowerCAmelCase = NezhaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.num_choices _lowerCAmelCase = NezhaForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : str = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : str = True def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Any: _lowerCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _snake_case ( self ) -> str: _lowerCAmelCase = NezhaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCAmelCase ) def _snake_case ( self ) -> str: # This regression test was failing with PyTorch < 1.3 ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def _snake_case ( self ) -> Optional[Any]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = NezhaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @slow @require_torch_gpu def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _lowerCAmelCase = True _lowerCAmelCase = model_class(config=_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = torch.jit.trace( _lowerCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , "bert.pt" ) ) _lowerCAmelCase = torch.jit.load(os.path.join(_lowerCAmelCase , "bert.pt" ) , map_location=_lowerCAmelCase ) loaded(inputs_dict["input_ids"].to(_lowerCAmelCase ) , inputs_dict["attention_mask"].to(_lowerCAmelCase ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> Tuple: _lowerCAmelCase = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) _lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) ) @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) _lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
18
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,) -> int: '''simple docstring''' super().__init__() self.register_modules(transformer=__UpperCamelCase ,vae=__UpperCamelCase ,scheduler=__UpperCamelCase ) # create a imagenet -> id dictionary for easier use lowercase_ : Union[str, Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): lowercase_ : Dict = int(__UpperCamelCase ) lowercase_ : Dict = dict(sorted(self.labels.items() ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Tuple = list(__UpperCamelCase ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self ,__UpperCamelCase ,__UpperCamelCase = 4.0 ,__UpperCamelCase = None ,__UpperCamelCase = 50 ,__UpperCamelCase = "pil" ,__UpperCamelCase = True ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' lowercase_ : Dict = len(__UpperCamelCase ) lowercase_ : List[Any] = self.transformer.config.sample_size lowercase_ : Optional[Any] = self.transformer.config.in_channels lowercase_ : List[str] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) ,generator=__UpperCamelCase ,device=self.device ,dtype=self.transformer.dtype ,) lowercase_ : Union[str, Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase_ : Union[str, Any] = torch.tensor(__UpperCamelCase ,device=self.device ).reshape(-1 ) lowercase_ : Dict = torch.tensor([1000] * batch_size ,device=self.device ) lowercase_ : Union[str, Any] = torch.cat([class_labels, class_null] ,0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase_ : Tuple = latent_model_input[: len(__UpperCamelCase ) // 2] lowercase_ : Union[str, Any] = torch.cat([half, half] ,dim=0 ) lowercase_ : Optional[int] = self.scheduler.scale_model_input(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = t if not torch.is_tensor(__UpperCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase_ : Optional[int] = latent_model_input.device.type == 'mps' if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Optional[Any] = torch.floataa if is_mps else torch.floataa else: lowercase_ : Optional[int] = torch.intaa if is_mps else torch.intaa lowercase_ : Optional[int] = torch.tensor([timesteps] ,dtype=__UpperCamelCase ,device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase_ : str = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase_ : Dict = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase_ : Optional[Any] = self.transformer( __UpperCamelCase ,timestep=__UpperCamelCase ,class_labels=__UpperCamelCase ).sample # perform guidance if guidance_scale > 1: lowercase_ , lowercase_ : int = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase_ , lowercase_ : Optional[int] = torch.split(__UpperCamelCase ,len(__UpperCamelCase ) // 2 ,dim=0 ) lowercase_ : Any = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase_ : Any = torch.cat([half_eps, half_eps] ,dim=0 ) lowercase_ : int = torch.cat([eps, rest] ,dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase_ , lowercase_ : List[Any] = torch.split(__UpperCamelCase ,__UpperCamelCase ,dim=1 ) else: lowercase_ : Union[str, Any] = noise_pred # compute previous image: x_t -> x_t-1 lowercase_ : List[Any] = self.scheduler.step(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ).prev_sample if guidance_scale > 1: lowercase_ , lowercase_ : Union[str, Any] = latent_model_input.chunk(2 ,dim=0 ) else: lowercase_ : Optional[int] = latent_model_input lowercase_ : Union[str, Any] = 1 / self.vae.config.scaling_factor * latents lowercase_ : Optional[Any] = self.vae.decode(__UpperCamelCase ).sample lowercase_ : str = (samples / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase_ : str = samples.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__UpperCamelCase )
425
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class __UpperCAmelCase( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' super().__init__(features=snake_case__ ) import jax from jaxlib.xla_client import Device if isinstance(snake_case__ , snake_case__ ): raise ValueError( F'''Expected {device} to be a `str` not {type(snake_case__ )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) lowercase__ : Optional[Any]= device if isinstance(snake_case__ , snake_case__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase__ : Optional[int]= self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) lowercase__ : Optional[int]= str(jax.devices()[0] ) lowercase__ : Any= jnp_array_kwargs @staticmethod def UpperCAmelCase_ ( ): '''simple docstring''' import jax return {str(snake_case__ ): device for device in jax.devices()} def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(snake_case__ , snake_case__ ) and column: if all( isinstance(snake_case__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(snake_case__ , axis=0 ) return column def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(snake_case__ , (str, bytes, type(snake_case__ )) ): return value elif isinstance(snake_case__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase__ : Dict= {} if isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase__ : Dict= {"dtype": jnp.intaa} else: lowercase__ : List[str]= {"dtype": jnp.intaa} elif isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase__ : Optional[int]= {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case__ , PIL.Image.Image ): lowercase__ : Optional[int]= np.asarray(snake_case__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase__ : Optional[Any]= self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(snake_case__ , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(snake_case__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(snake_case__ , "__array__" ) and not isinstance(snake_case__ , jax.Array ): lowercase__ : Tuple= data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) elif isinstance(snake_case__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) return self._tensorize(snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' return map_nested(self._recursive_tensorize , snake_case__ , map_list=snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : Any= self.numpy_arrow_extractor().extract_row(snake_case__ ) lowercase__ : List[str]= self.python_features_decoder.decode_row(snake_case__ ) return self.recursive_tensorize(snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : Dict= self.numpy_arrow_extractor().extract_column(snake_case__ ) lowercase__ : Union[str, Any]= self.python_features_decoder.decode_column(snake_case__ , pa_table.column_names[0] ) lowercase__ : Tuple= self.recursive_tensorize(snake_case__ ) lowercase__ : Union[str, Any]= self._consolidate(snake_case__ ) return column def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= self.numpy_arrow_extractor().extract_batch(snake_case__ ) lowercase__ : Tuple= self.python_features_decoder.decode_batch(snake_case__ ) lowercase__ : List[str]= self.recursive_tensorize(snake_case__ ) for column_name in batch: lowercase__ : Tuple= self._consolidate(batch[column_name] ) return batch
85
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : int = logging.get_logger(__name__) a : str = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "big_bird" def __init__( self , snake_case__=50358 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=4096 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=66 , snake_case__="block_sparse" , snake_case__=True , snake_case__=False , snake_case__=64 , snake_case__=3 , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , sep_token_id=snake_case__ , **snake_case__ , ) lowercase__ : Dict= vocab_size lowercase__ : Optional[int]= max_position_embeddings lowercase__ : List[Any]= hidden_size lowercase__ : List[str]= num_hidden_layers lowercase__ : List[str]= num_attention_heads lowercase__ : Optional[int]= intermediate_size lowercase__ : Optional[int]= hidden_act lowercase__ : Tuple= hidden_dropout_prob lowercase__ : int= attention_probs_dropout_prob lowercase__ : int= initializer_range lowercase__ : List[Any]= type_vocab_size lowercase__ : Union[str, Any]= layer_norm_eps lowercase__ : Optional[Any]= use_cache lowercase__ : Union[str, Any]= rescale_embeddings lowercase__ : Union[str, Any]= attention_type lowercase__ : Any= use_bias lowercase__ : List[Any]= block_size lowercase__ : Optional[Any]= num_random_blocks lowercase__ : Optional[int]= classifier_dropout class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : List[Any]= {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : Tuple= {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
85
1