code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Dict ={ 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int =[ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
135
'''simple docstring''' import numpy as np def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] ): '''simple docstring''' A: Any = int(np.ceil((x_end - xa) / h ) ) A: Union[str, Any] = np.zeros((n + 1,) ) A: Optional[int] = ya A: int = xa for k in range(lowerCamelCase__ ): A: Optional[int] = f(lowerCamelCase__ , y[k] ) A: int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A: List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A: Optional[int] = f(x + h , y[k] + h * ka ) A: Optional[Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
135
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A = 2_5_0_0_0_4 _A = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Optional[Any] = MBartaaTokenizer _lowerCamelCase :List[Any] = MBartaaTokenizerFast _lowerCamelCase :Optional[int] = True _lowerCamelCase :Union[str, Any] = True def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : Any = MBartaaTokenizer(UpperCamelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = """<s>""" lowerCAmelCase__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCamelCase ) , 10_54 ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = MBartaaTokenizer(UpperCamelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase__ : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) lowerCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase__ : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" # fmt: off lowerCAmelCase__ : List[str] = {"""input_ids""": [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : List[str] = tempfile.mkdtemp() lowerCAmelCase__ : Tuple = tokenizer_r.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : Any = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase__ : List[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Tuple = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) lowerCAmelCase__ : List[str] = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ : List[str] = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Any = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ : Dict = tempfile.mkdtemp() lowerCAmelCase__ : Optional[Any] = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ : List[Any] = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): _lowerCamelCase :int = "facebook/mbart-large-50-one-to-many-mmt" _lowerCamelCase :Tuple = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _lowerCamelCase :Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _lowerCamelCase :Any = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def _lowerCAmelCase ( cls : List[str] ) -> Dict: """simple docstring""" lowerCAmelCase__ : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCAmelCase__ : Union[str, Any] = 1 return cls def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 25_00_38 ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.assertIn(UpperCamelCase , self.tokenizer.all_special_ids ) lowerCAmelCase__ : Union[str, Any] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] lowerCAmelCase__ : List[str] = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCAmelCase__ : Optional[Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = 10 lowerCAmelCase__ : Optional[int] = self.tokenizer(UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase ).input_ids[0] self.assertEqual(ids[0] , UpperCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_53, 25_00_01] ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = tempfile.mkdtemp() lowerCAmelCase__ : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : Tuple = MBartaaTokenizer.from_pretrained(UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase ) @require_torch def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , return_tensors="""pt""" ) lowerCAmelCase__ : Tuple = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCAmelCase__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCAmelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" lowerCAmelCase__ : int = self.tokenizer(self.src_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=3 , return_tensors="""pt""" ) lowerCAmelCase__ : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=10 , return_tensors="""pt""" ) lowerCAmelCase__ : List[str] = targets["""input_ids"""] lowerCAmelCase__ : Union[str, Any] = shift_tokens_right(UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Any = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(UpperCamelCase ) , { # en_XX, A, test, EOS """input_ids""": [[25_00_04, 62, 30_34, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
507
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 6_3_7_8_1_3_7 def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: lowerCAmelCase__ : str = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowerCAmelCase__ : Optional[int] = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) lowerCAmelCase__ : List[Any] = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowerCAmelCase__ : Any = haversine_distance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowerCAmelCase__ : int = (b_lata + b_lata) / 2 lowerCAmelCase__ : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowerCAmelCase__ : Optional[int] = (sin(__UpperCAmelCase ) ** 2) * (cos(__UpperCAmelCase ) ** 2) lowerCAmelCase__ : Dict = cos(sigma / 2 ) ** 2 lowerCAmelCase__ : Union[str, Any] = (sigma - sin(__UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowerCAmelCase__ : Tuple = (cos(__UpperCAmelCase ) ** 2) * (sin(__UpperCAmelCase ) ** 2) lowerCAmelCase__ : int = sin(sigma / 2 ) ** 2 lowerCAmelCase__ : int = (sigma + sin(__UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
507
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase__ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = 1.5 UpperCAmelCase_ : Optional[int] = int(factor * num_class_images ) UpperCAmelCase_ : Optional[Any] = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_lowerCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=_lowerCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: UpperCAmelCase_ : Optional[int] = client.query(text=_lowerCamelCase ) if len(_lowerCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: UpperCAmelCase_ : List[Any] = int(factor * num_images ) UpperCAmelCase_ : List[str] = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_lowerCamelCase , aesthetic_weight=0.1 , ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Tuple = tqdm(desc='downloading real regularization images' , total=_lowerCamelCase ) with open(F"{class_data_dir}/caption.txt" , 'w' ) as fa, open(F"{class_data_dir}/urls.txt" , 'w' ) as fa, open( F"{class_data_dir}/images.txt" , 'w' ) as fa: while total < num_class_images: UpperCAmelCase_ : Optional[int] = class_images[count] count += 1 try: UpperCAmelCase_ : Dict = requests.get(images['url'] ) if img.status_code == 200: UpperCAmelCase_ : Dict = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F"{class_data_dir}/images/{total}.jpg" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser('' , add_help=_lowerCamelCase ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=_lowerCamelCase , type=_lowerCamelCase ) parser.add_argument('--class_data_dir' , help='path to save images' , required=_lowerCamelCase , type=_lowerCamelCase ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=_lowerCamelCase ) return parser.parse_args() if __name__ == "__main__": __UpperCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
406
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _snake_case = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _snake_case = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def A ( ): '''simple docstring''' _lowerCAmelCase : int = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _lowerCAmelCase : str = bs[:] _lowerCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : Optional[Any] = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = set() _lowerCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self, __a, __a, __a="replace", __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : int = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else bos_token _lowerCAmelCase : List[str] = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else eos_token _lowerCAmelCase : str = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else sep_token _lowerCAmelCase : Tuple = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else cls_token _lowerCAmelCase : List[str] = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else unk_token _lowerCAmelCase : Tuple = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : str = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else mask_token super().__init__( errors=__a, bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, cls_token=__a, pad_token=__a, mask_token=__a, add_prefix_space=__a, **__a, ) with open(__a, encoding="utf-8") as vocab_handle: _lowerCAmelCase : str = json.load(__a) _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Any = errors # how to handle errors in decoding _lowerCAmelCase : str = bytes_to_unicode() _lowerCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(__a, encoding="utf-8") as merges_handle: _lowerCAmelCase : int = merges_handle.read().split("\n")[1:-1] _lowerCAmelCase : Union[str, Any] = [tuple(merge.split()) for merge in bpe_merges] _lowerCAmelCase : List[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : Any = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def snake_case__ ( self): '''simple docstring''' return len(self.encoder) def snake_case__ ( self): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder) def snake_case__ ( self, __a): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : List[Any] = tuple(__a) _lowerCAmelCase : int = get_pairs(__a) if not pairs: return token while True: _lowerCAmelCase : List[Any] = min(__a, key=lambda __a: self.bpe_ranks.get(__a, float("inf"))) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = bigram _lowerCAmelCase : List[str] = [] _lowerCAmelCase : int = 0 while i < len(__a): try: _lowerCAmelCase : Union[str, Any] = word.index(__a, __a) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _lowerCAmelCase : List[str] = j if word[i] == first and i < len(__a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCAmelCase : Union[str, Any] = tuple(__a) _lowerCAmelCase : List[str] = new_word if len(__a) == 1: break else: _lowerCAmelCase : Any = get_pairs(__a) _lowerCAmelCase : str = " ".join(__a) _lowerCAmelCase : Tuple = word return word def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = [] for token in re.findall(self.pat, __a): _lowerCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a).split(" ")) return bpe_tokens def snake_case__ ( self, __a): '''simple docstring''' return self.encoder.get(__a, self.encoder.get(self.unk_token)) def snake_case__ ( self, __a): '''simple docstring''' return self.decoder.get(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int = "".join(__a) _lowerCAmelCase : Any = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : List[Any] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Any = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__a, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=__a, ensure_ascii=__a) + "\n") _lowerCAmelCase : Tuple = 0 with open(__a, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda __a: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _lowerCAmelCase : Any = token_index writer.write(" ".join(__a) + "\n") index += 1 return vocab_file, merge_file def snake_case__ ( self, __a, __a = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Dict = [self.cls_token_id] _lowerCAmelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a, token_ids_a=__a, already_has_special_tokens=__a) if token_ids_a is None: return [1] + ([0] * len(__a)) + [1] return [1] + ([0] * len(__a)) + [1, 1] + ([0] * len(__a)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case__ ( self, __a, __a=False, **__a): '''simple docstring''' _lowerCAmelCase : str = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(__a) > 0 and not text[0].isspace()): _lowerCAmelCase : int = " " + text return (text, kwargs)
500
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( __snake_case ): __lowerCAmelCase : str = ['''image_processor''', '''tokenizer'''] __lowerCAmelCase : List[Any] = '''FlavaImageProcessor''' __lowerCAmelCase : Optional[Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[Any] , a : Optional[Any]=None , a : Tuple=None , **a : Optional[Any] ) -> Tuple: """simple docstring""" lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a , ) lowercase = kwargs.pop('''feature_extractor''' ) lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a , a ) lowercase = self.image_processor def __call__( self : List[str] , a : Optional[ImageInput] = None , a : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = False , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : Optional[bool] = None , a : Optional[bool] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : Optional[int] , ) -> List[str]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) if images is not None: lowercase = self.image_processor( a , return_image_mask=a , return_codebook_pixels=a , return_tensors=a , **a , ) if text is not None and images is not None: encoding.update(a ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def _lowerCAmelCase ( self : int , *a : str , **a : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def _lowerCAmelCase ( self : Tuple , *a : List[Any] , **a : Optional[int] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase = self.tokenizer.model_input_names lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a , ) return self.image_processor_class @property def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a , ) return self.image_processor
396
"""simple docstring""" from PIL import Image def A_ ( __UpperCamelCase : Image , __UpperCamelCase : int ): lowercase = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(__UpperCamelCase : int ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 __lowerCAmelCase = change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
396
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : List[str] = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
142
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowercase : List[str] = logging.get_logger(__name__) class lowerCAmelCase ( a ): """simple docstring""" def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
142
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: str ={ 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
415
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __A ( UpperCamelCase__ ): a__ : torch.FloatTensor a__ : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple=0.999 , snake_case_ : List[str]="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase_ = [] for i in range(snake_case_ ): UpperCAmelCase_ = i / num_diffusion_timesteps UpperCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case_ ) / alpha_bar_fn(snake_case_ ) , snake_case_ ) ) return torch.tensor(snake_case_ , dtype=torch.floataa ) class __A ( UpperCamelCase__ , UpperCamelCase__ ): a__ : Any = 1 @register_to_config def __init__(self : List[str] , __a : int = 1000 , __a : float = 0.00_01 , __a : float = 0.02 , __a : str = "linear" , __a : Optional[Union[np.ndarray, List[float]]] = None , __a : bool = True , __a : bool = True , __a : int = 0 , __a : str = "epsilon" , __a : float = 1.0 , **__a : Any , ): if kwargs.get("set_alpha_to_one" , __a ) is not None: UpperCAmelCase_ = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , __a , standard_warn=__a ) UpperCAmelCase_ = kwargs["set_alpha_to_one"] if trained_betas is not None: UpperCAmelCase_ = torch.tensor(__a , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ = torch.linspace(__a , __a , __a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ = betas_for_alpha_bar(__a ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCAmelCase_ = 1.0 - self.betas UpperCAmelCase_ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. UpperCAmelCase_ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution UpperCAmelCase_ = 1.0 # setable values UpperCAmelCase_ = None UpperCAmelCase_ = torch.from_numpy(np.arange(0 , __a ).copy().astype(np.intaa ) ) def _lowercase (self : int , __a : torch.FloatTensor , __a : Optional[int] = None ): return sample def _lowercase (self : Optional[int] , __a : int , __a : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) UpperCAmelCase_ = num_inference_steps UpperCAmelCase_ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ = (np.arange(0 , __a ) * step_ratio).round().copy().astype(np.intaa ) UpperCAmelCase_ = torch.from_numpy(__a ).to(__a ) self.timesteps += self.config.steps_offset def _lowercase (self : Dict , __a : torch.FloatTensor , __a : int , __a : torch.FloatTensor , __a : float = 0.0 , __a : bool = False , __a : Optional[torch.FloatTensor] = None , __a : bool = True , ): # 1. get previous step value (=t+1) UpperCAmelCase_ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process UpperCAmelCase_ = self.alphas_cumprod[timestep] UpperCAmelCase_ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) UpperCAmelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 UpperCAmelCase_ = model_output elif self.config.prediction_type == "sample": UpperCAmelCase_ = model_output UpperCAmelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output UpperCAmelCase_ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__a , pred_original_sample=__a ) def __len__(self : Dict ): return self.config.num_train_timesteps
415
1
SCREAMING_SNAKE_CASE__ = range(2, 20 + 1) SCREAMING_SNAKE_CASE__ = [10**k for k in range(ks[-1] + 1)] SCREAMING_SNAKE_CASE__ = {} def lowercase ( a , a , a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Tuple = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE_ :Optional[Any] = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE_ :str = 0, 0 SCREAMING_SNAKE_CASE_ :Optional[int] = n - i SCREAMING_SNAKE_CASE_ :List[Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: SCREAMING_SNAKE_CASE_ :Any = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over SCREAMING_SNAKE_CASE_ :int = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: SCREAMING_SNAKE_CASE_ :Dict = _k break if max_jump >= 0: SCREAMING_SNAKE_CASE_ :Tuple = jumps[max_jump] # since the difference between jumps is cached, add c SCREAMING_SNAKE_CASE_ :str = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = divmod(UpperCAmelCase_ , 10 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE_ :List[str] = [] else: SCREAMING_SNAKE_CASE_ :Union[str, Any] = {c: []} SCREAMING_SNAKE_CASE_ :Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps SCREAMING_SNAKE_CASE_ :int = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead SCREAMING_SNAKE_CASE_ :int = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped SCREAMING_SNAKE_CASE_ :List[Any] = sub_memo[c] # keep jumps sorted by # of terms skipped SCREAMING_SNAKE_CASE_ :Optional[Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowercase ( a , a , a , a ): '''simple docstring''' if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) SCREAMING_SNAKE_CASE_ :List[str] = i SCREAMING_SNAKE_CASE_ :str = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 SCREAMING_SNAKE_CASE_ :Dict = ds_c + ds_b diff += addend SCREAMING_SNAKE_CASE_ :List[Any] = 0 for j in range(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = a_i[j] + addend SCREAMING_SNAKE_CASE_ :Any = divmod(UpperCAmelCase_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowercase ( a , a , a ): '''simple docstring''' for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE_ :List[str] = digits[j] + addend if s >= 10: SCREAMING_SNAKE_CASE_ :Optional[int] = divmod(UpperCAmelCase_ , 10 ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = addend // 10 + quotient else: SCREAMING_SNAKE_CASE_ :int = s SCREAMING_SNAKE_CASE_ :Tuple = addend // 10 if addend == 0: break while addend > 0: SCREAMING_SNAKE_CASE_ :Optional[Any] = divmod(UpperCAmelCase_ , 10 ) digits.append(UpperCAmelCase_ ) def lowercase ( a = 10**15 ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Any = [1] SCREAMING_SNAKE_CASE_ :Dict = 1 SCREAMING_SNAKE_CASE_ :int = 0 while True: SCREAMING_SNAKE_CASE_ :str = next_term(UpperCAmelCase_ , 20 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break SCREAMING_SNAKE_CASE_ :List[Any] = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
631
'''simple docstring''' def A__ ( UpperCAmelCase_ = 1_0_0_0 ): _UpperCamelCase : List[str] = 3 _UpperCamelCase : Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
195
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] A__ = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self: Optional[Any] , *, __UpperCamelCase: int = 4 , __UpperCamelCase: int = 7_68 , __UpperCamelCase: int , __UpperCamelCase: Any , ): '''simple docstring''' super().__init__() __magic_name__ = nn.Parameter(torch.zeros(__UpperCamelCase ) ) # parameters for additional clip time embeddings __magic_name__ = nn.Linear(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = nn.Linear(__UpperCamelCase , __UpperCamelCase ) # parameters for encoder hidden states __magic_name__ = clip_extra_context_tokens __magic_name__ = nn.Linear( __UpperCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __magic_name__ = nn.Linear(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = nn.LayerNorm(__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[str] , *, __UpperCamelCase: Union[str, Any] , __UpperCamelCase: str , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Any ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __magic_name__ = image_embeddings.shape[0] __magic_name__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __magic_name__ = classifier_free_guidance_embeddings.expand( __UpperCamelCase , -1 ) __magic_name__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __magic_name__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __magic_name__ = self.embedding_proj(__UpperCamelCase ) __magic_name__ = self.clip_image_embeddings_project_to_time_embeddings(__UpperCamelCase ) __magic_name__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __magic_name__ = self.clip_extra_context_tokens_proj(__UpperCamelCase ) __magic_name__ = clip_extra_context_tokens.reshape(__UpperCamelCase , -1 , self.clip_extra_context_tokens ) __magic_name__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) __magic_name__ = self.encoder_hidden_states_proj(__UpperCamelCase ) __magic_name__ = self.text_encoder_hidden_states_norm(__UpperCamelCase ) __magic_name__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
184
1
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase : def __init__( self :Union[str, Any] , lowercase_ :int , lowercase_ :MutableSequence[float] )-> None: if len(lowercase_ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) A__ = list(lowercase_ ) A__ = degree def __add__( self :Optional[Any] , lowercase_ :Polynomial )-> Polynomial: if self.degree > polynomial_a.degree: A__ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowercase_ ) else: A__ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowercase_ ) def __sub__( self :Dict , lowercase_ :Polynomial )-> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self :Optional[Any] )-> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self :Optional[Any] , lowercase_ :Polynomial )-> Polynomial: A__ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowercase_ ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :int | float )-> int | float: A__ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self :Optional[Any] )-> str: A__ = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase_ ) return polynomial def __repr__( self :Tuple )-> str: return self.__str__() def UpperCAmelCase_ ( self :Optional[Any] )-> Polynomial: A__ = [0] * self.degree for i in range(self.degree ): A__ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowercase_ ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :int | float = 0 )-> Polynomial: A__ = [0] * (self.degree + 2) A__ = constant for i in range(self.degree + 1 ): A__ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowercase_ ) def __eq__( self :List[str] , lowercase_ :object )-> bool: if not isinstance(lowercase_ , lowercase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self :List[str] , lowercase_ :object )-> bool: return not self.__eq__(lowercase_ )
440
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :List[str] , lowercase_ :int = 7_68 , )-> str: super().__init__() A__ = nn.Parameter(torch.zeros(1 , lowercase_ ) ) A__ = nn.Parameter(torch.ones(1 , lowercase_ ) ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[Union[str, torch.device]] = None , lowercase_ :Optional[torch.dtype] = None , )-> Tuple: A__ = nn.Parameter(self.mean.to(lowercase_ ).to(lowercase_ ) ) A__ = nn.Parameter(self.std.to(lowercase_ ).to(lowercase_ ) ) return self def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :str )-> Union[str, Any]: A__ = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCAmelCase_ ( self :Any , lowercase_ :List[Any] )-> Tuple: A__ = (embeds * self.std) + self.mean return embeds
440
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case( _lowerCAmelCase ): '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=True , A_=False , A_=False , A_=False , A_=2 , A_=99 , A_=0 , A_=32 , A_=5 , A_=4 , A_=0.1 , A_=0.1 , A_=512 , A_=12 , A_=2 , A_=0.0_2 , A_=3 , A_=4 , A_="last" , A_=None , A_=None , ) -> Optional[int]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_lengths lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = gelu_activation lowerCAmelCase = sinusoidal_embeddings lowerCAmelCase = causal lowerCAmelCase = asm lowerCAmelCase = n_langs lowerCAmelCase = vocab_size lowerCAmelCase = n_special lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = summary_type lowerCAmelCase = use_proj lowerCAmelCase = scope def __snake_case ( self ) -> Dict: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_input_lengths: lowerCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __snake_case ( self ) -> int: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Union[str, Any]: lowerCAmelCase = FlaubertModel(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , lengths=A_ , langs=A_ ) lowerCAmelCase = model(A_ , langs=A_ ) lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> str: lowerCAmelCase = FlaubertWithLMHeadModel(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: lowerCAmelCase = FlaubertForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) lowerCAmelCase = model(A_ , start_positions=A_ , end_positions=A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[str]: lowerCAmelCase = FlaubertForQuestionAnswering(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) lowerCAmelCase = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , p_mask=A_ , ) lowerCAmelCase = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , ) ((lowerCAmelCase), ) = result_with_labels.to_tuple() lowerCAmelCase = model(A_ , start_positions=A_ , end_positions=A_ ) ((lowerCAmelCase), ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Tuple: lowerCAmelCase = FlaubertForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ ) lowerCAmelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: lowerCAmelCase = self.num_labels lowerCAmelCase = FlaubertForTokenClassification(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> int: lowerCAmelCase = self.num_choices lowerCAmelCase = FlaubertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) = config_and_inputs lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __snake_case( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase : List[str] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __snake_case ( self , A_ , A_ , A_=False ) -> int: lowerCAmelCase = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def __snake_case ( self ) -> Dict: lowerCAmelCase = FlaubertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , emb_dim=37 ) def __snake_case ( self ) -> str: self.config_tester.run_common_tests() def __snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*A_ ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*A_ ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*A_ ) @slow def __snake_case ( self ) -> List[str]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = FlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @slow @require_torch_gpu def __snake_case ( self ) -> List[str]: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase = True lowerCAmelCase = model_class(config=A_ ) lowerCAmelCase = self._prepare_for_class(A_ , A_ ) lowerCAmelCase = torch.jit.trace( A_ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A_ , os.path.join(A_ , """traced_model.pt""" ) ) lowerCAmelCase = torch.jit.load(os.path.join(A_ , """traced_model.pt""" ) , map_location=A_ ) loaded(inputs_dict["""input_ids"""].to(A_ ) , inputs_dict["""attention_mask"""].to(A_ ) ) @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> str: lowerCAmelCase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowerCAmelCase = model(A_ )[0] lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , A_ ) lowerCAmelCase = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4 ) )
344
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def _snake_case ( _SCREAMING_SNAKE_CASE : jnp.ndarray , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 , _SCREAMING_SNAKE_CASE : float = 1 , _SCREAMING_SNAKE_CASE : float = 1.0E4 , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'Embedding dimension {embedding_dim} should be even' lowerCAmelCase = float(embedding_dim // 2 ) lowerCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCAmelCase = min_timescale * jnp.exp(jnp.arange(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCAmelCase = jnp.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) * jnp.expand_dims(_SCREAMING_SNAKE_CASE , 0 ) # scale embeddings lowerCAmelCase = scale * emb if flip_sin_to_cos: lowerCAmelCase = jnp.concatenate([jnp.cos(_SCREAMING_SNAKE_CASE ), jnp.sin(_SCREAMING_SNAKE_CASE )] , axis=1 ) else: lowerCAmelCase = jnp.concatenate([jnp.sin(_SCREAMING_SNAKE_CASE ), jnp.cos(_SCREAMING_SNAKE_CASE )] , axis=1 ) lowerCAmelCase = jnp.reshape(_SCREAMING_SNAKE_CASE , [jnp.shape(_SCREAMING_SNAKE_CASE )[0], embedding_dim] ) return signal class __snake_case( nn.Module ): '''simple docstring''' UpperCAmelCase : int = 32 UpperCAmelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self , A_ ) -> int: lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(A_ ) lowerCAmelCase = nn.silu(A_ ) lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(A_ ) return temb class __snake_case( nn.Module ): '''simple docstring''' UpperCAmelCase : int = 32 UpperCAmelCase : bool = False UpperCAmelCase : float = 1 @nn.compact def __call__( self , A_ ) -> List[str]: return get_sinusoidal_embeddings( A_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
344
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowercase_ : '''simple docstring''' UpperCAmelCase : List[Any] = XGLMConfig UpperCAmelCase : List[str] = {} UpperCAmelCase : Dict = '''gelu''' def __init__( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int=14 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : List[str]=0.02 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_labels _A = vocab_size _A = d_model _A = num_hidden_layers _A = num_attention_heads _A = ffn_dim _A = activation_function _A = activation_dropout _A = attention_dropout _A = max_position_embeddings _A = initializer_range _A = None _A = 0 _A = 2 _A = 1 def lowerCAmelCase_ ( self : Any ): return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowerCAmelCase_ ( self : str ): _A = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = self.get_config() _A = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase_ ( self : Dict ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase : str = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = False UpperCAmelCase : int = False def lowerCAmelCase_ ( self : List[Any] ): _A = TFXGLMModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() @slow def lowerCAmelCase_ ( self : List[Any] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFXGLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowerCAmelCase_ ( self : List[str] ): super().test_resize_token_embeddings() @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str=True ): _A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _A = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _A = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on _A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : List[Any] ): _A = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) _A = tokenizer('Today is a nice day and' , return_tensors='tf' ) _A = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): _A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , seed=[7, 0] ) _A = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase ) _A = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _A = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _A = 'left' # use different length sentences to test batching _A = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] _A = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase ) _A = inputs['input_ids'] _A = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) _A = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _A = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) _A = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _A = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) _A = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) _A = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] )
7
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Tuple = 'gpt_neo' _UpperCamelCase : Optional[Any] = ['past_key_values'] _UpperCamelCase : int = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , snake_case_=50_257 , snake_case_=2_048 , snake_case_=2_048 , snake_case_=24 , snake_case_=[[["global", "local"], 12]] , snake_case_=16 , snake_case_=None , snake_case_=256 , snake_case_="gelu_new" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=1E-5 , snake_case_=0.02 , snake_case_=True , snake_case_=50_256 , snake_case_=50_256 , **snake_case_ , ): '''simple docstring''' A__ : int = vocab_size A__ : Optional[Any] = max_position_embeddings A__ : int = hidden_size A__ : List[Any] = num_layers A__ : Any = num_heads A__ : List[str] = intermediate_size A__ : Dict = window_size A__ : Optional[int] = activation_function A__ : Optional[int] = resid_dropout A__ : List[str] = embed_dropout A__ : str = attention_dropout A__ : List[str] = classifier_dropout A__ : str = layer_norm_epsilon A__ : str = initializer_range A__ : Any = use_cache A__ : List[str] = bos_token_id A__ : Any = eos_token_id A__ : Optional[Any] = attention_types A__ : List[Any] = self.expand_attention_types_params(snake_case_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) @staticmethod def lowerCamelCase ( snake_case_ ): '''simple docstring''' A__ : Optional[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): import torch A__ : Union[str, Any] = input.size() A__ : str = len(lowerCAmelCase ) A__ : Union[str, Any] = shape[dimension] A__ : Dict = torch.arange(0 , lowerCAmelCase , lowerCAmelCase ) A__ : Dict = torch.div(sizedim - size , lowerCAmelCase , rounding_mode="""floor""" ) + 1 A__ : str = torch.arange(lowerCAmelCase ) + low_indices[:min_length][:, None] A__ : str = [slice(lowerCAmelCase )] * rank A__ : Optional[Any] = indices A__ : Tuple = input[s] A__ : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase ): import torch A__ : Optional[Any] = torch.arange(1 , lowerCAmelCase ) A__ : int = torch.remainder(lowerCAmelCase , lowerCAmelCase ) A__ : str = remainders == 0 A__ : Tuple = candidates[divisor_indices] A__ : Any = torch.max(lowerCAmelCase ) return largest_divisor, torch.div(lowerCAmelCase , lowerCAmelCase , rounding_mode="""floor""" ) class __UpperCAmelCase (__A ): '''simple docstring''' @property def lowerCamelCase ( self ): '''simple docstring''' A__ : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) A__ : str = {0: """batch""", 1: """past_sequence + sequence"""} else: A__ : Optional[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase ( self ): '''simple docstring''' return self._config.num_heads def lowerCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): '''simple docstring''' A__ : Optional[int] = super(snake_case_ , self ).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) # We need to order the input in the way they appears in the forward() A__ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A__ , A__ : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A__ : Any = seqlen + 2 A__ : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : List[Any] = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers ) ] A__ : Tuple = common_inputs["""attention_mask"""] if self.use_past: A__ : List[Any] = ordered_inputs["""attention_mask"""].dtype A__ : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self ): '''simple docstring''' return 13
363
0
"""simple docstring""" import argparse import json from tqdm import tqdm def SCREAMING_SNAKE_CASE_ ( )-> Any: _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=snake_case , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=snake_case , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=snake_case , help='where to store parsed gold_data_path file' , ) _lowerCamelCase = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: _lowerCamelCase = json.load(snake_case ) for dpr_record in tqdm(snake_case ): _lowerCamelCase = dpr_record['question'] _lowerCamelCase = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(snake_case ) + '\n' ) if __name__ == "__main__": main()
222
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str = "cpu" , snake_case : Union[str, None] = None )-> None: _lowerCamelCase = torch.load(snake_case , map_location=snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _lowerCamelCase = v.half() if save_path is None: # overwrite src_path _lowerCamelCase = src_path torch.save(snake_case , snake_case ) if __name__ == "__main__": fire.Fire(convert)
222
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("DownBlock2D", "AttnDownBlock2D") ,up_block_types=("AttnUpBlock2D", "UpBlock2D") ,) return model def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = self.dummy_uncond_unet _lowerCamelCase : Optional[Any] = ScoreSdeVeScheduler() _lowerCamelCase : str = ScoreSdeVePipeline(unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ) sde_ve.to(__lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : List[Any] = sde_ve(num_inference_steps=2 ,output_type="numpy" ,generator=__lowerCAmelCase ).images _lowerCamelCase : Any = torch.manual_seed(0 ) _lowerCamelCase : int = sde_ve(num_inference_steps=2 ,output_type="numpy" ,generator=__lowerCAmelCase ,return_dict=__lowerCAmelCase )[ 0 ] _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] _lowerCamelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase : List[str] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A_ ( unittest.TestCase ): def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[Any] = "google/ncsnpp-church-256" _lowerCamelCase : str = UNetaDModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = ScoreSdeVeScheduler.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = ScoreSdeVePipeline(unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ) sde_ve.to(__lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : Tuple = sde_ve(num_inference_steps=10 ,output_type="numpy" ,generator=__lowerCAmelCase ).images _lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : Optional[int] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
46
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : int = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
540
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: return max(metric_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] )->str: _lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , '''r''' ).readlines()] _lowerCAmelCase = [] if args.gold_data_mode == "qa": _lowerCAmelCase = pd.read_csv(_SCREAMING_SNAKE_CASE , sep='''\t''' , header=_SCREAMING_SNAKE_CASE ) for answer_list in data[1]: _lowerCAmelCase = ast.literal_eval(_SCREAMING_SNAKE_CASE ) answers.append(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , '''r''' ).readlines()] _lowerCAmelCase = [[reference] for reference in references] _lowerCAmelCase = _lowerCAmelCase = _lowerCAmelCase = 0 for prediction, ground_truths in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 100.0 * em / total _lowerCAmelCase = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict )->Tuple: _lowerCAmelCase = args.k _lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , '''r''' ).readlines()] _lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , '''r''' ).readlines()] _lowerCAmelCase = _lowerCAmelCase = 0 for hypo, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = set(hypo.split('''\t''' )[:k] ) _lowerCAmelCase = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any )->List[str]: def strip_title(_SCREAMING_SNAKE_CASE : Union[str, Any] ): if title.startswith('''"''' ): _lowerCAmelCase = title[1:] if title.endswith('''"''' ): _lowerCAmelCase = title[:-1] return title _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , )['''input_ids'''].to(args.device ) _lowerCAmelCase = rag_model.rag.question_encoder(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = question_enc_outputs[0] _lowerCAmelCase = rag_model.retriever( _SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) _lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase = [] for docs in all_docs: _lowerCAmelCase = [strip_title(_SCREAMING_SNAKE_CASE ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_SCREAMING_SNAKE_CASE ) ) return provenance_strings def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: with torch.no_grad(): _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = inputs_dict.input_ids.to(args.device ) _lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase = rag_model.generate( # rag_model overwrites generate _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info('''Q: {} - A: {}'''.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return answers def UpperCAmelCase__ ( )->str: _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_SCREAMING_SNAKE_CASE , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_SCREAMING_SNAKE_CASE , choices=['''exact''', '''compressed''', '''legacy'''] , type=_SCREAMING_SNAKE_CASE , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_SCREAMING_SNAKE_CASE , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_SCREAMING_SNAKE_CASE , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_SCREAMING_SNAKE_CASE , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_SCREAMING_SNAKE_CASE , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_SCREAMING_SNAKE_CASE , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_SCREAMING_SNAKE_CASE , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_SCREAMING_SNAKE_CASE , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_SCREAMING_SNAKE_CASE , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=5_0 , type=_SCREAMING_SNAKE_CASE , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Dict: _lowerCAmelCase = {} if args.model_type is None: _lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): _lowerCAmelCase = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration _lowerCAmelCase = args.n_docs if args.index_name is not None: _lowerCAmelCase = args.index_name if args.index_path is not None: _lowerCAmelCase = args.index_path else: _lowerCAmelCase = BartForConditionalGeneration _lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k _lowerCAmelCase = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_SCREAMING_SNAKE_CASE ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): _lowerCAmelCase = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , retriever=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: _lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: _lowerCAmelCase = [] for line in tqdm(_SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(_SCREAMING_SNAKE_CASE ) == args.eval_batch_size: _lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) + '''\n''' ) preds_file.flush() _lowerCAmelCase = [] if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase_ = get_args() main(args)
664
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE_ = len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(SCREAMING_SNAKE_CASE ) - pat_len + 1 ): SCREAMING_SNAKE_CASE_ = True for j in range(SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE_ = False break if match_found: position.append(SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
205
import qiskit def lowercase ( SCREAMING_SNAKE_CASE = 2 ) -> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE_ = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , SCREAMING_SNAKE_CASE ): # Adding CX (CNOT) gate circuit.cx(i - 1 , SCREAMING_SNAKE_CASE ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(SCREAMING_SNAKE_CASE ) ) , list(range(SCREAMING_SNAKE_CASE ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
205
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = botoa.client('''iam''' ) snake_case_ = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__UpperCAmelCase, AssumeRolePolicyDocument=json.dumps(__UpperCAmelCase, indent=2 ) ) snake_case_ = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=__UpperCAmelCase, PolicyName=F"{role_name}_policy_permission", PolicyDocument=json.dumps(__UpperCAmelCase, indent=2 ), ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"role {role_name} already exists. Using existing one" ) def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' snake_case_ = botoa.client('''iam''' ) return iam_client.get_role(RoleName=__UpperCAmelCase )["Role"]["Arn"] def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' snake_case_ = _ask_options( '''How do you want to authorize?''', ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''], __UpperCAmelCase, ) snake_case_ = None if credentials_configuration == 0: snake_case_ = _ask_field('''Enter your AWS Profile name: [default] ''', default='''default''' ) snake_case_ = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) snake_case_ = _ask_field('''AWS Access Key ID: ''' ) snake_case_ = aws_access_key_id snake_case_ = _ask_field('''AWS Secret Access Key: ''' ) snake_case_ = aws_secret_access_key snake_case_ = _ask_field('''Enter your AWS Region: [us-east-1]''', default='''us-east-1''' ) snake_case_ = aws_region snake_case_ = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''', ['''Provide IAM Role name''', '''Create new IAM role using credentials'''], __UpperCAmelCase, ) if role_management == 0: snake_case_ = _ask_field('''Enter your IAM role name: ''' ) else: snake_case_ = '''accelerate_sagemaker_execution_role''' print(F"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(__UpperCAmelCase ) snake_case_ = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = None if is_custom_docker_image: snake_case_ = _ask_field('''Enter your Docker image: ''', lambda __UpperCAmelCase : str(__UpperCAmelCase ).lower() ) snake_case_ = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = None if is_sagemaker_inputs_enabled: snake_case_ = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''', lambda __UpperCAmelCase : str(__UpperCAmelCase ).lower(), ) snake_case_ = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = None if is_sagemaker_metrics_enabled: snake_case_ = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''', lambda __UpperCAmelCase : str(__UpperCAmelCase ).lower(), ) snake_case_ = _ask_options( '''What is the distributed mode?''', ['''No distributed training''', '''Data parallelism'''], _convert_sagemaker_distributed_mode, ) snake_case_ = {} snake_case_ = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) if use_dynamo: snake_case_ = '''dynamo_''' snake_case_ = _ask_options( '''Which dynamo backend would you like to use?''', [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) snake_case_ = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) if use_custom_options: snake_case_ = _ask_options( '''Which mode do you want to use?''', __UpperCAmelCase, lambda __UpperCAmelCase : TORCH_DYNAMO_MODES[int(__UpperCAmelCase )], default='''default''', ) snake_case_ = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: snake_case_ = _ask_options( __UpperCAmelCase, __UpperCAmelCase, lambda __UpperCAmelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__UpperCAmelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case_ = _ask_field(__UpperCAmelCase, lambda __UpperCAmelCase : str(__UpperCAmelCase ).lower(), default='''ml.p3.2xlarge''' ) snake_case_ = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case_ = _ask_field( '''How many machines do you want use? [1]: ''', __UpperCAmelCase, default=1, ) snake_case_ = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''', ['''no''', '''fp16''', '''bf16''', '''fp8'''], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=__UpperCAmelCase, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=__UpperCAmelCase, use_cpu=__UpperCAmelCase, dynamo_config=__UpperCAmelCase, eca_instance_type=__UpperCAmelCase, profile=__UpperCAmelCase, region=__UpperCAmelCase, iam_role_name=__UpperCAmelCase, mixed_precision=__UpperCAmelCase, num_machines=__UpperCAmelCase, sagemaker_inputs_file=__UpperCAmelCase, sagemaker_metrics_file=__UpperCAmelCase, )
593
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a : Tuple = logging.get_logger(__name__) a : Any = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) a : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case_ = model_type_to_module_name(__UpperCAmelCase ) snake_case_ = importlib.import_module(F".{module_name}", '''transformers.models''' ) try: return getattr(__UpperCAmelCase, __UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(__UpperCAmelCase, '''__name__''', __UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case_ = importlib.import_module('''transformers''' ) if hasattr(__UpperCAmelCase, __UpperCAmelCase ): return getattr(__UpperCAmelCase, __UpperCAmelCase ) return None def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = None, __UpperCAmelCase = False, __UpperCAmelCase = False, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = False, **__UpperCAmelCase, ) -> Dict: '''simple docstring''' snake_case_ = get_file_from_repo( __UpperCAmelCase, __UpperCAmelCase, cache_dir=__UpperCAmelCase, force_download=__UpperCAmelCase, resume_download=__UpperCAmelCase, proxies=__UpperCAmelCase, use_auth_token=__UpperCAmelCase, revision=__UpperCAmelCase, local_files_only=__UpperCAmelCase, ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(__UpperCAmelCase, encoding='''utf-8''' ) as reader: return json.load(__UpperCAmelCase ) class a : def __init__( self : Dict ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowercase_ ) def A_ ( cls : List[Any] , lowercase_ : Optional[int] , **lowercase_ : Dict ): snake_case_ = kwargs.pop('''config''' , lowercase_ ) snake_case_ = kwargs.pop('''trust_remote_code''' , lowercase_ ) snake_case_ = True snake_case_ ,snake_case_ = FeatureExtractionMixin.get_feature_extractor_dict(lowercase_ , **lowercase_ ) snake_case_ = config_dict.get('''feature_extractor_type''' , lowercase_ ) snake_case_ = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): snake_case_ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowercase_ , lowercase_ ): snake_case_ = AutoConfig.from_pretrained(lowercase_ , **lowercase_ ) # It could be in `config.feature_extractor_type`` snake_case_ = getattr(lowercase_ , '''feature_extractor_type''' , lowercase_ ) if hasattr(lowercase_ , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: snake_case_ = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: snake_case_ = feature_extractor_class_from_name(lowercase_ ) snake_case_ = feature_extractor_auto_map is not None snake_case_ = feature_extractor_class is not None or type(lowercase_ ) in FEATURE_EXTRACTOR_MAPPING snake_case_ = resolve_trust_remote_code( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if has_remote_code and trust_remote_code: snake_case_ = get_class_from_dynamic_module( lowercase_ , lowercase_ , **lowercase_ ) snake_case_ = kwargs.pop('''code_revision''' , lowercase_ ) if os.path.isdir(lowercase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowercase_ , **lowercase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowercase_ , **lowercase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowercase_ ) in FEATURE_EXTRACTOR_MAPPING: snake_case_ = FEATURE_EXTRACTOR_MAPPING[type(lowercase_ )] return feature_extractor_class.from_dict(lowercase_ , **lowercase_ ) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def A_ ( lowercase_ : Union[str, Any] , lowercase_ : Dict ): FEATURE_EXTRACTOR_MAPPING.register(lowercase_ , lowercase_ )
593
1
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : Any = [0] * no_of_processes lowercase_ : str = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCAmelCase_ ): lowercase_ : Tuple = burst_time[i] lowercase_ : list[int] = [] lowercase_ : Union[str, Any] = 0 lowercase_ : Optional[int] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowercase_ : str = [] lowercase_ : Optional[Any] = -1 for i in range(UpperCAmelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: lowercase_ : Optional[Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowercase_ : str = i total_time += burst_time[target_process] completed += 1 lowercase_ : int = 0 lowercase_ : Dict = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : str = [0] * no_of_processes for i in range(UpperCAmelCase_ ): lowercase_ : Any = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __SCREAMING_SNAKE_CASE =4 __SCREAMING_SNAKE_CASE =[2, 5, 3, 7] __SCREAMING_SNAKE_CASE =[0, 0, 0, 0] __SCREAMING_SNAKE_CASE =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __SCREAMING_SNAKE_CASE =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
425
'''simple docstring''' from typing import List import numpy as np def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Any = {key: len(UpperCAmelCase_ ) for key, value in gen_kwargs.items() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) _UpperCamelCase : Tuple = max(lists_lengths.values() , default=0 ) return max(1 , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = [] for group_idx in range(UpperCAmelCase_ ): _UpperCamelCase : int = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _UpperCamelCase : Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _UpperCamelCase : Tuple = range(UpperCAmelCase_ , start + num_shards_to_add ) shards_indices_per_group.append(UpperCAmelCase_ ) return shards_indices_per_group def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) if num_shards == 1: return [dict(UpperCAmelCase_ )] else: _UpperCamelCase : str = _distribute_shards(num_shards=UpperCAmelCase_ , max_num_jobs=UpperCAmelCase_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(UpperCAmelCase_ ) ) ] def A__ ( UpperCAmelCase_ ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , UpperCAmelCase_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = {len(UpperCAmelCase_ ) for value in gen_kwargs.values() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )} _UpperCamelCase : Union[str, Any] = {} for size in list_sizes: _UpperCamelCase : str = list(range(UpperCAmelCase_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _UpperCamelCase : Union[str, Any] = dict(UpperCAmelCase_ ) for key, value in shuffled_kwargs.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = [value[i] for i in indices_per_size[len(UpperCAmelCase_ )]] return shuffled_kwargs
195
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 1_00 * 2**20, 9_00 * 2**20] ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE__ = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = is_small_dataset(snake_case__ ) assert result == expected
720
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Tuple = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : Tuple = concatenate_datasets A_ : List[str] = DownloadConfig A_ : int = DownloadManager A_ : Optional[Any] = DownloadMode A_ : Optional[int] = DownloadConfig A_ : List[Any] = DownloadMode A_ : Any = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
616
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_lowerCamelCase ) @dataclass class __UpperCamelCase : _UpperCAmelCase = field( metadata={"help": "The csv file to plot."} , ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _UpperCAmelCase = list_field( default=a__ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' try: int(_lowerCamelCase ) return True except ValueError: return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' try: float(_lowerCamelCase ) return True except ValueError: return False class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = args _lowerCAmelCase : Union[str, Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file ,newline='' ) as csv_file: _lowerCAmelCase : str = csv.DictReader(_A ) for row in reader: _lowerCAmelCase : Dict = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _lowerCAmelCase : Any = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _lowerCAmelCase : str = float(row['result'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : str = plt.subplots() _lowerCAmelCase : Optional[Any] = 'Time usage' if self.args.is_time else 'Memory usage' _lowerCAmelCase : List[str] = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _lowerCAmelCase : str = sorted(set(self.result_dict[model_name]['bsz'] ) ) _lowerCAmelCase : Tuple = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _lowerCAmelCase : Dict = self.result_dict[model_name]['result'] ((_lowerCAmelCase), (_lowerCAmelCase)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _lowerCAmelCase : int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _lowerCAmelCase : List[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] ,dtype=_A ,) else: _lowerCAmelCase : List[Any] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] ,dtype=np.floataa ,) ((_lowerCAmelCase), (_lowerCAmelCase)) : Tuple = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _lowerCAmelCase : Optional[int] = np.asarray(_A ,_A )[: len(_A )] plt.scatter( _A ,_A ,label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(_A ,_A ,'--' ) title_str += F""" {label_model_name} vs.""" _lowerCAmelCase : Optional[Any] = title_str[:-4] _lowerCAmelCase : List[str] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(_A ) plt.xlabel(_A ) plt.ylabel(_A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Dict = HfArgumentParser(_lowerCamelCase ) _lowerCAmelCase : List[str] = parser.parse_args_into_dataclasses()[0] _lowerCAmelCase : Tuple = Plot(args=_lowerCamelCase ) plot.plot() if __name__ == "__main__": main()
259
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _lowerCAmelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A=None ,_A=1 ): '''simple docstring''' _lowerCAmelCase : Any = tokenizer _lowerCAmelCase : str = dataset _lowerCAmelCase : List[Any] = len(_A ) if n_tasks is None else n_tasks _lowerCAmelCase : Union[str, Any] = n_copies def __iter__( self ): '''simple docstring''' _lowerCAmelCase : Tuple = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) _lowerCAmelCase : List[Any] = self.tokenizer(_A ,padding=_A ,return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = start_length _lowerCAmelCase : str = eof_strings _lowerCAmelCase : int = tokenizer def __call__( self ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowerCAmelCase : str = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_A ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): _lowerCAmelCase : Any = batch['ids'].shape[-1] _lowerCAmelCase : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times _lowerCAmelCase : List[Any] = batch['task_id'].repeat(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) _lowerCAmelCase : Union[str, Any] = generated_tokens.cpu().numpy() _lowerCAmelCase : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowerCAmelCase : Union[str, Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowerCAmelCase : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowerCAmelCase : Optional[int] = 'false' if args.num_workers is None: _lowerCAmelCase : str = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowerCAmelCase : List[str] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) _lowerCAmelCase : List[str] = tokenizer.eos_token _lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowerCAmelCase : int = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric _lowerCAmelCase : List[Any] = load_dataset('openai_humaneval' ) _lowerCAmelCase : int = load_metric('code_eval' ) _lowerCAmelCase : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) _lowerCAmelCase : int = args.n_samples // args.batch_size _lowerCAmelCase : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowerCAmelCase : Any = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowerCAmelCase : Dict = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception _lowerCAmelCase, _lowerCAmelCase : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: _lowerCAmelCase : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): _lowerCAmelCase : Any = human_eval['test'][task]['test'] _lowerCAmelCase : Union[str, Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric _lowerCAmelCase, _lowerCAmelCase : List[str] = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
259
1
"""simple docstring""" from math import sqrt def _snake_case ( lowercase__ : int ) -> bool: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ :str = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ :Tuple = False for divisor in range(2 , int(round(sqrt(__UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ :Optional[Any] = False break # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ), "'status' must been from type bool" return status def _snake_case ( lowercase__ : List[Any] ) -> List[Any]: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ :Any = list(range(2 , n + 1 ) ) lowerCAmelCase_ :int = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__UpperCamelCase ) ): for j in range(i + 1 , len(__UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ :int = 0 # filters actual prime numbers. lowerCAmelCase_ :Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ), "'ans' must been from type list" return ans def _snake_case ( lowercase__ : Any ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ :Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__UpperCamelCase ): ans.append(__UpperCamelCase ) # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ), "'ans' must been from type list" return ans def _snake_case ( lowercase__ : Dict ) -> Any: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ :int = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ :Tuple = 2 lowerCAmelCase_ :Optional[int] = number if number == 0 or number == 1: ans.append(__UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__UpperCamelCase ): while quotient != 1: if is_prime(__UpperCamelCase ) and (quotient % factor == 0): ans.append(__UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(__UpperCamelCase ) # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ), "'ans' must been from type list" return ans def _snake_case ( lowercase__ : int ) -> Dict: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ :Any = 0 # prime factorization of 'number' lowerCAmelCase_ :Optional[int] = prime_factorization(__UpperCamelCase ) lowerCAmelCase_ :str = max(__UpperCamelCase ) # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ), "'ans' must been from type int" return ans def _snake_case ( lowercase__ : Any ) -> Any: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ :Union[str, Any] = 0 # prime factorization of 'number' lowerCAmelCase_ :Optional[Any] = prime_factorization(__UpperCamelCase ) lowerCAmelCase_ :Optional[int] = min(__UpperCamelCase ) # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ), "'ans' must been from type int" return ans def _snake_case ( lowercase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , __UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( lowercase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , __UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( lowercase__ : Any ) -> int: '''simple docstring''' assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and (number > 2) and is_even(__UpperCamelCase ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ :Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ :List[str] = get_prime_numbers(__UpperCamelCase ) lowerCAmelCase_ :int = len(__UpperCamelCase ) # run variable for while-loops. lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :List[str] = None # exit variable. for break up the loops lowerCAmelCase_ :Any = True while i < len_pn and loop: lowerCAmelCase_ :str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ :str = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and (len(__UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( lowercase__ : Tuple , lowercase__ : int ) -> List[Any]: '''simple docstring''' assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ :int = 0 while numbera != 0: lowerCAmelCase_ :Dict = numbera % numbera lowerCAmelCase_ :List[str] = numbera lowerCAmelCase_ :int = rest # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Any ) -> Dict: '''simple docstring''' assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ :Any = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ :List[str] = prime_factorization(__UpperCamelCase ) lowerCAmelCase_ :Dict = prime_factorization(__UpperCamelCase ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ :Any = [] lowerCAmelCase_ :Dict = [] lowerCAmelCase_ :Optional[int] = max(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ :str = 0 lowerCAmelCase_ :List[Any] = 0 lowerCAmelCase_ :List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ :Union[str, Any] = prime_fac_a.count(__UpperCamelCase ) lowerCAmelCase_ :List[str] = prime_fac_a.count(__UpperCamelCase ) for _ in range(max(__UpperCamelCase , __UpperCamelCase ) ): ans *= n else: lowerCAmelCase_ :Any = prime_fac_a.count(__UpperCamelCase ) for _ in range(__UpperCamelCase ): ans *= n done.append(__UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ :List[Any] = prime_fac_a.count(__UpperCamelCase ) for _ in range(__UpperCamelCase ): ans *= n done.append(__UpperCamelCase ) # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( lowercase__ : List[Any] ) -> str: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ :Tuple = 0 lowerCAmelCase_ :int = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__UpperCamelCase ): ans += 1 # precondition assert isinstance(__UpperCamelCase , __UpperCamelCase ) and is_prime( __UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def _snake_case ( lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' assert ( is_prime(__UpperCamelCase ) and is_prime(__UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ :List[Any] = p_number_a + 1 # jump to the next number lowerCAmelCase_ :Any = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__UpperCamelCase ): number += 1 while number < p_number_a: ans.append(__UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(__UpperCamelCase ): number += 1 # precondition assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and ans[0] != p_number_a and ans[len(__UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( lowercase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ :str = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(__UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( lowercase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ :List[str] = get_divisors(__UpperCamelCase ) # precondition assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(__UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( lowercase__ : Tuple , lowercase__ : Optional[int] ) -> List[str]: '''simple docstring''' assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ :Union[str, Any] = gcd(abs(__UpperCamelCase ) , abs(__UpperCamelCase ) ) # precondition assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( lowercase__ : str ) -> Optional[Any]: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ :Tuple = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( lowercase__ : Tuple ) -> List[Any]: '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ :List[Any] = 0 lowerCAmelCase_ :Optional[int] = 1 lowerCAmelCase_ :List[Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ :str = ans ans += fiba lowerCAmelCase_ :List[Any] = tmp return ans
711
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :str = PegasusConfig UpperCAmelCase_ :Optional[int] = {} UpperCAmelCase_ :List[str] = "gelu" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=False , __A=99 , __A=32 , __A=2 , __A=4 , __A=37 , __A=0.1 , __A=0.1 , __A=40 , __A=2 , __A=1 , __A=0 , ) -> int: lowerCAmelCase_ :List[Any] = parent lowerCAmelCase_ :List[Any] = batch_size lowerCAmelCase_ :Union[str, Any] = seq_length lowerCAmelCase_ :List[str] = is_training lowerCAmelCase_ :Tuple = use_labels lowerCAmelCase_ :str = vocab_size lowerCAmelCase_ :Optional[int] = hidden_size lowerCAmelCase_ :Optional[int] = num_hidden_layers lowerCAmelCase_ :Optional[int] = num_attention_heads lowerCAmelCase_ :Any = intermediate_size lowerCAmelCase_ :Dict = hidden_dropout_prob lowerCAmelCase_ :Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ :List[Any] = max_position_embeddings lowerCAmelCase_ :Union[str, Any] = eos_token_id lowerCAmelCase_ :str = pad_token_id lowerCAmelCase_ :str = bos_token_id def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ :str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ :Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ :List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase_ :str = prepare_pegasus_inputs_dict(__A , __A , __A ) return config, inputs_dict def __lowerCAmelCase ( self , __A , __A ) -> Tuple: lowerCAmelCase_ :str = TFPegasusModel(config=__A ).get_decoder() lowerCAmelCase_ :str = inputs_dict["""input_ids"""] lowerCAmelCase_ :Optional[int] = input_ids[:1, :] lowerCAmelCase_ :Dict = inputs_dict["""attention_mask"""][:1, :] lowerCAmelCase_ :Union[str, Any] = inputs_dict["""head_mask"""] lowerCAmelCase_ :int = 1 # first forward pass lowerCAmelCase_ :List[Any] = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ :Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ :Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ :str = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ :Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ :List[Any] = model(__A , attention_mask=__A )[0] lowerCAmelCase_ :Optional[int] = model(__A , attention_mask=__A , past_key_values=__A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ :Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ :Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ :Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__A , __A , rtol=1E-3 ) def _snake_case ( lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any]=None , lowercase__ : int=None , lowercase__ : Optional[int]=None , lowercase__ : List[str]=None , lowercase__ : int=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowerCAmelCase_ :str = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase_ :Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase_ :Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_ :Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase_ :Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :str = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase_ :Union[str, Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ :Union[str, Any] = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ :List[Any] = True UpperCAmelCase_ :Optional[int] = False UpperCAmelCase_ :Optional[int] = False def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :str = TFPegasusModelTester(self ) lowerCAmelCase_ :Union[str, Any] = ConfigTester(self , config_class=__A ) def __lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__A ) @require_sentencepiece @require_tokenizers @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): UpperCAmelCase_ :List[str] = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCAmelCase_ :str = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase_ :Optional[int] = "google/pegasus-xsum" @cached_property def __lowerCAmelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCAmelCase ( self , **__A ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = self.translate_src_text(**__A ) assert self.expected_text == generated_words def __lowerCAmelCase ( self , **__A ) -> str: lowerCAmelCase_ :str = self.tokenizer(self.src_text , **__A , padding=__A , return_tensors="""tf""" ) lowerCAmelCase_ :int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__A , ) lowerCAmelCase_ :int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__A ) return generated_words @slow def __lowerCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
256
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = inspect.getfile(accelerate.test_utils ) snake_case_ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) snake_case_ : Any = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() snake_case_ : Dict = [sys.executable] + distributed_args execute_subprocess_async(__magic_name__ , env=os.environ.copy() )
60
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase_ : '''simple docstring''' lowerCAmelCase = None lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = None lowerCAmelCase = 1 lowerCAmelCase = None lowerCAmelCase = False lowerCAmelCase = None lowerCAmelCase = None def _UpperCamelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(a ) for k, v in self.__dict__.items()} )
198
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ReformerTokenizer lowercase__ = ReformerTokenizerFast lowercase__ = True lowercase__ = False lowercase__ = True def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' super().setUp() _UpperCamelCase = ReformerTokenizer(__a , keep_accents=__a) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a) , __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a) , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(__a) , 10_00) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.tokenize(__a) _UpperCamelCase = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) _UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a) _UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(__a) _UpperCamelCase = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) def UpperCAmelCase ( self , __a=15) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a) # Simple input _UpperCamelCase = '''This is a simple input''' _UpperCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] _UpperCamelCase = ('''This is a simple input''', '''This is a pair''') _UpperCamelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''') # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''') # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''') # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''') # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ReformerTokenizer(__a , keep_accents=__a) _UpperCamelCase = tokenizer.tokenize('''This is a test''') self.assertListEqual(__a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a) , [2_85, 46, 10, 1_70, 3_82] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( __a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(__a) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''') @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(__a , self.big_tokenizer.encode(__a)) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a)) @require_torch @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys())[:10] _UpperCamelCase = ''' '''.join(__a) _UpperCamelCase = self.big_tokenizer.encode_plus(__a , return_tensors='''pt''') _UpperCamelCase = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''') _UpperCamelCase = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _UpperCamelCase = encoded_sequence['''input_ids'''].shape _UpperCamelCase = ReformerModel(__a) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a) model(**__a) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' # fmt: off _UpperCamelCase = {'''input_ids''': [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _UpperCamelCase = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=__a , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=__a , sequences=__a , )
78
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _a = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _a = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _a = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _a = F"""down_blocks.{i}.resnets.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _a = F"""down_blocks.{i}.attentions.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _a = F"""up_blocks.{i}.resnets.{j}.""" _a = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _a = F"""up_blocks.{i}.attentions.{j}.""" _a = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _a = F"""down_blocks.{i}.downsamplers.0.conv.""" _a = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _a = """mid_block.attentions.0.""" _a = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _a = F"""mid_block.resnets.{j}.""" _a = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _a = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _a = F"""encoder.down_blocks.{i}.resnets.{j}.""" _a = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _a = F"""down_blocks.{i}.downsamplers.0.""" _a = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _a = F"""decoder.up_blocks.{i}.resnets.{j}.""" _a = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _a = F"""mid_block.resnets.{i}.""" _a = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _a = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" return w.reshape(*w.shape, 1, 1 ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCamelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) _UpperCamelCase = reshape_weight_for_sd(__snake_case ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _a = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _a = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _a = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _a = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): _UpperCamelCase = k[: -len('''.q_proj.weight''' )] _UpperCamelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): _UpperCamelCase = k[: -len('''.q_proj.bias''' )] _UpperCamelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) return new_state_dict def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return text_enc_dict if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _a = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _a = load_file(unet_path, device="""cpu""") else: _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _a = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _a = load_file(vae_path, device="""cpu""") else: _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _a = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _a = load_file(text_enc_path, device="""cpu""") else: _a = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _a = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _a = convert_unet_state_dict(unet_state_dict) _a = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _a = convert_vae_state_dict(vae_state_dict) _a = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _a = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _a = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _a = convert_text_enc_state_dict_vaa(text_enc_dict) _a = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _a = convert_text_enc_state_dict(text_enc_dict) _a = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _a = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _a = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _a = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
78
1
from __future__ import annotations import os from typing import Any import requests UpperCamelCase__ = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase__ = BASE_URL + '/user' # https://github.com/settings/tokens UpperCamelCase__ = os.environ.get('USER_TOKEN', '') def UpperCamelCase__ ( UpperCAmelCase_ ) -> dict[Any, Any]: '''simple docstring''' _lowercase : Any = { '''Authorization''': F'token {auth_token}', '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
322
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCamelCase__ = parser.parse_args() if args.model_type == "bert": UpperCamelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCamelCase__ = model.state_dict() UpperCamelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase__ = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] UpperCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 UpperCamelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCamelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[F"""cls.predictions.transform.dense.{w}"""] UpperCamelCase__ = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
322
1
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Optional[int] = list(range(len(UpperCamelCase__ ) ) ) UpperCamelCase__ : Optional[int] = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) UpperCamelCase__ : float = 0 UpperCamelCase__ : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: UpperCamelCase__ : int = 1 max_value += value[i] capacity -= weight[i] else: UpperCamelCase__ : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase ={ "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
462
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase__ : Any = logging.get_logger(__name__) def A ( UpperCamelCase_ : bool , UpperCamelCase_ : bool ) -> str: '''simple docstring''' def run_func(UpperCamelCase_ : Dict ): @wraps(__UpperCamelCase ) def run_in_eager_mode(*UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ): return func(*__UpperCamelCase , **__UpperCamelCase ) @wraps(__UpperCamelCase ) @tf.function(experimental_compile=__UpperCamelCase ) def run_in_graph_mode(*UpperCamelCase_ : str , **UpperCamelCase_ : Union[str, Any] ): return func(*__UpperCamelCase , **__UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def A ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = random.Random() lowerCAmelCase__ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :TensorFlowBenchmarkArguments snake_case__ :PretrainedConfig snake_case__ :str = "TensorFlow" @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return tf.__version__ def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowerCAmelCase__ = self._prepare_inference_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_speed(_inference ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowerCAmelCase__ = self._prepare_train_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_speed(_train ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Any ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __magic_name__ ) lowerCAmelCase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowerCAmelCase__ = self._prepare_inference_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_memory(_inference ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : int ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __magic_name__ ) lowerCAmelCase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowerCAmelCase__ = self._prepare_train_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_memory(_train ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) lowerCAmelCase__ = ( hasattr(__magic_name__ , "architectures" ) and isinstance(config.architectures , __magic_name__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase__ = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase__ = __import__("transformers" , fromlist=[model_class] ) lowerCAmelCase__ = getattr(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = model_cls(__magic_name__ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: lowerCAmelCase__ = TF_MODEL_MAPPING[config.__class__](__magic_name__ ) # encoder-decoder has vocab size saved differently lowerCAmelCase__ = config.vocab_size if hasattr(__magic_name__ , "vocab_size" ) else config.encoder.vocab_size lowerCAmelCase__ = random_input_ids(__magic_name__ , __magic_name__ , __magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__magic_name__ , decoder_input_ids=__magic_name__ , training=__magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) lowerCAmelCase__ = ( hasattr(__magic_name__ , "architectures" ) and isinstance(config.architectures , __magic_name__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase__ = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase__ = __import__("transformers" , fromlist=[model_class] ) lowerCAmelCase__ = getattr(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = model_cls(__magic_name__ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: lowerCAmelCase__ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__magic_name__ ) # encoder-decoder has vocab size saved differently lowerCAmelCase__ = config.vocab_size if hasattr(__magic_name__ , "vocab_size" ) else config.encoder.vocab_size lowerCAmelCase__ = random_input_ids(__magic_name__ , __magic_name__ , __magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCAmelCase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ )[0] lowerCAmelCase__ = tf.gradients(__magic_name__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCAmelCase__ = model(__magic_name__ , labels=__magic_name__ , training=__magic_name__ )[0] lowerCAmelCase__ = tf.gradients(__magic_name__ , model.trainable_variables ) return gradients lowerCAmelCase__ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] ): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__magic_name__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCAmelCase__ = timeit.repeat( __magic_name__ , repeat=self.args.repeat , number=10 , ) return min(__magic_name__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : str ): """simple docstring""" logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) lowerCAmelCase__ = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won\'t log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) lowerCAmelCase__ = 'N/A' else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() lowerCAmelCase__ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCAmelCase__ = nvml.nvmlDeviceGetMemoryInfo(__magic_name__ ) lowerCAmelCase__ = meminfo.used lowerCAmelCase__ = Memory(__magic_name__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) lowerCAmelCase__ = None else: lowerCAmelCase__ = measure_peak_memory_cpu(__magic_name__ ) lowerCAmelCase__ = Memory(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCAmelCase__ = stop_memory_tracing(__magic_name__ ) if memory is None: lowerCAmelCase__ = summary.total else: lowerCAmelCase__ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
48
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __lowerCamelCase : Optional[int] = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class A_ (a_ ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ['''input_ids''', '''attention_mask'''] a__ = RobertaTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Optional[Any]="replace" , lowerCAmelCase__ :Dict="<s>" , lowerCAmelCase__ :Optional[int]="</s>" , lowerCAmelCase__ :str="</s>" , lowerCAmelCase__ :Tuple="<s>" , lowerCAmelCase__ :Tuple="<unk>" , lowerCAmelCase__ :Dict="<pad>" , lowerCAmelCase__ :Union[str, Any]="<mask>" , lowerCAmelCase__ :str=False , lowerCAmelCase__ :str=True , **lowerCAmelCase__ :str , ) -> Dict: '''simple docstring''' super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) snake_case_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space: snake_case_ : Any = getattr(lowerCAmelCase__ , pre_tok_state.pop("type" ) ) snake_case_ : List[str] = add_prefix_space snake_case_ : Optional[Any] = pre_tok_class(**lowerCAmelCase__ ) snake_case_ : Tuple = add_prefix_space snake_case_ : List[Any] = "post_processor" snake_case_ : List[str] = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: snake_case_ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : Optional[int] = tuple(state["sep"] ) if "cls" in state: snake_case_ : List[str] = tuple(state["cls"] ) snake_case_ : Any = False if state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space: snake_case_ : List[Any] = add_prefix_space snake_case_ : Optional[int] = True if state.get("trim_offsets" , lowerCAmelCase__ ) != trim_offsets: snake_case_ : Tuple = trim_offsets snake_case_ : Optional[Any] = True if changes_to_apply: snake_case_ : int = getattr(lowerCAmelCase__ , state.pop("type" ) ) snake_case_ : str = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property def _A ( self :List[Any] ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _A ( self :str , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value snake_case_ : Union[str, Any] = value def _A ( self :Optional[Any] , *lowerCAmelCase__ :str , **lowerCAmelCase__ :List[str] ) -> BatchEncoding: '''simple docstring''' snake_case_ : Dict = kwargs.get("is_split_into_words" , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :int , *lowerCAmelCase__ :str , **lowerCAmelCase__ :Any ) -> BatchEncoding: '''simple docstring''' snake_case_ : Any = kwargs.get("is_split_into_words" , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Dict = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def _A ( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=None ) -> List[Any]: '''simple docstring''' snake_case_ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _A ( self :str , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : Union[str, Any] = [self.sep_token_id] snake_case_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
656
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCAmelCase_ ( __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = [] for part_id in partition_order: UpperCAmelCase__ = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(a__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase__ = spark.range(100 ).repartition(1 ) UpperCAmelCase__ = Spark(a__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase__ = spark.range(10 ).repartition(2 ) UpperCAmelCase__ = [1, 0] UpperCAmelCase__ = _generate_iterable_examples(a__, a__ ) # Reverse the partitions. UpperCAmelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(a__, a__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase__ , UpperCAmelCase__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase__ = spark.range(10 ).repartition(1 ) UpperCAmelCase__ = SparkExamplesIterable(a__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(a__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase__ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: UpperCAmelCase__ = lambda __A : x.reverse() UpperCAmelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(a__, [2, 1, 0] ) UpperCAmelCase__ = SparkExamplesIterable(a__ ).shuffle_data_sources(a__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(a__ ): UpperCAmelCase__ , UpperCAmelCase__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase__ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase__ = SparkExamplesIterable(a__ ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(a__, [0, 2] ) for i, (row_id, row_dict) in enumerate(a__ ): UpperCAmelCase__ , UpperCAmelCase__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase__ = SparkExamplesIterable(a__ ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(a__, [1, 3] ) for i, (row_id, row_dict) in enumerate(a__ ): UpperCAmelCase__ , UpperCAmelCase__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCAmelCase__ = spark.range(100 ).repartition(1 ) UpperCAmelCase__ = Spark(a__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
486
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = ["image_processor", "tokenizer"] lowerCAmelCase__ = "CLIPImageProcessor" lowerCAmelCase__ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if images is not None: __SCREAMING_SNAKE_CASE = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None and images is not None: __SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
627
0
"""simple docstring""" import operator as op def __UpperCamelCase ( snake_case__ ): A_ : List[str] = [] A_ : List[str] = lambda snake_case__ , snake_case__ : int(x / y ) # noqa: E731 integer division operation A_ : Tuple = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(UpperCamelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(UpperCamelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ ) else: A_ : int = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ ) A_ : Tuple = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ ) stack.append( str(opr[x](int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(UpperCamelCase__ ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": _lowerCAmelCase = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
715
"""simple docstring""" _lowerCAmelCase = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _lowerCAmelCase = ["a", "b", "c", "d", "e"] def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): A_ : int = start # add current to visited visited.append(snake_case__ ) A_ : Any = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: A_ : Optional[Any] = topological_sort(snake_case__ , snake_case__ , snake_case__ ) # if all neighbors visited add current to sort sort.append(snake_case__ ) # if all vertices haven't been visited select a new one to visit if len(snake_case__ ) != len(snake_case__ ): for vertice in vertices: if vertice not in visited: A_ : Optional[Any] = topological_sort(snake_case__ , snake_case__ , snake_case__ ) # return sort return sort if __name__ == "__main__": _lowerCAmelCase = topological_sort("a", [], []) print(sort)
480
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCamelCase : int = TypeVar('T') class __lowercase (Generic[T] ): """simple docstring""" _snake_case = 42 # Cache store of keys _snake_case = 42 # References of the keys in cache _snake_case = 10 # Maximum capacity of cache def __init__( self , A ) -> None: snake_case : str = deque() snake_case : Optional[Any] = set() if not n: snake_case : List[Any] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: snake_case : str = n def UpperCAmelCase ( self , A ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case : Dict = self.dq_store.pop() self.key_reference.remove(A ) else: self.dq_store.remove(A ) self.dq_store.appendleft(A ) self.key_reference.add(A ) def UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(A ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
587
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: snake_case : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case : set[int] = set() return any( node not in visited and depth_first_search(lowercase ,lowercase ,lowercase ,lowercase ) for node in graph ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> bool: visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase ,lowercase ,lowercase ,lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
587
1
import requests __a = """YOUR API KEY""" def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = giphy_api_key ) ->list: UpperCAmelCase = """+""".join(query.split() ) UpperCAmelCase = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" UpperCAmelCase = requests.get(lowerCAmelCase_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
627
__a = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def _UpperCamelCase ( lowerCAmelCase_ ) ->int: UpperCAmelCase = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0} UpperCAmelCase = 0 UpperCAmelCase = 0 while place < len(lowerCAmelCase_ ): if (place + 1 < len(lowerCAmelCase_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _UpperCamelCase ( lowerCAmelCase_ ) ->str: UpperCAmelCase = [] for arabic, roman in ROMAN: ((UpperCAmelCase) , (UpperCAmelCase)) = divmod(lowerCAmelCase_ , lowerCAmelCase_ ) result.append(roman * factor ) if number == 0: break return "".join(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
627
1
"""simple docstring""" class a : def __init__( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = name _UpperCAmelCase = value _UpperCAmelCase = weight def __repr__( self : str ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def lowerCAmelCase_ ( self : Optional[Any] ): return self.value def lowerCAmelCase_ ( self : Union[str, Any] ): return self.name def lowerCAmelCase_ ( self : List[Any] ): return self.weight def lowerCAmelCase_ ( self : List[str] ): return self.value / self.weight def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] for i in range(len(lowercase ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sorted(lowercase ,key=lowercase ,reverse=lowercase ) _UpperCAmelCase = [] _UpperCAmelCase , _UpperCAmelCase = 0.0, 0.0 for i in range(len(lowercase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
277
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = False ): """simple docstring""" if radian_mode: return [magnitude * cos(lowercase ), magnitude * sin(lowercase )] return [magnitude * cos(radians(lowercase ) ), magnitude * sin(radians(lowercase ) )] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = 10**-1 ): """simple docstring""" _UpperCAmelCase = cross(lowercase ,lowercase ) _UpperCAmelCase = sum(lowercase ) return abs(lowercase ) < eps if __name__ == "__main__": # Test to check if it works UpperCAmelCase__ = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) UpperCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCAmelCase__ = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) UpperCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCAmelCase__ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) UpperCAmelCase__ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
277
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Dict =logging.get_logger(__name__) _UpperCamelCase : int ={ 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class UpperCAmelCase__ ( __snake_case ): __snake_case : Union[str, Any] = "xlm-roberta" def __init__( self ,A__=30522 ,A__=768 ,A__=12 ,A__=12 ,A__=3072 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=512 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=1 ,A__=0 ,A__=2 ,A__="absolute" ,A__=True ,A__=None ,**A__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__ ) _A : Any = vocab_size _A : List[str] = hidden_size _A : Dict = num_hidden_layers _A : str = num_attention_heads _A : Tuple = hidden_act _A : str = intermediate_size _A : Tuple = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Optional[int] = max_position_embeddings _A : int = type_vocab_size _A : Optional[Any] = initializer_range _A : List[str] = layer_norm_eps _A : Union[str, Any] = position_embedding_type _A : List[str] = use_cache _A : int = classifier_dropout class UpperCAmelCase__ ( __snake_case ): @property def A__ ( self ): if self.task == "multiple-choice": _A : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _A : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
332
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase__ ( __snake_case ): __snake_case : Optional[Any] = "M-CLIP" def __init__( self ,A__=1024 ,A__=768 ,**A__ ): _A : Tuple = transformerDimSize _A : Optional[Any] = imageDimSize super().__init__(**A__ ) class UpperCAmelCase__ ( __snake_case ): __snake_case : int = MCLIPConfig def __init__( self ,A__ ,*A__ ,**A__ ): super().__init__(A__ ,*A__ ,**A__ ) _A : Optional[int] = XLMRobertaModel(A__ ) _A : Tuple = torch.nn.Linear( in_features=config.transformerDimensions ,out_features=config.numDims ) def A__ ( self ,A__ ,A__ ): _A : str = self.transformer(input_ids=A__ ,attention_mask=A__ )[0] _A : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A__ ), embs
332
1
def __UpperCAmelCase ( a_ , a_): while b: snake_case_ , snake_case_ = b, a % b return a def __UpperCAmelCase ( a_ , a_): return a if b == 0 else euclidean_gcd_recursive(a_ , a % b) def __UpperCAmelCase ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5)}''') print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3)}''') print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3)}''') print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6)}''') print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3)}''') print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5)}''') print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3)}''') print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3)}''') print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6)}''') print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3)}''') if __name__ == "__main__": main()
198
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase_ : '''simple docstring''' lowerCAmelCase = None lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = None lowerCAmelCase = 1 lowerCAmelCase = None lowerCAmelCase = False lowerCAmelCase = None lowerCAmelCase = None def _UpperCamelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(a ) for k, v in self.__dict__.items()} )
198
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") SCREAMING_SNAKE_CASE : List[str] = {"target_lang": "fi", "source_lang": "en"} SCREAMING_SNAKE_CASE : Optional[int] = ">>zh<<" SCREAMING_SNAKE_CASE : Optional[Any] = "Helsinki-NLP/" if is_torch_available(): SCREAMING_SNAKE_CASE : Tuple = "pt" elif is_tf_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = "tf" else: SCREAMING_SNAKE_CASE : List[str] = "jax" @require_sentencepiece class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : List[Any] =MarianTokenizer lowercase : Any =False lowercase : List[str] =True def UpperCamelCase ( self ): super().setUp() lowercase_ :List[Any] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] lowercase_ :Tuple = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowercase_ :Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) lowercase_ :int = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , **UpperCamelCase_ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): return ( "This is a test", "This is a test", ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = '''</s>''' lowercase_ :str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) lowercase_ :Dict = en_de_tokenizer(['''I am a small frog'''] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Dict = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) lowercase_ :Optional[int] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) lowercase_ :Tuple = [x.name for x in Path(UpperCamelCase_ ).glob('''*''' )] self.assertIn('''source.spm''' , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Tuple = self.get_tokenizer() lowercase_ :int = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def UpperCamelCase ( self ): lowercase_ :Dict = self.get_tokenizer() lowercase_ :Union[str, Any] = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def UpperCamelCase ( self ): # fmt: off lowercase_ :str = {'''input_ids''': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def UpperCamelCase ( self ): lowercase_ :Dict = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) lowercase_ :Optional[int] = '''Tämä on testi''' lowercase_ :Dict = '''This is a test''' lowercase_ :int = [76, 7, 2047, 2] lowercase_ :Union[str, Any] = [69, 12, 11, 940, 2] lowercase_ :Any = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Tuple = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Dict = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
705
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase ( _a , _a=0.999 , _a="cosine" , ) -> Dict: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_a ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase_ :Any = [] for i in range(_a ): lowercase_ :List[str] = i / num_diffusion_timesteps lowercase_ :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_a ) / alpha_bar_fn(_a ) , _a ) ) return torch.tensor(_a , dtype=torch.floataa ) class UpperCamelCase ( lowercase__ , lowercase__ ): '''simple docstring''' lowercase : Tuple =[e.name for e in KarrasDiffusionSchedulers] lowercase : Tuple =2 @register_to_config def __init__( self , UpperCamelCase_ = 1000 , UpperCamelCase_ = 0.0_0085 , UpperCamelCase_ = 0.012 , UpperCamelCase_ = "linear" , UpperCamelCase_ = None , UpperCamelCase_ = "epsilon" , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = 1.0 , UpperCamelCase_ = "linspace" , UpperCamelCase_ = 0 , ): if trained_betas is not None: lowercase_ :int = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase_ :List[str] = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ :int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ :Optional[int] = betas_for_alpha_bar(UpperCamelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": lowercase_ :Dict = betas_for_alpha_bar(UpperCamelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase_ :str = 1.0 - self.betas lowercase_ :Optional[int] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :str = use_karras_sigmas def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ): if schedule_timesteps is None: lowercase_ :List[str] = self.timesteps lowercase_ :int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase_ :Dict = 1 if len(UpperCamelCase_ ) > 1 else 0 else: lowercase_ :Any = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep lowercase_ :Union[str, Any] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , ): lowercase_ :List[str] = self.index_for_timestep(UpperCamelCase_ ) lowercase_ :Optional[Any] = self.sigmas[step_index] lowercase_ :Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): lowercase_ :Optional[Any] = num_inference_steps lowercase_ :Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase_ :Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase_ :Any = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase_ :List[Any] = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase_ :Dict = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase_ :Dict = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase_ :Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase_ :Tuple = np.log(UpperCamelCase_ ) lowercase_ :Dict = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) if self.config.use_karras_sigmas: lowercase_ :int = self._convert_to_karras(in_sigmas=UpperCamelCase_ , num_inference_steps=self.num_inference_steps ) lowercase_ :Optional[int] = np.array([self._sigma_to_t(UpperCamelCase_ , UpperCamelCase_ ) for sigma in sigmas] ) lowercase_ :Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase_ :Optional[int] = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) lowercase_ :Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase_ :Any = torch.from_numpy(UpperCamelCase_ ) lowercase_ :List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase_ ).startswith('''mps''' ): # mps does not support float64 lowercase_ :int = timesteps.to(UpperCamelCase_ , dtype=torch.floataa ) else: lowercase_ :Optional[Any] = timesteps.to(device=UpperCamelCase_ ) # empty dt and derivative lowercase_ :List[str] = None lowercase_ :List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase_ :int = defaultdict(UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): # get log sigma lowercase_ :Union[str, Any] = np.log(UpperCamelCase_ ) # get distribution lowercase_ :Optional[Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase_ :List[Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase_ :str = low_idx + 1 lowercase_ :Any = log_sigmas[low_idx] lowercase_ :int = log_sigmas[high_idx] # interpolate sigmas lowercase_ :Dict = (low - log_sigma) / (low - high) lowercase_ :str = np.clip(UpperCamelCase_ , 0 , 1 ) # transform interpolation to time range lowercase_ :Dict = (1 - w) * low_idx + w * high_idx lowercase_ :int = t.reshape(sigma.shape ) return t def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :float = in_sigmas[-1].item() lowercase_ :float = in_sigmas[0].item() lowercase_ :int = 7.0 # 7.0 is the value used in the paper lowercase_ :Optional[Any] = np.linspace(0 , 1 , UpperCamelCase_ ) lowercase_ :List[str] = sigma_min ** (1 / rho) lowercase_ :List[Any] = sigma_max ** (1 / rho) lowercase_ :Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase ( self ): return self.dt is None def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ): lowercase_ :Any = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 lowercase_ :Any = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase_ :Optional[int] = self.sigmas[step_index] lowercase_ :List[Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase_ :Optional[int] = self.sigmas[step_index - 1] lowercase_ :Dict = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase_ :List[Any] = 0 lowercase_ :List[str] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase_ :Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase_ :List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase_ :Dict = sigma_hat if self.state_in_first_order else sigma_next lowercase_ :Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase_ :List[str] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase_ :str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase_ :Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase_ :Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowercase_ :str = derivative lowercase_ :Union[str, Any] = dt lowercase_ :Optional[int] = sample else: # 2. 2nd order / Heun's method lowercase_ :str = (sample - pred_original_sample) / sigma_next lowercase_ :List[str] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase_ :Union[str, Any] = self.dt lowercase_ :Any = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase_ :List[Any] = None lowercase_ :List[str] = None lowercase_ :Dict = None lowercase_ :int = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase_ :List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 lowercase_ :Optional[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase_ :Tuple = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase_ :Union[str, Any] = self.timesteps.to(original_samples.device ) lowercase_ :int = timesteps.to(original_samples.device ) lowercase_ :int = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] lowercase_ :Tuple = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase_ :List[str] = sigma.unsqueeze(-1 ) lowercase_ :List[str] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
441
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') _UpperCAmelCase : Any = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) _UpperCAmelCase : List[str] = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) _UpperCAmelCase : Tuple = BeautifulSoup(res.text, '''html.parser''') _UpperCAmelCase : Tuple = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
107
from math import isqrt, loga def lowerCamelCase__ ( __A :int ): """simple docstring""" __snake_case = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__A ,__A ): __snake_case = False return [i for i in range(2 ,__A ) if is_prime[i]] def lowerCamelCase__ ( __A :int = 8_0_0_8_0_0 ,__A :int = 8_0_0_8_0_0 ): """simple docstring""" __snake_case = degree * loga(__A ) __snake_case = int(__A ) __snake_case = calculate_prime_numbers(__A ) __snake_case = 0 __snake_case = 0 __snake_case = len(__A ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'{solution() = }')
268
0
"""simple docstring""" def _snake_case ( lowerCamelCase__ : str ) -> list: lowerCamelCase_ : Union[str, Any] =[0] * len(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): # use last results for better performance - dynamic programming lowerCamelCase_ : List[str] =prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowerCamelCase_ : List[str] =prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowerCamelCase_ : str =j return prefix_result def _snake_case ( lowerCamelCase__ : str ) -> int: return max(prefix_function(lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
244
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase__ ( snake_case__ ): _UpperCAmelCase :BigBirdConfig _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True def UpperCAmelCase__ ( self : Union[str, Any] ): super().setup() lowerCamelCase_ : List[Any] =nn.Dense(5 , dtype=self.dtype ) def __call__( self : str , *snake_case__ : Optional[int] , **snake_case__ : List[str] ): lowerCamelCase_ : List[str] =super().__call__(*snake_case__ , **snake_case__ ) lowerCamelCase_ : Any =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase__ ( snake_case__ ): _UpperCAmelCase :str = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) -> Dict: def cross_entropy(lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=None ): lowerCamelCase_ : List[str] =logits.shape[-1] lowerCamelCase_ : Tuple =(labels[..., None] == jnp.arange(lowerCamelCase__ )[None]).astype("f4" ) lowerCamelCase_ : Any =jax.nn.log_softmax(lowerCamelCase__ , axis=-1 ) lowerCamelCase_ : str =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase_ : int =reduction(lowerCamelCase__ ) return loss lowerCamelCase_ : str =partial(lowerCamelCase__ , reduction=jnp.mean ) lowerCamelCase_ : Union[str, Any] =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : int =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : int =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase__ : _UpperCAmelCase :str = "google/bigbird-roberta-base" _UpperCAmelCase :int = 3000 _UpperCAmelCase :int = 10500 _UpperCAmelCase :int = 128 _UpperCAmelCase :int = 3 _UpperCAmelCase :int = 1 _UpperCAmelCase :int = 5 # tx_args _UpperCAmelCase :float = 3e-5 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :int = 20000 _UpperCAmelCase :float = 0.00_95 _UpperCAmelCase :str = "bigbird-roberta-natural-questions" _UpperCAmelCase :str = "training-expt" _UpperCAmelCase :str = "data/nq-training.jsonl" _UpperCAmelCase :str = "data/nq-validation.jsonl" def UpperCAmelCase__ ( self : List[Any] ): os.makedirs(self.base_dir , exist_ok=snake_case__ ) lowerCamelCase_ : List[Any] =os.path.join(self.base_dir , self.save_dir ) lowerCamelCase_ : str =self.batch_size_per_device * jax.device_count() @dataclass class lowercase__ : _UpperCAmelCase :int _UpperCAmelCase :int = 4096 # no dynamic padding on TPUs def __call__( self : int , snake_case__ : str ): lowerCamelCase_ : Any =self.collate_fn(snake_case__ ) lowerCamelCase_ : Tuple =jax.tree_util.tree_map(snake_case__ , snake_case__ ) return batch def UpperCAmelCase__ ( self : Dict , snake_case__ : Any ): lowerCamelCase_ , lowerCamelCase_ : Any =self.fetch_inputs(features["input_ids"] ) lowerCamelCase_ : Optional[int] ={ "input_ids": jnp.array(snake_case__ , dtype=jnp.intaa ), "attention_mask": jnp.array(snake_case__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def UpperCAmelCase__ ( self : List[str] , snake_case__ : list ): lowerCamelCase_ : Dict =[self._fetch_inputs(snake_case__ ) for ids in input_ids] return zip(*snake_case__ ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : list ): lowerCamelCase_ : Any =[1 for _ in range(len(snake_case__ ) )] while len(snake_case__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str=None ) -> Tuple: if seed is not None: lowerCamelCase_ : List[Any] =dataset.shuffle(seed=lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) // batch_size ): lowerCamelCase_ : Any =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase__ ) @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple , **lowerCamelCase__ : int ) -> str: def loss_fn(lowerCamelCase__ : Optional[int] ): lowerCamelCase_ : Any =model_inputs.pop("start_labels" ) lowerCamelCase_ : Dict =model_inputs.pop("end_labels" ) lowerCamelCase_ : Union[str, Any] =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : Optional[Any] =state.apply_fn(**lowerCamelCase__ , params=lowerCamelCase__ , dropout_rng=lowerCamelCase__ , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple =outputs return state.loss_fn( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) lowerCamelCase_ , lowerCamelCase_ : Any =jax.random.split(lowerCamelCase__ ) lowerCamelCase_ : str =jax.value_and_grad(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =grad_fn(state.params ) lowerCamelCase_ : int =jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase_ : Optional[Any] =jax.lax.pmean(lowerCamelCase__ , "batch" ) lowerCamelCase_ : str =state.apply_gradients(grads=lowerCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : int , **lowerCamelCase__ : str ) -> List[str]: lowerCamelCase_ : List[str] =model_inputs.pop("start_labels" ) lowerCamelCase_ : str =model_inputs.pop("end_labels" ) lowerCamelCase_ : int =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : List[Any] =state.apply_fn(**lowerCamelCase__ , params=state.params , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] =outputs lowerCamelCase_ : List[Any] =state.loss_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class lowercase__ ( train_state.TrainState ): _UpperCAmelCase :Callable = struct.field(pytree_node=snake_case__ ) @dataclass class lowercase__ : _UpperCAmelCase :Args _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :wandb _UpperCAmelCase :Callable = None def UpperCAmelCase__ ( self : str , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : List[Any]=None ): lowerCamelCase_ : Union[str, Any] =model.params lowerCamelCase_ : Tuple =TrainState.create( apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , ) if ckpt_dir is not None: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =restore_checkpoint(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] ={ "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase_ , lowerCamelCase_ : List[str] =build_tx(**snake_case__ ) lowerCamelCase_ : str =train_state.TrainState( step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , ) lowerCamelCase_ : Any =args lowerCamelCase_ : Optional[Any] =data_collator lowerCamelCase_ : int =lr lowerCamelCase_ : List[Any] =params lowerCamelCase_ : Tuple =jax_utils.replicate(snake_case__ ) return state def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =self.args lowerCamelCase_ : List[Any] =len(snake_case__ ) // args.batch_size lowerCamelCase_ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase_ : int =jax.random.split(snake_case__ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCamelCase_ : str =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : int =get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ ) lowerCamelCase_ : Any =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"""Running EPOCH-{epoch}""" ): lowerCamelCase_ : Dict =self.data_collator(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: lowerCamelCase_ : int =jax_utils.unreplicate(state.step ) lowerCamelCase_ : Any =running_loss.item() / i lowerCamelCase_ : Tuple =self.scheduler_fn(state_step - 1 ) lowerCamelCase_ : Tuple =self.evaluate(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] ={ "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(snake_case__ ) ) self.logger.log(snake_case__ , commit=snake_case__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=snake_case__ ) def UpperCAmelCase__ ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =get_batched_dataset(snake_case__ , self.args.batch_size ) lowerCamelCase_ : str =len(snake_case__ ) // self.args.batch_size lowerCamelCase_ : int =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : Any =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc="Evaluating ... " ): lowerCamelCase_ : str =self.data_collator(snake_case__ ) lowerCamelCase_ : Tuple =self.val_step_fn(snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def UpperCAmelCase__ ( self : List[str] , snake_case__ : str , snake_case__ : Any ): lowerCamelCase_ : int =jax_utils.unreplicate(snake_case__ ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(snake_case__ , params=state.params ) with open(os.path.join(snake_case__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(snake_case__ , "data_collator.joblib" ) ) with open(os.path.join(snake_case__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , snake_case__ ) print("DONE" ) def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ) -> Dict: print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(lowerCamelCase__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase_ : List[Any] =from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase_ : Tuple =from_bytes(state.opt_state , f.read() ) lowerCamelCase_ : Union[str, Any] =joblib.load(os.path.join(lowerCamelCase__ , "args.joblib" ) ) lowerCamelCase_ : str =joblib.load(os.path.join(lowerCamelCase__ , "data_collator.joblib" ) ) with open(os.path.join(lowerCamelCase__ , "training_state.json" ) , "r" ) as f: lowerCamelCase_ : Union[str, Any] =json.load(lowerCamelCase__ ) lowerCamelCase_ : str =training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] ) -> str: lowerCamelCase_ : Tuple =num_train_steps - warmup_steps lowerCamelCase_ : Any =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=lowerCamelCase__ , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : int =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=1e-7 , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] ) -> List[str]: def weight_decay_mask(lowerCamelCase__ : List[Any] ): lowerCamelCase_ : Any =traverse_util.flatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Tuple ={k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =scheduler_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[str] =optax.adamw(learning_rate=lowerCamelCase__ , weight_decay=lowerCamelCase__ , mask=lowerCamelCase__ ) return tx, lr
244
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowercase__ (unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ): snake_case__ : Tuple = '''hf-internal-testing/tiny-random-t5''' snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained(__a ) snake_case__ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(__a ) snake_case__ : int = tokenizer("""This is me""" , return_tensors="""pt""" ) snake_case__ : Dict = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case__ : Optional[int] = model.generate(**__a ) snake_case__ : int = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) snake_case__ : Dict = AutoModelForSeqaSeqLM.from_pretrained(__a ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case__ : Union[str, Any] = model_reloaded.generate(**__a ) self.assertTrue(torch.allclose(__a , __a ) ) def lowercase ( self : str ): snake_case__ : List[str] = '''hf-internal-testing/tiny-random-t5''' snake_case__ : int = AutoModelForSeqaSeqLM.from_pretrained(__a ) snake_case__ : Any = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__a ): model.save_pretrained(__a ) snake_case__ : List[str] = model.reverse_bettertransformer() model.save_pretrained(__a )
648
from random import randint from tempfile import TemporaryFile import numpy as np def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Tuple = 0 if start < end: lowerCamelCase__ : Dict = randint(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = a[end] lowerCamelCase__ : str = a[pivot] lowerCamelCase__ : str = temp lowerCamelCase__ , lowerCamelCase__ : Tuple = _in_place_partition(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) count += _in_place_quick_sort(UpperCAmelCase , UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(UpperCAmelCase , p + 1 , UpperCAmelCase ) return count def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Any = randint(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = a[end] lowerCamelCase__ : List[str] = a[pivot] lowerCamelCase__ : Dict = temp lowerCamelCase__ : Tuple = start - 1 for index in range(UpperCAmelCase , UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCamelCase__ : Union[str, Any] = new_pivot_index + 1 lowerCamelCase__ : Dict = a[new_pivot_index] lowerCamelCase__ : Tuple = a[index] lowerCamelCase__ : Dict = temp lowerCamelCase__ : List[Any] = a[new_pivot_index + 1] lowerCamelCase__ : Any = a[end] lowerCamelCase__ : Optional[int] = temp return new_pivot_index + 1, count _A : int = TemporaryFile() _A : Dict = 1_00 # 1000 elements are to be sorted _A , _A : List[Any] = 0, 1 # mean and standard deviation _A : Union[str, Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array _A : Union[str, Any] = np.load(outfile) _A : Optional[Any] = len(M) - 1 _A : Optional[Any] = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
315
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCAmelCase_ = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) UpperCAmelCase_ = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) UpperCAmelCase_ = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) UpperCAmelCase_ = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) UpperCAmelCase_ = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) UpperCAmelCase_ = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) UpperCAmelCase_ = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) UpperCAmelCase_ = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) UpperCAmelCase_ = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) UpperCAmelCase_ = key.replace('''image_encoder.module''' , '''flava.image_model''' ) UpperCAmelCase_ = key.replace('''text_encoder.module''' , '''flava.text_model''' ) UpperCAmelCase_ = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) UpperCAmelCase_ = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) UpperCAmelCase_ = key.replace('''text_projection''' , '''flava.text_projection''' ) UpperCAmelCase_ = key.replace('''image_projection''' , '''flava.image_projection''' ) UpperCAmelCase_ = value.float() for key, value in codebook_state_dict.items(): UpperCAmelCase_ = value return upgrade @torch.no_grad() def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = FlavaConfig.from_pretrained(__UpperCAmelCase ) else: UpperCAmelCase_ = FlavaConfig() UpperCAmelCase_ = FlavaForPreTraining(__UpperCAmelCase ).eval() UpperCAmelCase_ = convert_dalle_checkpoint(__UpperCAmelCase , __UpperCAmelCase , save_checkpoint=__UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ): UpperCAmelCase_ = torch.load(__UpperCAmelCase , map_location='''cpu''' ) else: UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' ) UpperCAmelCase_ = upgrade_state_dict(__UpperCAmelCase , __UpperCAmelCase ) hf_model.load_state_dict(__UpperCAmelCase ) UpperCAmelCase_ = hf_model.state_dict() UpperCAmelCase_ = count_parameters(__UpperCAmelCase ) UpperCAmelCase_ = count_parameters(__UpperCAmelCase ) + count_parameters(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) hf_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
561
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase_ = logging.get_logger(__name__) def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase_ = json.loads(__UpperCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase_ = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase_ = json.loads(__UpperCAmelCase ) if not mpi_options.get('''sagemaker_mpi_enabled''' , __UpperCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a_ ( _snake_case ): UpperCamelCase__ : str =field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def __a ( self :List[Any]) -> int: super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , _lowercase , ) @cached_property def __a ( self :List[Any]) -> "torch.device": logger.info('''PyTorch: setting up devices''') if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''') if self.no_cuda: UpperCAmelCase_ = torch.device('''cpu''') UpperCAmelCase_ = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase_ = smp.local_rank() UpperCAmelCase_ = torch.device('''cuda''' , _lowercase) UpperCAmelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta) UpperCAmelCase_ = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''')) UpperCAmelCase_ = torch.device('''cuda''' , self.local_rank) UpperCAmelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''') # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta) UpperCAmelCase_ = torch.device('''cuda''' , self.local_rank) UpperCAmelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(_lowercase) return device @property def __a ( self :str) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __a ( self :Optional[Any]) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def __a ( self :List[str]) -> List[Any]: return False
561
1
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : int ): if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate lowerCamelCase_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowerCamelCase_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
675
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class snake_case ( pl.LightningModule ): """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" super().__init__() lowerCamelCase_ = model lowerCamelCase_ = 2 lowerCamelCase_ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case ( self ): """simple docstring""" pass def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): # load longformer model from model identifier lowerCamelCase_ = LongformerModel.from_pretrained(UpperCAmelCase_ ) lowerCamelCase_ = LightningModel(UpperCAmelCase_ ) lowerCamelCase_ = torch.load(UpperCAmelCase_ , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model lowerCamelCase_ = LongformerForQuestionAnswering.from_pretrained(UpperCAmelCase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCAmelCase_ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a_ : Tuple = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
675
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['MaskFormerFeatureExtractor'] lowerCAmelCase__ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] lowerCAmelCase__ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
712
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Tuple = GPTaTokenizer snake_case__ : str = GPTaTokenizerFast snake_case__ : Union[str, Any] = True snake_case__ : Dict = {"add_prefix_space": True} snake_case__ : Any = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _lowerCamelCase : Union[str, Any] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCamelCase : List[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **__lowerCAmelCase : Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''lower newer''' _lowerCamelCase : Any = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Any = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Any = '''lower newer''' _lowerCamelCase : Dict = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = tokens + [tokenizer.unk_token] _lowerCamelCase : List[str] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : int = '''lower newer''' # Testing tokenization _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens _lowerCamelCase : str = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Dict = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing the unknown token _lowerCamelCase : int = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : List[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any]=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input _lowerCamelCase : Tuple = '''This is a simple input''' _lowerCamelCase : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : Tuple = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _lowerCamelCase : List[str] = '''This is a simple input''' _lowerCamelCase : int = ['''This is a simple input looooooooong''', '''This is a simple input'''] _lowerCamelCase : int = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : int = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _lowerCamelCase : Tuple = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _lowerCamelCase : Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) _lowerCamelCase : List[Any] = tokenizer(*__lowerCAmelCase , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _lowerCamelCase : Optional[Any] = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''$$$''' _lowerCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCAmelCase , add_bos_token=__lowerCAmelCase ) _lowerCamelCase : Any = '''This is a simple input''' _lowerCamelCase : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = tokenizer(__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : Any = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = [self.get_tokenizer(do_lower_case=__lowerCAmelCase , add_bos_token=__lowerCAmelCase )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _lowerCamelCase : str = '''Encode this.''' _lowerCamelCase : Optional[Any] = '''This one too please.''' _lowerCamelCase : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) encoded_sequence += tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode_plus( __lowerCAmelCase , __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , ) _lowerCamelCase : str = encoded_sequence_dict['''input_ids'''] _lowerCamelCase : List[Any] = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) _lowerCamelCase : Any = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCAmelCase ) ] _lowerCamelCase : List[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_tokenizers class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Tuple = '''A photo of a cat''' _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''test_opt''' ) _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('''./test_opt''' ) _lowerCamelCase : Optional[int] = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=__lowerCAmelCase ) _lowerCamelCase : Tuple = '''A photo of a cat''' _lowerCamelCase : List[str] = tokenizer.encode( __lowerCAmelCase , ) # Same as above self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = '''bos''' _lowerCamelCase : Optional[Any] = tokenizer.get_vocab()['''bos'''] _lowerCamelCase : Any = '''A photo of a cat''' _lowerCamelCase : int = tokenizer.encode( __lowerCAmelCase , ) # We changed the bos token self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''./tok''' ) _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
598
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _lowerCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _lowerCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] _lowerCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} _lowerCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | None: '''simple docstring''' _lowerCamelCase : str = "" _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int for keychar, cipherchar in zip(cycle(_lowerCamelCase ) , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowerCamelCase ) return decoded def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : list[str] = [] for key in product(_lowerCamelCase , repeat=3 ): _lowerCamelCase : int = try_key(_lowerCamelCase , _lowerCamelCase ) if encoded is not None: possibles.append(_lowerCamelCase ) return possibles def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def lowerCamelCase_( _lowerCamelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' _lowerCamelCase : list[int] _lowerCamelCase : list[str] _lowerCamelCase : str _lowerCamelCase : str _lowerCamelCase : str = Path(_lowerCamelCase ).parent.joinpath(_lowerCamelCase ).read_text(encoding="utf-8" ) _lowerCamelCase : Optional[int] = [int(_lowerCamelCase ) for number in data.strip().split("," )] _lowerCamelCase : List[Any] = filter_valid_chars(_lowerCamelCase ) for common_word in COMMON_WORDS: _lowerCamelCase : Union[str, Any] = filter_common_word(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) == 1: break _lowerCamelCase : List[str] = possibles[0] return sum(ord(_lowerCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
46
'''simple docstring''' def A__ ( A : int , A : int): '''simple docstring''' return int((input_a, input_a).count(0) != 0) def A__ ( ): '''simple docstring''' assert nand_gate(0 , 0) == 1 assert nand_gate(0 , 1) == 1 assert nand_gate(1 , 0) == 1 assert nand_gate(1 , 1) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
173
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE_ : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: SCREAMING_SNAKE_CASE = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(lowerCAmelCase__ , {'sequence': ANY(lowerCAmelCase__ ), 'labels': [ANY(lowerCAmelCase__ )], 'scores': [ANY(lowerCAmelCase__ )]} ) # No kwarg SCREAMING_SNAKE_CASE = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(lowerCAmelCase__ , {'sequence': ANY(lowerCAmelCase__ ), 'labels': [ANY(lowerCAmelCase__ )], 'scores': [ANY(lowerCAmelCase__ )]} ) SCREAMING_SNAKE_CASE = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(lowerCAmelCase__ , {'sequence': ANY(lowerCAmelCase__ ), 'labels': [ANY(lowerCAmelCase__ )], 'scores': [ANY(lowerCAmelCase__ )]} ) SCREAMING_SNAKE_CASE = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( lowerCAmelCase__ , {'sequence': ANY(lowerCAmelCase__ ), 'labels': [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], 'scores': [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) SCREAMING_SNAKE_CASE = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( lowerCAmelCase__ , {'sequence': ANY(lowerCAmelCase__ ), 'labels': [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], 'scores': [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) SCREAMING_SNAKE_CASE = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(lowerCAmelCase__ , {'sequence': ANY(lowerCAmelCase__ ), 'labels': [ANY(lowerCAmelCase__ )], 'scores': [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 SCREAMING_SNAKE_CASE = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( lowerCAmelCase__ , [ {'sequence': ANY(lowerCAmelCase__ ), 'labels': [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], 'scores': [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) SCREAMING_SNAKE_CASE = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( lowerCAmelCase__ , [ {'sequence': ANY(lowerCAmelCase__ ), 'labels': [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], 'scores': [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier('' , candidate_labels='politics' ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels='politics' ) with self.assertRaises(lowerCAmelCase__ ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(lowerCAmelCase__ ): classifier('Who are you voting for in 2020?' , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(lowerCAmelCase__ ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> str: SCREAMING_SNAKE_CASE = zero_shot_classifier.model.config SCREAMING_SNAKE_CASE = config.labelaid SCREAMING_SNAKE_CASE = zero_shot_classifier.entailment_id SCREAMING_SNAKE_CASE = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) SCREAMING_SNAKE_CASE = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) SCREAMING_SNAKE_CASE = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def __A ( self ) -> str: SCREAMING_SNAKE_CASE = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) SCREAMING_SNAKE_CASE = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) SCREAMING_SNAKE_CASE = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) SCREAMING_SNAKE_CASE = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) SCREAMING_SNAKE_CASE = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def __A ( self ) -> str: SCREAMING_SNAKE_CASE = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) SCREAMING_SNAKE_CASE = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) SCREAMING_SNAKE_CASE = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
714
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''google/rembert''': 256, } __UpperCamelCase = '''▁''' class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = RemBertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , **lowerCAmelCase__ , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
327
0
from __future__ import annotations def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : str ): """simple docstring""" A_ , A_ = set(__UpperCamelCase ), [start] while stack: A_ = stack.pop() explored.add(__UpperCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__UpperCamelCase ) return explored __a :str = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
86
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __a :List[Any] = get_logger() __a :Optional[dict] = None class _a ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self : str , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[Any] ): super().__init__(features=UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(UpperCAmelCase )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) A_ = device if isinstance(UpperCAmelCase , UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) A_ = str(jax.devices()[0] ) A_ = jnp_array_kwargs @staticmethod def __A ( ): import jax return {str(UpperCAmelCase ): device for device in jax.devices()} def __A ( self : Optional[int] , UpperCAmelCase : int ): import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCAmelCase , axis=0 ) return column def __A ( self : List[str] , UpperCAmelCase : str ): import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A_ = {} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A_ = {"dtype": jnp.intaa} else: A_ = {"dtype": jnp.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): A_ = np.asarray(UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def __A ( self : Any , UpperCAmelCase : Dict ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCAmelCase , "__array__" ) and not isinstance(UpperCAmelCase , jax.Array ): A_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : dict ): return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def __A ( self : Dict , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) A_ = self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def __A ( self : Any , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) A_ = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) A_ = self.recursive_tensorize(UpperCAmelCase ) A_ = self._consolidate(UpperCAmelCase ) return column def __A ( self : Dict , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) A_ = self.python_features_decoder.decode_batch(UpperCAmelCase ) A_ = self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: A_ = self._consolidate(batch[column_name] ) return batch
86
1
def lowerCAmelCase ( snake_case__ : list )-> list: def merge(snake_case__ : list , snake_case__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection A_ = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() __magic_name__ : Dict = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
608
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase ( snake_case__ : int = 3 )-> qiskit.result.counts.Counts: if isinstance(snake_case__ , snake_case__ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(snake_case__ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) A_ = QuantumRegister(snake_case__ , "qr" ) A_ = ClassicalRegister(snake_case__ , "cr" ) A_ = QuantumCircuit(snake_case__ , snake_case__ ) A_ = number_of_qubits for i in range(snake_case__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case__ , snake_case__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case__ , snake_case__ ) # simulate with 10000 shots A_ = Aer.get_backend("qasm_simulator" ) A_ = execute(snake_case__ , snake_case__ , shots=10000 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
608
1
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a : Tuple = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE = 101 ) -> int: """simple docstring""" UpperCamelCase = length def __len__( self ) -> int: """simple docstring""" return self.length def __getitem__( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return i class __UpperCAmelCase : """simple docstring""" def __call__( self , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return {"input_ids": torch.tensor(SCREAMING_SNAKE_CASE ), "labels": torch.tensor(SCREAMING_SNAKE_CASE )} class __UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self ) -> Optional[Any]: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(120 , 80 ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __UpperCAmelCase ( snake_case__ ): """simple docstring""" @require_torch_neuroncore def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'''--output_dir {output_dir}'''.split() UpperCamelCase = ["torchrun"] + distributed_args + args execute_subprocess_async(SCREAMING_SNAKE_CASE , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __UpperCAmelCase ( snake_case__ ): """simple docstring""" @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'''--output_dir {output_dir}'''.split() UpperCamelCase = ["torchrun"] + distributed_args + args execute_subprocess_async(SCREAMING_SNAKE_CASE , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a : Optional[Any] = HfArgumentParser((TrainingArguments,)) __a : Optional[int] = parser.parse_args_into_dataclasses()[0] logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' F'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: __a : Optional[Any] = DummyDataset(dataset_length) def __magic_name__ ( lowercase_ ) -> Dict: '''simple docstring''' UpperCamelCase = list(range(len(lowercase_ ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a : int = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a : Optional[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a : Optional[Any] = 2 __a : Dict = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a : int = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a : List[Any] = None
606
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """naver-clova-ix/donut-base-finetuned-docvqa""" lowercase = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase = """document_qa""" lowercase = AutoProcessor lowercase = VisionEncoderDecoderModel lowercase = ["""image""", """text"""] lowercase = ["""text"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" UpperCamelCase = task_prompt.replace("{user_input}" , SCREAMING_SNAKE_CASE ) UpperCamelCase = self.pre_processor.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_ids UpperCamelCase = self.pre_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE , ).sequences def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE )[0] UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) UpperCamelCase = re.sub(R"<.*?>" , "" , SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token UpperCamelCase = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE ) return sequence["answer"]
606
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) __SCREAMING_SNAKE_CASE : Dict = { "input_ids": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ )["last_hidden_state"] __SCREAMING_SNAKE_CASE : Dict = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , a__ ) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
708
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # use last results for better performance - dynamic programming __SCREAMING_SNAKE_CASE : Optional[int] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __SCREAMING_SNAKE_CASE : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __SCREAMING_SNAKE_CASE : List[Any] = j return prefix_result def __A ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" return max(prefix_function(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod()
564
0
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = 8 # DPR tok SCREAMING_SNAKE_CASE : int = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = os.path.join(lowerCamelCase_ , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok SCREAMING_SNAKE_CASE : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE : Tuple = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE : Optional[Any] = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = os.path.join(lowerCamelCase_ , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE : Any = os.path.join(lowerCamelCase_ , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , """rag_tokenizer""" ) SCREAMING_SNAKE_CASE : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) SCREAMING_SNAKE_CASE : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase_ ) rag_tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = RagTokenizer.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) SCREAMING_SNAKE_CASE : List[str] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] SCREAMING_SNAKE_CASE : Tuple = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) SCREAMING_SNAKE_CASE : List[str] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] SCREAMING_SNAKE_CASE : str = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
379
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''donut-swin''' SCREAMING_SNAKE_CASE__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , lowerCamelCase_ : Union[str, Any]=2_24 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : Dict=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Optional[Any]=[3, 6, 12, 24] , lowerCamelCase_ : List[str]=7 , lowerCamelCase_ : List[str]=4.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : Any=1e-5 , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Dict = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE : Optional[int] = depths SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = num_heads SCREAMING_SNAKE_CASE : Optional[int] = window_size SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE : Dict = qkv_bias SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = drop_path_rate SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : str = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
379
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Optional[Any] ) -> Dict: '''simple docstring''' if gpta_config_file == "": lowerCAmelCase__ = GPTaConfig() else: lowerCAmelCase__ = GPTaConfig.from_json_file(lowercase__ ) lowerCAmelCase__ = GPTaModel(lowercase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowercase__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _UpperCAmelCase : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
288
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _UpperCAmelCase : Optional[Any] = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
288
1
import re def UpperCAmelCase__( __UpperCAmelCase : str ): if len(re.findall('[ATCG]' , __UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
576
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) __UpperCAmelCase = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) __snake_case : Dict = import_module('tasks' ) try: __snake_case : Tuple = getattr(__UpperCAmelCase , model_args.task_type ) __snake_case : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __snake_case : Optional[int] = token_classification_task.get_labels(data_args.labels ) __snake_case : Dict[int, str] = dict(enumerate(__UpperCAmelCase ) ) __snake_case : List[Any] = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid={label: i for i, label in enumerate(__UpperCAmelCase )} , cache_dir=model_args.cache_dir , ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __snake_case : Any = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets __snake_case : List[Any] = ( TokenClassificationDataset( token_classification_task=__UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=__UpperCAmelCase , labels=__UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __snake_case : Dict = ( TokenClassificationDataset( token_classification_task=__UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=__UpperCAmelCase , labels=__UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray ) -> Tuple[List[int], List[int]]: __snake_case : Optional[Any] = np.argmax(__UpperCAmelCase , axis=2 ) __snake_case , __snake_case : Optional[Any] = preds.shape __snake_case : Dict = [[] for _ in range(__UpperCAmelCase )] __snake_case : Optional[Any] = [[] for _ in range(__UpperCAmelCase )] for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__UpperCAmelCase : EvalPrediction ) -> Dict: __snake_case , __snake_case : Union[str, Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__UpperCAmelCase , __UpperCAmelCase ), "precision": precision_score(__UpperCAmelCase , __UpperCAmelCase ), "recall": recall_score(__UpperCAmelCase , __UpperCAmelCase ), "f1": fa_score(__UpperCAmelCase , __UpperCAmelCase ), } # Data collator __snake_case : List[str] = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __snake_case : Dict = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : int = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : str = trainer.evaluate() __snake_case : Optional[int] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , __UpperCAmelCase , __UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(__UpperCAmelCase ) # Predict if training_args.do_predict: __snake_case : Optional[int] = TokenClassificationDataset( token_classification_task=__UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=__UpperCAmelCase , labels=__UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __snake_case , __snake_case , __snake_case : Optional[int] = trainer.predict(__UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = align_predictions(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : List[Any] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , __UpperCAmelCase , __UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions __snake_case : Tuple = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return results def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
576
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self , lowercase , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=10 , lowercase=[8, 16, 32, 64] , lowercase=[1, 1, 2, 1] , lowercase=True , lowercase=True , lowercase="relu" , lowercase=3 , lowercase=None , lowercase=["stage2", "stage3", "stage4"] , lowercase=[2, 3, 4] , lowercase=1 , ) -> Optional[int]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = embeddings_size lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_act lowerCAmelCase = num_labels lowerCAmelCase = scope lowerCAmelCase = len(_lowercase ) lowerCAmelCase = out_features lowerCAmelCase = out_indices lowerCAmelCase = num_groups def _snake_case ( self ) -> Dict: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self ) -> Optional[int]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = BitModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase = model(_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Any: lowerCAmelCase = self.num_labels lowerCAmelCase = BitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> int: lowerCAmelCase = BitBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase = None lowerCAmelCase = BitBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = BitModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def _snake_case ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ) -> int: return @unittest.skip(reason="""Bit does not output attentions""" ) def _snake_case ( self ) -> int: pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def _snake_case ( self ) -> str: pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def _snake_case ( self ) -> Tuple: pass def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_lowercase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(config=_lowercase ) for name, module in model.named_modules(): if isinstance(_lowercase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _snake_case ( self ) -> str: def check_hidden_states_output(lowercase , lowercase , lowercase ): lowerCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase = layer_type lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def _snake_case ( self ) -> int: pass def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def _snake_case ( self ) -> Optional[Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = BitModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> List[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowercase ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**_lowercase ) # verify the logits lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) lowerCAmelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) ) @require_torch class lowercase ( UpperCAmelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (BitBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = BitConfig _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = BitModelTester(self )
703
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self , lowercase = 2_000 , lowercase = 0.15 , lowercase = 0.01 , lowercase = 1_348.0 , lowercase = 1e-5 , lowercase = 1 , ) -> List[Any]: # standard deviation of the initial noise distribution lowerCAmelCase = sigma_max # setable values lowerCAmelCase = None self.set_sigmas(lowercase , lowercase , lowercase , lowercase ) def _snake_case ( self , lowercase , lowercase = None ) -> torch.FloatTensor: return sample def _snake_case ( self , lowercase , lowercase = None , lowercase = None ) -> Union[str, Any]: lowerCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase = torch.linspace(1 , lowercase , lowercase , device=lowercase ) def _snake_case ( self , lowercase , lowercase = None , lowercase = None , lowercase = None ) -> Dict: lowerCAmelCase = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowercase , lowercase ) lowerCAmelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase = torch.exp(torch.linspace(math.log(lowercase ) , math.log(lowercase ) , lowercase ) ) lowerCAmelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _snake_case ( self , lowercase , lowercase ) -> Dict: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) lowerCAmelCase = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase = self.get_adjacent_sigma(lowercase , lowercase ).to(sample.device ) lowerCAmelCase = torch.zeros_like(lowercase ) lowerCAmelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase = diffusion.unsqueeze(-1 ) lowerCAmelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase = randn_tensor( sample.shape , layout=sample.layout , generator=lowercase , device=sample.device , dtype=sample.dtype ) lowerCAmelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowercase , prev_sample_mean=lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase = None , lowercase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase = randn_tensor(sample.shape , layout=sample.layout , generator=lowercase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase = step_size.unsqueeze(-1 ) lowerCAmelCase = sample + step_size * model_output lowerCAmelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase = timesteps.to(original_samples.device ) lowerCAmelCase = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowercase ) * sigmas[:, None, None, None] ) lowerCAmelCase = noise + original_samples return noisy_samples def __len__( self ) -> int: return self.config.num_train_timesteps
393
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Union[str, Any] = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCAmelCase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
347
def lowercase__ ( __snake_case : list , __snake_case : list ): '''simple docstring''' _validate_point(__snake_case ) _validate_point(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__snake_case , __snake_case ) ) ) def lowercase__ ( __snake_case : list[float] ): '''simple docstring''' if point: if isinstance(__snake_case , __snake_case ): for item in point: if not isinstance(__snake_case , (int, float) ): UpperCAmelCase_ : Optional[int] = ( 'Expected a list of numbers as input, found ' F"{type(__snake_case ).__name__}" ) raise TypeError(__snake_case ) else: UpperCAmelCase_ : int = F"Expected a list of numbers as input, found {type(__snake_case ).__name__}" raise TypeError(__snake_case ) else: raise ValueError('Missing an input' ) def lowercase__ ( __snake_case : list , __snake_case : list ): '''simple docstring''' _validate_point(__snake_case ) _validate_point(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__snake_case , __snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
406
0
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : List[str] ): lowercase__ : Tuple = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase__ : str = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } lowercase__ : str = f'''{src_lang}-{tgt_lang}''' lowercase__ : Optional[Any] = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowercase__ : Dict = os.path.join(lowerCamelCase__ , """README.md""" ) print(f'''Generating {path}''' ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case = Path(__file__).resolve().parent.parent.parent __snake_case = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
128
"""simple docstring""" import heapq def _lowerCamelCase ( lowerCamelCase__ : dict ): lowercase__ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase__ : Any = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase__ : Optional[Any] = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase__ : List[Any] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __snake_case = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
128
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowercase : int , lowercase : int , lowercase : int , lowercase : Union[str, Any]=0.0 , lowercase : Optional[int] = None , lowercase : str = "geglu" , lowercase : Optional[int] = None , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , lowercase : bool = True , lowercase : str = "layer_norm" , lowercase : bool = False , ): '''simple docstring''' super().__init__() _snake_case = only_cross_attention _snake_case = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' _snake_case = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _snake_case = AdaLayerNorm(lowercase , lowercase ) elif self.use_ada_layer_norm_zero: _snake_case = AdaLayerNormZero(lowercase , lowercase ) else: _snake_case = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) _snake_case = Attention( query_dim=lowercase , heads=lowercase , dim_head=lowercase , dropout=lowercase , bias=lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _snake_case = ( AdaLayerNorm(lowercase , lowercase ) if self.use_ada_layer_norm else nn.LayerNorm(lowercase , elementwise_affine=lowercase ) ) _snake_case = Attention( query_dim=lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowercase , dim_head=lowercase , dropout=lowercase , bias=lowercase , upcast_attention=lowercase , ) # is self-attn if encoder_hidden_states is none else: _snake_case = None _snake_case = None # 3. Feed-forward _snake_case = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) _snake_case = FeedForward(lowercase , dropout=lowercase , activation_fn=lowercase , final_dropout=lowercase ) # let chunk size default to None _snake_case = None _snake_case = 0 def A ( self : int , lowercase : Optional[int] , lowercase : int ): '''simple docstring''' _snake_case = chunk_size _snake_case = dim def A ( self : Any , lowercase : torch.FloatTensor , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Dict[str, Any] = None , lowercase : Optional[torch.LongTensor] = None , ): '''simple docstring''' if self.use_ada_layer_norm: _snake_case = self.norma(lowercase , lowercase ) elif self.use_ada_layer_norm_zero: _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.norma( lowercase , lowercase , lowercase , hidden_dtype=hidden_states.dtype ) else: _snake_case = self.norma(lowercase ) _snake_case = cross_attention_kwargs if cross_attention_kwargs is not None else {} _snake_case = self.attna( lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowercase , **lowercase , ) if self.use_ada_layer_norm_zero: _snake_case = gate_msa.unsqueeze(1 ) * attn_output _snake_case = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _snake_case = ( self.norma(lowercase , lowercase ) if self.use_ada_layer_norm else self.norma(lowercase ) ) _snake_case = self.attna( lowercase , encoder_hidden_states=lowercase , attention_mask=lowercase , **lowercase , ) _snake_case = attn_output + hidden_states # 3. Feed-forward _snake_case = self.norma(lowercase ) if self.use_ada_layer_norm_zero: _snake_case = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) _snake_case = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _snake_case = torch.cat( [self.ff(lowercase ) for hid_slice in norm_hidden_states.chunk(lowercase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _snake_case = self.ff(lowercase ) if self.use_ada_layer_norm_zero: _snake_case = gate_mlp.unsqueeze(1 ) * ff_output _snake_case = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : Optional[int] = None , lowercase : int = 4 , lowercase : float = 0.0 , lowercase : str = "geglu" , lowercase : bool = False , ): '''simple docstring''' super().__init__() _snake_case = int(dim * mult ) _snake_case = dim_out if dim_out is not None else dim if activation_fn == "gelu": _snake_case = GELU(lowercase , lowercase ) if activation_fn == "gelu-approximate": _snake_case = GELU(lowercase , lowercase , approximate='tanh' ) elif activation_fn == "geglu": _snake_case = GEGLU(lowercase , lowercase ) elif activation_fn == "geglu-approximate": _snake_case = ApproximateGELU(lowercase , lowercase ) _snake_case = nn.ModuleList([] ) # project in self.net.append(lowercase ) # project dropout self.net.append(nn.Dropout(lowercase ) ) # project out self.net.append(nn.Linear(lowercase , lowercase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowercase ) ) def A ( self : Optional[Any] , lowercase : Union[str, Any] ): '''simple docstring''' for module in self.net: _snake_case = module(lowercase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : str = "none" ): '''simple docstring''' super().__init__() _snake_case = nn.Linear(lowercase , lowercase ) _snake_case = approximate def A ( self : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowercase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def A ( self : List[Any] , lowercase : List[Any] ): '''simple docstring''' _snake_case = self.proj(lowercase ) _snake_case = self.gelu(lowercase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int , lowercase : int ): '''simple docstring''' super().__init__() _snake_case = nn.Linear(lowercase , dim_out * 2 ) def A ( self : str , lowercase : int ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowercase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def A ( self : List[Any] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case = self.proj(lowercase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowercase ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowercase : int , lowercase : int ): '''simple docstring''' super().__init__() _snake_case = nn.Linear(lowercase , lowercase ) def A ( self : Tuple , lowercase : Dict ): '''simple docstring''' _snake_case = self.proj(lowercase ) return x * torch.sigmoid(1.702 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' super().__init__() _snake_case = nn.Embedding(lowercase , lowercase ) _snake_case = nn.SiLU() _snake_case = nn.Linear(lowercase , embedding_dim * 2 ) _snake_case = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = self.linear(self.silu(self.emb(lowercase ) ) ) _snake_case , _snake_case = torch.chunk(lowercase , 2 ) _snake_case = self.norm(lowercase ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase : Any , lowercase : str ): '''simple docstring''' super().__init__() _snake_case = CombinedTimestepLabelEmbeddings(lowercase , lowercase ) _snake_case = nn.SiLU() _snake_case = nn.Linear(lowercase , 6 * embedding_dim , bias=lowercase ) _snake_case = nn.LayerNorm(lowercase , elementwise_affine=lowercase , eps=1E-6 ) def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : Dict=None ): '''simple docstring''' _snake_case = self.linear(self.silu(self.emb(lowercase , lowercase , hidden_dtype=lowercase ) ) ) _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = emb.chunk(6 , dim=1 ) _snake_case = self.norm(lowercase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : int , lowercase : int , lowercase : Optional[str] = None , lowercase : float = 1E-5 ): '''simple docstring''' super().__init__() _snake_case = num_groups _snake_case = eps if act_fn is None: _snake_case = None else: _snake_case = get_activation(lowercase ) _snake_case = nn.Linear(lowercase , out_dim * 2 ) def A ( self : Optional[Any] , lowercase : Tuple , lowercase : List[Any] ): '''simple docstring''' if self.act: _snake_case = self.act(lowercase ) _snake_case = self.linear(lowercase ) _snake_case = emb[:, :, None, None] _snake_case , _snake_case = emb.chunk(2 , dim=1 ) _snake_case = F.group_norm(lowercase , self.num_groups , eps=self.eps ) _snake_case = x * (1 + scale) + shift return x
686
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
1
'''simple docstring''' import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = botoa.client("""iam""" ) UpperCamelCase__ = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A , AssumeRolePolicyDocument=json.dumps(_A , indent=2 ) ) UpperCamelCase__ = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(_A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = botoa.client("""iam""" ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , _A , ) UpperCamelCase__ = None if credentials_configuration == 0: UpperCamelCase__ = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) UpperCamelCase__ = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) UpperCamelCase__ = _ask_field("""AWS Access Key ID: """ ) UpperCamelCase__ = aws_access_key_id UpperCamelCase__ = _ask_field("""AWS Secret Access Key: """ ) UpperCamelCase__ = aws_secret_access_key UpperCamelCase__ = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) UpperCamelCase__ = aws_region UpperCamelCase__ = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , _A , ) if role_management == 0: UpperCamelCase__ = _ask_field("""Enter your IAM role name: """ ) else: UpperCamelCase__ = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(_A ) UpperCamelCase__ = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) UpperCamelCase__ = None if is_custom_docker_image: UpperCamelCase__ = _ask_field("""Enter your Docker image: """ , lambda _A : str(_A ).lower() ) UpperCamelCase__ = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) UpperCamelCase__ = None if is_sagemaker_inputs_enabled: UpperCamelCase__ = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda _A : str(_A ).lower() , ) UpperCamelCase__ = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) UpperCamelCase__ = None if is_sagemaker_metrics_enabled: UpperCamelCase__ = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda _A : str(_A ).lower() , ) UpperCamelCase__ = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) UpperCamelCase__ = {} UpperCamelCase__ = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) if use_dynamo: UpperCamelCase__ = """dynamo_""" UpperCamelCase__ = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCamelCase__ = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) if use_custom_options: UpperCamelCase__ = _ask_options( """Which mode do you want to use?""" , _A , lambda _A : TORCH_DYNAMO_MODES[int(_A )] , default="""default""" , ) UpperCamelCase__ = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) UpperCamelCase__ = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) UpperCamelCase__ = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: UpperCamelCase__ = _ask_options( _A , _A , lambda _A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCamelCase__ = _ask_field(_A , lambda _A : str(_A ).lower() , default="""ml.p3.2xlarge""" ) UpperCamelCase__ = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCamelCase__ = _ask_field( """How many machines do you want use? [1]: """ , _A , default=1 , ) UpperCamelCase__ = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=_A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_A , use_cpu=_A , dynamo_config=_A , eca_instance_type=_A , profile=_A , region=_A , iam_role_name=_A , mixed_precision=_A , num_machines=_A , sagemaker_inputs_file=_A , sagemaker_metrics_file=_A , )
708
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase_ : Union[str, Any] = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) lowerCamelCase_ : int = None def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=_A , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=_A , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase__ = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def __magic_name__( _A ): '''simple docstring''' def remove_articles(_A ): return ARTICLES_REGEX.sub(""" """ , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): UpperCamelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def __magic_name__( _A ): '''simple docstring''' if not s: return [] return normalize_answer(_A ).split() def __magic_name__( _A , _A ): '''simple docstring''' return int(normalize_answer(_A ) == normalize_answer(_A ) ) def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = get_tokens(_A ) UpperCamelCase__ = get_tokens(_A ) UpperCamelCase__ = collections.Counter(_A ) & collections.Counter(_A ) UpperCamelCase__ = sum(common.values() ) if len(_A ) == 0 or len(_A ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCamelCase__ = 1.0 * num_same / len(_A ) UpperCamelCase__ = 1.0 * num_same / len(_A ) UpperCamelCase__ = (2 * precision * recall) / (precision + recall) return fa def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = {} UpperCamelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase__ = qa["""id"""] UpperCamelCase__ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(_A )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCamelCase__ = [""""""] if qid not in preds: print(f"Missing prediction for {qid}" ) continue UpperCamelCase__ = preds[qid] # Take max over all gold answers UpperCamelCase__ = max(compute_exact(_A , _A ) for a in gold_answers ) UpperCamelCase__ = max(compute_fa(_A , _A ) for a in gold_answers ) return exact_scores, fa_scores def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = {} for qid, s in scores.items(): UpperCamelCase__ = na_probs[qid] > na_prob_thresh if pred_na: UpperCamelCase__ = float(not qid_to_has_ans[qid] ) else: UpperCamelCase__ = s return new_scores def __magic_name__( _A , _A , _A=None ): '''simple docstring''' if not qid_list: UpperCamelCase__ = len(_A ) return collections.OrderedDict( [ ("""exact""", 1_0_0.0 * sum(exact_scores.values() ) / total), ("""f1""", 1_0_0.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: UpperCamelCase__ = len(_A ) return collections.OrderedDict( [ ("""exact""", 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def __magic_name__( _A , _A , _A ): '''simple docstring''' for k in new_eval: UpperCamelCase__ = new_eval[k] def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' plt.step(_A , _A , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(_A , _A , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_A ) plt.savefig(_A ) plt.clf() def __magic_name__( _A , _A , _A , _A , _A=None , _A=None ): '''simple docstring''' UpperCamelCase__ = sorted(_A , key=lambda _A : na_probs[k] ) UpperCamelCase__ = 0.0 UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.0 UpperCamelCase__ = [1.0] UpperCamelCase__ = [0.0] UpperCamelCase__ = 0.0 for i, qid in enumerate(_A ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCamelCase__ = true_pos / float(i + 1 ) UpperCamelCase__ = true_pos / float(_A ) if i == len(_A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_A ) recalls.append(_A ) if out_image: plot_pr_curve(_A , _A , _A , _A ) return {"ap": 1_0_0.0 * avg_prec} def __magic_name__( _A , _A , _A , _A , _A , _A ): '''simple docstring''' if out_image_dir and not os.path.exists(_A ): os.makedirs(_A ) UpperCamelCase__ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCamelCase__ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) UpperCamelCase__ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) UpperCamelCase__ = {k: float(_A ) for k, v in qid_to_has_ans.items()} UpperCamelCase__ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(_A , _A , """pr_exact""" ) merge_eval(_A , _A , """pr_f1""" ) merge_eval(_A , _A , """pr_oracle""" ) def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' if not qid_list: return UpperCamelCase__ = [na_probs[k] for k in qid_list] UpperCamelCase__ = np.ones_like(_A ) / float(len(_A ) ) plt.hist(_A , weights=_A , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(_A , f"na_prob_hist_{name}.png" ) ) plt.clf() def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCamelCase__ = num_no_ans UpperCamelCase__ = cur_score UpperCamelCase__ = 0.0 UpperCamelCase__ = sorted(_A , key=lambda _A : na_probs[k] ) for i, qid in enumerate(_A ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCamelCase__ = scores[qid] else: if preds[qid]: UpperCamelCase__ = -1 else: UpperCamelCase__ = 0 cur_score += diff if cur_score > best_score: UpperCamelCase__ = cur_score UpperCamelCase__ = na_probs[qid] return 1_0_0.0 * best_score / len(_A ), best_thresh def __magic_name__( _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(_A , _A , _A , _A ) UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(_A , _A , _A , _A ) UpperCamelCase__ = best_exact UpperCamelCase__ = exact_thresh UpperCamelCase__ = best_fa UpperCamelCase__ = fa_thresh def __magic_name__( ): '''simple docstring''' with open(OPTS.data_file ) as f: UpperCamelCase__ = json.load(_A ) UpperCamelCase__ = dataset_json["""data"""] with open(OPTS.pred_file ) as f: UpperCamelCase__ = json.load(_A ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCamelCase__ = json.load(_A ) else: UpperCamelCase__ = {k: 0.0 for k in preds} UpperCamelCase__ = make_qid_to_has_ans(_A ) # maps qid to True/False UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if v] UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if not v] UpperCamelCase__ , UpperCamelCase__ = get_raw_scores(_A , _A ) UpperCamelCase__ = apply_no_ans_threshold(_A , _A , _A , OPTS.na_prob_thresh ) UpperCamelCase__ = apply_no_ans_threshold(_A , _A , _A , OPTS.na_prob_thresh ) UpperCamelCase__ = make_eval_dict(_A , _A ) if has_ans_qids: UpperCamelCase__ = make_eval_dict(_A , _A , qid_list=_A ) merge_eval(_A , _A , """HasAns""" ) if no_ans_qids: UpperCamelCase__ = make_eval_dict(_A , _A , qid_list=_A ) merge_eval(_A , _A , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(_A , _A , _A , _A , _A , _A ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_A , _A , _A , _A , _A , OPTS.out_image_dir ) histogram_na_prob(_A , _A , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(_A , _A , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(_A , _A ) else: print(json.dumps(_A , indent=2 ) ) if __name__ == "__main__": lowerCamelCase_ : str = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
265
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase : List[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
476
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase__ =version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def UpperCamelCase_ ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def UpperCamelCase_ ( A__ , A__ , A__ , A__ = False ): a_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): a_ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: a_ = """cpu""" a_ = Path(A__ ) # VAE DECODER a_ = AutoencoderKL.from_pretrained(model_path + """/vae""" ) a_ = vae_decoder.config.latent_channels # forward only through the decoder part a_ = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowercase__ =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
263
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase__ = get_logger(__name__) lowerCAmelCase__ = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class a__ : """simple docstring""" @add_start_docstrings(_A ) def __call__( self , lowercase , lowercase ) -> Any: '''simple docstring''' raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class a__ : """simple docstring""" @add_start_docstrings(_A ) def __call__( self , lowercase , lowercase ) -> List[str]: '''simple docstring''' raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class a__ ( snake_case__ ): """simple docstring""" @add_start_docstrings(_A ) def __call__( self , lowercase , lowercase , lowercase , **lowercase ) -> str: '''simple docstring''' for processor in self: A__ = inspect.signature(processor.__call__ ).parameters if len(_A ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) A__ = processor(_A , _A , _A , **_A ) else: A__ = processor(_A , _A , _A ) return scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase ) -> int: '''simple docstring''' if not isinstance(_A , _A ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) A__ = temperature def __call__( self , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = scores / self.temperature return scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase , lowercase = -float("Inf" ) , lowercase = 1 ) -> Optional[int]: '''simple docstring''' if not isinstance(_A , _A ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(_A , _A ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) A__ = top_p A__ = filter_value A__ = min_tokens_to_keep def __call__( self , lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' A__ = lax.top_k(_A , scores.shape[-1] ) A__ = jnp.full_like(_A , self.filter_value ) A__ = jax.nn.softmax(_A , axis=-1 ).cumsum(axis=-1 ) A__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well A__ = jnp.roll(_A , 1 ) score_mask |= score_mask.at[:, 0].set(_A ) # min tokens to keep A__ = score_mask.at[:, : self.min_tokens_to_keep].set(_A ) A__ = jnp.where(_A , _A , _A ) A__ = jax.lax.sort_key_val(_A , _A )[-1] return next_scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase , lowercase = -float("Inf" ) , lowercase = 1 ) -> Optional[int]: '''simple docstring''' if not isinstance(_A , _A ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) A__ = max(_A , _A ) A__ = filter_value def __call__( self , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = scores.shape A__ = jnp.full(batch_size * vocab_size , self.filter_value ) A__ = min(self.top_k , scores.shape[-1] ) # Safety check A__ = lax.top_k(_A , _A ) A__ = jnp.broadcast_to((jnp.arange(_A ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A__ = topk_scores.flatten() A__ = topk_indices.flatten() + shift A__ = next_scores_flat.at[topk_indices_flat].set(_A ) A__ = next_scores_flat.reshape(_A , _A ) return next_scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase ) -> str: '''simple docstring''' A__ = bos_token_id def __call__( self , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' A__ = jnp.full(scores.shape , -float("inf" ) ) A__ = 1 - jnp.bool_(cur_len - 1 ) A__ = jnp.where(_A , new_scores.at[:, self.bos_token_id].set(0 ) , _A ) return scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = max_length A__ = eos_token_id def __call__( self , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' A__ = jnp.full(scores.shape , -float("inf" ) ) A__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A__ = jnp.where(_A , new_scores.at[:, self.eos_token_id].set(0 ) , _A ) return scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase , lowercase ) -> Any: '''simple docstring''' if not isinstance(_A , _A ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(_A , _A ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) A__ = min_length A__ = eos_token_id def __call__( self , lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' A__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A__ = jnp.where(_A , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _A ) return scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase , lowercase ) -> Tuple: '''simple docstring''' A__ = list(_A ) A__ = begin_index def __call__( self , lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' A__ = 1 - jnp.bool_(cur_len - self.begin_index ) A__ = jnp.where(_A , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _A ) return scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase ) -> str: '''simple docstring''' A__ = list(_A ) def __call__( self , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase ) -> Any: '''simple docstring''' A__ = dict(_A ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A__ = force_token_array.at[index].set(_A ) A__ = jnp.intaa(_A ) def __call__( self , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' def _force_token(lowercase ): A__ = scores.shape[0] A__ = self.force_token_array[generation_idx] A__ = jnp.ones_like(_A , dtype=scores.dtype ) * -float("inf" ) A__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A__ = lax.dynamic_update_slice(_A , _A , (0, current_token) ) return new_scores A__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_A ) , lambda: scores , ) , ) return scores class a__ ( snake_case__ ): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' A__ = generate_config.eos_token_id A__ = generate_config.no_timestamps_token_id A__ = generate_config.no_timestamps_token_id + 1 A__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_A , "max_initial_timestamp_index" ): A__ = generate_config.max_initial_timestamp_index else: A__ = model_config.vocab_size if self.max_initial_timestamp_index is None: A__ = model_config.vocab_size def __call__( self , lowercase , lowercase , lowercase ) -> List[str]: '''simple docstring''' A__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(lowercase , lowercase ): A__ = jnp.where((cur_len - self.begin_index) >= 1 , _A , _A ) A__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _A , ) A__ = jnp.where((cur_len - self.begin_index) < 2 , _A , _A ) A__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _A , _A , ) return jnp.where( _A , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _A , ) A__ = jax.vmap(_A )(_A , _A ) A__ = jnp.where(cur_len == self.begin_index , _A , _A ) A__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _A , ) A__ = self.timestamp_begin + self.max_initial_timestamp_index A__ = jnp.where( _A , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _A , ) # if sum of probability over timestamps is above any other token, sample timestamp A__ = jax.nn.log_softmax(_A , axis=-1 ) def handle_cumulative_probs(lowercase , lowercase ): A__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _A , ) A__ = jax.vmap(_A )(_A , _A ) return scores
711
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: list[str] | None = None ) -> list[list[str]]: '''simple docstring''' A__ = word_bank or [] # create a table A__ = len(SCREAMING_SNAKE_CASE_ ) + 1 A__ = [] for _ in range(SCREAMING_SNAKE_CASE_ ): table.append([] ) # seed value A__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(SCREAMING_SNAKE_CASE_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(SCREAMING_SNAKE_CASE_ )] == word: A__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(SCREAMING_SNAKE_CASE_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(SCREAMING_SNAKE_CASE_ )]: combination.reverse() return table[len(SCREAMING_SNAKE_CASE_ )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
626
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
80
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __SCREAMING_SNAKE_CASE : str = 2_9_9_7_9_2_4_5_8 # Symbols __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = symbols('''ct x y z''') def lowerCAmelCase_( lowercase_ : float ) -> float: if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase_( lowercase_ : float ) -> float: return 1 / sqrt(1 - beta(lowercase_ ) ** 2 ) def lowerCAmelCase_( lowercase_ : float ) -> np.ndarray: return np.array( [ [gamma(lowercase_ ), -gamma(lowercase_ ) * beta(lowercase_ ), 0, 0], [-gamma(lowercase_ ) * beta(lowercase_ ), gamma(lowercase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase_( lowercase_ : float , lowercase_ : np.ndarray | None = None ) -> np.ndarray: # Ensure event is not empty if event is None: _lowerCamelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowercase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __SCREAMING_SNAKE_CASE : List[str] = transform(2_9_9_7_9_2_4_5) print('''Example of four vector: ''') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __SCREAMING_SNAKE_CASE : Tuple = {ct: c, x: 1, y: 1, z: 1} __SCREAMING_SNAKE_CASE : int = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
661
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _UpperCamelCase : Optional[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _snake_case ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() lowerCAmelCase = torchvision.models.resnetaaa(pretrained=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(model.children() )[:-2] lowerCAmelCase = nn.Sequential(*_SCREAMING_SNAKE_CASE ) lowerCAmelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.pool(self.model(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.flatten(_SCREAMING_SNAKE_CASE , start_dim=2 ) lowerCAmelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _snake_case ( a_ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for l in open(_SCREAMING_SNAKE_CASE )] lowerCAmelCase = os.path.dirname(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer lowerCAmelCase = labels lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = max_seq_length lowerCAmelCase = transforms def __len__( self ): '''simple docstring''' return len(self.data ) def __getitem__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = sentence[0], sentence[1:-1], sentence[-1] lowerCAmelCase = sentence[: self.max_seq_length] lowerCAmelCase = torch.zeros(self.n_classes ) lowerCAmelCase = 1 lowerCAmelCase = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) lowerCAmelCase = self.transforms(_SCREAMING_SNAKE_CASE ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def snake_case ( snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase = [len(row['sentence'] ) for row in batch] lowerCAmelCase , lowerCAmelCase = len(snake_case ), max(snake_case ) lowerCAmelCase = torch.zeros(snake_case , snake_case , dtype=torch.long ) lowerCAmelCase = torch.zeros(snake_case , snake_case , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(snake_case , snake_case ) ): lowerCAmelCase = input_row['sentence'] lowerCAmelCase = 1 lowerCAmelCase = torch.stack([row['image'] for row in batch] ) lowerCAmelCase = torch.stack([row['label'] for row in batch] ) lowerCAmelCase = torch.stack([row['image_start_token'] for row in batch] ) lowerCAmelCase = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def snake_case ( ) -> Optional[int]: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def snake_case ( ) -> Any: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
701
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : Any = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Optional[Any] = '''openai-gpt''' SCREAMING_SNAKE_CASE : Tuple = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _SCREAMING_SNAKE_CASE=4_04_78 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = afn lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = summary_type lowerCAmelCase = summary_use_proj lowerCAmelCase = summary_activation lowerCAmelCase = summary_first_dropout lowerCAmelCase = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
514
0
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self : List[str] ) -> None: '''simple docstring''' a__ : List[Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) a__ : List[Any] = Vector() def UpperCAmelCase ( self : Optional[Any] ) -> None: '''simple docstring''' a__ : List[str] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(a_ ) , "(0,0,0,0,0,1)" ) def UpperCAmelCase ( self : Optional[Any] ) -> None: '''simple docstring''' a__ : List[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(a_ ) , 4 ) def UpperCAmelCase ( self : int ) -> None: '''simple docstring''' a__ : Any = Vector([1, 2] ) a__ : Optional[int] = Vector([1, 2, 3, 4, 5] ) a__ : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) a__ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCAmelCase ( self : Any ) -> None: '''simple docstring''' a__ : int = Vector([1, 2, 3] ) a__ : Optional[int] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCAmelCase ( self : int ) -> None: '''simple docstring''' a__ : Tuple = Vector([1, 2, 3] ) a__ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCAmelCase ( self : List[Any] ) -> None: '''simple docstring''' a__ : Tuple = Vector([1, 2, 3] ) a__ : Dict = Vector([2, -1, 4] ) # for test of dot product a__ : List[Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def UpperCAmelCase ( self : List[Any] ) -> None: '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def UpperCAmelCase ( self : List[Any] ) -> None: '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def UpperCAmelCase ( self : Dict ) -> None: '''simple docstring''' a__ : Union[str, Any] = Vector([1, 2, 3] ) a__ : Tuple = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , a_ , a_ ) ) , "(3,4,7)" ) def UpperCAmelCase ( self : str ) -> None: '''simple docstring''' a__ : Union[str, Any] = Vector([1, 0, 0, 0, 0, 0] ) a__ : Any = x.copy() self.assertEqual(str(a_ ) , str(a_ ) ) def UpperCAmelCase ( self : Any ) -> None: '''simple docstring''' a__ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(a_ ) , "(0,1,0)" ) def UpperCAmelCase ( self : List[str] ) -> None: '''simple docstring''' a__ : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(a_ ) ) def UpperCAmelCase ( self : List[str] ) -> None: '''simple docstring''' a__ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ : Tuple = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(a_ , a_ ) ) def UpperCAmelCase ( self : Tuple ) -> None: '''simple docstring''' a__ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(a_ , a_ ) ) def UpperCAmelCase ( self : Any ) -> None: '''simple docstring''' a__ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCAmelCase ( self : int ) -> None: '''simple docstring''' a__ : Tuple = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) a__ : Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def UpperCAmelCase ( self : str ) -> None: '''simple docstring''' a__ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(a_ ) ) def UpperCAmelCase ( self : Optional[Any] ) -> None: '''simple docstring''' a__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCAmelCase ( self : Optional[Any] ) -> None: '''simple docstring''' a__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ : Optional[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def UpperCAmelCase ( self : Optional[int] ) -> None: '''simple docstring''' a__ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a__ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def UpperCAmelCase ( self : Tuple ) -> None: '''simple docstring''' self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
642
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins __UpperCAmelCase = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def lowercase__ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> str: '''simple docstring''' # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def lowercase__ ( lowerCAmelCase__ : List[Any] ) -> Any: '''simple docstring''' config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? a__ : Dict = tmp_path_factory.getbasetemp() / "cache" a__ : int = test_hf_cache_home / "datasets" a__ : Tuple = test_hf_cache_home / "metrics" a__ : Any = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(lowerCAmelCase__ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(lowerCAmelCase__ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(lowerCAmelCase__ ) ) a__ : Optional[int] = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(lowerCAmelCase__ ) ) a__ : Tuple = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCAmelCase__ ) ) @pytest.fixture(autouse=lowerCAmelCase__ , scope="session" ) def lowercase__ ( ) -> Union[str, Any]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , lowerCAmelCase__ ) @pytest.fixture def lowercase__ ( lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , lowerCAmelCase__ )
642
1
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = BertTokenizer UpperCamelCase__ = BertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = filter_non_english def lowercase__ ( self : Tuple )->Tuple: super().setUp() _UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[Any] )->Optional[int]: _UpperCAmelCase = '''UNwant\u00E9d,running''' _UpperCAmelCase = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : Union[str, Any] )->Optional[int]: _UpperCAmelCase = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__UpperCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def lowercase__ ( self : List[str] )->int: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = '''UNwant\u00E9d,running''' _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # With lower casing _UpperCAmelCase = self.get_tokenizer(do_lower_case=__UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=__UpperCamelCase ) _UpperCAmelCase = '''UNwant\u00E9d,running''' _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple )->Optional[Any]: _UpperCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowercase__ ( self : Any )->Any: _UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase__ ( self : Optional[int] )->Any: _UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def lowercase__ ( self : Optional[int] )->Dict: _UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = BasicTokenizer() _UpperCAmelCase = '''a\n\'ll !!to?\'d of, can\'t.''' _UpperCAmelCase = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : int )->str: _UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _UpperCAmelCase = {} for i, token in enumerate(__UpperCamelCase ): _UpperCAmelCase = i _UpperCAmelCase = WordpieceTokenizer(vocab=__UpperCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def lowercase__ ( self : List[str] )->str: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowercase__ ( self : Optional[int] )->Dict: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowercase__ ( self : Dict )->int: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__UpperCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__UpperCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def lowercase__ ( self : Union[str, Any] )->int: _UpperCAmelCase = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) _UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def lowercase__ ( self : List[Any] )->int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' _UpperCAmelCase = tokenizer_r.encode_plus( __UpperCamelCase , return_attention_mask=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase , ) _UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(__UpperCamelCase , '''do_lower_case''' ) else False _UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = ['''的''', '''人''', '''有'''] _UpperCAmelCase = ''''''.join(__UpperCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = tokenizer_p.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__UpperCamelCase ) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__UpperCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = False _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = tokenizer_r.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer_p.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__UpperCamelCase ) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__UpperCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCAmelCase = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(__UpperCamelCase ) ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
95
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Dict = logging.getLogger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _UpperCAmelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _UpperCAmelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ''' function.''' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=f'val_{metric}' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return EarlyStopping( monitor=f'val_{metric}' , mode='''min''' if '''loss''' in metric else '''max''' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class _a ( pl.Callback): """simple docstring""" def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : str )->Tuple: _UpperCAmelCase = {F'lr_group_{i}': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCamelCase ) @rank_zero_only def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule , __UpperCamelCase : str , __UpperCamelCase : Tuple=True )->None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase = od / '''test_results.txt''' _UpperCAmelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F'{type_path}_results/{trainer.global_step:05d}.txt' _UpperCAmelCase = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__UpperCamelCase ) generations_file.parent.mkdir(exist_ok=__UpperCamelCase ) with open(__UpperCamelCase , '''a+''' ) as writer: for key in sorted(__UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(__UpperCamelCase , torch.Tensor ): _UpperCAmelCase = val.item() _UpperCAmelCase = F'{key}: {val:.6f}\n' writer.write(__UpperCamelCase ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__UpperCamelCase ) @rank_zero_only def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict )->Union[str, Any]: try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(__UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def lowercase__ ( self : str , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule )->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__UpperCamelCase , __UpperCamelCase , '''test''' ) @rank_zero_only def lowercase__ ( self : Optional[Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : List[str] )->Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
95
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( __UpperCamelCase : list[int | str] ) -> None: """simple docstring""" create_state_space_tree(__UpperCamelCase , [] , 0 , [0 for i in range(len(__UpperCamelCase ) )] ) def lowerCamelCase_ ( __UpperCamelCase : list[int | str] , __UpperCamelCase : list[int | str] , __UpperCamelCase : int , __UpperCamelCase : list[int] , ) -> None: """simple docstring""" if index == len(__UpperCamelCase ): print(__UpperCamelCase ) return for i in range(len(__UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _A = True create_state_space_tree(__UpperCamelCase , __UpperCamelCase , index + 1 , __UpperCamelCase ) current_sequence.pop() _A = False lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
292
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase = datasets.logging.get_logger(__name__) lowerCAmelCase = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ lowerCAmelCase = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ lowerCAmelCase = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowerCamelCase_ ( __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : int=False , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=False , __UpperCamelCase : Union[str, Any]="dummy_doc" ) -> Optional[Any]: """simple docstring""" _A = {doc: key_lines} _A = {doc: sys_lines} _A = {} _A = 0 _A = 0 _A = 0 _A = 0 _A = 0 _A = 0 _A , _A = reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: _A = reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) _A , _A = reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _A = reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) if remove_nested: _A , _A = reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _A , _A = reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _A = reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _A = reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) _A = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( 'Number of resulting singleton clusters in the key ' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' 'files, respectively' ) return doc_coref_infos def lowerCamelCase_ ( __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" _A = get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _A = {} _A = 0 _A = 0 for name, metric in metrics: _A , _A , _A = evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: _A = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'conll_score': conll} ) return output_scores def lowerCamelCase_ ( __UpperCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" _A = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: _A = line.split()[5] if not parse_col == "-": _A = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def UpperCamelCase ( self )-> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False )-> Any: _A = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: _A = util.check_gold_parse_annotation(_UpperCamelCase ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _A = evaluate( key_lines=_UpperCamelCase , sys_lines=_UpperCamelCase , metrics=_UpperCamelCase , NP_only=_UpperCamelCase , remove_nested=_UpperCamelCase , keep_singletons=_UpperCamelCase , min_span=_UpperCamelCase , ) return score
292
1
from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: return np.array_equal(lowercase__ , matrix.conjugate().T ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Optional[int] = v.conjugate().T SCREAMING_SNAKE_CASE_ : Tuple = v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def __SCREAMING_SNAKE_CASE ( ) -> str: SCREAMING_SNAKE_CASE_ : str = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) SCREAMING_SNAKE_CASE_ : Any = np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), f'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), f'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
719
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__: Tuple = logging.getLogger() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: SCREAMING_SNAKE_CASE_ : Any = '\n'.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('w' ).writelines(SCREAMING_SNAKE_CASE ) lowerCAmelCase__: Any = "patrickvonplaten/t5-tiny-random" lowerCAmelCase__: Tuple = "sshleifer/bart-tiny-random" lowerCAmelCase__: Dict = "sshleifer/tiny-mbart" lowerCAmelCase__: Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class snake_case_ ( lowerCAmelCase ): def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' SCREAMING_SNAKE_CASE_ : Tuple = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() SCREAMING_SNAKE_CASE_ : Dict = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) SCREAMING_SNAKE_CASE_ : List[str] = 'translation_en_to_de' if model == T5_TINY else 'summarization' SCREAMING_SNAKE_CASE_ : List[Any] = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(__lowerCAmelCase , 'argv' , __lowerCAmelCase ): run_generate() assert Path(__lowerCAmelCase ).exists() # os.remove(Path(output_file_name)) def __A ( self ): self.run_eval_tester(__lowerCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __A ( self , __lowerCAmelCase ): self.run_eval_tester(__lowerCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' SCREAMING_SNAKE_CASE_ : Dict = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() SCREAMING_SNAKE_CASE_ : str = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = str(tmp_dir / 'scores.json' ) SCREAMING_SNAKE_CASE_ : List[str] = str(tmp_dir / 'val.target' ) _dump_articles(__lowerCAmelCase , text['en'] ) _dump_articles(__lowerCAmelCase , text['de'] ) SCREAMING_SNAKE_CASE_ : Optional[int] = 'translation_en_to_de' if model == T5_TINY else 'summarization' SCREAMING_SNAKE_CASE_ : List[str] = F'\n run_eval_search.py\n {model}\n {str(__lowerCAmelCase )}\n {str(__lowerCAmelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(__lowerCAmelCase , 'argv' , __lowerCAmelCase ): with CaptureStdout() as cs: run_search() SCREAMING_SNAKE_CASE_ : Dict = [' num_beams | length_penalty', model, 'Best score args'] SCREAMING_SNAKE_CASE_ : Dict = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(__lowerCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__lowerCAmelCase ).exists() os.remove(Path(__lowerCAmelCase ) )
311
0
"""simple docstring""" _snake_case = "Input must be a string of 8 numbers plus letter" _snake_case = "TRWAGMYFPDXBNJZSQVHLCKE" def snake_case ( _a: str )-> bool: '''simple docstring''' if not isinstance(_a , _a ): lowerCamelCase__ = F'Expected string as input, found {type(_a ).__name__}' raise TypeError(_a ) lowerCamelCase__ = spanish_id.replace('-' , '' ).upper() if len(_a ) != 9: raise ValueError(_a ) try: lowerCamelCase__ = int(spanish_id_clean[0:8] ) lowerCamelCase__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(_a ) from ex if letter.isdigit(): raise ValueError(_a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
510
"""simple docstring""" from collections import deque class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = process_name # process name lowerCamelCase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase__ = arrival_time lowerCamelCase__ = burst_time # remaining burst time lowerCamelCase__ = 0 # total time of the process wait in ready queue lowerCamelCase__ = 0 # time from arrival time to completion time class _a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : deque[Process] , SCREAMING_SNAKE_CASE__ : int , ): # total number of mlfq's queues lowerCamelCase__ = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase__ = time_slices # unfinished process is in this ready_queue lowerCamelCase__ = queue # current time lowerCamelCase__ = current_time # finished process is in this sequence queue lowerCamelCase__ = deque() def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : list[Process] ): lowerCamelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : list[Process] ): lowerCamelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : list[Process] ): lowerCamelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : deque[Process] ): return [q.burst_time for q in queue] def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : deque[Process] ): lowerCamelCase__ = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE__ ) != 0: lowerCamelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase__ = 0 # set the process's turnaround time because it is finished lowerCamelCase__ = self.current_time - cp.arrival_time # set the completion time lowerCamelCase__ = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE__ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : deque[Process] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): lowerCamelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase__ = 0 # set the finish time lowerCamelCase__ = self.current_time # update the process' turnaround time because it is finished lowerCamelCase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE__ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _UpperCamelCase ( self : Dict ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase__ , lowerCamelCase__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _snake_case = Process("P1", 0, 53) _snake_case = Process("P2", 0, 17) _snake_case = Process("P3", 0, 68) _snake_case = Process("P4", 0, 24) _snake_case = 3 _snake_case = [17, 25] _snake_case = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) _snake_case = Process("P1", 0, 53) _snake_case = Process("P2", 0, 17) _snake_case = Process("P3", 0, 68) _snake_case = Process("P4", 0, 24) _snake_case = 3 _snake_case = [17, 25] _snake_case = deque([Pa, Pa, Pa, Pa]) _snake_case = MLFQ(number_of_queues, time_slices, queue, 0) _snake_case = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
510
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = ["""speech"""] def __init__( self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: requires_backends(self , ['speech'] ) class a ( metaclass=_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = ["""speech"""] def __init__( self , *__magic_name__ , **__magic_name__ ) -> List[str]: requires_backends(self , ['speech'] )
532
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=32 , __magic_name__=2 , __magic_name__=3 , __magic_name__=16 , __magic_name__=[1, 2, 1] , __magic_name__=[2, 2, 4] , __magic_name__=2 , __magic_name__=2.0 , __magic_name__=True , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__="gelu" , __magic_name__=False , __magic_name__=True , __magic_name__=0.0_2 , __magic_name__=1e-5 , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=10 , __magic_name__=8 , ) -> Optional[int]: _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = patch_norm _a = layer_norm_eps _a = initializer_range _a = is_training _a = scope _a = use_labels _a = type_sequence_label_size _a = encoder_stride def __UpperCAmelCase ( self ) -> List[Any]: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> int: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = SwinvaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ ) _a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: _a = SwinvaForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a = 1 _a = SwinvaForMaskedImageModeling(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: _a = self.type_sequence_label_size _a = SwinvaForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _lowerCAmelCase = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> List[str]: _a = SwinvaModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 ) def __UpperCAmelCase ( self ) -> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> Tuple: pass def __UpperCAmelCase ( self ) -> str: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __UpperCAmelCase ( self ) -> Any: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.attentions _a = len(self.model_tester.depths ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = config.window_size**2 _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.attentions self.assertEqual(len(__magic_name__ ) , __magic_name__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _a = len(__magic_name__ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): _a = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _a = 2 self.assertEqual(out_len + added_hidden_states , len(__magic_name__ ) ) _a = outputs.attentions self.assertEqual(len(__magic_name__ ) , __magic_name__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.hidden_states _a = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # Swinv2 has a different seq_length _a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _a = outputs.reshaped_hidden_states self.assertEqual(len(__magic_name__ ) , __magic_name__ ) _a , _a , _a , _a = reshaped_hidden_states[0].shape _a = ( reshaped_hidden_states[0].view(__magic_name__ , __magic_name__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) def __UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def __UpperCAmelCase ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def __UpperCAmelCase ( self ) -> str: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = SwinvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: _a = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class a ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ) -> Optional[int]: _a = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __magic_name__ ) _a = self.default_image_processor _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a = image_processor(images=__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _a = model(**__magic_name__ ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _a = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
532
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor A : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[Any] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> None: warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
140
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp A : Dict = 5 A : Optional[int] = 10 @require_sentencepiece @require_tokenizers class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SpeechaTextTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def __A ( self : Optional[Any] ) -> str: super().setUp() SCREAMING_SNAKE_CASE_ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) SCREAMING_SNAKE_CASE_ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ = "<pad>" SCREAMING_SNAKE_CASE_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __A ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1_001 ) def __A ( self : List[Any] ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_001 ) def __A ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __A ( self : List[str] ) -> List[Any]: # fmt: off SCREAMING_SNAKE_CASE_ = {"input_ids": [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCamelCase__ = '''C\'est trop cool''' lowerCamelCase__ = '''Esto es genial''' @classmethod def __A ( cls : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __A ( self : str ) -> int: self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __A ( self : List[Any] ) -> Union[str, Any]: self.assertEqual(self.tokenizer.vocab_size , 10_000 ) def __A ( self : Any ) -> int: self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE_ = [ES_CODE, 4, 1_601, 47, 7_647, 2] SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = "fr" SCREAMING_SNAKE_CASE_ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __A ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE_ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
140
1
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: """simple docstring""" if collection == []: return [] # get some information about the collection SCREAMING_SNAKE_CASE_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : List[str] = max(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : List[Any] = min(SCREAMING_SNAKE_CASE_ ) # create the counting array SCREAMING_SNAKE_CASE_ : Optional[Any] = coll_max + 1 - coll_min SCREAMING_SNAKE_CASE_ : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : Any = counting_arr[i] + counting_arr[i - 1] # create the output collection SCREAMING_SNAKE_CASE_ : Optional[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , SCREAMING_SNAKE_CASE_ ) ): SCREAMING_SNAKE_CASE_ : int = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[Any]: """simple docstring""" return "".join([chr(SCREAMING_SNAKE_CASE_ ) for i in counting_sort([ord(SCREAMING_SNAKE_CASE_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" snake_case_ = input('Enter numbers separated by a comma:\n').strip() snake_case_ = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
717
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def __lowerCamelCase ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
68
0
"""simple docstring""" def __a ( A ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(A , A ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
337
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCAmelCase =logging.getLogger(__name__) __UpperCAmelCase =list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCAmelCase =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCAmelCase__ : lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Whether ot not to use whole word mask."""} ) lowercase__ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowercase__ : float = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) lowercase__ : int = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) lowercase__ : int = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __a ( A , A , A = False , A = None , ) -> Tuple: '''simple docstring''' def _dataset(A , A=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __a ( ) -> Tuple: '''simple docstring''' A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: A__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: A__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: A__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: A__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: A__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: A__ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) A__ = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: A__ = tokenizer.max_len # Our input block size will be the max possible for the model else: A__ = min(data_args.block_size , tokenizer.max_len ) # Get datasets A__ = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) A__ = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": A__ = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: A__ = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: A__ = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A__ = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: A__ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ = trainer.evaluate() A__ = math.exp(eval_output["eval_loss"] ) A__ = {"perplexity": perplexity} A__ = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(A , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , A , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(A ) return results def __a ( A ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
337
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE( snake_case_ : list[int] ) ->float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) _lowercase : Tuple = sum(snake_case_ ) / len(snake_case_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
411
'''simple docstring''' import math def _SCREAMING_SNAKE_CASE( snake_case_ : int ) ->list[int]: '''simple docstring''' _lowercase : Optional[int] = [] _lowercase : Any = 2 _lowercase : List[str] = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowercase : Tuple = [True] * (end + 1) _lowercase : List[str] = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowercase : Tuple = False start += 1 prime += in_prime _lowercase : str = end + 1 _lowercase : Optional[int] = min(2 * end , snake_case_ ) while low <= n: _lowercase : Optional[int] = [True] * (high - low + 1) for each in in_prime: _lowercase : Union[str, Any] = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowercase : Optional[int] = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowercase : Union[str, Any] = high + 1 _lowercase : Tuple = min(high + end , snake_case_ ) return prime print(sieve(10**6))
411
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def _lowerCamelCase( __snake_case ) -> List[str]: __snake_case = DPTConfig() if "large" in checkpoint_url: __snake_case = 1024 __snake_case = 4096 __snake_case = 24 __snake_case = 16 __snake_case = [5, 11, 17, 23] __snake_case = [256, 512, 1024, 1024] __snake_case = (1, 384, 384) if "ade" in checkpoint_url: __snake_case = True __snake_case = 150 __snake_case = "huggingface/label-files" __snake_case = "ade20k-id2label.json" __snake_case = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type="dataset" ) ) , "r" ) ) __snake_case = {int(__snake_case ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = [1, 150, 480, 480] return config, expected_shape def _lowerCamelCase( __snake_case ) -> Dict: __snake_case = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def _lowerCamelCase( __snake_case ) -> Union[str, Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __snake_case = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __snake_case = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __snake_case = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: __snake_case = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __snake_case = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __snake_case = name.replace("proj" , "projection" ) if "blocks" in name: __snake_case = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __snake_case = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __snake_case = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: __snake_case = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __snake_case = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __snake_case = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __snake_case = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __snake_case = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __snake_case = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __snake_case = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __snake_case = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __snake_case = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __snake_case = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: __snake_case = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __snake_case = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __snake_case = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __snake_case = name.replace("conv1" , "convolution1" ) if "conv2" in name: __snake_case = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __snake_case = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __snake_case = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __snake_case = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __snake_case = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __snake_case = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __snake_case = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __snake_case = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __snake_case = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __snake_case = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __snake_case = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __snake_case = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __snake_case = name.replace("pretrained" , "dpt" ) if "bn" in name: __snake_case = name.replace("bn" , "batch_norm" ) if "head" in name: __snake_case = name.replace("head" , "head.head" ) if "encoder.norm" in name: __snake_case = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __snake_case = name.replace("auxlayer" , "auxiliary_head.head" ) return name def _lowerCamelCase( __snake_case , __snake_case ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) __snake_case = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[: config.hidden_size, :] __snake_case = in_proj_bias[: config.hidden_size] __snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case = in_proj_weight[ -config.hidden_size :, : ] __snake_case = in_proj_bias[-config.hidden_size :] def _lowerCamelCase( ) -> Any: __snake_case = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _lowerCamelCase( __snake_case , __snake_case , __snake_case , __snake_case ) -> str: __snake_case , __snake_case = get_dpt_config(__snake_case ) # load original state_dict from URL __snake_case = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__snake_case ) # rename keys for key in state_dict.copy().keys(): __snake_case = state_dict.pop(__snake_case ) __snake_case = val # read in qkv matrices read_in_q_k_v(__snake_case , __snake_case ) # load HuggingFace model __snake_case = DPTForSemanticSegmentation(__snake_case ) if "ade" in checkpoint_url else DPTForDepthEstimation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Check outputs on an image __snake_case = 480 if "ade" in checkpoint_url else 384 __snake_case = DPTImageProcessor(size=__snake_case ) __snake_case = prepare_img() __snake_case = image_processor(__snake_case , return_tensors="pt" ) # forward pass __snake_case = model(**__snake_case ).logits if "ade" in checkpoint_url else model(**__snake_case ).predicted_depth # Assert logits __snake_case = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: __snake_case = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __snake_case , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __snake_case ) ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__snake_case , __snake_case ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(__snake_case , __snake_case ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__snake_case , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
524
from ...configuration_utils import PretrainedConfig class UpperCamelCase ( snake_case__ ): __UpperCamelCase = """bert-generation""" def __init__( self : Tuple ,_lowerCAmelCase : Union[str, Any]=50_358 ,_lowerCAmelCase : List[Any]=1_024 ,_lowerCAmelCase : str=24 ,_lowerCAmelCase : Any=16 ,_lowerCAmelCase : Any=4_096 ,_lowerCAmelCase : Any="gelu" ,_lowerCAmelCase : Optional[Any]=0.1 ,_lowerCAmelCase : Optional[Any]=0.1 ,_lowerCAmelCase : Optional[Any]=512 ,_lowerCAmelCase : Optional[Any]=0.0_2 ,_lowerCAmelCase : Union[str, Any]=1E-12 ,_lowerCAmelCase : Optional[int]=0 ,_lowerCAmelCase : Optional[int]=2 ,_lowerCAmelCase : Optional[Any]=1 ,_lowerCAmelCase : Any="absolute" ,_lowerCAmelCase : str=True ,**_lowerCAmelCase : List[Any] ,): """simple docstring""" super().__init__(pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache
524
1
def _lowerCAmelCase ( A__ ): lowercase__ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase__ = True for i in range(0 , len(A__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase__, lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False for i in range(1 , len(A__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase__, lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") a__ : int = [int(x) for x in input().split()] # inputing elements of the list in one line a__ : Any = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=30 , lowerCamelCase=4_00 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=True , lowerCamelCase=1 / 2_55 , lowerCamelCase=True , ) -> Any: '''simple docstring''' UpperCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} UpperCamelCase : Optional[int] = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = min_resolution UpperCamelCase : Any = max_resolution UpperCamelCase : Tuple = do_resize UpperCamelCase : Tuple = size UpperCamelCase : Dict = do_normalize UpperCamelCase : List[str] = image_mean UpperCamelCase : Optional[Any] = image_std UpperCamelCase : int = do_rescale UpperCamelCase : List[Any] = rescale_factor UpperCamelCase : int = do_pad def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase=False ) -> Any: '''simple docstring''' if not batched: UpperCamelCase : int = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): UpperCamelCase , UpperCamelCase : List[Any] = image.size else: UpperCamelCase , UpperCamelCase : Any = image.shape[1], image.shape[2] if w < h: UpperCamelCase : List[Any] = int(self.size["shortest_edge"] * h / w ) UpperCamelCase : Optional[Any] = self.size["shortest_edge"] elif w > h: UpperCamelCase : str = self.size["shortest_edge"] UpperCamelCase : List[Any] = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase : Optional[int] = self.size["shortest_edge"] UpperCamelCase : List[Any] = self.size["shortest_edge"] else: UpperCamelCase : Any = [] for image in image_inputs: UpperCamelCase , UpperCamelCase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase : List[str] = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] UpperCamelCase : Dict = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Dict = ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) UpperCamelCase : List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase : str = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) UpperCamelCase : List[Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : int = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase : List[str] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : List[str] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : int = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase : List[Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : str = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCamelCase : List[str] = json.loads(f.read() ) UpperCamelCase : int = {"image_id": 3_97_69, "annotations": target} # encode them UpperCamelCase : Optional[int] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) UpperCamelCase : str = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values UpperCamelCase : List[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) UpperCamelCase : Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase : Union[str, Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes UpperCamelCase : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) UpperCamelCase : int = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase : Union[str, Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd UpperCamelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels UpperCamelCase : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size UpperCamelCase : List[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size UpperCamelCase : int = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCamelCase : Dict = json.loads(f.read() ) UpperCamelCase : Union[str, Any] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} UpperCamelCase : List[str] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCamelCase : Optional[Any] = ConditionalDetrImageProcessor(format="coco_panoptic" ) UpperCamelCase : List[str] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values UpperCamelCase : Optional[int] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) UpperCamelCase : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase : int = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes UpperCamelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) UpperCamelCase : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase : int = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd UpperCamelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels UpperCamelCase : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks UpperCamelCase : Union[str, Any] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size UpperCamelCase : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size UpperCamelCase : int = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
173
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCAmelCase_ = True from torch.cuda.amp import autocast lowerCAmelCase_ = logging.getLogger(__name__) def A__ ( A : str=None , A : Union[str, Any]=None): '''simple docstring''' return field(default_factory=lambda: default , metadata=A) @dataclass class UpperCAmelCase_ : """simple docstring""" __SCREAMING_SNAKE_CASE = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) __SCREAMING_SNAKE_CASE = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) __SCREAMING_SNAKE_CASE = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __SCREAMING_SNAKE_CASE = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) __SCREAMING_SNAKE_CASE = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class UpperCAmelCase_ : """simple docstring""" __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , lowerCamelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCamelCase : Dict = [{"input_values": feature["input_values"]} for feature in features] UpperCamelCase : str = [{"input_ids": feature["labels"]} for feature in features] UpperCamelCase : Optional[Any] = self.processor.pad( lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) UpperCamelCase : Union[str, Any] = self.processor.pad( labels=lowerCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly UpperCamelCase : int = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) UpperCamelCase : Any = labels return batch class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> torch.Tensor: '''simple docstring''' model.train() UpperCamelCase : List[Any] = self._prepare_inputs(lowerCamelCase ) if self.use_amp: with autocast(): UpperCamelCase : Union[str, Any] = self.compute_loss(lowerCamelCase , lowerCamelCase ) else: UpperCamelCase : List[str] = self.compute_loss(lowerCamelCase , lowerCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": UpperCamelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCamelCase : str = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: UpperCamelCase : List[Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCamelCase ) else: loss.backward() return loss.detach() def A__ ( ): '''simple docstring''' UpperCamelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCamelCase : Any = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase : Dict = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , A) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: UpperCamelCase : Union[str, Any] = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name) UpperCamelCase : Optional[int] = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test") # Create and save tokenizer UpperCamelCase : List[str] = F'''[{''.join(data_args.chars_to_ignore)}]''' def remove_special_characters(A : List[Any]): UpperCamelCase : Optional[int] = re.sub(A , "" , batch["sentence"]).lower() + " " return batch UpperCamelCase : Any = train_dataset.map(A , remove_columns=["sentence"]) UpperCamelCase : int = eval_dataset.map(A , remove_columns=["sentence"]) def extract_all_chars(A : Union[str, Any]): UpperCamelCase : Tuple = " ".join(batch["text"]) UpperCamelCase : Optional[Any] = list(set(A)) return {"vocab": [vocab], "all_text": [all_text]} UpperCamelCase : Tuple = train_dataset.map( A , batched=A , batch_size=-1 , keep_in_memory=A , remove_columns=train_dataset.column_names , ) UpperCamelCase : Optional[Any] = train_dataset.map( A , batched=A , batch_size=-1 , keep_in_memory=A , remove_columns=eval_dataset.column_names , ) UpperCamelCase : Dict = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0])) UpperCamelCase : Tuple = {v: k for k, v in enumerate(A)} UpperCamelCase : Tuple = vocab_dict[" "] del vocab_dict[" "] UpperCamelCase : List[str] = len(A) UpperCamelCase : Dict = len(A) with open("vocab.json" , "w") as vocab_file: json.dump(A , A) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : int = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) UpperCamelCase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=A , return_attention_mask=A) UpperCamelCase : int = WavaVecaProcessor(feature_extractor=A , tokenizer=A) UpperCamelCase : str = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer) , ) if data_args.max_train_samples is not None: UpperCamelCase : Union[str, Any] = min(len(A) , data_args.max_train_samples) UpperCamelCase : int = train_dataset.select(range(A)) if data_args.max_val_samples is not None: UpperCamelCase : Dict = eval_dataset.select(range(data_args.max_val_samples)) UpperCamelCase : Union[str, Any] = torchaudio.transforms.Resample(4_80_00 , 1_60_00) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A : Union[str, Any]): UpperCamelCase , UpperCamelCase : List[str] = torchaudio.load(batch["path"]) UpperCamelCase : List[str] = resampler(A).squeeze().numpy() UpperCamelCase : Dict = 1_60_00 UpperCamelCase : str = batch["text"] return batch UpperCamelCase : int = train_dataset.map( A , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) UpperCamelCase : int = eval_dataset.map( A , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A : Dict): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' UpperCamelCase : Union[str, Any] = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0]) batch.update(A) return batch UpperCamelCase : str = train_dataset.map( A , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A , num_proc=data_args.preprocessing_num_workers , ) UpperCamelCase : Union[str, Any] = eval_dataset.map( A , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A , num_proc=data_args.preprocessing_num_workers , ) # Metric UpperCamelCase : Tuple = datasets.load_metric("wer") def compute_metrics(A : int): UpperCamelCase : Union[str, Any] = pred.predictions UpperCamelCase : Tuple = np.argmax(A , axis=-1) UpperCamelCase : int = processor.tokenizer.pad_token_id UpperCamelCase : Union[str, Any] = processor.batch_decode(A) # we do not want to group tokens when computing the metrics UpperCamelCase : List[Any] = processor.batch_decode(pred.label_ids , group_tokens=A) UpperCamelCase : Optional[Any] = wer_metric.compute(predictions=A , references=A) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator UpperCamelCase : Dict = DataCollatorCTCWithPadding(processor=A , padding=A) # Initialize our Trainer UpperCamelCase : int = CTCTrainer( model=A , data_collator=A , args=A , compute_metrics=A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCamelCase : List[Any] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): UpperCamelCase : Tuple = model_args.model_name_or_path else: UpperCamelCase : str = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) UpperCamelCase : Union[str, Any] = trainer.train(resume_from_checkpoint=A) trainer.save_model() UpperCamelCase : int = train_result.metrics UpperCamelCase : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A) ) UpperCamelCase : int = min(A , len(A)) trainer.log_metrics("train" , A) trainer.save_metrics("train" , A) trainer.save_state() # Evaluation UpperCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***") UpperCamelCase : Optional[Any] = trainer.evaluate() UpperCamelCase : int = data_args.max_val_samples if data_args.max_val_samples is not None else len(A) UpperCamelCase : Dict = min(A , len(A)) trainer.log_metrics("eval" , A) trainer.save_metrics("eval" , A) return results if __name__ == "__main__": main()
173
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate snake_case__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) snake_case__ = [] snake_case__ = [] snake_case__ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} snake_case__ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', 'emoji': True, }, } ] snake_case__ = 0 for log in Path().glob('*.log'): snake_case__ = 0 with open(log, 'r') as f: for line in f: snake_case__ = json.loads(line) if line.get('nodeid', '') != "": snake_case__ = line['nodeid'] if line.get('duration', None) is not None: snake_case__ = f'''{line["duration"]:.4f}''' if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) snake_case__ = [] log.unlink() snake_case__ = '' snake_case__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" snake_case__ = [] snake_case__ = {} for test in failed_tests: snake_case__ = test[0].split('::') snake_case__ = data[0].split('/')[-1] if data[0] not in filesafailed: snake_case__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) snake_case__ = [test[0] for test in failed_table] snake_case__ = list(set(files)) # Count number of instances in failed_tests snake_case__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) snake_case__ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: snake_case__ = 'Too many failed tests, please see the full report in the Action results.' snake_case__ = len(err) + 10 snake_case__ = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: snake_case__ = 'No failed tests! 🤗' print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient snake_case__ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": snake_case__ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) snake_case__ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) snake_case__ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) snake_case__ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) snake_case__ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name snake_case__ = '' for i, row in enumerate(test_failures): if row[0] != test_class: snake_case__ = row[0] else: snake_case__ = '' snake_case__ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
638
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" _lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=A_ ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A_ ) assert mmeta["long_pair"] == "heb-eng"
638
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): lowerCamelCase__: int = "mask2former" lowerCamelCase__: Optional[Any] = ["swin"] lowerCamelCase__: Optional[Any] = {"hidden_size": "hidden_dim"} def __init__( self: str , __lowerCamelCase: Optional[Dict] = None , __lowerCamelCase: int = 2_56 , __lowerCamelCase: int = 2_56 , __lowerCamelCase: int = 2_56 , __lowerCamelCase: int = 10_24 , __lowerCamelCase: str = "relu" , __lowerCamelCase: int = 6 , __lowerCamelCase: int = 10 , __lowerCamelCase: int = 8 , __lowerCamelCase: float = 0.0 , __lowerCamelCase: int = 20_48 , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: int = 4 , __lowerCamelCase: int = 2_55 , __lowerCamelCase: int = 1_00 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 2.0 , __lowerCamelCase: float = 5.0 , __lowerCamelCase: float = 5.0 , __lowerCamelCase: int = 1_25_44 , __lowerCamelCase: float = 3.0 , __lowerCamelCase: float = 0.75 , __lowerCamelCase: float = 0.02 , __lowerCamelCase: float = 1.0 , __lowerCamelCase: bool = True , __lowerCamelCase: List[int] = [4, 8, 16, 32] , __lowerCamelCase: bool = None , **__lowerCamelCase: List[str] , ) -> Optional[int]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) __UpperCAmelCase : List[str] = CONFIG_MAPPING["swin"]( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = backbone_config.pop("model_type" ) __UpperCAmelCase : str = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Union[str, Any] = config_class.from_dict(__lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) __UpperCAmelCase : Any = backbone_config __UpperCAmelCase : Tuple = feature_size __UpperCAmelCase : Dict = mask_feature_size __UpperCAmelCase : Union[str, Any] = hidden_dim __UpperCAmelCase : Union[str, Any] = encoder_feedforward_dim __UpperCAmelCase : Optional[int] = activation_function __UpperCAmelCase : int = encoder_layers __UpperCAmelCase : Any = decoder_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : Tuple = dropout __UpperCAmelCase : Union[str, Any] = dim_feedforward __UpperCAmelCase : Optional[Any] = pre_norm __UpperCAmelCase : Dict = enforce_input_projection __UpperCAmelCase : Tuple = common_stride __UpperCAmelCase : Optional[int] = ignore_value __UpperCAmelCase : Optional[int] = num_queries __UpperCAmelCase : List[str] = no_object_weight __UpperCAmelCase : Union[str, Any] = class_weight __UpperCAmelCase : List[Any] = mask_weight __UpperCAmelCase : Optional[int] = dice_weight __UpperCAmelCase : Union[str, Any] = train_num_points __UpperCAmelCase : str = oversample_ratio __UpperCAmelCase : Union[str, Any] = importance_sample_ratio __UpperCAmelCase : int = init_std __UpperCAmelCase : Optional[Any] = init_xavier_std __UpperCAmelCase : int = use_auxiliary_loss __UpperCAmelCase : Dict = feature_strides __UpperCAmelCase : Optional[Any] = output_auxiliary_logits __UpperCAmelCase : str = decoder_layers super().__init__(**__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: Optional[int] ) -> List[str]: return cls( backbone_config=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: Tuple ) -> Dict[str, any]: __UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Union[str, Any] = self.backbone_config.to_dict() __UpperCAmelCase : Any = self.__class__.model_type return output
382
from math import asin, atan, cos, radians, sin, sqrt, tan _snake_case = 6_3_7_8_1_3_7.0 _snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5 _snake_case = 6378137 def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> float: __UpperCAmelCase : Any = (AXIS_A - AXIS_B) / AXIS_A __UpperCAmelCase : Tuple = atan((1 - flattening) * tan(radians(snake_case__ ) ) ) __UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(snake_case__ ) ) ) __UpperCAmelCase : List[Any] = radians(snake_case__ ) __UpperCAmelCase : Dict = radians(snake_case__ ) # Equation __UpperCAmelCase : Tuple = sin((phi_a - phi_a) / 2 ) __UpperCAmelCase : Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCAmelCase : Union[str, Any] = sqrt(sin_sq_phi + (cos(snake_case__ ) * cos(snake_case__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
382
1
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case ( __lowercase ): def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = 8 # DPR tok SCREAMING_SNAKE_CASE_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok SCREAMING_SNAKE_CASE_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] SCREAMING_SNAKE_CASE_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] SCREAMING_SNAKE_CASE_ = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _lowercase (self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def _lowercase (self ): """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def _lowercase (self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def _lowercase (self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_dataset() SCREAMING_SNAKE_CASE_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_dataset() SCREAMING_SNAKE_CASE_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''dataset''' ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset SCREAMING_SNAKE_CASE_ = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: SCREAMING_SNAKE_CASE_ = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE_ ) , ) return retriever def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) SCREAMING_SNAKE_CASE_ = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE_ , open(SCREAMING_SNAKE_CASE_ , '''wb''' ) ) SCREAMING_SNAKE_CASE_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) SCREAMING_SNAKE_CASE_ = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: SCREAMING_SNAKE_CASE_ = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_legacy_index_retriever() SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase (self ): """simple docstring""" import torch SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE_ = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) SCREAMING_SNAKE_CASE_ = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dpr_ctx_encoder_tokenizer() SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual( len(SCREAMING_SNAKE_CASE_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , SCREAMING_SNAKE_CASE_ ) # check for doc token related keys in dictionary.
628
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase__ = False class snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class snake_case ( unittest.TestCase ): def _lowercase (self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe.dual_guided( prompt='''first prompt''' , image=SCREAMING_SNAKE_CASE_ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = VersatileDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe.dual_guided( prompt='''first prompt''' , image=SCREAMING_SNAKE_CASE_ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = '''cyberpunk 2077''' SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe.dual_guided( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images SCREAMING_SNAKE_CASE_ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE_ = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 SCREAMING_SNAKE_CASE_ = '''A painting of a squirrel eating a burger ''' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe.text_to_image( prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE_ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE_ = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 SCREAMING_SNAKE_CASE_ = pipe.image_variation(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE_ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE_ = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
628
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 10_00) -> int: a , a = 1, 1 a = [] for i in range(1 , n + 1): a = prev_numerator + 2 * prev_denominator a = prev_numerator + prev_denominator if len(str(__UpperCamelCase)) > len(str(__UpperCamelCase)): result.append(__UpperCamelCase) a = numerator a = denominator return len(__UpperCamelCase) if __name__ == "__main__": print(F'{solution() = }')
515
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class a__ ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() a = dict(zip(A , range(len(A ) ) ) ) a = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } a = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } a = tempfile.mkdtemp() a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join(self.tmpdirname , A ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) # load decoder from hub a = "hf-internal-testing/ngram-beam-search-decoder" def lowerCAmelCase_ ( self , **A ) -> Optional[int]: '''simple docstring''' a = self.add_kwargs_tokens_map.copy() kwargs.update(A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A ) def lowerCAmelCase_ ( self , **A ) -> str: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A ) def lowerCAmelCase_ ( self , **A ) -> List[Any]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = self.get_tokenizer() a = self.get_feature_extractor() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A ) processor.save_pretrained(self.tmpdirname ) a = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match a = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(A , "include" ): WavaVecaProcessorWithLM( tokenizer=A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A ) a = floats_list((3, 1000) ) a = feature_extractor(A , return_tensors="np" ) a = processor(A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A ) a = "This is a test string" a = processor(text=A ) a = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase_ ( self , A=(2, 10, 16) , A=77 ) -> str: '''simple docstring''' np.random.seed(A ) return np.random.rand(*A ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A ) a = self._get_dummy_logits(shape=(10, 16) , seed=13 ) a = processor.decode(A ) a = decoder.decode_beams(A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def lowerCAmelCase_ ( self , A ) -> Optional[int]: '''simple docstring''' a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A ) a = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: a = processor.batch_decode(A ) else: with get_context(A ).Pool() as pool: a = processor.batch_decode(A , A ) a = list(A ) with get_context("fork" ).Pool() as p: a = decoder.decode_beams_batch(A , A ) a , a , a = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(A , decoded_processor.logit_score ) self.assertListEqual(A , decoded_processor.lm_score ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A ) a = self._get_dummy_logits() a = 15 a = -2_0.0 a = -4.0 a = processor.batch_decode( A , beam_width=A , beam_prune_logp=A , token_min_logp=A , ) a = decoded_processor_out.text a = list(A ) with get_context("fork" ).Pool() as pool: a = decoder.decode_beams_batch( A , A , beam_width=A , beam_prune_logp=A , token_min_logp=A , ) a = [d[0][0] for d in decoded_decoder_out] a = [d[0][2] for d in decoded_decoder_out] a = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A , A ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , A ) self.assertTrue(np.array_equal(A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , A , atol=1e-3 ) ) self.assertTrue(np.array_equal(A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , A , atol=1e-3 ) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A ) a = self._get_dummy_logits() a = 2.0 a = 5.0 a = -2_0.0 a = True a = processor.batch_decode( A , alpha=A , beta=A , unk_score_offset=A , lm_score_boundary=A , ) a = decoded_processor_out.text a = list(A ) decoder.reset_params( alpha=A , beta=A , unk_score_offset=A , lm_score_boundary=A , ) with get_context("fork" ).Pool() as pool: a = decoder.decode_beams_batch( A , A , ) a = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A , A ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , A ) a = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , A ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a = processor.decoder.model_container[processor.decoder._model_key] a = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() a = os.listdir(A ) a = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A , A ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = snapshot_download("hf-internal-testing/processor_with_lm" ) a = WavaVecaProcessorWithLM.from_pretrained(A ) a = processor.decoder.model_container[processor.decoder._model_key] a = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() a = os.listdir(A ) a = os.listdir(A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A , A ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) a = floats_list((3, 1000) ) a = processor_wavaveca(A , return_tensors="np" ) a = processor_auto(A , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) a = self._get_dummy_logits() a = processor_wavaveca.batch_decode(A ) a = processor_auto.batch_decode(A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=A , feature_extractor=A , decoder=A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def lowerCAmelCase_ ( A , A ) -> List[Any]: '''simple docstring''' a = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a = self._get_dummy_logits()[0] a = processor.decode(A , output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(A , A ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a = self._get_dummy_logits() a = processor.batch_decode(A , output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(A , A ) ) self.assertListEqual( [" ".join(self.get_from_offsets(A , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' import torch a = load_dataset("common_voice" , "en" , split="train" , streaming=A ) a = ds.cast_column("audio" , datasets.Audio(sampling_rate=16000 ) ) a = iter(A ) a = next(A ) a = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) a = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train a = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): a = model(A ).logits.cpu().numpy() a = processor.decode(logits[0] , output_word_offsets=A ) a = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate a = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] a = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(A , "word" ) ) , A ) self.assertEqual(" ".join(self.get_from_offsets(A , "word" ) ) , output.text ) # output times a = torch.tensor(self.get_from_offsets(A , "start_time" ) ) a = torch.tensor(self.get_from_offsets(A , "end_time" ) ) # fmt: off a = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) a = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(A , A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(A , A , atol=0.0_1 ) )
515
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _lowerCamelCase = """bert-base-cased""" _lowerCamelCase = """google/pegasus-xsum""" _lowerCamelCase = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] _lowerCamelCase = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] _lowerCamelCase = """patrickvonplaten/t5-tiny-random""" _lowerCamelCase = """sshleifer/bart-tiny-random""" _lowerCamelCase = """sshleifer/tiny-mbart""" _lowerCamelCase = """sshleifer/tiny-marian-en-de""" def a__ ( _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : list ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(_SCREAMING_SNAKE_CASE , F'''{split}.source''' ) , _SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(_SCREAMING_SNAKE_CASE , F'''{split}.target''' ) , _SCREAMING_SNAKE_CASE ) return tmp_dir class _snake_case (__SCREAMING_SNAKE_CASE): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) @slow def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_snake_case ) UpperCAmelCase_ : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase_ : Optional[int] = max(len(tokenizer.encode(_snake_case ) ) for a in ARTICLES ) UpperCAmelCase_ : List[Any] = max(len(tokenizer.encode(_snake_case ) ) for a in SUMMARIES ) UpperCAmelCase_ : Optional[int] = 4 UpperCAmelCase_ : Union[str, Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCAmelCase_ : int = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. UpperCAmelCase_ : Tuple = SeqaSeqDataset( _snake_case ,data_dir=_snake_case ,type_path="train" ,max_source_length=_snake_case ,max_target_length=_snake_case ,src_lang=_snake_case ,tgt_lang=_snake_case ,) UpperCAmelCase_ : List[Any] = DataLoader(_snake_case ,batch_size=2 ,collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_snake_case ,_snake_case ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCAmelCase_ : Union[str, Any] = shift_tokens_right(batch["labels"] ,tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_snake_case ) UpperCAmelCase_ : List[str] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase_ : Optional[Any] = max(len(tokenizer.encode(_snake_case ) ) for a in ARTICLES ) UpperCAmelCase_ : Optional[Any] = max(len(tokenizer.encode(_snake_case ) ) for a in SUMMARIES ) UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Dict = LegacySeqaSeqDataset( _snake_case ,data_dir=_snake_case ,type_path="train" ,max_source_length=20 ,max_target_length=_snake_case ,) UpperCAmelCase_ : Optional[int] = DataLoader(_snake_case ,batch_size=2 ,collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) UpperCAmelCase_ : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCAmelCase_ : Optional[int] = tmp_dir.joinpath("train.source" ).open().readlines() UpperCAmelCase_ : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_snake_case ,_snake_case ,1_28 ,_snake_case ) UpperCAmelCase_ : Dict = {x.name for x in tmp_dir.iterdir()} UpperCAmelCase_ : str = {x.name for x in save_dir.iterdir()} UpperCAmelCase_ : List[str] = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_snake_case ) < len(_snake_case ) assert len(_snake_case ) == 1 assert len(packed_examples[0] ) == sum(len(_snake_case ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE ,reason="This test requires fairseq" ) def UpperCamelCase__ ( self ): if not FAIRSEQ_AVAILABLE: return UpperCAmelCase_ : Dict = self._get_dataset(max_len=64 ) UpperCAmelCase_ : int = 64 UpperCAmelCase_ : str = ds.make_dynamic_sampler(_snake_case ,required_batch_size_multiple=_snake_case ) UpperCAmelCase_ : Dict = [len(_snake_case ) for x in batch_sampler] assert len(set(_snake_case ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_snake_case ) == len(_snake_case ) # no dropped or added examples UpperCAmelCase_ : Any = DataLoader(_snake_case ,batch_sampler=_snake_case ,collate_fn=ds.collate_fn ,num_workers=2 ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] for batch in data_loader: UpperCAmelCase_ : Any = batch["input_ids"].shape UpperCAmelCase_ : Optional[Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCAmelCase_ : int = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_snake_case ) if num_src_tokens > (max_tokens * 1.1): failures.append(_snake_case ) assert num_src_per_batch[0] == max(_snake_case ) if failures: raise AssertionError(f'''too many tokens in {len(_snake_case )} batches''' ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self._get_dataset(max_len=5_12 ) UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Optional[int] = ds.make_sortish_sampler(_snake_case ,shuffle=_snake_case ) UpperCAmelCase_ : Optional[int] = DataLoader(_snake_case ,batch_size=_snake_case ,collate_fn=ds.collate_fn ,num_workers=2 ) UpperCAmelCase_ : Union[str, Any] = DataLoader(_snake_case ,batch_size=_snake_case ,collate_fn=ds.collate_fn ,num_workers=2 ,sampler=_snake_case ) UpperCAmelCase_ : List[str] = tokenizer.pad_token_id def count_pad_tokens(_snake_case ,_snake_case="input_ids" ): return [batch[k].eq(_snake_case ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_snake_case ,k="labels" ) ) < sum(count_pad_tokens(_snake_case ,k="labels" ) ) assert sum(count_pad_tokens(_snake_case ) ) < sum(count_pad_tokens(_snake_case ) ) assert len(_snake_case ) == len(_snake_case ) def UpperCamelCase__ ( self ,_snake_case=10_00 ,_snake_case=1_28 ): if os.getenv("USE_REAL_DATA" ,_snake_case ): UpperCAmelCase_ : List[Any] = "examples/seq2seq/wmt_en_ro" UpperCAmelCase_ : Dict = max_len * 2 * 64 if not Path(_snake_case ).joinpath("train.len" ).exists(): save_len_file(_snake_case ,_snake_case ) else: UpperCAmelCase_ : Optional[Any] = "examples/seq2seq/test_data/wmt_en_ro" UpperCAmelCase_ : Union[str, Any] = max_len * 4 save_len_file(_snake_case ,_snake_case ) UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) UpperCAmelCase_ : Union[str, Any] = SeqaSeqDataset( _snake_case ,data_dir=_snake_case ,type_path="train" ,max_source_length=_snake_case ,max_target_length=_snake_case ,n_obs=_snake_case ,) return ds, max_tokens, tokenizer def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self._get_dataset() UpperCAmelCase_ : Tuple = set(DistributedSortishSampler(_snake_case ,2_56 ,num_replicas=2 ,rank=0 ,add_extra_examples=_snake_case ) ) UpperCAmelCase_ : Union[str, Any] = set(DistributedSortishSampler(_snake_case ,2_56 ,num_replicas=2 ,rank=1 ,add_extra_examples=_snake_case ) ) assert idsa.intersection(_snake_case ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_snake_case ,use_fast=_snake_case ) if tok_name == MBART_TINY: UpperCAmelCase_ : int = SeqaSeqDataset( _snake_case ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ,type_path="train" ,max_source_length=4 ,max_target_length=8 ,src_lang="EN" ,tgt_lang="FR" ,) UpperCAmelCase_ : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCAmelCase_ : int = SeqaSeqDataset( _snake_case ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ,type_path="train" ,max_source_length=4 ,max_target_length=8 ,) UpperCAmelCase_ : Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_snake_case ) == 1 if tok_name == BART_TINY else len(_snake_case ) == 0
720
'''simple docstring''' # Lint as: python3 import itertools import os import re _lowerCamelCase = re.compile(R"""([A-Z]+)([A-Z][a-z])""") _lowerCamelCase = re.compile(R"""([a-z\d])([A-Z])""") _lowerCamelCase = re.compile(R"""(?<!_)_(?!_)""") _lowerCamelCase = re.compile(R"""(_{2,})""") _lowerCamelCase = R"""^\w+(\.\w+)*$""" _lowerCamelCase = R"""<>:/\|?*""" def a__ ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[Any] = _uppercase_uppercase_re.sub(r"\1_\2" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = _lowercase_uppercase_re.sub(r"\1_\2" , _SCREAMING_SNAKE_CASE ) return name.lower() def a__ ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = _single_underscore_re.split(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = [_multiple_underscores_re.split(_SCREAMING_SNAKE_CASE ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) if n != "" ) def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> Dict: """simple docstring""" if os.path.basename(_SCREAMING_SNAKE_CASE ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" if os.path.basename(_SCREAMING_SNAKE_CASE ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , _SCREAMING_SNAKE_CASE ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(_SCREAMING_SNAKE_CASE )}-{split}''' def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any]=None ) -> str: """simple docstring""" UpperCAmelCase_ : str = filename_prefix_for_split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' UpperCAmelCase_ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return F'''{filepath}*''' def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Dict=None ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = filename_prefix_for_split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if shard_lengths: UpperCAmelCase_ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(_SCREAMING_SNAKE_CASE )] if filetype_suffix: UpperCAmelCase_ : Dict = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: UpperCAmelCase_ : List[str] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
323
0
import inspect import unittest class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): try: import diffusers # noqa: F401 except ImportError: assert False def _a ( self ): import diffusers from diffusers.dependency_versions_table import deps UpperCamelCase_: Tuple = inspect.getmembers(_lowerCamelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCamelCase_: Any = 'k-diffusion' elif backend == "invisible_watermark": UpperCamelCase_: Tuple = 'invisible-watermark' assert backend in deps, f'''{backend} is not in the deps table!'''
57
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) A_ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } A_ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Tuple = {} with open(UpperCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = line.strip() if line: UpperCamelCase_: List[Any] = line.split() UpperCamelCase_: Optional[Any] = line_number UpperCamelCase_: Any = words[0] UpperCamelCase_: List[Any] = value return result def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: for attribute in key.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: Dict = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_: Optional[Any] = hf_pointer for attribute in hf_param_name.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Tuple = shape_pointer.shape # let's reduce dimension UpperCamelCase_: int = value[0] else: UpperCamelCase_: Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: Optional[int] = value elif weight_type == "weight_g": UpperCamelCase_: Any = value elif weight_type == "weight_v": UpperCamelCase_: Union[str, Any] = value elif weight_type == "bias": UpperCamelCase_: Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = value else: UpperCamelCase_: int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: List[Any] = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: List[Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_: Any = '.'.join([key, hf_param_name] ) else: UpperCamelCase_: Union[str, Any] = key UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0] A_ : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: UpperCamelCase_: Optional[int] = False for key, mapped_key in MAPPING.items(): UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase_: Optional[Any] = True if "*" in mapped_key: UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Union[str, Any] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: Dict = 'weight_v' elif "bias" in name: UpperCamelCase_: int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: str = 'weight' else: UpperCamelCase_: Union[str, Any] = None if hf_dict is not None: rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return is_used return is_used def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[Any] = [] UpperCamelCase_: Dict = fairseq_model.state_dict() UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: List[Any] = True else: UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1] UpperCamelCase_: int = name.split('.' ) UpperCamelCase_: int = int(items[0] ) UpperCamelCase_: Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict: if config_path is not None: UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: List[str] = WavaVecaConfig() if is_seq_class: UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ ) UpperCamelCase_: Tuple = idalabel UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) feature_extractor.save_pretrained(UpperCAmelCase__ ) elif is_finetuned: if dict_path: UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: Dict = target_dict.pad_index UpperCamelCase_: Tuple = target_dict.bos_index UpperCamelCase_: Optional[Any] = target_dict.eos_index UpperCamelCase_: Union[str, Any] = len(target_dict.symbols ) UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: str = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_: List[str] = 0 UpperCamelCase_: List[Any] = 1 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , ) UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False UpperCamelCase_: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ ) if is_finetuned or is_seq_class: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ ) UpperCamelCase_: str = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) A_ : int = parser.parse_args() A_ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
57
1
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def _a ( lowerCAmelCase_ ): """simple docstring""" if not sentence: return "" _snake_case : List[str] = dict(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
UpperCamelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCamelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCamelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
590
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) A_ : Tuple = img A_ : Union[str, Any] = img.shape[1] A_ : List[Any] = img.shape[0] A_ : int = dst_width A_ : Optional[int] = dst_height A_ : Any = self.src_w / self.dst_w A_ : List[Any] = self.src_h / self.dst_h A_ : Tuple = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): A_ : List[Any] = self.img[self.get_y(_SCREAMING_SNAKE_CASE )][self.get_x(_SCREAMING_SNAKE_CASE )] def _snake_case ( self , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' return int(self.ratio_x * x ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": UpperCamelCase , UpperCamelCase = 800, 600 UpperCamelCase = imread("""image_data/lena.jpg""", 1) UpperCamelCase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
590
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Tuple = logging.get_logger(__name__) class _snake_case ( a__ ): _A = ["pixel_values"] def __init__( self ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PIL.Image.BICUBIC ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = 1 / 255 ,UpperCamelCase = True ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = None ,**UpperCamelCase ,) -> None: super().__init__(**lowerCamelCase_ ) snake_case__ :int = size if size is not None else {"height": 256, "width": 256} snake_case__ :Dict = get_size_dict(lowerCamelCase_ ) snake_case__ :Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case__ :Union[str, Any] = get_size_dict(lowerCamelCase_ ,param_name="crop_size" ) snake_case__ :str = do_resize snake_case__ :List[Any] = size snake_case__ :Union[str, Any] = resample snake_case__ :Any = do_center_crop snake_case__ :List[Any] = crop_size snake_case__ :Optional[Any] = do_rescale snake_case__ :Tuple = rescale_factor snake_case__ :Optional[Any] = do_normalize snake_case__ :str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ :str = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PIL.Image.BICUBIC ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :int = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( lowerCamelCase_ ,size=(size["height"], size["width"]) ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :int = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ ,size=(size["height"], size["width"]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> List[Any]: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase=None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Tuple = do_resize if do_resize is not None else self.do_resize snake_case__ :Union[str, Any] = resample if resample is not None else self.resample snake_case__ :Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ :Dict = do_rescale if do_rescale is not None else self.do_rescale snake_case__ :List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ :List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case__ :List[str] = image_std if image_std is not None else self.image_std snake_case__ :Union[str, Any] = size if size is not None else self.size snake_case__ :Optional[int] = get_size_dict(lowerCamelCase_ ) snake_case__ :List[Any] = crop_size if crop_size is not None else self.crop_size snake_case__ :int = get_size_dict(lowerCamelCase_ ,param_name="crop_size" ) snake_case__ :Optional[int] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case__ :str = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: snake_case__ :List[str] = [self.resize(image=lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ) for image in images] if do_center_crop: snake_case__ :Optional[int] = [self.center_crop(image=lowerCamelCase_ ,size=lowerCamelCase_ ) for image in images] if do_rescale: snake_case__ :Union[str, Any] = [self.rescale(image=lowerCamelCase_ ,scale=lowerCamelCase_ ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ) for image in images] snake_case__ :Any = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] snake_case__ :Dict = {"pixel_values": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase: Dict = 1_6 _lowercase: Tuple = 3_2 def _lowerCamelCase ( snake_case , snake_case = 16 ): _lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowerCAmelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase = 8 else: _lowerCAmelCase = None return tokenizer.pad( snake_case , padding='longest' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='pt' , ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets['train'] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case , drop_last=snake_case ) _lowerCAmelCase = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def _lowerCamelCase ( snake_case , snake_case ): # Initialize accelerator _lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config['lr'] _lowerCAmelCase = int(config['num_epochs'] ) _lowerCAmelCase = int(config['seed'] ) _lowerCAmelCase = int(config['batch_size'] ) _lowerCAmelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE _lowerCAmelCase = MAX_GPU_BATCH_SIZE set_seed(snake_case ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(snake_case , snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase = model(**snake_case ) _lowerCAmelCase = outputs.loss _lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**snake_case ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) _lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , snake_case ) def _lowerCamelCase ( ): _lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case , default=snake_case , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
192
from __future__ import annotations from random import choice def _lowerCamelCase ( snake_case ): return choice(snake_case ) def _lowerCamelCase ( snake_case , snake_case ): _lowerCAmelCase = random_pivot(snake_case ) # partition based on pivot # linear time _lowerCAmelCase = [e for e in lst if e < pivot] _lowerCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case ) < k - 1: return kth_number(snake_case , k - len(snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
192
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : List[str] =16 A_ : str =32 def snake_case_ ( __snake_case : Accelerator , __snake_case : int = 16) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''') lowerCAmelCase_ = load_dataset('''glue''' , '''mrpc''') def tokenize_function(__snake_case : str): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ = datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''') def collate_fn(__snake_case : List[Any]): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ = 8 else: lowerCAmelCase_ = None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case) lowerCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ : Optional[int] =mocked_dataloaders # noqa: F811 def snake_case_ ( __snake_case : Dict , __snake_case : Any) -> int: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case) == "1": lowerCAmelCase_ = 2 # New Code # lowerCAmelCase_ = int(args.gradient_accumulation_steps) lowerCAmelCase_ = int(args.local_sgd_steps) # Initialize accelerator lowerCAmelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__snake_case) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['''lr'''] lowerCAmelCase_ = int(config['''num_epochs''']) lowerCAmelCase_ = int(config['''seed''']) lowerCAmelCase_ = int(config['''batch_size''']) lowerCAmelCase_ = evaluate.load('''glue''' , '''mrpc''') set_seed(__snake_case) lowerCAmelCase_ ,lowerCAmelCase_ = get_dataloaders(__snake_case , __snake_case) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ = model.to(accelerator.device) # Instantiate optimizer lowerCAmelCase_ = AdamW(params=model.parameters() , lr=__snake_case) # Instantiate scheduler lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) # Now we train the model for epoch in range(__snake_case): model.train() with LocalSGD( accelerator=__snake_case , model=__snake_case , local_sgd_steps=__snake_case , enabled=local_sgd_steps is not None) as local_sgd: for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__snake_case): lowerCAmelCase_ = model(**__snake_case) lowerCAmelCase_ = output.loss accelerator.backward(__snake_case) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): lowerCAmelCase_ = model(**__snake_case) lowerCAmelCase_ = outputs.logits.argmax(dim=-1) lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels'''])) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case) def snake_case_ ( ) -> Union[str, Any]: lowerCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__snake_case , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=__snake_case , default=8 , help='''Number of local SGD steps or None to disable local SGD''') parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case) if __name__ == "__main__": main()
710
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case_ ( __snake_case : Tuple) -> str: lowerCAmelCase_ = os.path.join(args.tf_model_dir , '''parameters.json''') lowerCAmelCase_ = json.loads(open(__snake_case).read()) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''') if not args.output.endswith('''.pt'''): lowerCAmelCase_ = args.output + '''.pt''' lowerCAmelCase_ = OrderedDict() with tf.device('''/CPU:0'''): lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir) lowerCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase_ = reader.get_tensor(__snake_case).astype(np.floataa) if key_name.endswith('''/adam_m''') or key_name.endswith('''/adam_v'''): continue if key_name.startswith('''pasts/'''): if key_name.startswith('''pasts/mlp'''): lowerCAmelCase_ = int(key_name[9]) elif key_name.startswith('''pasts/out'''): lowerCAmelCase_ = 8 lowerCAmelCase_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/moe'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/switch_gating/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/softmlp/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/wo/kernel''') or key_name.endswith('''/wi/kernel'''): lowerCAmelCase_ = key_name[-9:-7] for i in range(16): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCAmelCase_ = ( vnp[i].transpose([1, 0]).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/mlp'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/p1/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p1/bias'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p2/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p2/bias'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/ln'''): lowerCAmelCase_ = int(key_name[8:].split('''/''')[0]) if key_name.endswith('''/b'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/g'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/att'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/qkv/kernel'''): lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase_ = state[:, 0, :, :] lowerCAmelCase_ = state[:, 1, :, :] lowerCAmelCase_ = state[:, 2, :, :] lowerCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/o/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/an'''): lowerCAmelCase_ = int(key_name[8:].split('''/''')[0]) if key_name.endswith('''/b'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/g'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif ( key_name.startswith('''model/wte''') or key_name.startswith('''model/wpe''') or key_name.startswith('''model/ete''') ): lowerCAmelCase_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCAmelCase_ = '''model.%s.weight''' % nlayer lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(__snake_case) if key_name.startswith('''model/wte'''): lowerCAmelCase_ = '''lm_head.weight''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/wob'''): lowerCAmelCase_ = '''final_logits_bias''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = state.reshape((1, -1)) lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name == "model/dense/kernel": lowerCAmelCase_ = '''model.last_project.weight''' lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name == "model/dense_1/bias": lowerCAmelCase_ = '''model.last_project.bias''' lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) torch.save(__snake_case , args.output) if __name__ == "__main__": A_ : Optional[Any] =argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') A_ : Union[str, Any] =parser.parse_args() convert_tf_gptsan_to_pt(args)
606
0
def _a ( lowerCAmelCase = 1000000 )-> Tuple: SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = {1: 1} for inputa in range(2 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: SCREAMING_SNAKE_CASE_ = (3 * number) + 1 counter += 1 if inputa not in counters: SCREAMING_SNAKE_CASE_ = counter if counter > pre_counter: SCREAMING_SNAKE_CASE_ = inputa SCREAMING_SNAKE_CASE_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
360
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __a : Tuple = logging.get_logger(__name__) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __lowercase = MaskFormerConfig(backbone_config=lowercase ) __lowercase = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = '''mapillary-vistas-id2label.json''' __lowercase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase = {int(lowercase ): v for k, v in idalabel.items()} return config def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") ) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = dct.pop(lowercase ) __lowercase = val def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) __lowercase = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) __lowercase = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) __lowercase = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def UpperCAmelCase ( ): """simple docstring""" __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase = False ): """simple docstring""" __lowercase = get_maskformer_config(lowercase ) # load original state_dict with open(lowercase , '''rb''' ) as f: __lowercase = pickle.load(lowercase ) __lowercase = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_swin_q_k_v(lowercase , config.backbone_config ) read_in_decoder_q_k_v(lowercase , lowercase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowercase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowercase ) model.eval() for name, param in model.named_parameters(): print(lowercase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase ) == 0, F"Unexpected keys: {unexpected_keys}" # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65535 else: __lowercase = 255 __lowercase = True if '''ade''' in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowercase , reduce_labels=lowercase ) __lowercase = image_processor(lowercase , return_tensors='''pt''' ) __lowercase = model(**lowercase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"nielsr/{model_name}" ) image_processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": __a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __a : str = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
534
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase )-> int: UpperCamelCase = [x.strip() for x in open(__UpperCamelCase ).readlines()] UpperCamelCase = [x.strip() for x in open(__UpperCamelCase ).readlines()][: len(__UpperCamelCase )] UpperCamelCase = calculate_rouge(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) if save_path is not None: save_json(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
713
'''simple docstring''' from math import factorial def lowercase__ ( __UpperCamelCase = 20 )-> int: UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCamelCase = n // 2 return int(factorial(__UpperCamelCase ) / (factorial(__UpperCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class snake_case_ ( UpperCAmelCase_ ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class snake_case_ ( UpperCAmelCase_ ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
375
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ : Any = False, False, False @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) __UpperCamelCase = field(default='''Audio''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_ ) def __call__( self : Optional[Any] ) -> List[str]: '''simple docstring''' return self.pa_type def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, bytes, dict] ) -> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __lowercase = BytesIO() sf.write(__lowerCamelCase , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __lowercase = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: __lowercase = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32_767 __lowercase = BytesIO(bytes() ) sf.write(__lowerCamelCase , __lowerCamelCase , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def UpperCAmelCase ( self : Any , __lowerCamelCase : dict , __lowerCamelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) __lowercase , __lowercase = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err __lowercase = xsplitext(__lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: __lowercase = token_per_repo_id or {} __lowercase = path.split('::' )[-1] try: __lowercase = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )['repo_id'] __lowercase = token_per_repo_id[repo_id] except (ValueError, KeyError): __lowercase = None with xopen(__lowerCamelCase , 'rb' , use_auth_token=__lowerCamelCase ) as f: __lowercase , __lowercase = sf.read(__lowerCamelCase ) else: __lowercase , __lowercase = sf.read(__lowerCamelCase ) __lowercase = array.T if self.mono: __lowercase = librosa.to_mono(__lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: __lowercase = librosa.resample(__lowerCamelCase , orig_sr=__lowerCamelCase , target_sr=self.sampling_rate ) __lowercase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): __lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) __lowercase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): __lowercase = pa.array([Audio().encode_example(__lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __lowercase = storage.field('bytes' ) else: __lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __lowercase = storage.field('path' ) else: __lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : Any ): with xopen(__lowerCamelCase , 'rb' ) as f: __lowercase = f.read() return bytes_ __lowercase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __lowercase = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type )
375
1
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ): '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = True _snake_case = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = FlaxBertModelTester(self ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = FlaxBertModel.from_pretrained('''bert-base-cased''' ) UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
350
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {'vocab_file': 'spiece.model'} snake_case_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } snake_case_ : Dict = { 'AI-Sweden/gpt-sw3-126m': 2_048, 'AI-Sweden/gpt-sw3-350m': 2_048, 'AI-Sweden/gpt-sw3-1.6b': 2_048, 'AI-Sweden/gpt-sw3-6.7b': 2_048, 'AI-Sweden/gpt-sw3-20b': 2_048, } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) UpperCamelCase = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCamelCase = '''<|endoftext|>''' if eos_token is None else eos_token UpperCamelCase = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCamelCase = unk_token if pad_token is None else pad_token UpperCamelCase = eos_token if bos_token is None else bos_token else: UpperCamelCase = '''<pad>''' if pad_token is None else pad_token UpperCamelCase = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off UpperCamelCase = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCamelCase = re.compile( f'[{"".join(map(lowerCamelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self ): '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = self.non_printing_characters_re.sub('''''' , lowerCamelCase__ ) # Normalize whitespaces UpperCamelCase = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization UpperCamelCase = unicodedata.normalize('''NFC''' , lowerCamelCase__ ) return text def UpperCAmelCase ( self , lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = self.preprocess_text(lowerCamelCase__ ) return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) @staticmethod def UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' return out_string def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [] UpperCamelCase = '''''' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(lowerCamelCase__ ) UpperCamelCase = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase = self.preprocess_text(lowerCamelCase__ ) UpperCamelCase = self.sp_model.encode(lowerCamelCase__ ) else: UpperCamelCase = [self.preprocess_text(lowerCamelCase__ ) for t in text] UpperCamelCase = self.sp_model.encode(lowerCamelCase__ ) if return_tensors is True or return_tensors == "pt": UpperCamelCase = torch.tensor(lowerCamelCase__ ) return token_ids def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.decode(lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] UpperCamelCase = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(lowerCamelCase__ ) + f'{self.bos_token}Bot:' ) return self.encode(text=lowerCamelCase__ )
350
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = tempfile.mkdtemp() __A : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __A : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __A : Union[str, Any] = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : int = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = self.get_tokenizer() __A : int = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : List[Any] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __A : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) __A : int = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __A : List[str] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __A : int = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __A : Optional[int] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : List[str] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : int = self.prepare_image_inputs() __A : Optional[int] = image_processor(lowerCamelCase , return_tensors="np" ) __A : Dict = processor(images=lowerCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : str = self.get_image_processor() __A : int = self.get_tokenizer() __A : Optional[int] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Optional[Any] = "lower newer" __A : Union[str, Any] = processor(text=lowerCamelCase ) __A : int = tokenizer(lowerCamelCase , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : int = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Tuple = "lower newer" __A : int = self.prepare_image_inputs() __A : str = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Dict = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : Dict = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Optional[int] = processor.batch_decode(lowerCamelCase ) __A : Optional[int] = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : str = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : int = "lower newer" __A : str = self.prepare_image_inputs() __A : Tuple = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
111
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = tempfile.mkdtemp() __A : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __A : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __A : Union[str, Any] = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : int = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = self.get_tokenizer() __A : int = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : List[Any] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __A : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) __A : int = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __A : List[str] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __A : int = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __A : Optional[int] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : List[str] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : int = self.prepare_image_inputs() __A : Optional[int] = image_processor(lowerCamelCase , return_tensors="np" ) __A : Dict = processor(images=lowerCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : str = self.get_image_processor() __A : int = self.get_tokenizer() __A : Optional[int] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Optional[Any] = "lower newer" __A : Union[str, Any] = processor(text=lowerCamelCase ) __A : int = tokenizer(lowerCamelCase , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : int = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Tuple = "lower newer" __A : int = self.prepare_image_inputs() __A : str = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Dict = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : Dict = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Optional[int] = processor.batch_decode(lowerCamelCase ) __A : Optional[int] = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : str = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : int = "lower newer" __A : str = self.prepare_image_inputs() __A : Tuple = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
111
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable _UpperCamelCase = list[list[float | int]] def _lowerCAmelCase( UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix ) -> Matrix: lowerCAmelCase__ = len(UpperCAmelCase_ ) lowerCAmelCase__ = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase_ )] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for row in range(UpperCAmelCase_ ): for col in range(UpperCAmelCase_ ): lowerCAmelCase__ = matrix[row][col] lowerCAmelCase__ = vector[row][0] lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 while row < size and col < size: # pivoting lowerCAmelCase__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase_ , UpperCAmelCase_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCAmelCase__ ,lowerCAmelCase__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase_ ): lowerCAmelCase__ = augmented[rowa][col] / augmented[row][col] lowerCAmelCase__ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase_ ): for row in range(UpperCAmelCase_ ): lowerCAmelCase__ = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase_ ) ] def _lowerCAmelCase( UpperCAmelCase_ : list[int] ) -> Callable[[int], int]: lowerCAmelCase__ = len(UpperCAmelCase_ ) lowerCAmelCase__ = [[0 for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )] lowerCAmelCase__ = [[0] for _ in range(UpperCAmelCase_ )] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for x_val, y_val in enumerate(UpperCAmelCase_ ): for col in range(UpperCAmelCase_ ): lowerCAmelCase__ = (x_val + 1) ** (size - col - 1) lowerCAmelCase__ = y_val lowerCAmelCase__ = solve(UpperCAmelCase_ , UpperCAmelCase_ ) def interpolated_func(UpperCAmelCase_ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase_ ) ) return interpolated_func def _lowerCAmelCase( UpperCAmelCase_ : int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _lowerCAmelCase( UpperCAmelCase_ : Callable[[int], int] = question_function , UpperCAmelCase_ : int = 10 ) -> int: lowerCAmelCase__ = [func(UpperCAmelCase_ ) for x_val in range(1 , order + 1 )] lowerCAmelCase__ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCAmelCase__ = 0 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for poly in polynomials: lowerCAmelCase__ = 1 while func(UpperCAmelCase_ ) == poly(UpperCAmelCase_ ): x_val += 1 ret += poly(UpperCAmelCase_ ) return ret if __name__ == "__main__": print(f'{solution() = }')
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
211
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def snake_case_ ( A_ : int, A_ : Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def snake_case_ ( A_ : List[Any], A_ : Tuple ): '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _lowerCamelCase : Any = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) _lowerCamelCase : Dict = in_proj_weight[ : encoder_config.hidden_size, : ] _lowerCamelCase : Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _lowerCamelCase : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def snake_case_ ( A_ : List[str], A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : str = dct.pop(A_ ) _lowerCamelCase : str = val def snake_case_ ( A_ : Dict ): '''simple docstring''' if "handwritten" in checkpoint_url: _lowerCamelCase : int = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase : List[str] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _lowerCamelCase : Dict = Image.open(requests.get(A_, stream=A_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def snake_case_ ( A_ : Tuple, A_ : Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig(image_size=3_84, qkv_bias=A_ ) _lowerCamelCase : int = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _lowerCamelCase : Any = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _lowerCamelCase : str = 10_24 _lowerCamelCase : List[str] = 40_96 _lowerCamelCase : Any = 24 _lowerCamelCase : Union[str, Any] = 16 _lowerCamelCase : str = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase : Tuple = False _lowerCamelCase : Any = '''relu''' _lowerCamelCase : Optional[Any] = 10_24 _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = False _lowerCamelCase : Tuple = False # load HuggingFace model _lowerCamelCase : List[Any] = ViTModel(A_, add_pooling_layer=A_ ) _lowerCamelCase : List[str] = TrOCRForCausalLM(A_ ) _lowerCamelCase : List[Any] = VisionEncoderDecoderModel(encoder=A_, decoder=A_ ) model.eval() # load state_dict of original model, rename some keys _lowerCamelCase : Optional[int] = torch.hub.load_state_dict_from_url(A_, map_location='''cpu''', check_hash=A_ )['''model'''] _lowerCamelCase : Tuple = create_rename_keys(A_, A_ ) for src, dest in rename_keys: rename_key(A_, A_, A_ ) read_in_q_k_v(A_, A_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _lowerCamelCase : Union[str, Any] = state_dict.pop(A_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: _lowerCamelCase : Dict = val else: _lowerCamelCase : Dict = val # load state dict model.load_state_dict(A_ ) # Check outputs on an image _lowerCamelCase : str = ViTImageProcessor(size=encoder_config.image_size ) _lowerCamelCase : List[str] = RobertaTokenizer.from_pretrained('''roberta-large''' ) _lowerCamelCase : List[str] = TrOCRProcessor(A_, A_ ) _lowerCamelCase : Dict = processor(images=prepare_img(A_ ), return_tensors='''pt''' ).pixel_values # verify logits _lowerCamelCase : str = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _lowerCamelCase : Tuple = model(pixel_values=A_, decoder_input_ids=A_ ) _lowerCamelCase : Optional[Any] = outputs.logits _lowerCamelCase : str = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _lowerCamelCase : Dict = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _lowerCamelCase : Optional[int] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _lowerCamelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _lowerCamelCase : Tuple = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], A_, atol=1E-3 ), "First elements of logits not as expected" Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
83
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _lowercase = logging.get_logger(__name__) class _lowercase : def __init__( self , A__ , A__ ) -> Tuple: snake_case = question_encoder snake_case = generator snake_case = self.question_encoder def UpperCamelCase ( self , A__ ) -> int: if os.path.isfile(A__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(A__ , exist_ok=A__ ) snake_case = os.path.join(A__ , '''question_encoder_tokenizer''' ) snake_case = os.path.join(A__ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(A__ ) self.generator.save_pretrained(A__ ) @classmethod def UpperCamelCase ( cls , A__ , **A__ ) -> List[Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer snake_case = kwargs.pop('''config''' , A__ ) if config is None: snake_case = RagConfig.from_pretrained(A__ ) snake_case = AutoTokenizer.from_pretrained( A__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) snake_case = AutoTokenizer.from_pretrained( A__ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=A__ , generator=A__ ) def __call__( self , *A__ , **A__ ) -> Any: return self.current_tokenizer(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Tuple: return self.generator.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Tuple: return self.generator.decode(*A__ , **A__ ) def UpperCamelCase ( self ) -> Optional[Any]: snake_case = self.question_encoder def UpperCamelCase ( self ) -> str: snake_case = self.generator def UpperCamelCase ( self , A__ , A__ = None , A__ = None , A__ = None , A__ = "longest" , A__ = None , A__ = True , **A__ , ) -> BatchEncoding: warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , A__ , ) if max_length is None: snake_case = self.current_tokenizer.model_max_length snake_case = self( A__ , add_special_tokens=A__ , return_tensors=A__ , max_length=A__ , padding=A__ , truncation=A__ , **A__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case = self.current_tokenizer.model_max_length snake_case = self( text_target=A__ , add_special_tokens=A__ , return_tensors=A__ , padding=A__ , max_length=A__ , truncation=A__ , **A__ , ) snake_case = labels['''input_ids'''] return model_inputs
342
0
'''simple docstring''' import json import sys def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> int: with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case = json.load(__lowerCAmelCase ) snake_case = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(__lowerCAmelCase ): snake_case = results[benchmark_name] snake_case = benchmark_name.split("""/""" )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) snake_case = """| metric |""" snake_case = """|--------|""" snake_case = """| new / old (diff) |""" for metric_name in sorted(__lowerCAmelCase ): snake_case = benchmark_res[metric_name] snake_case = metric_vals["""new"""] snake_case = metric_vals.get("""old""" , __lowerCAmelCase ) snake_case = metric_vals.get("""diff""" , __lowerCAmelCase ) snake_case = F''' {new_val:f}''' if isinstance(__lowerCAmelCase , (int, float) ) else """None""" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(__lowerCAmelCase , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(__lowerCAmelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(__lowerCAmelCase ) ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = sys.argv[1] _SCREAMING_SNAKE_CASE = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
517
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
517
1
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : List[Any] = 1_00 ) -> Any: _lowerCAmelCase : Dict = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : Dict = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
384
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput snake_case = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Optional[Any] ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = eval_examples SCREAMING_SNAKE_CASE : List[Any] = post_process_function SCREAMING_SNAKE_CASE : Any = quant_trainer_args SCREAMING_SNAKE_CASE : Optional[Any] = 128 # default number of calibration samples def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) SCREAMING_SNAKE_CASE : str = calib_dataset if calib_dataset is not None else self.calib_dataset SCREAMING_SNAKE_CASE : str = self._remove_unused_columns(UpperCAmelCase_ , description="Calibration" ) return DataLoader( UpperCAmelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCAmelCase_ , ) def _A ( self : Optional[int] , UpperCAmelCase_ : Optional[int]=None ): SCREAMING_SNAKE_CASE : Any = self.train_dataset if calib_dataset is None else calib_dataset SCREAMING_SNAKE_CASE : List[Any] = self.get_calib_dataloader(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.model quant_trainer.configure_model(UpperCAmelCase_ , self.quant_trainer_args , calib=UpperCAmelCase_ ) model.eval() quant_trainer.enable_calibration(UpperCAmelCase_ ) logger.info("***** Running calibration *****" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(UpperCAmelCase_ ): # Prediction step SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.prediction_step(UpperCAmelCase_ , UpperCAmelCase_ , prediction_loss_only=UpperCAmelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCAmelCase_ , self.quant_trainer_args ) SCREAMING_SNAKE_CASE : Optional[int] = model def _A ( self : List[Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str = "eval" ): SCREAMING_SNAKE_CASE : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : Tuple = self.get_eval_dataloader(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : int = eval_loop( UpperCAmelCase_ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , ) finally: SCREAMING_SNAKE_CASE : int = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: SCREAMING_SNAKE_CASE : List[Any] = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions ) SCREAMING_SNAKE_CASE : Any = self.compute_metrics(UpperCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = metrics.pop(UpperCAmelCase_ ) self.log(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : List[Any] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase_ ) return metrics def _A ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str = "test" ): SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(UpperCAmelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Tuple = self.compute_metrics SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : str = eval_loop( UpperCAmelCase_ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , ) finally: SCREAMING_SNAKE_CASE : Union[str, Any] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Optional[Any] = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions , "predict" ) SCREAMING_SNAKE_CASE : str = self.compute_metrics(UpperCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): SCREAMING_SNAKE_CASE : str = metrics.pop(UpperCAmelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase_ ) def _A ( self : Any , UpperCAmelCase_ : int="./" ): SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset SCREAMING_SNAKE_CASE : List[Any] = self.get_eval_dataloader(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = next(iter(UpperCAmelCase_ ) ) # saving device - to make it consistent SCREAMING_SNAKE_CASE : int = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple SCREAMING_SNAKE_CASE : Tuple = tuple(v.to(UpperCAmelCase_ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Any = self.model.to(UpperCAmelCase_ ) model.eval() model.float() SCREAMING_SNAKE_CASE : str = model.module if hasattr(UpperCAmelCase_ , "module" ) else model quant_trainer.configure_model(UpperCAmelCase_ , self.quant_trainer_args ) SCREAMING_SNAKE_CASE : List[Any] = os.path.join(UpperCAmelCase_ , "model.onnx" ) logger.info(f'''exporting model to {output_model_file}''' ) SCREAMING_SNAKE_CASE : int = {0: "batch_size", 1: "seq_len"} torch.onnx.export( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , export_params=UpperCAmelCase_ , opset_version=13 , do_constant_folding=UpperCAmelCase_ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=UpperCAmelCase_ , ) logger.info("onnx export finished" )
62
0
'''simple docstring''' def _A (lowerCAmelCase__ :int = 1_00_00_00 ) -> int: '''simple docstring''' _a = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowerCAmelCase__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
532
'''simple docstring''' from functools import reduce a_ : Any = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _A (lowerCAmelCase__ :str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : str(int(lowerCAmelCase__ ) * int(lowerCAmelCase__ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase__ ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
532
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule _UpperCAmelCase : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
107
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase__ : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : List[str] = min_resolution UpperCAmelCase__ : Optional[Any] = max_resolution UpperCAmelCase__ : List[str] = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean UpperCAmelCase__ : Dict = image_std UpperCAmelCase__ : Any = do_rescale UpperCAmelCase__ : str = rescale_factor UpperCAmelCase__ : List[str] = do_pad def snake_case__ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=False): if not batched: UpperCAmelCase__ : List[Any] = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : List[Any] = int(self.size["""shortest_edge"""] * h / w) UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] UpperCAmelCase__ : Optional[int] = int(self.size["""shortest_edge"""] * w / h) else: UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] UpperCAmelCase__ : int = self.size["""shortest_edge"""] else: UpperCAmelCase__ : str = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase__ : Any = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[0])[0] UpperCAmelCase__ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = DeformableDetrImageProcessingTester(self) @property def snake_case__ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""")) self.assertTrue(hasattr(_lowerCamelCase , """image_std""")) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_rescale""")) self.assertTrue(hasattr(_lowerCamelCase , """do_pad""")) self.assertTrue(hasattr(_lowerCamelCase , """size""")) def snake_case__ ( self): UpperCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) def snake_case__ ( self): pass def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : int = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self): # prepare image and target UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: UpperCAmelCase__ : Dict = json.loads(f.read()) UpperCAmelCase__ : int = {"""image_id""": 3_9769, """annotations""": target} # encode them UpperCAmelCase__ : Dict = DeformableDetrImageProcessor() UpperCAmelCase__ : int = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : Tuple = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : Any = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : List[Any] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase)) @slow def snake_case__ ( self): # prepare image, target and masks_path UpperCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: UpperCAmelCase__ : Optional[int] = json.loads(f.read()) UpperCAmelCase__ : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} UpperCAmelCase__ : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them UpperCAmelCase__ : List[str] = DeformableDetrImageProcessor(format="""coco_panoptic""") UpperCAmelCase__ : Tuple = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : str = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : List[str] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Tuple = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify masks UpperCAmelCase__ : Dict = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCamelCase) # verify orig_size UpperCAmelCase__ : Any = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase))
407
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = LongformerTokenizer __snake_case = True __snake_case = LongformerTokenizerFast __snake_case = True def UpperCamelCase__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case_ = dict(zip(A__ , range(len(A__ ) ) ) ) snake_case_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case_ = {"""unk_token""": """<unk>"""} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) def UpperCamelCase__ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase__ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = """lower newer""" snake_case_ = """lower newer""" return input_text, output_text def UpperCamelCase__ ( self ): snake_case_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ = """lower newer""" snake_case_ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case_ = tokenizer.tokenize(A__ ) # , add_prefix_space=True) self.assertListEqual(A__ , A__ ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ ) def UpperCamelCase__ ( self ): snake_case_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=A__ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=A__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase__ ( self ): snake_case_ = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) snake_case_ = tokenizer.encode('''sequence builders''' , add_special_tokens=A__ ) snake_case_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A__ ) snake_case_ = tokenizer.encode( '''sequence builders''' , add_special_tokens=A__ , add_prefix_space=A__ ) snake_case_ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=A__ , add_prefix_space=A__ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(A__ ) snake_case_ = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase__ ( self ): snake_case_ = self.get_tokenizer() snake_case_ = """Encode this sequence.""" snake_case_ = tokenizer.byte_encoder[""" """.encode('''utf-8''' )[0]] # Testing encoder arguments snake_case_ = tokenizer.encode(A__ , add_special_tokens=A__ , add_prefix_space=A__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A__ , A__ ) snake_case_ = tokenizer.encode(A__ , add_special_tokens=A__ , add_prefix_space=A__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A__ , A__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) snake_case_ = tokenizer.encode(A__ , add_special_tokens=A__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A__ , A__ ) # Testing spaces after special tokens snake_case_ = """<mask>""" tokenizer.add_special_tokens( {'''mask_token''': AddedToken(A__ , lstrip=A__ , rstrip=A__ )} ) # mask token has a left space snake_case_ = tokenizer.convert_tokens_to_ids(A__ ) snake_case_ = """Encode <mask> sequence""" snake_case_ = """Encode <mask>sequence""" snake_case_ = tokenizer.encode(A__ ) snake_case_ = encoded.index(A__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A__ , A__ ) snake_case_ = tokenizer.encode(A__ ) snake_case_ = encoded.index(A__ ) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A__ , A__ ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) snake_case_ = self.tokenizer_class.from_pretrained(A__ , **A__ ) snake_case_ = """A, <mask> AllenNLP sentence.""" snake_case_ = tokenizer_r.encode_plus(A__ , add_special_tokens=A__ , return_token_type_ids=A__ ) snake_case_ = tokenizer_p.encode_plus(A__ , add_special_tokens=A__ , return_token_type_ids=A__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) snake_case_ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) snake_case_ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( A__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( A__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCamelCase__ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A__ , add_prefix_space=A__ , trim_offsets=A__ ) snake_case_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , A__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , A__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , A__ ) def UpperCamelCase__ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case_ = F'''{text_of_1_token} {text_of_1_token}''' snake_case_ = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , add_prefix_space=A__ , trim_offsets=A__ ) snake_case_ = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , add_prefix_space=A__ , trim_offsets=A__ ) snake_case_ = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , add_prefix_space=A__ , trim_offsets=A__ ) snake_case_ = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A__ ), len(A__ ) + 1 + len(A__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , add_prefix_space=A__ , trim_offsets=A__ ) snake_case_ = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A__ ), len(A__ ) + 1 + len(A__ )) , ) snake_case_ = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case_ = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , add_prefix_space=A__ , trim_offsets=A__ ) snake_case_ = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A__ ) + 1, 1 + len(A__ ) + 1 + len(A__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , add_prefix_space=A__ , trim_offsets=A__ ) snake_case_ = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A__ ), 1 + len(A__ ) + 1 + len(A__ )) , ) snake_case_ = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , add_prefix_space=A__ , trim_offsets=A__ ) snake_case_ = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A__ ), 1 + len(A__ ) + 1 + len(A__ )) , )
720
def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 100_0000 )-> int: """simple docstring""" snake_case_ = 0 snake_case_ = 1 for current_denominator in range(1 , limit + 1 ): snake_case_ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case_ = current_numerator snake_case_ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
531
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __snake_case : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]=7 , _lowerCamelCase : int=3 , _lowerCamelCase : Optional[int]=1_8 , _lowerCamelCase : int=3_0 , _lowerCamelCase : int=4_0_0 , _lowerCamelCase : List[str]=None , _lowerCamelCase : List[str]=True , _lowerCamelCase : Dict=True , _lowerCamelCase : Tuple=None , ): A__ = size if size is not None else {'''height''': 2_0, '''width''': 2_0} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = size A__ = do_normalize A__ = do_convert_rgb A__ = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] A__ = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} def A__ ( self : Optional[int] ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A__ ( self : Optional[Any] ): A__ = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class UpperCamelCase ( a , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int =PixaStructImageProcessor if is_vision_available() else None def A__ ( self : int ): A__ = PixaStructImageProcessingTester(self ) @property def A__ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : Any ): A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_convert_rgb''' ) ) def A__ ( self : Tuple ): A__ = self.image_processor_tester.prepare_dummy_image() A__ = self.image_processing_class(**self.image_processor_dict ) A__ = 2_0_4_8 A__ = image_processor(_lowerCamelCase , return_tensors='''pt''' , max_patches=_lowerCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1E-3 , rtol=1E-3 ) ) def A__ ( self : Dict ): # Initialize image_processor A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A__ = image_processor( _lowerCamelCase , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self : List[str] ): # Initialize image_processor A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 A__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_lowerCamelCase ): A__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches A__ = '''Hello''' A__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_lowerCamelCase , header_text=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A__ = image_processor( _lowerCamelCase , return_tensors='''pt''' , max_patches=_lowerCamelCase , header_text=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self : Tuple ): # Initialize image_processor A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) A__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A__ = image_processor( _lowerCamelCase , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self : Dict ): # Initialize image_processor A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A__ = image_processor( _lowerCamelCase , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class UpperCamelCase ( a , unittest.TestCase ): """simple docstring""" _lowerCamelCase : str =PixaStructImageProcessor if is_vision_available() else None def A__ ( self : List[Any] ): A__ = PixaStructImageProcessingTester(self , num_channels=4 ) A__ = 3 @property def A__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : List[Any] ): A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_convert_rgb''' ) ) def A__ ( self : str ): # Initialize image_processor A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A__ = image_processor( _lowerCamelCase , return_tensors='''pt''' , max_patches=_lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
571
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __snake_case : List[Any] = logging.get_logger(__name__) class UpperCamelCase ( a ): """simple docstring""" def __init__( self : Optional[Any] , *_lowerCamelCase : Tuple , **_lowerCamelCase : str ): warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
571
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def lowerCamelCase ( UpperCamelCase : Optional[Any] ) -> Dict: _lowerCamelCase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) _lowerCamelCase = re.match(R'^mobilenet_v1_([^_]*)_([^_]*)$' , lowerCAmelCase__ ) if matches: _lowerCamelCase = float(matches[1] ) _lowerCamelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowerCamelCase = 10_01 _lowerCamelCase = 'imagenet-1k-id2label.json' _lowerCamelCase = 'huggingface/label-files' _lowerCamelCase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase = {int(lowerCAmelCase__ ) + 1: v for k, v in idalabel.items()} _lowerCamelCase = 'background' _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Optional[int]: _lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Optional[Any]=False ) -> Any: _lowerCamelCase = get_mobilenet_va_config(lowerCAmelCase__ ) # Load 🤗 model _lowerCamelCase = MobileNetVaForImageClassification(lowerCAmelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowerCamelCase = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCamelCase = model(**lowerCAmelCase__ ) _lowerCamelCase = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": _lowerCamelCase = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": _lowerCamelCase = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: _lowerCamelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print('Pushing to the hub...' ) _lowerCamelCase = 'google/' + model_name image_processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
709
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : Any=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : List[Any]=False ) -> List[str]: _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : str ) -> Tuple: for i in range(config.num_hidden_layers ): _lowerCamelCase = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( UpperCamelCase : Tuple ) -> List[Any]: _lowerCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def lowerCamelCase ( UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : str ) -> Any: _lowerCamelCase = dct.pop(UpperCamelCase ) _lowerCamelCase = val @torch.no_grad() def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : int ) -> Optional[int]: _lowerCamelCase = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=UpperCamelCase ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False if "vqa" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = 31_29 _lowerCamelCase = 'huggingface/label-files' _lowerCamelCase = 'vqa2-id2label.json' _lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase = {int(UpperCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = ViltForQuestionAnswering(UpperCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = 2 _lowerCamelCase = {0: 'False', 1: 'True'} _lowerCamelCase = {v: k for k, v in config.idalabel.items()} _lowerCamelCase = 3 _lowerCamelCase = ViltForImagesAndTextClassification(UpperCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = ViltForImageAndTextRetrieval(UpperCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = ViltForMaskedLM(UpperCamelCase ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys _lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location='cpu' )['state_dict'] _lowerCamelCase = create_rename_keys(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) if mlm_model or irtr_model: _lowerCamelCase = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase , _lowerCamelCase = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCamelCase ) # Define processor _lowerCamelCase = ViltImageProcessor(size=3_84 ) _lowerCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _lowerCamelCase = ViltProcessor(UpperCamelCase , UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=UpperCamelCase ).raw ) _lowerCamelCase = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=UpperCamelCase ).raw ) _lowerCamelCase = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) _lowerCamelCase = processor(UpperCamelCase , UpperCamelCase , return_tensors='pt' ) _lowerCamelCase = processor(UpperCamelCase , UpperCamelCase , return_tensors='pt' ) _lowerCamelCase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=UpperCamelCase ).raw ) if mlm_model: _lowerCamelCase = 'a bunch of [MASK] laying on a [MASK].' else: _lowerCamelCase = 'How many cats are there?' _lowerCamelCase = processor(UpperCamelCase , UpperCamelCase , return_tensors='pt' ) _lowerCamelCase = model(**UpperCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase = torch.Size([1, 11, 3_05_22] ) _lowerCamelCase = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase = torch.Size([1, 31_29] ) _lowerCamelCase = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase = torch.Size([1, 2] ) _lowerCamelCase = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
234
0
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" if height >= 1: move_tower(height - 1 , __A , __A , __A ) move_disk(__A , __A ) move_tower(height - 1 , __A , __A , __A ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" print('moving disk from' , __A , 'to' , __A ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = int(input('Height of hanoi: ' ).strip() ) move_tower(__A , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
469
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A_ : List[Any] = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') A_ : Tuple = parser.parse_args() A_ : Optional[int] = 'cpu' A_ : Dict = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' A_ : List[str] = 'path-to-your-trained-model' A_ : Any = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A_ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A_ : Tuple = pipe.to(device) # to channels last A_ : List[str] = pipe.unet.to(memory_format=torch.channels_last) A_ : List[str] = pipe.vae.to(memory_format=torch.channels_last) A_ : Optional[int] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A_ : Union[str, Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A_ : List[Any] = torch.randn(2, 4, 64, 64) A_ : int = torch.rand(1) * 999 A_ : int = torch.randn(2, 77, 768) A_ : Tuple = (sample, timestep, encoder_hidden_status) try: A_ : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A_ : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A_ : str = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A_ : Optional[int] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A_ : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A_ : Union[str, Any] = 666 A_ : Optional[Any] = torch.Generator(device).manual_seed(seed) A_ : Union[str, Any] = {'generator': generator} if args.steps is not None: A_ : int = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A_ : int = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
265
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a_ : List[Any] = False class _snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion') # remove text_unet pipe.remove_unused_weights() pipe.to(a) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger ' SCREAMING_SNAKE_CASE = torch.manual_seed(0) SCREAMING_SNAKE_CASE = pipe( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy').images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a) SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained(a) pipe.to(a) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = generator.manual_seed(0) SCREAMING_SNAKE_CASE = pipe( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy').images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa) pipe.to(a) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger ' SCREAMING_SNAKE_CASE = torch.manual_seed(0) SCREAMING_SNAKE_CASE = pipe( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy').images SCREAMING_SNAKE_CASE = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
706
import os # Precomputes a list of the 100 first triangular numbers a_ : str = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'words.txt') SCREAMING_SNAKE_CASE = '' with open(_UpperCAmelCase) as f: SCREAMING_SNAKE_CASE = f.readline() SCREAMING_SNAKE_CASE = [word.strip('"') for word in words.strip('\r\n').split(',')] SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(_UpperCAmelCase) - 64 for x in word) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase) if __name__ == "__main__": print(solution())
444
0
SCREAMING_SNAKE_CASE : List[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] SCREAMING_SNAKE_CASE : Optional[int] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] SCREAMING_SNAKE_CASE : Tuple = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] SCREAMING_SNAKE_CASE : List[Any] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] SCREAMING_SNAKE_CASE : List[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] SCREAMING_SNAKE_CASE : int = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
89
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
0
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a__: def __init__( self : List[Any] , __snake_case : Tuple , __snake_case : Optional[Any]=1_00 , __snake_case : Tuple=13 , __snake_case : Tuple=30 , __snake_case : List[str]=2 , __snake_case : str=3 , __snake_case : List[Any]=True , __snake_case : int=True , __snake_case : Any=32 , __snake_case : Optional[Any]=4 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : Optional[Any]=10 , __snake_case : str=0.02 , __snake_case : Any=3 , __snake_case : Dict=None , __snake_case : Union[str, Any]=[0, 1, 2, 3] , ): a : Optional[int] = parent a : List[Any] = 1_00 a : Tuple = batch_size a : Dict = image_size a : int = patch_size a : Any = num_channels a : str = is_training a : Optional[int] = use_labels a : Union[str, Any] = hidden_size a : List[Any] = num_hidden_layers a : Any = num_attention_heads a : Optional[int] = intermediate_size a : List[str] = hidden_act a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Any = type_sequence_label_size a : Union[str, Any] = initializer_range a : Optional[Any] = scope a : Tuple = out_indices a : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : List[str] = (image_size // patch_size) ** 2 a : Any = num_patches + 1 def lowercase_ ( self : List[Any] ): a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : List[Any] = None a : Optional[Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self : Any ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase_ ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] ): a : Union[str, Any] = BeitModel(config=__snake_case ) model.to(__snake_case ) model.eval() a : int = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Dict , __snake_case : List[Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Any ): a : Dict = BeitForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase_ ( self : Optional[Any] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Union[str, Any] ): a : Dict = self.type_sequence_label_size a : Tuple = BeitForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a : Optional[int] = 1 a : Tuple = BeitForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a : Dict = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Any , __snake_case : str ): a : Optional[Any] = self.num_labels a : str = BeitForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a : List[str] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase_ ( self : Tuple ): a : Optional[int] = self.prepare_config_and_inputs() a , a , a , a : Dict = config_and_inputs a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase_ ( self : Optional[Any] ): a : int = BeitModelTester(self ) a : Union[str, Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def lowercase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def lowercase_ ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self : str ): pass def lowercase_ ( self : int ): a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : str = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def lowercase_ ( self : Optional[int] ): a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Optional[int] = model_class(__snake_case ) a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Optional[Any] = [*signature.parameters.keys()] a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase_ ( self : Union[str, Any] ): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : Dict ): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowercase_ ( self : Tuple ): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def lowercase_ ( self : Union[str, Any] ): a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case ) def lowercase_ ( self : Tuple ): if not self.model_tester.is_training: return a , a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__snake_case ), BeitForMaskedImageModeling]: continue a : int = model_class(__snake_case ) model.to(__snake_case ) model.train() a : Any = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) a : str = model(**__snake_case ).loss loss.backward() def lowercase_ ( self : Optional[Any] ): a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a : Union[str, Any] = False a : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a : int = model_class(__snake_case ) model.gradient_checkpointing_enable() model.to(__snake_case ) model.train() a : Tuple = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) a : Union[str, Any] = model(**__snake_case ).loss loss.backward() def lowercase_ ( self : Optional[Any] ): a , a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a : Union[str, Any] = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: a : List[str] = model_class(config=__snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowercase_ ( self : Any ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = BeitModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCamelCase__ ( ): a : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__( unittest.TestCase ): @cached_property def lowercase_ ( self : str ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def lowercase_ ( self : Optional[int] ): a : int = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__snake_case ) a : Optional[int] = self.default_image_processor a : Union[str, Any] = prepare_img() a : Union[str, Any] = image_processor(images=__snake_case , return_tensors='pt' ).pixel_values.to(__snake_case ) # prepare bool_masked_pos a : Any = torch.ones((1, 1_96) , dtype=torch.bool ).to(__snake_case ) # forward pass with torch.no_grad(): a : List[str] = model(pixel_values=__snake_case , bool_masked_pos=__snake_case ) a : int = outputs.logits # verify the logits a : str = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , __snake_case ) a : Dict = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __snake_case , atol=1e-2 ) ) @slow def lowercase_ ( self : Optional[int] ): a : List[Any] = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__snake_case ) a : Any = self.default_image_processor a : int = prepare_img() a : Optional[int] = image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a : Optional[int] = model(**__snake_case ) a : List[str] = outputs.logits # verify the logits a : str = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , __snake_case ) a : Tuple = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) ) a : int = 2_81 self.assertEqual(logits.argmax(-1 ).item() , __snake_case ) @slow def lowercase_ ( self : Tuple ): a : List[str] = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __snake_case ) a : Dict = self.default_image_processor a : List[str] = prepare_img() a : Dict = image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a : str = model(**__snake_case ) a : int = outputs.logits # verify the logits a : Any = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , __snake_case ) a : Union[str, Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) ) a : Dict = 23_96 self.assertEqual(logits.argmax(-1 ).item() , __snake_case ) @slow def lowercase_ ( self : List[Any] ): a : Union[str, Any] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) a : Tuple = model.to(__snake_case ) a : List[Any] = BeitImageProcessor(do_resize=__snake_case , size=6_40 , do_center_crop=__snake_case ) a : str = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) a : List[Any] = Image.open(ds[0]['file'] ) a : int = image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a : Dict = model(**__snake_case ) a : str = outputs.logits # verify the logits a : Optional[int] = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , __snake_case ) a : List[str] = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: a : str = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__snake_case , ) else: a : Union[str, Any] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : List[Any] ): a : Tuple = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) a : List[Any] = model.to(__snake_case ) a : List[Any] = BeitImageProcessor(do_resize=__snake_case , size=6_40 , do_center_crop=__snake_case ) a : Optional[int] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) a : Optional[int] = Image.open(ds[0]['file'] ) a : Union[str, Any] = image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a : int = model(**__snake_case ) a : Dict = outputs.logits.detach().cpu() a : List[Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) a : Union[str, Any] = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) a : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) a : Optional[int] = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , __snake_case )
195
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCAmelCase: Any = False @skip_mps class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableDiffusionAttendAndExcitePipeline lowercase__ = False lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowercase_ ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowercase_ ( cls : Optional[Any] ): super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowercase_ ( self : List[Any] ): torch.manual_seed(0 ) a : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) a : Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) a : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) a : Any = CLIPTextModel(__snake_case ) a : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self : str , __snake_case : Tuple , __snake_case : Optional[int]=0 ): if str(__snake_case ).startswith('mps' ): a : Any = torch.manual_seed(__snake_case ) else: a : Any = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : int = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowercase_ ( self : List[Any] ): a : Union[str, Any] = 'cpu' a : Any = self.get_dummy_components() a : List[str] = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : Any = self.get_dummy_inputs(__snake_case ) a : int = pipe(**__snake_case ).images a : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) a : str = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) a : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def lowercase_ ( self : Dict ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def lowercase_ ( self : Tuple ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self : Union[str, Any] ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def lowercase_ ( self : Tuple ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase_ ( self : str ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def lowercase_ ( self : Any ): super().test_save_load_local(expected_max_difference=5e-4 ) def lowercase_ ( self : List[Any] ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class a__( unittest.TestCase ): @classmethod def lowercase_ ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowercase_ ( cls : Union[str, Any] ): super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowercase_ ( self : Union[str, Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : List[Any] = torch.manual_seed(51 ) a : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__snake_case , torch_dtype=torch.floataa ) pipe.to('cuda' ) a : Optional[Any] = 'a painting of an elephant with glasses' a : Any = [5, 7] a : Tuple = pipe( prompt=__snake_case , token_indices=__snake_case , guidance_scale=7.5 , generator=__snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] a : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
195
1