code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __a : Optional[Any] = logging.get_logger(__name__) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> None: lowercase__ : Any = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ), F"""{len(SCREAMING_SNAKE_CASE_ )} != {len(SCREAMING_SNAKE_CASE_ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) __a : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __a : Any = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int: try: lowercase__ : List[Any] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> List[int]: if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(SCREAMING_SNAKE_CASE_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "student" ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ,**SCREAMING_SNAKE_CASE_ ,) -> Tuple[PreTrainedModel, List[int], List[int]]: lowercase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ).save_pretrained(SCREAMING_SNAKE_CASE_ ) # purely for convenience lowercase__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ).eval() else: assert isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ), F"""teacher must be a model or string got type {type(SCREAMING_SNAKE_CASE_ )}""" lowercase__ : Union[str, Any] = teacher.config.to_diff_dict() try: lowercase__ , lowercase__ : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowercase__ : Optional[int] = teacher_e if d is None: lowercase__ : List[Any] = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config ,"num_encoder_layers" ): lowercase__ , lowercase__ : Optional[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowercase__ , lowercase__ : List[str] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowercase__ : str = teacher_e if d is None: lowercase__ : List[str] = teacher_d if hasattr(teacher.config ,"num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(SCREAMING_SNAKE_CASE_ ) # Copy weights lowercase__ : Optional[Any] = teacher.config_class(**SCREAMING_SNAKE_CASE_ ) lowercase__ : int = AutoModelForSeqaSeqLM.from_config(SCREAMING_SNAKE_CASE_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowercase__ : Optional[Any] = student.load_state_dict(teacher.state_dict() ,strict=SCREAMING_SNAKE_CASE_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowercase__ , lowercase__ : str = list(range(SCREAMING_SNAKE_CASE_ ) ), list(range(SCREAMING_SNAKE_CASE_ ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(SCREAMING_SNAKE_CASE_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowercase__ : List[int] = pick_layers_to_copy(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if d_layers_to_copy is None: lowercase__ : List[int] = pick_layers_to_copy(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) try: if hasattr( SCREAMING_SNAKE_CASE_ ,"prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers ,student.prophetnet.encoder.layers ,SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.prophetnet.decoder.layers ,student.prophetnet.decoder.layers ,SCREAMING_SNAKE_CASE_ ) else: copy_layers(teacher.model.encoder.layers ,student.model.encoder.layers ,SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.model.decoder.layers ,student.model.decoder.layers ,SCREAMING_SNAKE_CASE_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block ,student.encoder.block ,SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.decoder.block ,student.decoder.block ,SCREAMING_SNAKE_CASE_ ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) lowercase__ : str = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
397
from math import factorial def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> float: if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) lowercase__ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowercase__ : Tuple = float(factorial(SCREAMING_SNAKE_CASE_ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
397
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case :Dict = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : List[str] = GPTSwaTokenizer UpperCamelCase__ : Dict = False UpperCamelCase__ : int = True UpperCamelCase__ : List[Any] = False def _lowerCamelCase ( self : List[Any]): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = '''This is a test''' __a = '''This is a test''' return input_text, output_text def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = '''<s>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(__SCREAMING_SNAKE_CASE) , 2_000) def _lowerCamelCase ( self : Dict): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_000) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE) __a = tokenizer.tokenize('''This is a test''') self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) , [465, 287, 265, 631, 842]) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on __a = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) self.assertListEqual( __SCREAMING_SNAKE_CASE , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __a = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE) # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def _lowerCamelCase ( self : Any): '''simple docstring''' __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE) __a = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] __a = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertListEqual(tokenizer.encode_fast(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # Test that decode_fast returns the input text for text, token_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertEqual(tokenizer.decode_fast(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Any): '''simple docstring''' __a = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off __a = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=__SCREAMING_SNAKE_CASE , )
60
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __snake_case ( _UpperCAmelCase ): __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(_UpperCAmelCase ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(_UpperCAmelCase ) return 2.0 * image - 1.0 class _A ( __UpperCAmelCase ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : VQModel , __SCREAMING_SNAKE_CASE : UNetaDModel , __SCREAMING_SNAKE_CASE : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=__SCREAMING_SNAKE_CASE , unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE) @torch.no_grad() def __call__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[torch.Tensor, PIL.Image.Image] = None , __SCREAMING_SNAKE_CASE : Optional[int] = 1 , __SCREAMING_SNAKE_CASE : Optional[int] = 100 , __SCREAMING_SNAKE_CASE : Optional[float] = 0.0 , __SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __SCREAMING_SNAKE_CASE : Optional[str] = "pil" , __SCREAMING_SNAKE_CASE : bool = True , ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image): __a = 1 elif isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor): __a = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__SCREAMING_SNAKE_CASE)}') if isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image): __a = preprocess(__SCREAMING_SNAKE_CASE) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters()).dtype __a = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=self.device , dtype=__SCREAMING_SNAKE_CASE) __a = image.to(device=self.device , dtype=__SCREAMING_SNAKE_CASE) # set timesteps and move to the correct device self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=self.device) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(__SCREAMING_SNAKE_CASE): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1) __a = self.scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # predict the noise residual __a = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(__SCREAMING_SNAKE_CASE).sample __a = torch.clamp(__SCREAMING_SNAKE_CASE , -1.0 , 1.0) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __a = self.numpy_to_pil(__SCREAMING_SNAKE_CASE) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE)
60
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[str] , *_a:List[Any] , **_a:Optional[Any] ): warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig lowercase = logging.getLogger(__name__) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''masked_bert''' def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=0 , snake_case="topK" , snake_case="constant" , snake_case=0.0 , **snake_case , ) -> str: super().__init__(pad_token_id=snake_case , **snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = pruning_method _UpperCAmelCase = mask_init _UpperCAmelCase = mask_scale
573
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCAmelCase__ ( __lowerCamelCase ): UpperCamelCase_ : str = 42 class lowerCAmelCase__ ( __lowerCamelCase , __lowerCamelCase ): @register_to_config def __init__( self , a = 3 , a = 3 , a = ("DownEncoderBlock2D",) , a = ("UpDecoderBlock2D",) , a = (64,) , a = 1 , a = "silu" , a = 3 , a = 32 , a = 2_56 , a = 32 , a = None , a = 0.1_8215 , a = "group" , ) -> Tuple: '''simple docstring''' super().__init__() # pass init params to Encoder _UpperCamelCase = Encoder( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , down_block_types=UpperCAmelCase_ , block_out_channels=UpperCAmelCase_ , layers_per_block=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , norm_num_groups=UpperCAmelCase_ , double_z=UpperCAmelCase_ , ) _UpperCamelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _UpperCamelCase = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1 ) _UpperCamelCase = VectorQuantizer(UpperCAmelCase_ , UpperCAmelCase_ , beta=0.25 , remap=UpperCAmelCase_ , sane_index_shape=UpperCAmelCase_ ) _UpperCamelCase = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1 ) # pass init params to Decoder _UpperCamelCase = Decoder( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , up_block_types=UpperCAmelCase_ , block_out_channels=UpperCAmelCase_ , layers_per_block=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , norm_num_groups=UpperCAmelCase_ , norm_type=UpperCAmelCase_ , ) @apply_forward_hook def A_ ( self , a , a = True ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.encoder(UpperCAmelCase_ ) _UpperCamelCase = self.quant_conv(UpperCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase_ ) @apply_forward_hook def A_ ( self , a , a = False , a = True ) -> Union[str, Any]: '''simple docstring''' if not force_not_quantize: _UpperCamelCase = self.quantize(UpperCAmelCase_ ) else: _UpperCamelCase = h _UpperCamelCase = self.post_quant_conv(UpperCAmelCase_ ) _UpperCamelCase = self.decoder(UpperCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_ ) def A_ ( self , a , a = True ) -> Tuple: '''simple docstring''' _UpperCamelCase = sample _UpperCamelCase = self.encode(UpperCAmelCase_ ).latents _UpperCamelCase = self.decode(UpperCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_ )
706
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
0
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase__ = logging.getLogger(__name__) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''', type=A_, default='''wikitext''', help='''Name of the training. Explore datasets at: hf.co/datasets.''', ) parser.add_argument( '''--dataset_config''', type=A_, default='''wikitext-103-raw-v1''', help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''', type=A_, default='''sayakpaul/unigram-tokenizer-wikitext''', help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''', ) parser.add_argument( '''--shard_size''', type=A_, default=10_00, help='''Number of entries to go in a single shard.''', ) parser.add_argument('''--split''', type=A_, default='''train''', choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''', default=A_, type=A_, help='''Limit the number of shards (used for debugging).''', ) parser.add_argument( '''--max_length''', type=A_, default=5_12, help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''', ) parser.add_argument( '''--output_dir''', default='''tf-tpu''', type=A_, help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''', ) _lowerCamelCase : int = parser.parse_args() return args def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' def fn(A_ : str ): return tokenizer(examples['''text'''] ) return fn def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [] for i in range(len(tokenized_data['''input_ids'''] ) ): _lowerCamelCase : str = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } _lowerCamelCase : Union[str, Any] = tf.train.Features(feature=A_ ) _lowerCamelCase : int = tf.train.Example(features=A_ ) _lowerCamelCase : int = example.SerializeToString() records.append(A_ ) return records def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name, args.dataset_config, split=args.split ) if args.limit is not None: _lowerCamelCase : Optional[int] = min(len(A_ ), args.limit ) _lowerCamelCase : Tuple = dataset.select(range(A_ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _lowerCamelCase : int = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _lowerCamelCase : List[Any] = os.path.join(args.output_dir, args.split ) if not os.path.exists(A_ ): os.makedirs(A_ ) else: _lowerCamelCase : Any = os.path.join(args.output_dir, args.split ) # Tokenize the whole dataset at once. _lowerCamelCase : Tuple = tokenize_function(A_ ) _lowerCamelCase : Dict = dataset.map(A_, batched=A_, num_proc=4, remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(A_ : int ): # Concatenate all texts. _lowerCamelCase : Union[str, Any] = {k: sum(examples[k], [] ) for k in examples.keys()} _lowerCamelCase : Any = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _lowerCamelCase : Any = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _lowerCamelCase : List[str] = { k: [t[i : i + args.max_length] for i in range(0, A_, args.max_length )] for k, t in concatenated_examples.items() } return result _lowerCamelCase : str = dataset_tokenized.map(A_, batched=A_, batch_size=10_00, num_proc=4 ) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[int] = 0 for shard in range(0, len(A_ ), args.shard_size ): _lowerCamelCase : Tuple = grouped_dataset[shard : shard + args.shard_size] _lowerCamelCase : Union[str, Any] = len(dataset_snapshot['''input_ids'''] ) _lowerCamelCase : List[str] = os.path.join(A_, F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _lowerCamelCase : List[Any] = get_serialized_examples(A_ ) with tf.io.TFRecordWriter(A_ ) as out_file: for i in range(len(A_ ) ): _lowerCamelCase : str = serialized_examples[i] out_file.write(A_ ) print('''Wrote file {} containing {} records'''.format(A_, A_ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''', '''w''' ) as f: print(F'''Total {args.split} records: {total_records}''', file=A_ ) if __name__ == "__main__": lowerCAmelCase__ = parse_args() main(args)
83
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case ( _lowercase): def __init__( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : int=1_3 , __lowerCAmelCase : Optional[int]=7 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=9_9 , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : Union[str, Any]=5 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Optional[int]=3_7 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : int=5_1_2 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Any="None" , __lowerCAmelCase : str=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Optional[Any]=None , ): """simple docstring""" _lowerCamelCase : Dict = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : Dict = use_input_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : int = relative_attention _lowerCamelCase : Union[str, Any] = position_biased_input _lowerCamelCase : str = pos_att_type _lowerCamelCase : Tuple = scope def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Any = None _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : str ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[str] = DebertaVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase )[0] _lowerCamelCase : str = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase )[0] _lowerCamelCase : List[Any] = model(__lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = DebertaVaForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.num_labels _lowerCamelCase : Dict = DebertaVaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : Tuple = DebertaVaForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Any = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = DebertaVaForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Tuple = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[int] = DebertaVaForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[Any] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : int = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) snake_case__ : int = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = True snake_case__ : List[Any] = False snake_case__ : int = False snake_case__ : Optional[Any] = False snake_case__ : str = False def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : List[str] = DebertaVaModelTester(self ) _lowerCamelCase : Any = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = DebertaVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) _lowerCamelCase : List[str] = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCamelCase : Tuple = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] # compare the actual values for a slice. _lowerCamelCase : Union[str, Any] = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
83
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification snake_case_ : Optional[int] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co snake_case_ : List[str] = 'main' # Default branch name snake_case_ : str = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) snake_case_ : Optional[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. snake_case_ : str = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes snake_case_ : Optional[Any] = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def __UpperCAmelCase ( ): '''simple docstring''' print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def __UpperCAmelCase ( ): '''simple docstring''' print("Bonjour!" ) yield print("Au revoir!" ) class __lowerCamelCase ( unittest.TestCase ): def A__ ( self ) -> Tuple: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class __lowerCamelCase ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def A__ ( self , __snake_case ) -> Any: """simple docstring""" with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def A__ ( self , __snake_case ) -> Any: """simple docstring""" with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def A__ ( self , __snake_case ) -> Tuple: """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def A__ ( self ) -> Tuple: """simple docstring""" self.assertEqual(find_labels(__snake_case ) , ["labels"] ) self.assertEqual(find_labels(__snake_case ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__snake_case ) , ["start_positions", "end_positions"] ) class __lowerCamelCase ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(__snake_case ) , ["labels"] ) @require_tf def A__ ( self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(find_labels(__snake_case ) , ["labels"] ) self.assertEqual(find_labels(__snake_case ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__snake_case ) , ["start_positions", "end_positions"] ) class __lowerCamelCase ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(__snake_case ) , ["labels"] ) @require_flax def A__ ( self ) -> Tuple: """simple docstring""" self.assertEqual(find_labels(__snake_case ) , [] ) self.assertEqual(find_labels(__snake_case ) , [] ) self.assertEqual(find_labels(__snake_case ) , [] ) class __lowerCamelCase ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(__snake_case ) , [] )
714
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : str = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
166
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=4 , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_UpperCAmelCase , ) return config, input_ids, attention_mask def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = FlaxDistilBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("""distilbert-base-uncased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowercase__ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase__ = (1, 11, 768) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
15
"""simple docstring""" def __lowercase ( snake_case_ : list ) ->float: '''simple docstring''' __A : Tuple = 0 while len(snake_case_ ) > 1: __A : List[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __A : Dict = files.index(min(snake_case_ ) ) temp += files[min_index] files.pop(snake_case_ ) files.append(snake_case_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
177
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A : str = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_A ) class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = "rag" SCREAMING_SNAKE_CASE_ : List[Any] = True def __init__( self : str , A : int=None , A : Dict=True , A : int=None , A : int=None , A : Union[str, Any]=None , A : Optional[int]=None , A : Union[str, Any]=None , A : List[str]=" / " , A : Optional[Any]=" // " , A : List[Any]=5 , A : Any=3_00 , A : Any=7_68 , A : Any=8 , A : Dict="wiki_dpr" , A : Optional[int]="train" , A : List[str]="compressed" , A : Union[str, Any]=None , A : Dict=None , A : Optional[int]=False , A : int=False , A : Optional[int]=0.0 , A : Dict=True , A : Any=False , A : List[str]=False , A : Any=False , A : str=True , A : str=None , **A : Dict , ) -> int: super().__init__( bos_token_id=A , pad_token_id=A , eos_token_id=A , decoder_start_token_id=A , forced_eos_token_id=A , is_encoder_decoder=A , prefix=A , vocab_size=A , **A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase_ : str = kwargs.pop('''question_encoder''' ) lowercase_ : str = question_encoder_config.pop('''model_type''' ) lowercase_ : int = kwargs.pop('''generator''' ) lowercase_ : Any = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase_ : Tuple = AutoConfig.for_model(A , **A ) lowercase_ : str = AutoConfig.for_model(A , **A ) lowercase_ : List[str] = reduce_loss lowercase_ : Any = label_smoothing lowercase_ : List[str] = exclude_bos_score lowercase_ : Optional[int] = do_marginalize lowercase_ : Tuple = title_sep lowercase_ : Tuple = doc_sep lowercase_ : Union[str, Any] = n_docs lowercase_ : str = max_combined_length lowercase_ : Any = dataset lowercase_ : str = dataset_split lowercase_ : List[Any] = index_name lowercase_ : List[Any] = retrieval_vector_size lowercase_ : Tuple = retrieval_batch_size lowercase_ : Any = passages_path lowercase_ : Optional[int] = index_path lowercase_ : List[str] = use_dummy_dataset lowercase_ : Tuple = output_retrieved lowercase_ : Tuple = do_deduplication lowercase_ : Optional[Any] = use_cache if self.forced_eos_token_id is None: lowercase_ : int = getattr(self.generator , '''forced_eos_token_id''' , A ) @classmethod def A ( cls : Dict , A : PretrainedConfig , A : PretrainedConfig , **A : Any ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A ) def A ( self : Optional[Any] ) -> Dict: lowercase_ : Any = copy.deepcopy(self.__dict__ ) lowercase_ : Optional[Any] = self.question_encoder.to_dict() lowercase_ : Any = self.generator.to_dict() lowercase_ : Any = self.__class__.model_type return output
720
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : str = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def lowercase ( ): lowercase_ : Optional[Any] = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase_ : List[Any] = get_sagemaker_input() else: lowercase_ : Union[str, Any] = get_cluster_input() return config def lowercase ( __snake_case : Any=None ): if subparsers is not None: lowercase_ : Any = subparsers.add_parser('''config''' , description=__snake_case ) else: lowercase_ : str = argparse.ArgumentParser('''Accelerate config command''' , description=__snake_case ) parser.add_argument( '''--config_file''' , default=__snake_case , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__snake_case ) return parser def lowercase ( __snake_case : int ): lowercase_ : Optional[Any] = get_user_input() if args.config_file is not None: lowercase_ : Union[str, Any] = args.config_file else: if not os.path.isdir(__snake_case ): os.makedirs(__snake_case ) lowercase_ : Optional[Any] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(__snake_case ) else: config.to_yaml_file(__snake_case ) print(F'''accelerate configuration saved at {config_file}''' ) def lowercase ( ): lowercase_ : List[str] = config_command_parser() lowercase_ : List[str] = parser.parse_args() config_command(__snake_case ) if __name__ == "__main__": main()
141
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def A ( lowercase__ : list , lowercase__ : list , lowercase__ : list , lowercase__ : list , lowercase__ : list ) -> float: UpperCamelCase__ :int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowercase__ )] ) UpperCamelCase__ :List[Any] = np.array(lowercase__ ) UpperCamelCase__ :Dict = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowercase__ ) ) , x.transpose() ) , lowercase__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def A ( lowercase__ : list , lowercase__ : list , lowercase__ : list ) -> float: UpperCamelCase__ :Optional[int] = (1, 2, 1) UpperCamelCase__ :Optional[int] = (1, 1, 0, 7) UpperCamelCase__ :Optional[int] = SARIMAX( lowercase__ , exog=lowercase__ , order=lowercase__ , seasonal_order=lowercase__ ) UpperCamelCase__ :Tuple = model.fit(disp=lowercase__ , maxiter=600 , method="""nm""" ) UpperCamelCase__ :int = model_fit.predict(1 , len(lowercase__ ) , exog=[test_match] ) return result[0] def A ( lowercase__ : list , lowercase__ : list , lowercase__ : list ) -> float: UpperCamelCase__ :Optional[Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowercase__ , lowercase__ ) UpperCamelCase__ :Optional[int] = regressor.predict(lowercase__ ) return y_pred[0] def A ( lowercase__ : list ) -> float: train_user.sort() UpperCamelCase__ :List[Any] = np.percentile(lowercase__ , 25 ) UpperCamelCase__ :Optional[Any] = np.percentile(lowercase__ , 75 ) UpperCamelCase__ :Optional[int] = qa - qa UpperCamelCase__ :Tuple = qa - (iqr * 0.1) return low_lim def A ( lowercase__ : list , lowercase__ : float ) -> bool: UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :str = 0 for i in list_vote: if i > actual_result: UpperCamelCase__ :List[str] = not_safe + 1 else: if abs(abs(lowercase__ ) - abs(lowercase__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCamelCase = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCamelCase = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) UpperCamelCase = Normalizer().fit_transform(data_input_df.values) # split data UpperCamelCase = normalize_df[:, 2].tolist() UpperCamelCase = normalize_df[:, 0].tolist() UpperCamelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCamelCase = normalize_df[:, [1, 2]].tolist() UpperCamelCase = x[: len(x) - 1] UpperCamelCase = x[len(x) - 1 :] # for linear regression & sarimax UpperCamelCase = total_date[: len(total_date) - 1] UpperCamelCase = total_user[: len(total_user) - 1] UpperCamelCase = total_match[: len(total_match) - 1] UpperCamelCase = total_date[len(total_date) - 1 :] UpperCamelCase = total_user[len(total_user) - 1 :] UpperCamelCase = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCamelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCamelCase = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
45
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def A__ ( A : Dict , A : Any , A : Tuple , A : Tuple): '''simple docstring''' UpperCamelCase : Tuple = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase : List[str] = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } UpperCamelCase : int = F'''{src_lang}-{tgt_lang}''' UpperCamelCase : Any = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=A , exist_ok=A) UpperCamelCase : int = os.path.join(A , "README.md") print(F'''Generating {path}''') with open(A , "w" , encoding="utf-8") as f: f.write(A) # make sure we are under the root of the project lowerCAmelCase_ = Path(__file__).resolve().parent.parent.parent lowerCAmelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowerCAmelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
173
0
import sys def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = [[0 for x in range(__UpperCAmelCase )] for x in range(__UpperCAmelCase )] UpperCAmelCase_ = [[0 for x in range(__UpperCAmelCase )] for x in range(__UpperCAmelCase )] for chain_length in range(2 , __UpperCAmelCase ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if i == j: print('''A''' + str(__UpperCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__UpperCAmelCase , __UpperCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCAmelCase , optimal_solution[i][j] + 1 , __UpperCAmelCase ) print(''')''' , end=''' ''' ) def A ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__UpperCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__UpperCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
561
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__UpperCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = _distribute_shards(**__UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = _split_gen_kwargs(__UpperCAmelCase , __UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__UpperCAmelCase ): _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) else: UpperCAmelCase_ = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) assert out == expected
561
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ ( _a): def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE ,"width_multiplier" ) ) class __magic_name__ : def __init__( self : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : Optional[Any]=1_3 ,__SCREAMING_SNAKE_CASE : Optional[int]=6_4 ,__SCREAMING_SNAKE_CASE : Dict=2 ,__SCREAMING_SNAKE_CASE : List[str]=3 ,__SCREAMING_SNAKE_CASE : int="swish" ,__SCREAMING_SNAKE_CASE : str=3 ,__SCREAMING_SNAKE_CASE : Optional[int]=3_2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.02 ,__SCREAMING_SNAKE_CASE : Optional[int]=True ,__SCREAMING_SNAKE_CASE : Union[str, Any]=True ,__SCREAMING_SNAKE_CASE : str=1_0 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : int=0.25 ,__SCREAMING_SNAKE_CASE : Tuple=0.0 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.0 ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = make_divisible(5_1_2 * width_multiplier ,divisor=8 ) UpperCAmelCase = hidden_act UpperCAmelCase = conv_kernel_size UpperCAmelCase = output_stride UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = use_labels UpperCAmelCase = is_training UpperCAmelCase = num_labels UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = width_multiplier UpperCAmelCase = ffn_dropout UpperCAmelCase = attn_dropout def _UpperCAmelCase ( self : List[Any] ): UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCAmelCase ( self : Dict ): return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : int ): UpperCAmelCase = MobileViTVaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = self.num_labels UpperCAmelCase = MobileViTVaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase = self.num_labels UpperCAmelCase = MobileViTVaForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _a , _a , unittest.TestCase): _UpperCAmelCase : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _UpperCAmelCase : List[Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : int = False _UpperCAmelCase : Any = False def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = MobileViTVaModelTester(self ) UpperCAmelCase = MobileViTVaConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,has_text_modality=__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def _UpperCAmelCase ( self : Optional[int] ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def _UpperCAmelCase ( self : Optional[int] ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def _UpperCAmelCase ( self : Any ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def _UpperCAmelCase ( self : Optional[int] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCAmelCase ( self : Any ): pass def _UpperCAmelCase ( self : str ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[str] ): def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : List[str] ): UpperCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = 5 self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase = 2 for i in range(len(__SCREAMING_SNAKE_CASE ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : str ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : Optional[int] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = MobileViTVaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self : Any ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( __SCREAMING_SNAKE_CASE ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE ,return_tensors="pt" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**__SCREAMING_SNAKE_CASE ) # verify the logits UpperCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE ,return_tensors="pt" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] ,device=__SCREAMING_SNAKE_CASE ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE ,return_tensors="pt" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase = outputs.logits.detach().cpu() UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE ,target_sizes=[(5_0, 6_0)] ) UpperCAmelCase = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape ,__SCREAMING_SNAKE_CASE ) UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape ,__SCREAMING_SNAKE_CASE )
333
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCamelCase : Union[str, Any] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _lowerCAmelCase( _a , unittest.TestCase): """simple docstring""" lowerCamelCase__ = MvpTokenizer lowerCamelCase__ = MvpTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = filter_roberta_detectors def SCREAMING_SNAKE_CASE__ ( self )-> Dict: super().setUp() __A = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __A = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __A = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __A = {'''unk_token''': '''<unk>'''} __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , **UpperCAmelCase )-> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , **UpperCAmelCase )-> Dict: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> List[str]: return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE__ ( self )-> List[Any]: return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def SCREAMING_SNAKE_CASE__ ( self )-> Dict: return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def SCREAMING_SNAKE_CASE__ ( self )-> int: __A = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __A = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __A = tokenizer(UpperCAmelCase , max_length=len(UpperCAmelCase ) , padding=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __A = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that special tokens are reset @require_torch def SCREAMING_SNAKE_CASE__ ( self )-> int: __A = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __A = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , UpperCAmelCase ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertNotIn('''labels''' , UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , UpperCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE__ ( self )-> Tuple: __A = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __A = tokenizer(text_target=UpperCAmelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def SCREAMING_SNAKE_CASE__ ( self )-> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __A = tokenizer( ['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 10_24) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self )-> List[Any]: __A = ['''A long paragraph for summarization.'''] __A = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __A = tokenizer(UpperCAmelCase , text_target=UpperCAmelCase , return_tensors='''pt''' ) __A = inputs['''input_ids'''] __A = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: pass def SCREAMING_SNAKE_CASE__ ( self )-> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __A = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __A = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __A = '''A, <mask> AllenNLP sentence.''' __A = tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) __A = tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __A = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __A = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
341
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def _a ( _lowerCamelCase ) -> int: """simple docstring""" def decorator(_lowerCamelCase ): __snake_case : str = getattr(_lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(_lowerCamelCase , """handle_key""" , _lowerCamelCase ) return func return decorator def _a ( *_lowerCamelCase ) -> str: """simple docstring""" def decorator(_lowerCamelCase ): __snake_case : List[Any] = getattr(_lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(_lowerCamelCase , """handle_key""" , _lowerCamelCase ) return func return decorator class _A ( __lowercase ): def __new__( cls : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : str = super().__new__(cls , __magic_name__ , __magic_name__ , __magic_name__ ) if not hasattr(__magic_name__ , """key_handler""" ): setattr(__magic_name__ , """key_handler""" , {} ) setattr(__magic_name__ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __snake_case : Optional[int] = getattr(__magic_name__ , """handle_key""" , [] ) for key in handled_keys: __snake_case : int = value return new_cls @staticmethod def lowercase__ ( cls : Any ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = get_character() if char != KEYMAP["undefined"]: __snake_case : Tuple = ord(__magic_name__ ) __snake_case : List[Any] = cls.key_handler.get(__magic_name__ ) if handler: __snake_case : Any = char return handler(cls ) else: return None def _a ( cls ) -> str: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
26
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_:Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : str = ["pixel_values"] def __init__( self, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = PILImageResampling.BILINEAR, lowerCamelCase__ = True, lowerCamelCase__ = 1 / 255, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): super().__init__(**lowerCamelCase__ ) A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 384} A : Optional[Any] = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Optional[Any] = do_resize A : Dict = size # Default value set here for backwards compatibility where the value in config is None A : Dict = crop_pct if crop_pct is not None else 224 / 256 A : Optional[int] = resample A : List[str] = do_rescale A : Tuple = rescale_factor A : Optional[int] = do_normalize A : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = PILImageResampling.BICUBIC, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Tuple = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) A : List[str] = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A : int = int(shortest_edge / crop_pct ) A : List[Any] = get_resize_output_image_size(lowerCamelCase__, size=lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Any = resize(image=lowerCamelCase__, size=lowerCamelCase__, resample=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase__, size=(shortest_edge, shortest_edge), data_format=lowerCamelCase__, **lowerCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase__, size=(shortest_edge, shortest_edge), resample=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, **lowerCamelCase__, ): return rescale(lowerCamelCase__, scale=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, **lowerCamelCase__, ): return normalize(lowerCamelCase__, mean=lowerCamelCase__, std=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = ChannelDimension.FIRST, **lowerCamelCase__, ): A : Dict = do_resize if do_resize is not None else self.do_resize A : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct A : str = resample if resample is not None else self.resample A : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale A : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor A : Dict = do_normalize if do_normalize is not None else self.do_normalize A : List[str] = image_mean if image_mean is not None else self.image_mean A : Optional[Any] = image_std if image_std is not None else self.image_std A : Optional[Any] = size if size is not None else self.size A : str = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Any = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A : List[Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: A : Any = [self.resize(image=lowerCamelCase__, size=lowerCamelCase__, crop_pct=lowerCamelCase__, resample=lowerCamelCase__ ) for image in images] if do_rescale: A : str = [self.rescale(image=lowerCamelCase__, scale=lowerCamelCase__ ) for image in images] if do_normalize: A : Union[str, Any] = [self.normalize(image=lowerCamelCase__, mean=lowerCamelCase__, std=lowerCamelCase__ ) for image in images] A : Tuple = [to_channel_dimension_format(lowerCamelCase__, lowerCamelCase__ ) for image in images] A : Dict = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase__, tensor_type=lowerCamelCase__ )
662
0
import requests def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ = {"Content-Type": "application/json"} UpperCAmelCase_ = requests.post(__SCREAMING_SNAKE_CASE , json={"text": message_body} , headers=__SCREAMING_SNAKE_CASE ) if response.status_code != 200: UpperCAmelCase_ = ( "Request to slack returned an error " f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
23
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
1
from PIL import Image def _A ( lowerCamelCase , lowerCamelCase ): def brightness(lowerCamelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 SCREAMING_SNAKE_CASE__ : int = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
112
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : int = ["""pixel_values"""] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BICUBIC , snake_case = True , snake_case = 1 / 255 , snake_case = True , snake_case = None , snake_case = None , snake_case = True , **snake_case , ) -> None: """simple docstring""" super().__init__(**snake_case ) a__ : List[str] = size if size is not None else {"height": 384, "width": 384} a__ : List[str] = get_size_dict(snake_case , default_to_square=snake_case ) a__ : Any = do_resize a__ : Optional[int] = size a__ : int = resample a__ : Optional[Any] = do_rescale a__ : Dict = rescale_factor a__ : Dict = do_normalize a__ : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a__ : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD a__ : str = do_convert_rgb def _snake_case ( self , snake_case , snake_case , snake_case = PILImageResampling.BICUBIC , snake_case = None , **snake_case , ) -> np.ndarray: """simple docstring""" a__ : Optional[int] = get_size_dict(snake_case , default_to_square=snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) a__ : Optional[int] = (size["height"], size["width"]) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def _snake_case ( self , snake_case , snake_case , snake_case = None , **snake_case , ) -> List[str]: """simple docstring""" return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def _snake_case ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ) -> np.ndarray: """simple docstring""" return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def _snake_case ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ) -> PIL.Image.Image: """simple docstring""" a__ : List[str] = do_resize if do_resize is not None else self.do_resize a__ : Optional[Any] = resample if resample is not None else self.resample a__ : int = do_rescale if do_rescale is not None else self.do_rescale a__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor a__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize a__ : List[Any] = image_mean if image_mean is not None else self.image_mean a__ : int = image_std if image_std is not None else self.image_std a__ : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a__ : Tuple = size if size is not None else self.size a__ : Any = get_size_dict(snake_case , default_to_square=snake_case ) a__ : str = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: a__ : List[str] = [convert_to_rgb(snake_case ) for image in images] # All transformations expect numpy arrays. a__ : Dict = [to_numpy_array(snake_case ) for image in images] if do_resize: a__ : Union[str, Any] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_rescale: a__ : Tuple = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: a__ : List[str] = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] a__ : Union[str, Any] = [to_channel_dimension_format(snake_case , snake_case ) for image in images] a__ : List[Any] = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case ) return encoded_outputs
112
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase , UpperCAmelCase : Tuple = image.size UpperCAmelCase , UpperCAmelCase : Optional[Any] = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase : int = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) UpperCAmelCase : Tuple = np.array(_A ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase : Union[str, Any] = image[None].transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : Dict = torch.from_numpy(_A ) return 2.0 * image - 1.0 class UpperCamelCase_ ( lowerCAmelCase__ ): def __init__( self , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules(vqvae=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , A = None , A = 1 , A = 100 , A = 0.0 , A = None , A = "pil" , A = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCAmelCase : int = 1 elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCAmelCase : Tuple = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_SCREAMING_SNAKE_CASE )}''' ) if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCAmelCase : Optional[int] = preprocess(_SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase : Tuple = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCAmelCase : Union[str, Any] = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCAmelCase : Optional[int] = next(self.unet.parameters() ).dtype UpperCAmelCase : Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = image.to(device=self.device , dtype=_SCREAMING_SNAKE_CASE ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCAmelCase : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Any = {} if accepts_eta: UpperCAmelCase : Optional[Any] = eta for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # concat latents and low resolution image in the channel dimension. UpperCAmelCase : Union[str, Any] = torch.cat([latents, image] , dim=1 ) UpperCAmelCase : List[str] = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual UpperCAmelCase : Any = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VQVAE UpperCAmelCase : str = self.vqvae.decode(_SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : Optional[int] = torch.clamp(_SCREAMING_SNAKE_CASE , -1.0 , 1.0 ) UpperCAmelCase : Tuple = image / 2 + 0.5 UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCamelCase__ =datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__( datasets.BuilderConfig ): '''simple docstring''' __snake_case = 1_0_0_0_0 __snake_case = None __snake_case = None class lowerCAmelCase__( datasets.ArrowBasedBuilder ): '''simple docstring''' __snake_case = ParquetConfig def UpperCamelCase_ ( self ) -> Union[str, Any]: return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> int: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _SCREAMING_SNAKE_CASE : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCamelCase , (str, list, tuple) ): _SCREAMING_SNAKE_CASE : Optional[int] = data_files if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _SCREAMING_SNAKE_CASE : Union[str, Any] = [dl_manager.iter_files(__lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _SCREAMING_SNAKE_CASE : Dict = [] for split_name, files in data_files.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _SCREAMING_SNAKE_CASE : str = [dl_manager.iter_files(__lowerCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__lowerCamelCase ): with open(__lowerCamelCase , "rb" ) as f: _SCREAMING_SNAKE_CASE : Dict = datasets.Features.from_arrow_schema(pq.read_schema(__lowerCamelCase ) ) break splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={"files": files} ) ) return splits def UpperCamelCase_ ( self , __lowerCamelCase ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _SCREAMING_SNAKE_CASE : List[Any] = table_cast(__lowerCamelCase , self.info.features.arrow_schema ) return pa_table def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ): with open(__lowerCamelCase , "rb" ) as f: _SCREAMING_SNAKE_CASE : List[Any] = pq.ParquetFile(__lowerCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _SCREAMING_SNAKE_CASE : str = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(__lowerCamelCase ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCamelCase )}: {e}""" ) raise
249
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase__ =subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') UpperCamelCase__ =subprocess.check_output(f"git diff --name-only {fork_point_sha}".split()).decode('utf-8').split() UpperCamelCase__ ='|'.join(sys.argv[1:]) UpperCamelCase__ =re.compile(Rf"^({joined_dirs}).*?\.py$") UpperCamelCase__ =[x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
249
1
from __future__ import annotations def a ( A__ , A__ = None ) -> list[list[str]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ : int = len(A__ ) + 1 SCREAMING_SNAKE_CASE__ : list[list[list[str]]] = [] for _ in range(A__ ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(A__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(A__ )] == word: SCREAMING_SNAKE_CASE__ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(A__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(A__ )]: combination.reverse() return table[len(A__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
716
def a ( A__ , A__ , A__ ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE__ : List[Any] = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE__ : Union[str, Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
250
0
__a = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->list[str]: UpperCAmelCase = set() # keep track of all the paths to be checked UpperCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase = queue.pop(0 ) # get the last node from the path UpperCAmelCase = path[-1] if node not in explored: UpperCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase = list(lowerCAmelCase_ ) new_path.append(lowerCAmelCase_ ) queue.append(lowerCAmelCase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCAmelCase_ ) # in case there's no path between the 2 nodes return [] def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase = [start] UpperCAmelCase = set(lowerCAmelCase_ ) # Keep tab on distances from `start` node. UpperCAmelCase = {start: 0, target: -1} while queue: UpperCAmelCase = queue.pop(0 ) if node == target: UpperCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCAmelCase_ ) queue.append(lowerCAmelCase_ ) UpperCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
377
def _UpperCamelCase ( lowerCAmelCase_ ) ->Any: UpperCAmelCase = 0 UpperCAmelCase = len(lowerCAmelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _UpperCamelCase ( lowerCAmelCase_ ) ->Any: if len(lowerCAmelCase_ ) <= 1: return arr, 0 UpperCAmelCase = len(lowerCAmelCase_ ) // 2 UpperCAmelCase = arr[0:mid] UpperCAmelCase = arr[mid:] UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = _count_cross_inversions(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: UpperCAmelCase = [] UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = 0 while i < len(lowerCAmelCase_ ) and j < len(lowerCAmelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _UpperCamelCase ( ) ->int: UpperCAmelCase = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , lowerCAmelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowerCAmelCase_ ) # an empty list should also have zero inversions UpperCAmelCase = [] UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowerCAmelCase_ ) if __name__ == "__main__": main()
377
1
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: int = [0] * len(_UpperCamelCase ) _lowercase: int = [] _lowercase: Union[str, Any] = [] _lowercase: Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCamelCase ) ): if indegree[i] == 0: queue.append(_UpperCamelCase ) while queue: _lowercase: List[Any] = queue.pop(0 ) cnt += 1 topo.append(_UpperCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCamelCase ) if cnt != len(_UpperCamelCase ): print('''Cycle exists''' ) else: print(_UpperCamelCase ) # Adjacency List of Graph A__ : Union[str, Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
716
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __magic_name__ ( datasets.BuilderConfig ): UpperCamelCase_ = None UpperCamelCase_ = "utf-8" UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = True # deprecated UpperCamelCase_ = None # deprecated UpperCamelCase_ = 10 << 20 # 10MB UpperCamelCase_ = None class __magic_name__ ( datasets.ArrowBasedBuilder ): UpperCamelCase_ = JsonConfig def lowercase_ ( self ) -> str: """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) _lowercase: List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self , A_ ) -> Any: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _lowercase: int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_ , (str, list, tuple) ): _lowercase: Tuple = data_files if isinstance(A_ , A_ ): _lowercase: Optional[Any] = [files] _lowercase: Dict = [dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _lowercase: str = [] for split_name, files in data_files.items(): if isinstance(A_ , A_ ): _lowercase: Optional[Any] = [files] _lowercase: str = [dl_manager.iter_files(A_ ) for file in files] splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={'''files''': files} ) ) return splits def lowercase_ ( self , A_ ) -> pa.Table: """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _lowercase: Any = self.config.features.arrow_schema.field(A_ ).type _lowercase: Optional[Any] = pa_table.append_column(A_ , pa.array([None] * len(A_ ) , type=A_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _lowercase: Optional[int] = table_cast(A_ , self.config.features.arrow_schema ) return pa_table def lowercase_ ( self , A_ ) -> str: """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(A_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(A_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowercase: Optional[int] = json.load(A_ ) # We keep only the field we are interested in _lowercase: str = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(A_ , (list, tuple) ): _lowercase: Dict = set().union(*[row.keys() for row in dataset] ) _lowercase: List[str] = {col: [row.get(A_ ) for row in dataset] for col in keys} else: _lowercase: Dict = dataset _lowercase: Union[str, Any] = pa.Table.from_pydict(A_ ) yield file_idx, self._cast_table(A_ ) # If the file has one json object per line else: with open(A_ , '''rb''' ) as f: _lowercase: int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _lowercase: Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) _lowercase: List[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: _lowercase: Union[str, Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(A_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _lowercase: Any = batch.decode(self.config.encoding , errors=A_ ).encode('''utf-8''' ) try: while True: try: _lowercase: Optional[int] = paj.read_json( io.BytesIO(A_ ) , read_options=paj.ReadOptions(block_size=A_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(A_ , pa.ArrowInvalid ) and "straddling" not in str(A_ ) or block_size > len(A_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(A_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( A_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowercase: Optional[Any] = json.load(A_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(A_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(A_ , A_ ): # list is the only sequence type supported in JSON try: _lowercase: Optional[int] = set().union(*[row.keys() for row in dataset] ) _lowercase: Tuple = {col: [row.get(A_ ) for row in dataset] for col in keys} _lowercase: str = pa.Table.from_pydict(A_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(A_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(A_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(A_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A_ ) batch_idx += 1
272
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase ,'''width_multiplier''' ) ) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=64 ,_lowerCamelCase=2 ,_lowerCamelCase=3 ,_lowerCamelCase="swish" ,_lowerCamelCase=3 ,_lowerCamelCase=32 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=10 ,_lowerCamelCase=None ,_lowerCamelCase=0.2_5 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0 ,) -> Any: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = make_divisible(512 * width_multiplier ,divisor=8 ) __lowercase = hidden_act __lowercase = conv_kernel_size __lowercase = output_stride __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope __lowercase = width_multiplier __lowercase = ffn_dropout __lowercase = attn_dropout def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCAmelCase (self ) -> str: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = MobileViTVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTVaForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) __lowercase = model(_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a : str = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a : Any = False a : Tuple = False a : Dict = False a : str = False def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = MobileViTVaModelTester(self ) __lowercase = MobileViTVaConfigTester(self ,config_class=_lowerCamelCase ,has_text_modality=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ): __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = 5 self.assertEqual(len(_lowerCamelCase ) ,_lowerCamelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase = 2 for i in range(len(_lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileViTVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _lowerCAmelCase ( ): __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCamelCase ,return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_lowerCamelCase ) __lowercase = torch.tensor([-1.6_3_3_6E0_0, -7.3_2_0_4E-0_2, -5.1_8_8_3E-0_1] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCamelCase ,atol=1E-4 ) ) @slow def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __lowercase = model.to(_lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCamelCase ,return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) __lowercase = outputs.logits # verify the logits __lowercase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,_lowerCamelCase ) __lowercase = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] ,device=_lowerCamelCase ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_lowerCamelCase ,atol=1E-4 ) ) @slow def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __lowercase = model.to(_lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCamelCase ,return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ,target_sizes=[(50, 60)] ) __lowercase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,_lowerCamelCase ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ) __lowercase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,_lowerCamelCase )
502
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=7 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=99 ,_lowerCamelCase=64 ,_lowerCamelCase=5 ,_lowerCamelCase=4 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=16 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=3 ,_lowerCamelCase=4 ,_lowerCamelCase=None ,) -> Dict: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = vocab_size - 1 def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCamelCase ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.prepare_config_and_inputs() __lowercase = True return config, input_ids, input_mask, token_labels def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = GPTNeoXModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = True __lowercase = GPTNeoXModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.num_labels __lowercase = GPTNeoXForQuestionAnswering(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = self.num_labels __lowercase = GPTNeoXForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = self.num_labels __lowercase = GPTNeoXForTokenClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = True __lowercase = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,use_cache=_lowerCamelCase ) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] ,dim=-1 ) __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,output_hidden_states=_lowerCamelCase ) __lowercase = output_from_no_past['''hidden_states'''][0] __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,past_key_values=_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,)['''hidden_states'''][0] # select random slice __lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Dict = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) a : str = (GPTNeoXForCausalLM,) if is_torch_available() else () a : Dict = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) a : Dict = False a : Optional[Any] = False a : Tuple = False a : List[Any] = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = GPTNeoXModelTester(self ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ,hidden_size=64 ,num_attention_heads=8 ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ids_tensor([1, 10] ,config.vocab_size ) __lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = GPTNeoXModel(_lowerCamelCase ) original_model.to(_lowerCamelCase ) original_model.eval() __lowercase = original_model(_lowerCamelCase ).last_hidden_state __lowercase = original_model(_lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = {'''type''': scaling_type, '''factor''': 1_0.0} __lowercase = GPTNeoXModel(_lowerCamelCase ) scaled_model.to(_lowerCamelCase ) scaled_model.eval() __lowercase = scaled_model(_lowerCamelCase ).last_hidden_state __lowercase = scaled_model(_lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-5 ) ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: __lowercase = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCamelCase ) __lowercase = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(_lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowercase = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' __lowercase = model.generate(**_lowerCamelCase ,do_sample=_lowerCamelCase ,max_new_tokens=20 ) __lowercase = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase ,_lowerCamelCase )
502
1
import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase_ : List[Any] = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Dict = """masked_bert""" def __init__( self : List[str] , __lowerCamelCase : Optional[Any]=30_522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : List[Any]=3_072 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : str=1E-12 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[int]="topK" , __lowerCamelCase : Optional[Any]="constant" , __lowerCamelCase : int=0.0 , **__lowerCamelCase : Tuple , ): super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :List[str] = vocab_size UpperCamelCase :List[Any] = hidden_size UpperCamelCase :str = num_hidden_layers UpperCamelCase :Optional[int] = num_attention_heads UpperCamelCase :str = hidden_act UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :Optional[Any] = hidden_dropout_prob UpperCamelCase :Any = attention_probs_dropout_prob UpperCamelCase :Union[str, Any] = max_position_embeddings UpperCamelCase :List[Any] = type_vocab_size UpperCamelCase :Optional[Any] = initializer_range UpperCamelCase :Optional[int] = layer_norm_eps UpperCamelCase :List[str] = pruning_method UpperCamelCase :Dict = mask_init UpperCamelCase :Dict = mask_scale
711
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) UpperCamelCase :List[Any] = sum(__magic_name__ ) / len(__magic_name__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
590
0
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' @slow def _UpperCAmelCase ( self : Dict ): A__ : Any =AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) A__ : List[str] =AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(lowercase__ ) from datasets import load_dataset A__ : Union[str, Any] =load_dataset("nielsr/rvlcdip-demo" ) A__ : int =dataset['train'][0]['image'].convert("RGB" ) A__ : Tuple =image_processor(lowercase__ , return_tensors="pt" ).to(lowercase__ ) # forward pass with torch.no_grad(): A__ : Optional[Any] =model(**lowercase__ ) A__ : Optional[Any] =outputs.logits A__ : str =torch.Size((1, 16) ) self.assertEqual(logits.shape , lowercase__ ) A__ : int =torch.tensor( [-0.4158, -0.4092, -0.4347] , device=lowercase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) )
656
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _lowerCAmelCase :Any = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _lowerCAmelCase :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") _lowerCAmelCase :Optional[int] = [file for file in filepaths if """ """ in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") _lowerCAmelCase :List[str] = [file for file in filepaths if """-""" in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") _lowerCAmelCase :Optional[int] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") _lowerCAmelCase :str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
251
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __magic_name__ ( __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Optional[Any] = XLMProphetNetTokenizer lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = True def lowerCAmelCase ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase: Tuple = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Any = '''[PAD]''' _UpperCamelCase: Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowercase ) , 1_012 ) def lowerCAmelCase ( self : str ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def lowerCAmelCase ( self : Any ): """simple docstring""" _UpperCamelCase: Optional[Any] = XLMProphetNetTokenizer(_lowercase , keep_accents=_lowercase ) _UpperCamelCase: Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase: Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase: Tuple = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _UpperCamelCase: int = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def lowerCAmelCase ( self : List[str] ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: List[str] = '''Hello World!''' _UpperCamelCase: str = [35_389, 6_672, 49, 2] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: List[str] = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
713
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : Optional[Any] = '''philschmid/bart-large-cnn-samsum''' lowerCAmelCase : Any = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) lowerCAmelCase : Any = '''summarizer''' lowerCAmelCase : Tuple = AutoTokenizer lowerCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM lowerCAmelCase : Union[str, Any] = ['''text'''] lowerCAmelCase : Dict = ['''text'''] def lowerCAmelCase ( self : str , _lowercase : Union[str, Any] ): """simple docstring""" return self.pre_processor(_lowercase , return_tensors='''pt''' , truncation=_lowercase ) def lowerCAmelCase ( self : List[Any] , _lowercase : Optional[Any] ): """simple docstring""" return self.model.generate(**_lowercase )[0] def lowerCAmelCase ( self : int , _lowercase : List[str] ): """simple docstring""" return self.pre_processor.decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase )
264
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowercase__ = MaskFormerConfig(backbone_config=SCREAMING_SNAKE_CASE ) lowercase__ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok lowercase__ = 8_47 lowercase__ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok lowercase__ = 1_50 lowercase__ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok lowercase__ = 1_71 lowercase__ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO lowercase__ = 1_33 lowercase__ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok lowercase__ = 19 lowercase__ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok lowercase__ = 65 lowercase__ = '''mapillary-vistas-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} return config def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.layers.{i}.downsample.reduction.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'sem_seg_head.adapter_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', f'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', f'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', f'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', f'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.weight', f'mask_embedder.{i}.0.weight') ) rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.bias', f'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:dim, :] lowercase__ = in_proj_bias[: dim] lowercase__ = in_proj_weight[ dim : dim * 2, : ] lowercase__ = in_proj_bias[ dim : dim * 2 ] lowercase__ = in_proj_weight[ -dim :, : ] lowercase__ = in_proj_bias[-dim :] # fmt: on def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) lowercase__ = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[: hidden_size, :] lowercase__ = in_proj_bias[:config.hidden_size] lowercase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowercase__ = in_proj_bias[hidden_size : hidden_size * 2] lowercase__ = in_proj_weight[-hidden_size :, :] lowercase__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) lowercase__ = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[: hidden_size, :] lowercase__ = in_proj_bias[:config.hidden_size] lowercase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowercase__ = in_proj_bias[hidden_size : hidden_size * 2] lowercase__ = in_proj_weight[-hidden_size :, :] lowercase__ = in_proj_bias[-hidden_size :] # fmt: on def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" lowercase__ = get_maskformer_config(SCREAMING_SNAKE_CASE ) # load original state_dict with open(SCREAMING_SNAKE_CASE , '''rb''' ) as f: lowercase__ = pickle.load(SCREAMING_SNAKE_CASE ) lowercase__ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # update to torch tensors for key, value in state_dict.items(): lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # load 🤗 model lowercase__ = MaskFormerForInstanceSegmentation(SCREAMING_SNAKE_CASE ) model.eval() for name, param in model.named_parameters(): print(SCREAMING_SNAKE_CASE , param.shape ) lowercase__ , lowercase__ = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(SCREAMING_SNAKE_CASE ) == 0, f'Unexpected keys: {unexpected_keys}' # verify results lowercase__ = prepare_img() if "vistas" in model_name: lowercase__ = 65 elif "cityscapes" in model_name: lowercase__ = 6_55_35 else: lowercase__ = 2_55 lowercase__ = True if '''ade''' in model_name else False lowercase__ = MaskFormerImageProcessor(ignore_index=SCREAMING_SNAKE_CASE , reduce_labels=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowercase__ = model(**SCREAMING_SNAKE_CASE ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowercase__ = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) image_processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
43
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def A ( _lowerCamelCase , _lowerCamelCase = 16 ): '''simple docstring''' _lowerCAmelCase : int = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCAmelCase : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : List[str] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Optional[int] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : str = 8 else: _lowerCAmelCase : int = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": _lowerCAmelCase : str = 2 # New Code # _lowerCAmelCase : Optional[Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Union[str, Any] = config["lr"] _lowerCAmelCase : List[Any] = int(config["num_epochs"] ) _lowerCAmelCase : str = int(config["seed"] ) _lowerCAmelCase : str = int(config["batch_size"] ) _lowerCAmelCase : int = evaluate.load("glue" , "mrpc" ) set_seed(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Dict = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = model(**_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = output.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : str = model(**_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _lowerCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCAmelCase : str = parser.parse_args() _lowerCAmelCase : List[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
500
0
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ : List[str] = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowerCAmelCase (__A , __A , __A , __A , __A , __A): """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''') if not ops[op](version.parse(_lowerCamelCase) , version.parse(_lowerCamelCase)): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''') def lowerCAmelCase (__A , __A = None): """simple docstring""" _a = F'''\n{hint}''' if hint is not None else """""" # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , _lowerCamelCase): _a = requirement, None, None else: _a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , _lowerCamelCase) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''') _a = match[0] _a = want_full.split(''',''') # there could be multiple requirements _a = {} for w in want_range: _a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , _lowerCamelCase) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''') _a = match[0] _a = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys())}, but got {op}''') # special case if pkg == "python": _a = """.""".join([str(_lowerCamelCase) for x in sys.version_info[:3]]) for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) return # check if any version is installed try: _a = importlib.metadata.version(_lowerCamelCase) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''') # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def lowerCAmelCase (__A): """simple docstring""" _a = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(_lowerCamelCase , _lowerCamelCase)
719
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase_ = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = 'facebook/nllb-200-distilled-600M' __lowerCamelCase : Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __lowerCamelCase : Optional[int] = 'translator' __lowerCamelCase : int = AutoTokenizer __lowerCamelCase : List[Any] = AutoModelForSeqaSeqLM __lowerCamelCase : int = LANGUAGE_CODES __lowerCamelCase : Tuple = ['text', 'text', 'text'] __lowerCamelCase : Optional[Any] = ['text'] def a__ (self , A , A , A ) -> List[str]: """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) _a = self.lang_to_code[src_lang] _a = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A , return_tensors='''pt''' , src_lang=A , tgt_lang=A ) def a__ (self , A ) -> Optional[Any]: """simple docstring""" return self.model.generate(**A ) def a__ (self , A ) -> List[str]: """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A )
352
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' if gpta_config_file == "": lowerCamelCase__ = GPTaConfig() else: lowerCamelCase__ = GPTaConfig.from_json_file(__snake_case ) lowerCamelCase__ = GPTaModel(__snake_case ) # Load weights from numpy load_tf_weights_in_gpta(__snake_case ,__snake_case ,__snake_case ) # Save pytorch-model lowerCamelCase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCamelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() ,__snake_case ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(__snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _a = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
481
from math import factorial _a = {str(digit): factorial(digit) for digit in range(10)} def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' if not isinstance(__snake_case ,__snake_case ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__snake_case ) ) def lowerCAmelCase__(__snake_case = 60 ,__snake_case = 1000000 ) -> int: '''simple docstring''' if not isinstance(__snake_case ,__snake_case ) or not isinstance(__snake_case ,__snake_case ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 ,__snake_case ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__snake_case ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__snake_case ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution()}""")
481
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase ( _A , _A=7 ): lowerCAmelCase_ = None if token is not None: lowerCAmelCase_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"Bearer {token}"} # The id of a workflow (not of a workflow run) lowerCAmelCase_ = '''636036''' lowerCAmelCase_ = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" lowerCAmelCase_ = requests.get(_A , headers=_A ).json() return result["workflow_runs"] def __UpperCamelCase ( _A ): lowerCAmelCase_ = get_daily_ci_runs(_A ) lowerCAmelCase_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCAmelCase_ = workflow_run['''id'''] break return workflow_run_id def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = get_last_daily_ci_runs(_A ) if workflow_run_id is not None: lowerCAmelCase_ = get_artifacts_links(worflow_run_id=_A , token=_A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCAmelCase_ = artifacts_links[artifact_name] download_artifact( artifact_name=_A , artifact_url=_A , output_dir=_A , token=_A ) def __UpperCamelCase ( _A , _A , _A ): get_last_daily_ci_artifacts(_A , _A , _A ) lowerCAmelCase_ = {} for artifact_name in artifact_names: lowerCAmelCase_ = os.path.join(_A , f"{artifact_name}.zip" ) if os.path.isfile(_A ): lowerCAmelCase_ = {} with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file with z.open(_A ) as f: lowerCAmelCase_ = f.read().decode('''UTF-8''' ) return results
325
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _A = get_logger(__name__) class A : __snake_case = 'dummy_data' __snake_case = 'datasets' __snake_case = False def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False, UpperCamelCase__ = True, UpperCamelCase__ = None, ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = dataset_name lowerCAmelCase_ = cache_dir lowerCAmelCase_ = use_local_dummy_data lowerCAmelCase_ = config # download_callbacks take a single url as input lowerCAmelCase_ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase_ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase_ = str(UpperCamelCase__ ) # to be downloaded lowerCAmelCase_ = None lowerCAmelCase_ = None @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self._dummy_file is None: lowerCAmelCase_ = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''', self.config.name, self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''', self.version_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return os.path.join(self.dummy_data_folder, '''dummy_data.zip''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase_ = cached_path( UpperCamelCase__, cache_dir=self.cache_dir, extract_compressed_file=UpperCamelCase__, force_extract=UpperCamelCase__ ) return os.path.join(UpperCamelCase__, self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return os.path.join(self.datasets_scripts_dir, self.dataset_name, self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self._bucket_url is None: lowerCAmelCase_ = hf_github_url(self.dataset_name, self.dummy_zip_file.replace(os.sep, '''/''' ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep, '''/''' ).split('''/''' )[:-1] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, *UpperCamelCase__ ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase_ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase_ = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase__, UpperCamelCase__ ): return self.create_dummy_data_dict(UpperCamelCase__, UpperCamelCase__ ) elif isinstance(UpperCamelCase__, (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase__, UpperCamelCase__ ) else: return self.create_dummy_data_single(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, *UpperCamelCase__ ): """simple docstring""" return self.download_and_extract(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return self.download_and_extract(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return path def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return {} def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase__, UpperCamelCase__ ): for single_url in single_urls: download_callback(UpperCamelCase__ ) else: lowerCAmelCase_ = single_urls download_callback(UpperCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = [os.path.join(UpperCamelCase__, urllib.parse.quote_plus(Path(UpperCamelCase__ ).name ) ) for x in single_urls] else: lowerCAmelCase_ = single_urls lowerCAmelCase_ = os.path.join(UpperCamelCase__, urllib.parse.quote_plus(Path(UpperCamelCase__ ).name ) ) lowerCAmelCase_ = value # make sure that values are unique if all(isinstance(UpperCamelCase__, UpperCamelCase__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase_ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase_ = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''', UpperCamelCase__ ) ) for url in data_url ) lowerCAmelCase_ = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase_ = [data_url[0]] * len(UpperCamelCase__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase_ = os.path.join(UpperCamelCase__, urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(UpperCamelCase__ ) return dummy_data_list def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(UpperCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase_ = os.path.join(UpperCamelCase__, urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(UpperCamelCase__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" def _iter_archive_members(UpperCamelCase__ ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase_ = Path(self.dummy_file ).parent lowerCAmelCase_ = path.relative_to(UpperCamelCase__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase_ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase__ ) lowerCAmelCase_ = Path(UpperCamelCase__ ) lowerCAmelCase_ = _iter_archive_members(UpperCamelCase__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(UpperCamelCase__ ).as_posix(), file_path.open('''rb''' ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = [paths] for path in paths: if os.path.isfile(UpperCamelCase__ ): if os.path.basename(UpperCamelCase__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase__ ): if os.path.basename(UpperCamelCase__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(UpperCamelCase__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(UpperCamelCase__, UpperCamelCase__ )
325
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a = logging.get_logger(__name__) __a = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class lowercase__( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" a :List[Any] = 'nat' a :List[str] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , SCREAMING_SNAKE_CASE_ : int=6_4 , SCREAMING_SNAKE_CASE_ : Dict=[3, 4, 6, 5] , SCREAMING_SNAKE_CASE_ : List[str]=[2, 4, 8, 1_6] , SCREAMING_SNAKE_CASE_ : List[str]=7 , SCREAMING_SNAKE_CASE_ : List[Any]=3.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : Optional[int]=1e-5 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = depths lowercase_ = len(SCREAMING_SNAKE_CASE_ ) lowercase_ = num_heads lowercase_ = kernel_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = layer_norm_eps lowercase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) lowercase_ = layer_scale_init_value lowercase_ = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] lowercase_ , lowercase_ = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
97
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger() @dataclass class A_ : """simple docstring""" a__ = 42 a__ = field(default_factory=a_ ) a__ = field(default_factory=a_ ) def _A ( self :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tensor , lowerCAmelCase__ :Tensor ) -> int: '''simple docstring''' snake_case_ : int = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase__ ) def __call__( self :List[Any] , lowerCAmelCase__ :Tensor ) -> Union[str, Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _A ( self :int ) -> List[Any]: '''simple docstring''' return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A_ : """simple docstring""" a__ = 42 a__ = 42 a__ = 0 a__ = field(default_factory=a_ ) a__ = field(default_factory=a_ ) def __call__( self :Tuple , lowerCAmelCase__ :Tensor ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = Tracker(self.dest )(lowerCAmelCase__ ).parametrized snake_case_ : Tuple = Tracker(self.src )(lowerCAmelCase__ ).parametrized snake_case_ : List[str] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) ) snake_case_ : Tuple = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while''' F''' destination module has {len(lowerCAmelCase__ )}.''' ) for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ = True )-> Optional[int]: """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case_ : List[str] = timm.create_model(__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Optional[int] = ResNetForImageClassification(__magic_name__ ).eval() snake_case_ : Dict = ModuleTransfer(src=__magic_name__ ,dest=__magic_name__ ) snake_case_ : Optional[int] = torch.randn((1, 3, 224, 224) ) module_transfer(__magic_name__ ) assert torch.allclose(from_model(__magic_name__ ) ,our_model(__magic_name__ ).logits ), "The model logits don't match the original one." snake_case_ : str = F'''resnet{'-'.join(name.split('resnet' ) )}''' print(__magic_name__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add model" ,use_temp_dir=__magic_name__ ,) # we can use the convnext one snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add image processor" ,use_temp_dir=__magic_name__ ,) print(F'''Pushed {checkpoint_name}''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = None ,__magic_name__ = True )-> Tuple: """simple docstring""" snake_case_ : List[str] = "imagenet-1k-id2label.json" snake_case_ : Optional[Any] = 1000 snake_case_ : List[Any] = (1, num_labels) snake_case_ : Optional[Any] = "huggingface/label-files" snake_case_ : Dict = num_labels snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : List[str] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : Any = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} snake_case_ : Optional[int] = partial(__magic_name__ ,num_labels=__magic_name__ ,idalabel=__magic_name__ ,labelaid=__magic_name__ ) snake_case_ : Optional[int] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), } if model_name: convert_weight_and_push(__magic_name__ ,names_to_config[model_name] ,__magic_name__ ,__magic_name__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __lowerCamelCase : Tuple = parser.parse_args() __lowerCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
653
0
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __magic_name__ : def __init__( self : List[str] , snake_case__ : str , snake_case__ : Any=9_9 , snake_case__ : List[str]=1_3 , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[int]=9 , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : Tuple=False , snake_case__ : List[str]=3_2 , snake_case__ : Union[str, Any]=5 , snake_case__ : str=4 , snake_case__ : List[Any]=3_7 , snake_case__ : List[Any]=8 , snake_case__ : Any=0.1 , snake_case__ : Optional[Any]=0.0_02 , snake_case__ : Dict=1 , snake_case__ : str=0 , snake_case__ : str=0 , snake_case__ : str=None , snake_case__ : List[Any]=None , ): '''simple docstring''' lowercase :Any = parent lowercase :Optional[Any] = batch_size lowercase :Optional[int] = encoder_seq_length lowercase :List[str] = decoder_seq_length # For common tests lowercase :Tuple = self.decoder_seq_length lowercase :List[str] = is_training lowercase :Dict = use_attention_mask lowercase :Tuple = use_labels lowercase :Tuple = vocab_size lowercase :int = hidden_size lowercase :Union[str, Any] = num_hidden_layers lowercase :str = num_attention_heads lowercase :str = d_ff lowercase :Dict = relative_attention_num_buckets lowercase :int = dropout_rate lowercase :Dict = initializer_factor lowercase :Optional[int] = eos_token_id lowercase :Any = pad_token_id lowercase :Dict = decoder_start_token_id lowercase :Union[str, Any] = None lowercase :List[str] = decoder_layers def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return TaConfig.from_pretrained('''google/umt5-base''' ) def __snake_case ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : Dict=None , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Any]=None , snake_case__ : Dict=None , snake_case__ : Tuple=None , ): '''simple docstring''' if attention_mask is None: lowercase :Dict = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowercase :List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowercase :List[Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case__ ) if decoder_head_mask is None: lowercase :List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case__ ) if cross_attn_head_mask is None: lowercase :Tuple = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=snake_case__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowercase :Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowercase :Any = input_ids.clamp(self.pad_token_id + 1 ) lowercase :Dict = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowercase :str = self.get_config() lowercase :Dict = config.num_attention_heads lowercase :Tuple = self.prepare_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, input_dict def __snake_case ( self : Tuple ): '''simple docstring''' lowercase , lowercase :int = self.prepare_config_and_inputs() return config, inputs_dict def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __snake_case ( self : str ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Tuple , ): '''simple docstring''' lowercase :int = UMTaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Union[str, Any] = model( input_ids=snake_case__ , decoder_input_ids=snake_case__ , attention_mask=snake_case__ , decoder_attention_mask=snake_case__ , ) lowercase :Dict = model(input_ids=snake_case__ , decoder_input_ids=snake_case__ ) lowercase :Optional[Any] = result.last_hidden_state lowercase :List[Any] = result.past_key_values lowercase :List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(snake_case__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __snake_case ( self : Dict , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : str , ): '''simple docstring''' lowercase :Dict = UMTaModel(config=snake_case__ ).get_decoder().to(snake_case__ ).eval() # first forward pass lowercase :int = model(snake_case__ , use_cache=snake_case__ ) lowercase :Optional[int] = model(snake_case__ ) lowercase :Optional[int] = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) lowercase , lowercase :Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase :List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowercase :Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase :Tuple = model(snake_case__ )['''last_hidden_state'''] lowercase :Tuple = model(snake_case__ , past_key_values=snake_case__ )['''last_hidden_state'''] # select random slice lowercase :Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase :Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() lowercase :Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def __snake_case ( self : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , ): '''simple docstring''' lowercase :Dict = UMTaModel(config=snake_case__ ).to(snake_case__ ).half().eval() lowercase :Dict = model(**snake_case__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(snake_case__ ).any().item() ) @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : int = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __A : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () __A : List[str] = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __A : str = True __A : Any = False __A : int = False __A : Union[str, Any] = True __A : Optional[Any] = True # The small UMT5 model needs higher percentages for CPU/MP tests __A : Any = [0.8, 0.9] def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :str = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs() lowercase :int = UMTaModel(config_and_inputs[0] ).to(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( snake_case__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=snake_case__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*snake_case__ ) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Any = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] lowercase :List[str] = self.model_tester.prepare_config_and_inputs() lowercase :Dict = config_and_inputs[0] lowercase :Optional[int] = UMTaForConditionalGeneration(snake_case__ ).eval() model.to(snake_case__ ) lowercase :int = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=snake_case__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case__ ), } for attn_name, (name, mask) in zip(snake_case__ , head_masking.items() ): lowercase :Dict = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowercase :Optional[int] = torch.ones( config.num_decoder_layers , config.num_heads , device=snake_case__ ) lowercase :Union[str, Any] = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=snake_case__ , return_dict_in_generate=snake_case__ , **snake_case__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowercase :Optional[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __snake_case ( self : Dict ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __snake_case ( self : int ): '''simple docstring''' lowercase :Optional[int] = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=snake_case__ ).to(snake_case__ ) lowercase :Any = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=snake_case__ , legacy=snake_case__ ) lowercase :Union[str, Any] = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] lowercase :List[Any] = tokenizer(snake_case__ , return_tensors='''pt''' , padding=snake_case__ ).input_ids # fmt: off lowercase :Any = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(snake_case__ , snake_case__ ) lowercase :Any = model.generate(input_ids.to(snake_case__ ) ) lowercase :Any = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] lowercase :int = tokenizer.batch_decode(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ )
475
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : str = FlaxAutoencoderKL @property def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Dict = 4 lowercase :Optional[int] = 3 lowercase :Any = (3_2, 3_2) lowercase :Optional[int] = jax.random.PRNGKey(0 ) lowercase :Any = jax.random.uniform(snake_case__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :List[Any] = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowercase :Optional[int] = self.dummy_input return init_dict, inputs_dict
475
1
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
660
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def lowerCamelCase__ ( A_ , A_ , A_ , A_ = 100 , ): UpperCAmelCase_ = x_start UpperCAmelCase_ = fnc(A_ ) UpperCAmelCase_ = 0.0 for _ in range(A_ ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase_ = (x_end - x_start) / steps + xa UpperCAmelCase_ = fnc(A_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCAmelCase_ = xa UpperCAmelCase_ = fxa return length if __name__ == "__main__": def lowerCamelCase__ ( A_ ): return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') __snake_case : List[Any] = 10 while i <= 10_00_00: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
660
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=True ) -> Any: model.train() A_ = model(UpperCAmelCase__ ) A_ = F.mse_loss(UpperCAmelCase__, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> List[Any]: set_seed(42 ) A_ = RegressionModel() A_ = deepcopy(UpperCAmelCase__ ) A_ = RegressionDataset(length=80 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) model.to(accelerator.device ) if sched: A_ = AdamW(params=model.parameters(), lr=1e-3 ) A_ = AdamW(params=ddp_model.parameters(), lr=1e-3 ) A_ = LambdaLR(UpperCAmelCase__, lr_lambda=lambda UpperCAmelCase__ : epoch**0.65 ) A_ = LambdaLR(UpperCAmelCase__, lr_lambda=lambda UpperCAmelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: A_ , A_ , A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # Test when on a single CPU or GPU that the context manager does nothing A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) # Use a single batch A_ , A_ = next(iter(UpperCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: # Sync grads step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: # Test on distributed setup that context manager behaves properly A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) # Use a single batch A_ , A_ = next(iter(UpperCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: # Sync grads step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] def UpperCAmelCase__ ( UpperCAmelCase__=False, UpperCAmelCase__=False ) -> int: A_ = Accelerator( split_batches=UpperCAmelCase__, dispatch_batches=UpperCAmelCase__, gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) for iteration, batch in enumerate(UpperCAmelCase__ ): A_ , A_ = batch.values() # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCAmelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] GradientState._reset_state() def UpperCAmelCase__ ( UpperCAmelCase__=False, UpperCAmelCase__=False ) -> str: A_ = Accelerator( split_batches=UpperCAmelCase__, dispatch_batches=UpperCAmelCase__, gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ , A_ , A_ , A_ , A_ , A_ , A_ = get_training_setup(UpperCAmelCase__, UpperCAmelCase__ ) for iteration, batch in enumerate(UpperCAmelCase__ ): A_ , A_ = batch.values() # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCAmelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' A_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCAmelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def UpperCAmelCase__ ( ) -> Any: A_ = Accelerator() A_ = RegressionDataset(length=80 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) A_ = RegressionDataset(length=96 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCAmelCase__ ) if iteration < len(UpperCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCAmelCase__ ) if batch_num < len(UpperCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCAmelCase__ ( ) -> Dict: A_ = Accelerator() A_ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCAmelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCAmelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """, F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''', ) test_gradient_accumulation(UpperCAmelCase__, UpperCAmelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""", """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """, """`split_batches=False`, `dispatch_batches=False`**""", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """, F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''', ) test_gradient_accumulation_with_opt_and_scheduler(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : List[str] = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) snake_case : Any = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go snake_case : Any = parser.parse_args() if not hasattr(lowercase , "func" ): parser.print_help() exit(1 ) # Run snake_case : Optional[int] = args.func(lowercase ) service.run() if __name__ == "__main__": main()
178
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[str] = (KDPMaDiscreteScheduler,) __UpperCAmelCase : List[Any] = 10 def lowerCamelCase ( self , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase__ ) return config def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def lowerCamelCase ( self ) -> str: '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : str = self.scheduler_classes[0] snake_case : str = self.get_scheduler_config(prediction_type="v_prediction" ) snake_case : Dict = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case : List[Any] = self.dummy_model() snake_case : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case : Optional[Any] = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): snake_case : int = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) snake_case : int = model(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = output.prev_sample snake_case : Optional[Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) snake_case : Any = torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def lowerCamelCase ( self ) -> Dict: '''simple docstring''' if torch_device == "mps": return snake_case : Optional[Any] = self.scheduler_classes[0] snake_case : Optional[int] = self.get_scheduler_config() snake_case : Dict = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case : List[Any] = self.dummy_model() snake_case : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case : List[str] = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): snake_case : List[Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[int] = model(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[int] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : int = output.prev_sample snake_case : int = torch.sum(torch.abs(UpperCamelCase__ ) ) snake_case : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' if torch_device == "mps": return snake_case : Any = self.scheduler_classes[0] snake_case : Any = self.get_scheduler_config() snake_case : Union[str, Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) snake_case : Optional[Any] = self.dummy_model() snake_case : Optional[int] = self.dummy_sample_deter.to(UpperCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case : Optional[Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Any = model(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : Dict = output.prev_sample snake_case : Dict = torch.sum(torch.abs(UpperCamelCase__ ) ) snake_case : str = torch.mean(torch.abs(UpperCamelCase__ ) ) if str(UpperCamelCase__ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
178
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCamelCase_ = 10 def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' for i in range(A , A ): if array[i] == target: return i return -1 def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =0 UpperCAmelCase__ =len(A ) while left <= right: if right - left < precision: return lin_search(A , A , A , A ) UpperCAmelCase__ =(left + right) // 3 + 1 UpperCAmelCase__ =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase__ =one_third - 1 elif array[two_third] < target: UpperCAmelCase__ =two_third + 1 else: UpperCAmelCase__ =one_third + 1 UpperCAmelCase__ =two_third - 1 else: return -1 def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(A , A , A , A ) UpperCAmelCase__ =(left + right) // 3 + 1 UpperCAmelCase__ =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(A , one_third - 1 , A , A ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , A , A , A ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , A , A ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = input('Enter numbers separated by comma:\n').strip() UpperCamelCase_ = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." UpperCamelCase_ = int(input('Enter the number to be found in the list:\n').strip()) UpperCamelCase_ = ite_ternary_search(collection, target) UpperCamelCase_ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
510
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'blip_text_model' def __init__( self, A_=3_0524, A_=768, A_=768, A_=3072, A_=768, A_=12, A_=8, A_=512, A_="gelu", A_=1E-12, A_=0.0, A_=0.0, A_=0.02, A_=3_0522, A_=2, A_=0, A_=102, A_=True, A_=True, **A_, ) -> Any: super().__init__( pad_token_id=A_, bos_token_id=A_, eos_token_id=A_, sep_token_id=A_, **A_, ) UpperCAmelCase__ =vocab_size UpperCAmelCase__ =hidden_size UpperCAmelCase__ =encoder_hidden_size UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =projection_dim UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =max_position_embeddings UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =hidden_act UpperCAmelCase__ =initializer_range UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =is_decoder UpperCAmelCase__ =use_cache @classmethod def __UpperCAmelCase ( cls, A_, **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) UpperCAmelCase__ , UpperCAmelCase__ =cls.get_config_dict(A_, **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase__ =config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_, **A_ ) class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'blip_vision_model' def __init__( self, A_=768, A_=3072, A_=512, A_=12, A_=12, A_=384, A_=16, A_="gelu", A_=1E-5, A_=0.0, A_=1E-10, **A_, ) -> Dict: super().__init__(**A_ ) UpperCAmelCase__ =hidden_size UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =projection_dim UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =patch_size UpperCAmelCase__ =image_size UpperCAmelCase__ =initializer_range UpperCAmelCase__ =attention_dropout UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =hidden_act @classmethod def __UpperCAmelCase ( cls, A_, **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) UpperCAmelCase__ , UpperCAmelCase__ =cls.get_config_dict(A_, **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase__ =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_, **A_ ) class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'blip' __UpperCamelCase = True def __init__( self, A_=None, A_=None, A_=512, A_=2.65_92, A_=256, **A_, ) -> str: super().__init__(**A_ ) if text_config is None: UpperCAmelCase__ ={} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: UpperCAmelCase__ ={} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) UpperCAmelCase__ =BlipTextConfig(**A_ ) UpperCAmelCase__ =BlipVisionConfig(**A_ ) UpperCAmelCase__ =self.vision_config.hidden_size UpperCAmelCase__ =projection_dim UpperCAmelCase__ =logit_scale_init_value UpperCAmelCase__ =1.0 UpperCAmelCase__ =0.02 UpperCAmelCase__ =image_text_hidden_size @classmethod def __UpperCAmelCase ( cls, A_, A_, **A_ ) -> Tuple: return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **A_ ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =copy.deepcopy(self.__dict__ ) UpperCAmelCase__ =self.text_config.to_dict() UpperCAmelCase__ =self.vision_config.to_dict() UpperCAmelCase__ =self.__class__.model_type return output
510
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) __lowercase : Optional[Any] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Any = "luke" def __init__( self , UpperCamelCase__=50_267 , UpperCamelCase__=500_000 , UpperCamelCase__=768 , UpperCamelCase__=256 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3_072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = entity_vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = entity_emb_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_entity_aware_attention lowerCamelCase_ = classifier_dropout
142
"""simple docstring""" __lowercase : Union[str, Any] = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) __lowercase : Any = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 1_2, """Pm""": 1_5, """Em""": 1_8, """Zm""": 2_1, """Ym""": 2_4, } def lowerCamelCase_ ( _lowerCamelCase : float , _lowerCamelCase : str , _lowerCamelCase : str ): lowerCamelCase_ = from_type.lower().strip('''s''' ) lowerCamelCase_ = to_type.lower().strip('''s''' ) lowerCamelCase_ = UNIT_SYMBOL.get(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = UNIT_SYMBOL.get(_lowerCamelCase , _lowerCamelCase ) if from_sanitized not in METRIC_CONVERSION: lowerCamelCase_ = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) if to_sanitized not in METRIC_CONVERSION: lowerCamelCase_ = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) lowerCamelCase_ = METRIC_CONVERSION[from_sanitized] lowerCamelCase_ = METRIC_CONVERSION[to_sanitized] lowerCamelCase_ = 1 if from_exponent > to_exponent: lowerCamelCase_ = from_exponent - to_exponent else: lowerCamelCase_ = -(to_exponent - from_exponent) return value * pow(1_0 , _lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
142
1
'''simple docstring''' import argparse import os import re a_ = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a_ = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings a_ = re.compile(r'''\s*\(\s*\"(\S[^\"]+)\"''') def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : int = False ) -> Optional[int]: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = f.read() lowerCAmelCase__ = content.split("\n" ) lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while line_idx < len(UpperCamelCase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowerCAmelCase__ = len(re.search(R"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 lowerCAmelCase__ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowerCAmelCase__ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowerCAmelCase__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : _re_identifier.search(UpperCamelCase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write("\n".join(UpperCamelCase_ ) ) elif "\n".join(UpperCamelCase_ ) != content: return True def _a ( UpperCamelCase_ : int = False ) -> Dict: """simple docstring""" lowerCAmelCase__ = [os.path.join(UpperCamelCase_ , UpperCamelCase_ ) for f in os.listdir(UpperCamelCase_ ) if f.endswith(".py" )] lowerCAmelCase__ = [sort_auto_mapping(UpperCamelCase_ , overwrite=UpperCamelCase_ ) for fname in fnames] if not overwrite and any(UpperCamelCase_ ): lowerCAmelCase__ = [f for f, d in zip(UpperCamelCase_ , UpperCamelCase_ ) if d] raise ValueError( F"The following files have auto mappings that need sorting: {', '.join(UpperCamelCase_ )}. Run `make style` to fix" " this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') a_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
701
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase_ ( __A , __A ): """simple docstring""" @register_to_config def __init__( self : Any , UpperCAmelCase : int = 768 , ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase : Optional[int] =nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) lowercase : Tuple =nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) lowercase : Union[str, Any] =nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =(embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' lowercase : Dict =(embeds * self.std) + self.mean return embeds
94
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __SCREAMING_SNAKE_CASE :int = logging.getLogger(__name__) torch.set_grad_enabled(False) __SCREAMING_SNAKE_CASE :Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCAmelCase_ ( __lowercase : str , __lowercase : Union[str, Any]=100 , __lowercase : Dict=" " ) -> List[str]: '''simple docstring''' _UpperCAmelCase = text.split(__lowercase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowercase ) , __lowercase )] def UpperCAmelCase_ ( __lowercase : dict ) -> dict: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowercase ): titles.append(title if title is not None else "" ) texts.append(__lowercase ) return {"title": titles, "text": texts} def UpperCAmelCase_ ( __lowercase : dict , __lowercase : DPRContextEncoder , __lowercase : DPRContextEncoderTokenizerFast ) -> dict: '''simple docstring''' _UpperCAmelCase = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowercase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase = ctx_encoder(input_ids.to(device=__lowercase ) , return_dict=__lowercase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ ( __lowercase : "RagExampleArguments" , __lowercase : "ProcessingArguments" , __lowercase : "IndexHnswArguments" , ) -> Any: '''simple docstring''' logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase = dataset.map(__lowercase , batched=__lowercase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowercase ) _UpperCAmelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase = dataset.map( partial(__lowercase , ctx_encoder=__lowercase , ctx_tokenizer=__lowercase ) , batched=__lowercase , batch_size=processing_args.batch_size , features=__lowercase , ) # And finally save your dataset _UpperCAmelCase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowercase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowercase ) # And save the index _UpperCAmelCase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowercase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A_ : _lowerCamelCase : str = field( default=str(Path(lowerCAmelCase_ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) _lowerCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) _lowerCamelCase : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) _lowerCamelCase : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) _lowerCamelCase : Optional[str] = field( default=str(Path(lowerCAmelCase_ ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class A_ : _lowerCamelCase : Optional[int] = field( default=lowerCAmelCase_ , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) _lowerCamelCase : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class A_ : _lowerCamelCase : int = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) _lowerCamelCase : int = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __SCREAMING_SNAKE_CASE :Tuple = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Tuple = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE :Optional[int] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
236
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __A =logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase = 101 ) -> List[Any]: lowerCamelCase_ = length def __len__( self ) -> Optional[int]: return self.length def __getitem__( self , lowercase ) -> int: return i class _SCREAMING_SNAKE_CASE : def __call__( self , lowercase ) -> int: return {"input_ids": torch.tensor(lowercase ), "labels": torch.tensor(lowercase )} class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self ) -> Optional[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. lowerCamelCase_ = nn.Linear(120 , 80 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> List[Any]: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _SCREAMING_SNAKE_CASE ( snake_case_ ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f'--output_dir {output_dir}'.split() lowerCamelCase_ = ["torchrun"] + distributed_args + args execute_subprocess_async(lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _SCREAMING_SNAKE_CASE ( snake_case_ ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f'--output_dir {output_dir}'.split() lowerCamelCase_ = ["torchrun"] + distributed_args + args execute_subprocess_async(lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __A =HfArgumentParser((TrainingArguments,)) __A =parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: __A =DummyDataset(dataset_length) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = list(range(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __A =Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __A =trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __A =trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __A =2 __A =trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __A =trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __A =None
313
import numpy as np def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = int(np.ceil((x_end - xa) / h ) ) lowerCamelCase_ = np.zeros((n + 1,) ) lowerCamelCase_ = ya lowerCamelCase_ = xa for k in range(lowerCamelCase__ ): lowerCamelCase_ = f(lowerCamelCase__ , y[k] ) lowerCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCamelCase_ = f(x + h , y[k] + h * ka ) lowerCamelCase_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
313
1
"""simple docstring""" import numpy as np def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :int = int(np.ceil((x_end - xa) / h ) ) lowerCAmelCase__ :Any = np.zeros((n + 1,) ) lowerCAmelCase__ :List[Any] = ya lowerCAmelCase__ :List[Any] = xa for k in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[int] = f(_SCREAMING_SNAKE_CASE , y[k] ) lowerCAmelCase__ :Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCAmelCase__ :int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCAmelCase__ :Optional[int] = f(x + h , y[k] + h * ka ) lowerCAmelCase__ :Dict = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
93
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
0
import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.2 , SCREAMING_SNAKE_CASE__=0.2 ): '''simple docstring''' snake_case: Optional[int] = bp_numa snake_case: int = bp_numa snake_case: Optional[int] = bp_numa snake_case: List[str] = conva_get[:2] snake_case: str = conva_get[2] snake_case: Tuple = size_pa snake_case: Union[str, Any] = rate_w snake_case: Optional[Any] = rate_t snake_case: str = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] snake_case: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) snake_case: List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) snake_case: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 snake_case: Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 snake_case: List[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowercase_ , 'wb' ) as f: pickle.dump(lowercase_ , lowercase_ ) print(F"""Model saved: {save_path}""" ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with open(lowercase_ , 'rb' ) as f: snake_case: List[Any] = pickle.load(lowercase_ ) # noqa: S301 snake_case: Any = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) snake_case: Tuple = model_dic.get('size_pooling1' ) snake_case: Tuple = model_dic.get('num_bp1' ) snake_case: Dict = model_dic.get('num_bp2' ) snake_case: Tuple = model_dic.get('num_bp3' ) snake_case: List[str] = model_dic.get('rate_weight' ) snake_case: Optional[int] = model_dic.get('rate_thre' ) # create model instance snake_case: List[str] = CNN(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # modify model parameter snake_case: int = model_dic.get('w_conv1' ) snake_case: str = model_dic.get('wkj' ) snake_case: List[Any] = model_dic.get('vji' ) snake_case: Union[str, Any] = model_dic.get('thre_conv1' ) snake_case: Union[str, Any] = model_dic.get('thre_bp2' ) snake_case: List[str] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return round(lowercase_ , 3 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = convs[0] snake_case: Tuple = convs[1] snake_case: Tuple = np.shape(lowercase_ )[0] # get the data slice of original image data, data_focus snake_case: Dict = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase_ ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase_ ): snake_case: Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase_ ) # calculate the feature map of every single kernel, and saved as list of matrix snake_case: List[Any] = [] snake_case: int = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase_ ): snake_case: Any = [] for i_focus in range(len(lowercase_ ) ): snake_case: List[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase_ ) ) snake_case: Optional[int] = np.asmatrix(lowercase_ ).reshape( lowercase_ , lowercase_ ) data_featuremap.append(lowercase_ ) # expanding the data slice to One dimenssion snake_case: Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase_ ) ) snake_case: Tuple = np.asarray(lowercase_ ) return focus_list, data_featuremap def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="average_pool" ): '''simple docstring''' snake_case: int = len(featuremaps[0] ) snake_case: Optional[int] = int(size_map / size_pooling ) snake_case: Dict = [] for i_map in range(len(lowercase_ ) ): snake_case: Any = featuremaps[i_map] snake_case: List[Any] = [] for i_focus in range(0 , lowercase_ , lowercase_ ): for j_focus in range(0 , lowercase_ , lowercase_ ): snake_case: List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase_ ) ) snake_case: int = np.asmatrix(lowercase_ ).reshape(lowercase_ , lowercase_ ) featuremap_pooled.append(lowercase_ ) return featuremap_pooled def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = [] for i in range(len(lowercase_ ) ): snake_case: List[str] = np.shape(data[i] ) snake_case: Optional[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) snake_case: int = data_listed.getA().tolist()[0] data_expanded.extend(lowercase_ ) snake_case: Union[str, Any] = np.asarray(lowercase_ ) return data_expanded def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = np.asarray(lowercase_ ) snake_case: Optional[Any] = np.shape(lowercase_ ) snake_case: Tuple = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = [] snake_case: List[str] = 0 for i_map in range(lowercase_ ): snake_case: Any = np.ones((size_map, size_map) ) for i in range(0 , lowercase_ , lowercase_ ): for j in range(0 , lowercase_ , lowercase_ ): snake_case: List[str] = pd_pool[ i_pool ] snake_case: Tuple = i_pool + 1 snake_case: Dict = np.multiply( lowercase_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase_ ) return pd_all def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=bool ): '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(lowercase_ )) ) print((' - - Shape: Teach_Data ', np.shape(lowercase_ )) ) snake_case: Tuple = 0 snake_case: Optional[Any] = [] snake_case: str = 1_00_00 while rp < n_repeat and mse >= error_accuracy: snake_case: Any = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(lowercase_ ) ): # print('------------Learning Image: %d--------------'%p) snake_case: Any = np.asmatrix(datas_train[p] ) snake_case: Optional[int] = np.asarray(datas_teach[p] ) snake_case: List[Any] = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case: List[Any] = self.pooling(lowercase_ , self.size_poolinga ) snake_case: List[str] = np.shape(lowercase_ ) snake_case: Dict = self._expand(lowercase_ ) snake_case: Tuple = data_bp_input snake_case: Union[str, Any] = np.dot(lowercase_ , self.vji.T ) - self.thre_bpa snake_case: Tuple = self.sig(lowercase_ ) snake_case: Tuple = np.dot(lowercase_ , self.wkj.T ) - self.thre_bpa snake_case: Tuple = self.sig(lowercase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- snake_case: int = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase_ , (1 - bp_outa) ) ) snake_case: str = np.multiply( np.dot(lowercase_ , self.wkj ) , np.multiply(lowercase_ , (1 - bp_outa) ) ) snake_case: List[Any] = np.dot(lowercase_ , self.vji ) snake_case: Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) snake_case: Tuple = pd_conva_pooled.T.getA().tolist() snake_case: Any = self._calculate_gradient_from_pool( lowercase_ , lowercase_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): snake_case: Dict = self._expand_mat(pd_conva_all[k_conv] ) snake_case: Union[str, Any] = self.rate_weight * np.dot(lowercase_ , lowercase_ ) snake_case: str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) snake_case: Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer snake_case: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight snake_case: int = self.vji + pd_j_all.T * bp_outa * self.rate_weight snake_case: List[Any] = self.thre_bpa - pd_k_all * self.rate_thre snake_case: Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image snake_case: Any = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) snake_case: Dict = rp + 1 snake_case: Any = error_count / patterns all_mse.append(lowercase_ ) def draw_error(): snake_case: str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase_ , '+-' ) plt.plot(lowercase_ , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(lowercase_ , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(lowercase_ )) ) for p in range(len(lowercase_ ) ): snake_case: Any = np.asmatrix(datas_test[p] ) snake_case: Any = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case: List[str] = self.pooling(lowercase_ , self.size_poolinga ) snake_case: List[Any] = self._expand(lowercase_ ) snake_case: str = data_bp_input snake_case: int = bp_outa * self.vji.T - self.thre_bpa snake_case: Union[str, Any] = self.sig(lowercase_ ) snake_case: Tuple = bp_outa * self.wkj.T - self.thre_bpa snake_case: Any = self.sig(lowercase_ ) produce_out.extend(bp_outa.getA().tolist() ) snake_case: List[Any] = [list(map(self.do_round , lowercase_ ) ) for each in produce_out] return np.asarray(lowercase_ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = np.asmatrix(lowercase_ ) snake_case: Optional[int] = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case: Dict = self.pooling(lowercase_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
708
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
0
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase ( snake_case_ ): pass class _lowerCAmelCase : def __init__( self , UpperCamelCase__ ) -> int: '''simple docstring''' snake_case : Any = data snake_case : Node | None = None def __iter__( self ) -> Dict: '''simple docstring''' snake_case : Dict = self snake_case : Dict = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase__ ) yield node.data snake_case : Optional[int] = node.next_node @property def lowerCamelCase ( self ) -> int: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __snake_case = Node(1) __snake_case = Node(2) __snake_case = Node(3) __snake_case = Node(4) print(root_node.has_loop) # False __snake_case = root_node.next_node print(root_node.has_loop) # True __snake_case = Node(5) __snake_case = Node(6) __snake_case = Node(5) __snake_case = Node(6) print(root_node.has_loop) # False __snake_case = Node(1) print(root_node.has_loop) # False
178
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class __a ( __magic_name__ , __magic_name__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = 'focalnet' def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=False , snake_case=[192, 384, 768, 768] , snake_case=[2, 2, 6, 2] , snake_case=[2, 2, 2, 2] , snake_case=[3, 3, 3, 3] , snake_case="gelu" , snake_case=4.0 , snake_case=0.0 , snake_case=0.1 , snake_case=False , snake_case=1e-4 , snake_case=False , snake_case=False , snake_case=False , snake_case=0.02 , snake_case=1e-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ): """simple docstring""" super().__init__(**snake_case ) lowerCAmelCase__ : Optional[Any] = image_size lowerCAmelCase__ : Union[str, Any] = patch_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : List[str] = embed_dim lowerCAmelCase__ : List[Any] = use_conv_embed lowerCAmelCase__ : List[str] = hidden_sizes lowerCAmelCase__ : List[Any] = depths lowerCAmelCase__ : Union[str, Any] = focal_levels lowerCAmelCase__ : Union[str, Any] = focal_windows lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : List[Any] = mlp_ratio lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : Union[str, Any] = drop_path_rate lowerCAmelCase__ : Tuple = use_layerscale lowerCAmelCase__ : Tuple = layerscale_value lowerCAmelCase__ : str = use_post_layernorm lowerCAmelCase__ : str = use_post_layernorm_in_modulation lowerCAmelCase__ : Union[str, Any] = normalize_modulator lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : List[Any] = layer_norm_eps lowerCAmelCase__ : str = encoder_stride lowerCAmelCase__ : Union[str, Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names )
453
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py snake_case_ : int = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' snake_case_ : Union[str, Any] = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' snake_case_ : Dict = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __UpperCamelCase ( self : Dict , _a : Optional[Any] , _a : str , _a : Union[str, Any]=4 , _a : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =compute_bleu( reference_corpus=_a , translation_corpus=_a , max_order=_a , smooth=_a ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
191
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case_ : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase( a__): if isinstance(a__ ,(list, tuple)) and isinstance(videos[0] ,(list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(a__ ,(list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(a__): return [[videos]] raise ValueError(f"Could not make batched video from {videos}") class A__ ( UpperCamelCase__ ): UpperCAmelCase = ["pixel_values"] def __init__( self : Tuple , _a : bool = True , _a : Dict[str, int] = None , _a : PILImageResampling = PILImageResampling.BILINEAR , _a : bool = True , _a : Dict[str, int] = None , _a : bool = True , _a : Union[int, float] = 1 / 255 , _a : bool = True , _a : bool = True , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[float, List[float]]] = None , **_a : Any , ) -> None: """simple docstring""" super().__init__(**_a ) _SCREAMING_SNAKE_CASE =size if size is not None else {'''shortest_edge''': 256} _SCREAMING_SNAKE_CASE =get_size_dict(_a , default_to_square=_a ) _SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _SCREAMING_SNAKE_CASE =get_size_dict(_a , param_name='''crop_size''' ) _SCREAMING_SNAKE_CASE =do_resize _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =do_center_crop _SCREAMING_SNAKE_CASE =crop_size _SCREAMING_SNAKE_CASE =resample _SCREAMING_SNAKE_CASE =do_rescale _SCREAMING_SNAKE_CASE =rescale_factor _SCREAMING_SNAKE_CASE =offset _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _SCREAMING_SNAKE_CASE =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : List[Any] , _a : np.ndarray , _a : Dict[str, int] , _a : PILImageResampling = PILImageResampling.BILINEAR , _a : Optional[Union[str, ChannelDimension]] = None , **_a : List[Any] , ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =get_size_dict(_a , default_to_square=_a ) if "shortest_edge" in size: _SCREAMING_SNAKE_CASE =get_resize_output_image_size(_a , size['''shortest_edge'''] , default_to_square=_a ) elif "height" in size and "width" in size: _SCREAMING_SNAKE_CASE =(size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __UpperCamelCase ( self : int , _a : np.ndarray , _a : Dict[str, int] , _a : Optional[Union[str, ChannelDimension]] = None , **_a : Dict , ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def __UpperCamelCase ( self : Dict , _a : np.ndarray , _a : Union[int, float] , _a : bool = True , _a : Optional[Union[str, ChannelDimension]] = None , **_a : List[str] , ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =image.astype(np.floataa ) if offset: _SCREAMING_SNAKE_CASE =image - (scale / 2) return rescale(_a , scale=_a , data_format=_a , **_a ) def __UpperCamelCase ( self : List[str] , _a : np.ndarray , _a : Union[float, List[float]] , _a : Union[float, List[float]] , _a : Optional[Union[str, ChannelDimension]] = None , **_a : Any , ) -> np.ndarray: """simple docstring""" return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __UpperCamelCase ( self : Tuple , _a : ImageInput , _a : bool = None , _a : Dict[str, int] = None , _a : PILImageResampling = None , _a : bool = None , _a : Dict[str, int] = None , _a : bool = None , _a : float = None , _a : bool = None , _a : bool = None , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[float, List[float]]] = None , _a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE =to_numpy_array(_a ) if do_resize: _SCREAMING_SNAKE_CASE =self.resize(image=_a , size=_a , resample=_a ) if do_center_crop: _SCREAMING_SNAKE_CASE =self.center_crop(_a , size=_a ) if do_rescale: _SCREAMING_SNAKE_CASE =self.rescale(image=_a , scale=_a , offset=_a ) if do_normalize: _SCREAMING_SNAKE_CASE =self.normalize(image=_a , mean=_a , std=_a ) _SCREAMING_SNAKE_CASE =to_channel_dimension_format(_a , _a ) return image def __UpperCamelCase ( self : Tuple , _a : ImageInput , _a : bool = None , _a : Dict[str, int] = None , _a : PILImageResampling = None , _a : bool = None , _a : Dict[str, int] = None , _a : bool = None , _a : float = None , _a : bool = None , _a : bool = None , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[str, TensorType]] = None , _a : ChannelDimension = ChannelDimension.FIRST , **_a : str , ) -> PIL.Image.Image: """simple docstring""" _SCREAMING_SNAKE_CASE =do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE =resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE =do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE =do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE =rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE =offset if offset is not None else self.offset _SCREAMING_SNAKE_CASE =do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE =image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE =image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE =size if size is not None else self.size _SCREAMING_SNAKE_CASE =get_size_dict(_a , default_to_square=_a ) _SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE =get_size_dict(_a , param_name='''crop_size''' ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _SCREAMING_SNAKE_CASE =make_batched(_a ) _SCREAMING_SNAKE_CASE =[ [ self._preprocess_image( image=_a , do_resize=_a , size=_a , resample=_a , do_center_crop=_a , crop_size=_a , do_rescale=_a , rescale_factor=_a , offset=_a , do_normalize=_a , image_mean=_a , image_std=_a , data_format=_a , ) for img in video ] for video in videos ] _SCREAMING_SNAKE_CASE ={'''pixel_values''': videos} return BatchFeature(data=_a , tensor_type=_a )
191
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : List[Any] =Lock() def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ =min(lowercase__ , lowercase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ =max(lowercase__ , lowercase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] UpperCAmelCase_ =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ =Pipe() UpperCAmelCase_ =Pipe() process_array_.append( Process( target=lowercase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ =temp_rs UpperCAmelCase_ =temp_rr for i in range(1 , len(lowercase__ ) - 1 ): UpperCAmelCase_ =Pipe() UpperCAmelCase_ =Pipe() process_array_.append( Process( target=lowercase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ =temp_rs UpperCAmelCase_ =temp_rr process_array_.append( Process( target=lowercase__ , args=( len(lowercase__ ) - 1, arr[len(lowercase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase__ ) ): UpperCAmelCase_ =result_pipe[p][0].recv() process_array_[p].join() return arr def a__ ( ): '''simple docstring''' UpperCAmelCase_ =list(range(1_0 , 0 , -1 ) ) print("Initial List" ) print(*lowercase__ ) UpperCAmelCase_ =odd_even_transposition(lowercase__ ) print("Sorted List\n" ) print(*lowercase__ ) if __name__ == "__main__": main()
54
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ : Dict = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __magic_name__ ( __lowerCAmelCase : List[str]=None ) -> List[str]: if subparsers is not None: __lowerCamelCase = subparsers.add_parser('''tpu-config''' , description=_description ) else: __lowerCamelCase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __lowerCamelCase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=__lowerCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=__lowerCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __lowerCamelCase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=__lowerCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=__lowerCAmelCase ) return parser def __magic_name__ ( __lowerCAmelCase : List[str] ) -> List[Any]: __lowerCamelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__lowerCAmelCase ): __lowerCamelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowerCamelCase = defaults.command_file if not args.command and defaults.commands is not None: __lowerCamelCase = defaults.commands if not args.tpu_name: __lowerCamelCase = defaults.tpu_name if not args.tpu_zone: __lowerCamelCase = defaults.tpu_zone if args.accelerate_version == "dev": __lowerCamelCase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __lowerCamelCase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , __lowerCAmelCase ): __lowerCamelCase = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __lowerCamelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __lowerCAmelCase ): __lowerCamelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowerCamelCase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command __lowerCamelCase = '''; '''.join(__lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowerCamelCase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {' '.join(__lowerCAmelCase )}''' ) return subprocess.run(__lowerCAmelCase ) print('''Successfully setup pod.''' ) def __magic_name__ ( ) -> Dict: __lowerCamelCase = tpu_command_parser() __lowerCamelCase = parser.parse_args() tpu_command_launcher(__lowerCAmelCase )
298
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCamelCase :Optional[Any] = True from torch.cuda.amp import autocast lowerCamelCase :int = logging.getLogger(__name__) def __snake_case ( _UpperCamelCase=None , _UpperCamelCase=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=lowercase_ ) @dataclass class UpperCAmelCase : a: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a: Optional[str] = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a: Optional[bool] = field( default=__snake_case , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) a: Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) a: Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) a: Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) a: Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) a: Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) a: Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCAmelCase : a: Optional[str] = field( default=__snake_case , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a: Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) a: bool = field( default=__snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) a: Optional[int] = field( default=__snake_case , metadata={"help": "The number of processes to use for the preprocessing."} , ) a: Optional[int] = field( default=__snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a: Optional[int] = field( default=__snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) a: List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "\'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCAmelCase : a: WavaVecaProcessor a: Union[bool, str] = True a: Optional[int] = None a: Optional[int] = None a: Optional[int] = None a: Optional[int] = None def __call__( self: Dict , __UpperCamelCase: int ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _a = [{"""input_values""": feature["""input_values"""]} for feature in features] _a = [{"""input_ids""": feature["""labels"""]} for feature in features] _a = self.processor.pad( A__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _a = self.processor.pad( labels=A__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _a = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _a = labels return batch class UpperCAmelCase ( __snake_case ): def _A ( self: Optional[int] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Dict ): model.train() _a = self._prepare_inputs(A__ ) if self.use_amp: with autocast(): _a = self.compute_loss(A__ , A__ ) else: _a = self.compute_loss(A__ , A__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _a = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _a = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: _a = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(A__ ).backward() elif self.use_apex: with amp.scale_loss(A__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(A__ ) else: loss.backward() return loss.detach() def __snake_case ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowercase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _a = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _a = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _a = f"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(_UpperCamelCase ): _a = re.sub(lowercase_ , '''''' , batch['''sentence'''] ).lower() + """ """ return batch _a = train_dataset.map(lowercase_ , remove_columns=['''sentence'''] ) _a = eval_dataset.map(lowercase_ , remove_columns=['''sentence'''] ) def extract_all_chars(_UpperCamelCase ): _a = """ """.join(batch['''text'''] ) _a = list(set(lowercase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} _a = train_dataset.map( lowercase_ , batched=lowercase_ , batch_size=-1 , keep_in_memory=lowercase_ , remove_columns=train_dataset.column_names , ) _a = train_dataset.map( lowercase_ , batched=lowercase_ , batch_size=-1 , keep_in_memory=lowercase_ , remove_columns=eval_dataset.column_names , ) _a = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _a = {v: k for k, v in enumerate(lowercase_ )} _a = vocab_dict[""" """] del vocab_dict[" "] _a = len(lowercase_ ) _a = len(lowercase_ ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(lowercase_ , lowercase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ ) _a = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) _a = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _a = min(len(lowercase_ ) , data_args.max_train_samples ) _a = train_dataset.select(range(lowercase_ ) ) if data_args.max_val_samples is not None: _a = eval_dataset.select(range(data_args.max_val_samples ) ) _a = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_UpperCamelCase ): _a = torchaudio.load(batch['''path'''] ) _a = resampler(lowercase_ ).squeeze().numpy() _a = 1_60_00 _a = batch["""text"""] return batch _a = train_dataset.map( lowercase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _a = eval_dataset.map( lowercase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_UpperCamelCase ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." _a = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(lowercase_ ) return batch _a = train_dataset.map( lowercase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , ) _a = eval_dataset.map( lowercase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric _a = datasets.load_metric('''wer''' ) def compute_metrics(_UpperCamelCase ): _a = pred.predictions _a = np.argmax(lowercase_ , axis=-1 ) _a = processor.tokenizer.pad_token_id _a = processor.batch_decode(lowercase_ ) # we do not want to group tokens when computing the metrics _a = processor.batch_decode(pred.label_ids , group_tokens=lowercase_ ) _a = wer_metric.compute(predictions=lowercase_ , references=lowercase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _a = DataCollatorCTCWithPadding(processor=lowercase_ , padding=lowercase_ ) # Initialize our Trainer _a = CTCTrainer( model=lowercase_ , data_collator=lowercase_ , args=lowercase_ , compute_metrics=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _a = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _a = model_args.model_name_or_path else: _a = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _a = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() _a = train_result.metrics _a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ ) ) _a = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''train''' , lowercase_ ) trainer.save_metrics('''train''' , lowercase_ ) trainer.save_state() # Evaluation _a = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _a = trainer.evaluate() _a = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowercase_ ) _a = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''eval''' , lowercase_ ) trainer.save_metrics('''eval''' , lowercase_ ) return results if __name__ == "__main__": main()
720
import csv import tweepy # Twitter API credentials lowerCamelCase :Optional[int] = '' lowerCamelCase :Tuple = '' lowerCamelCase :Tuple = '' lowerCamelCase :Optional[Any] = '' def __snake_case ( _UpperCamelCase ) -> None: # authorize twitter, initialize tweepy _a = tweepy.OAuthHandler(_UpperCamelCase , _UpperCamelCase ) auth.set_access_token(_UpperCamelCase , _UpperCamelCase ) _a = tweepy.API(_UpperCamelCase ) # initialize a list to hold all the tweepy Tweets _a = [] # make initial request for most recent tweets (200 is the maximum allowed count) _a = api.user_timeline(screen_name=_UpperCamelCase , count=2_00 ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # save the id of the oldest tweet less one _a = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCamelCase ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates _a = api.user_timeline( screen_name=_UpperCamelCase , count=2_00 , max_id=_UpperCamelCase ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # update the id of the oldest tweet less one _a = alltweets[-1].id - 1 print(f"...{len(_UpperCamelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv _a = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" , '''w''' ) as f: _a = csv.writer(_UpperCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(_UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
346
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=36 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=1000 , ): lowercase : int = parent lowercase : Union[str, Any] = batch_size lowercase : Tuple = num_channels lowercase : List[str] = image_size lowercase : str = patch_size lowercase : Optional[Any] = is_training lowercase : Optional[Any] = use_input_mask lowercase : Tuple = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : str = vocab_size lowercase : int = hidden_size lowercase : Any = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : List[str] = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : Optional[int] = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : Optional[Any] = max_position_embeddings lowercase : Optional[Any] = type_vocab_size lowercase : str = type_sequence_label_size lowercase : Tuple = initializer_range lowercase : List[Any] = coordinate_size lowercase : Optional[int] = shape_size lowercase : List[Any] = num_labels lowercase : int = num_choices lowercase : str = scope lowercase : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase : Optional[Any] = text_seq_length lowercase : Optional[int] = (image_size // patch_size) ** 2 + 1 lowercase : int = self.text_seq_length + self.image_seq_length def __lowerCamelCase ( self ): lowercase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowercase : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : List[str] = bbox[i, j, 3] lowercase : str = bbox[i, j, 1] lowercase : List[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Optional[Any] = bbox[i, j, 2] lowercase : Dict = bbox[i, j, 0] lowercase : Optional[int] = tmp_coordinate lowercase : Dict = tf.constant(lowerCAmelCase_ ) lowercase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : List[str] = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase : Optional[int] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase : Any = None lowercase : Dict = None if self.use_labels: lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : int = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = TFLayoutLMvaModel(config=lowerCAmelCase_ ) # text + image lowercase : Tuple = model(lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) lowercase : Tuple = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , training=lowerCAmelCase_ , ) lowercase : str = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase : Any = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase : List[str] = model({'''pixel_values''': pixel_values} , training=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = self.num_labels lowercase : str = TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase_ ) lowercase : List[str] = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = self.num_labels lowercase : Dict = TFLayoutLMvaForTokenClassification(config=lowerCAmelCase_ ) lowercase : int = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = 2 lowercase : int = TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase_ ) lowercase : Any = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Dict = config_and_inputs lowercase : Optional[int] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): A : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) A : Optional[int] = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) A : Tuple = False A : Any = False A : int = False def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return True def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): lowercase : List[str] = copy.deepcopy(lowerCAmelCase_ ) if model_class in get_values(lowerCAmelCase_ ): lowercase : Tuple = { k: tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCAmelCase_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase_ ): lowercase : Any = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): lowercase : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowercase : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): lowercase : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): lowercase : Any = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __lowerCamelCase ( self ): lowercase : Optional[int] = TFLayoutLMvaModelTester(self ) lowercase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : str = model_class(lowerCAmelCase_ ) if getattr(lowerCAmelCase_ , '''hf_compute_loss''' , lowerCAmelCase_ ): # The number of elements in the loss should be the same as the number of elements in the label lowercase : Tuple = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) lowercase : Optional[int] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase_ )[0] ] lowercase : Optional[int] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowercase : List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) lowercase : str = prepared_for_class.pop('''input_ids''' ) lowercase : Any = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowercase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) lowercase : Optional[Any] = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: lowercase : int = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowercase : str = -100 lowercase : List[Any] = tf.convert_to_tensor(lowerCAmelCase_ ) lowercase : str = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowercase : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) lowercase : Optional[int] = model(lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowercase : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) # Get keys that were added with the _prepare_for_class function lowercase : List[str] = prepared_for_class.keys() - inputs_dict.keys() lowercase : Any = inspect.signature(model.call ).parameters lowercase : Optional[Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowercase : List[Any] = {0: '''input_ids'''} for label_key in label_keys: lowercase : Union[str, Any] = signature_names.index(lowerCAmelCase_ ) lowercase : Dict = label_key lowercase : str = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowercase : Dict = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowercase : int = prepared_for_class[value] lowercase : str = tuple(lowerCAmelCase_ ) # Send to model lowercase : Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __lowerCamelCase ( self ): ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( self ): ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase : List[Any] = type self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( self ): ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( self ): ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( self ): ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __lowerCamelCase ( self ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFLayoutLMvaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowercase ( ) ->Optional[int]: """simple docstring""" lowercase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): lowercase : Optional[Any] = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) lowercase : List[str] = self.default_image_processor lowercase : Union[str, Any] = prepare_img() lowercase : Tuple = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' ).pixel_values lowercase : Any = tf.constant([[1, 2]] ) lowercase : Dict = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowercase : List[Any] = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits lowercase : Dict = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ ) lowercase : Optional[int] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) )
319
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def snake_case_ (UpperCamelCase : SplitDict ): '''simple docstring''' _a = split_dict._to_yaml_list() assert len(UpperCamelCase ) == len(UpperCamelCase ) _a = SplitDict._from_yaml_list(UpperCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _a = None # the split name of split_dict takes over the name of the split info object _a = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase ), SplitInfo(dataset_name='''my_dataset''' )] ) def snake_case_ (UpperCamelCase : List[str] ): '''simple docstring''' _a = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
22
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if height >= 1: move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) move_disk(lowercase_ , lowercase_ ) move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): print('moving disk from' , lowercase_ , 'to' , lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = int(input('Height of hanoi: ' ).strip() ) move_tower(lowercase_ , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = model.config _a = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _a = MBartConfig( is_decoder=UpperCamelCase , is_encoder_decoder=UpperCamelCase , add_cross_attention=UpperCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase , add_final_layer_norm=UpperCamelCase , ) return encoder_config, decoder_config def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' if "encoder.model" in name: _a = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _a = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _a = '''encoder.''' + name if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _a = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _a = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _a = '''encoder.layernorm.bias''' return name def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(UpperCamelCase ) if "qkv" in key: _a = key.split('''.''' ) _a = int(key_split[3] ) _a = int(key_split[5] ) _a = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _a = val return orig_state_dict def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Tuple=None , UpperCamelCase : List[str]=False ): '''simple docstring''' _a = DonutModel.from_pretrained(UpperCamelCase ).eval() # load HuggingFace model _a , _a = get_configs(UpperCamelCase ) _a = DonutSwinModel(UpperCamelCase ) _a = MBartForCausalLM(UpperCamelCase ) _a = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() _a = original_model.state_dict() _a = convert_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) # verify results on scanned document _a = load_dataset('''hf-internal-testing/example-documents''' ) _a = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _a = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase , from_slow=UpperCamelCase ) _a = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _a = DonutProcessor(UpperCamelCase , UpperCamelCase ) _a = processor(UpperCamelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _a = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _a = '''When is the coffee break?''' _a = task_prompt.replace('''{user_input}''' , UpperCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _a = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _a = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _a = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _a = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _a = '''hello world''' else: raise ValueError('''Model name not supported''' ) _a = original_model.decoder.tokenizer(UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors='''pt''' )[ '''input_ids''' ] _a = original_model.encoder.model.patch_embed(UpperCamelCase ) _a , _a = model.encoder.embeddings(UpperCamelCase ) assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) # verify encoder hidden states _a = original_model.encoder(UpperCamelCase ) _a = model.encoder(UpperCamelCase ).last_hidden_state assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-2 ) # verify decoder hidden states _a = original_model(UpperCamelCase , UpperCamelCase , UpperCamelCase ).logits _a = model(UpperCamelCase , decoder_input_ids=UpperCamelCase ).logits assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": _snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _snake_case : Union[str, Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
22
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> Tuple: __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a = test_metrics @require_cpu def UpperCamelCase__ ( self ) -> Tuple: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase__ ( self ) -> str: debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase__ ( self ) -> Dict: self.test_metrics.main() @require_multi_gpu def UpperCamelCase__ ( self ) -> int: print(f"Found {torch.cuda.device_count()} devices." ) __a = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
539
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase (datasets.BeamBasedBuilder ): """simple docstring""" def A_ ( self : Dict ) -> int: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ), supervised_keys=__A, ) def A_ ( self : Optional[int], _UpperCAmelCase : Any, _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"examples": get_test_dummy_examples()} )] def A_ ( self : List[str], _UpperCAmelCase : str, _UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) class lowerCamelCase (datasets.BeamBasedBuilder ): """simple docstring""" def A_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ), supervised_keys=__A, ) def A_ ( self : int, _UpperCAmelCase : str, _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"examples": get_test_nested_examples()} ) ] def A_ ( self : Optional[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : int ) -> Tuple: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) def _a ( ) -> Optional[Any]: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def _a ( ) -> Optional[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCamelCase (__lowerCamelCase ): """simple docstring""" @require_beam def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__ : Optional[Any] = DummyBeamDataset(cache_dir=__A, beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A, builder.name, "default", "0.0.0", F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features, datasets.Features({"content": datasets.Value("string" )} ) ) SCREAMING_SNAKE_CASE__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows, __A ) self.assertEqual(dset["train"].info.splits["train"].num_examples, __A ) self.assertDictEqual(dset["train"][0], get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1], get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A, builder.name, "default", "0.0.0", "dataset_info.json" ) ) ) del dset @require_beam def A_ ( self : Tuple ) -> Dict: """simple docstring""" import apache_beam as beam SCREAMING_SNAKE_CASE__ : str = beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE__ : str = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__ : Any = DummyBeamDataset(cache_dir=__A, beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: SCREAMING_SNAKE_CASE__ : Tuple = partial(__A, num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __A, builder.name, "default", "0.0.0", F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( __A, builder.name, "default", "0.0.0", F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features, datasets.Features({"content": datasets.Value("string" )} ) ) SCREAMING_SNAKE_CASE__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows, __A ) self.assertEqual(dset["train"].info.splits["train"].num_examples, __A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ), sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(__A, builder.name, "default", "0.0.0", "dataset_info.json" ) ) ) del dset @require_beam def A_ ( self : List[str] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__ : Tuple = DummyBeamDataset(cache_dir=__A ) self.assertRaises(datasets.builder.MissingBeamOptions, builder.download_and_prepare ) @require_beam def A_ ( self : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__ : Optional[int] = NestedBeamDataset(cache_dir=__A, beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A, builder.name, "default", "0.0.0", F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features, datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) SCREAMING_SNAKE_CASE__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows, __A ) self.assertEqual(dset["train"].info.splits["train"].num_examples, __A ) self.assertDictEqual(dset["train"][0], get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1], get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A, builder.name, "default", "0.0.0", "dataset_info.json" ) ) ) del dset
718
from __future__ import annotations from collections.abc import Sequence from typing import Literal def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> str | Literal[False]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if lista[i] != lista[i]: count += 1 SCREAMING_SNAKE_CASE__ : Any = "_" if count > 1: return False else: return "".join(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : list[str] ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] while True: SCREAMING_SNAKE_CASE__ : Optional[Any] = ["$"] * len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : str = compare_string(binary[i] , binary[j] ) if k is False: SCREAMING_SNAKE_CASE__ : int = "*" SCREAMING_SNAKE_CASE__ : Union[str, Any] = "*" temp.append("X" ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return pi SCREAMING_SNAKE_CASE__ : List[str] = list(set(SCREAMING_SNAKE_CASE__ ) ) def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Sequence[float] ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for minterm in minterms: SCREAMING_SNAKE_CASE__ : Optional[int] = "" for _ in range(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Any = str(minterm % 2 ) + string minterm //= 2 temp.append(SCREAMING_SNAKE_CASE__ ) return temp def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _a ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : list[str] ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(len(chart[0] ) ): SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = -1 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if chart[j][i] == 1: count += 1 SCREAMING_SNAKE_CASE__ : List[Any] = j if count == 1: SCREAMING_SNAKE_CASE__ : List[str] = 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 temp.append(prime_implicants[i] ) while True: SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = -1 SCREAMING_SNAKE_CASE__ : List[str] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : int = chart[i].count(1 ) if count_n > max_n: SCREAMING_SNAKE_CASE__ : Tuple = count_n SCREAMING_SNAKE_CASE__ : str = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 def _a ( SCREAMING_SNAKE_CASE__ : list[str] , SCREAMING_SNAKE_CASE__ : list[str] ) -> list[list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [[0 for x in range(len(SCREAMING_SNAKE_CASE__ ) )] for x in range(len(SCREAMING_SNAKE_CASE__ ) )] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = prime_implicants[i].count("_" ) for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if is_for_table(prime_implicants[i] , binary[j] , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 return chart def _a ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = int(input("Enter the no. of variables\n" ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = [ float(SCREAMING_SNAKE_CASE__ ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] SCREAMING_SNAKE_CASE__ : Tuple = decimal_to_binary(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = check(SCREAMING_SNAKE_CASE__ ) print("Prime Implicants are:" ) print(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = prime_implicant_chart(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = selection(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("Essential Prime Implicants are:" ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
157
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _UpperCAmelCase = input('Enter image url: ').strip() print(f'''Downloading image from {url} ...''') _UpperCAmelCase = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image _UpperCAmelCase = soup.find('meta', {'property': 'og:image'})['content'] _UpperCAmelCase = requests.get(image_url).content _UpperCAmelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, 'wb') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
504
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } _UpperCAmelCase = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] ) -> Any: __lowerCAmelCase : List[Any] = EfficientNetConfig() __lowerCAmelCase : Tuple = CONFIG_MAP[model_name]["""hidden_dim"""] __lowerCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __lowerCAmelCase : Dict = CONFIG_MAP[model_name]["""depth_coef"""] __lowerCAmelCase : str = CONFIG_MAP[model_name]["""image_size"""] __lowerCAmelCase : Any = CONFIG_MAP[model_name]["""dropout_rate"""] __lowerCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __lowerCAmelCase : str = """huggingface/label-files""" __lowerCAmelCase : Dict = """imagenet-1k-id2label.json""" __lowerCAmelCase : str = 1_000 __lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : Optional[int] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowerCAmelCase : Dict = idalabel __lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __lowerCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]: __lowerCAmelCase : int = CONFIG_MAP[model_name]["""image_size"""] __lowerCAmelCase : int = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=SCREAMING_SNAKE_CASE , ) return preprocessor def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> Any: __lowerCAmelCase : str = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __lowerCAmelCase : int = sorted(set(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = {b: str(SCREAMING_SNAKE_CASE ) for b, i in zip(SCREAMING_SNAKE_CASE , range(SCREAMING_SNAKE_CASE ) )} __lowerCAmelCase : Union[str, Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __lowerCAmelCase : List[Any] = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __lowerCAmelCase : str = {} for item in rename_keys: if item[0] in original_param_names: __lowerCAmelCase : Tuple = """efficientnet.""" + item[1] __lowerCAmelCase : Union[str, Any] = """classifier.weight""" __lowerCAmelCase : Optional[Any] = """classifier.bias""" return key_mapping def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple ) -> List[Any]: for key, value in tf_params.items(): if "normalization" in key: continue __lowerCAmelCase : Any = key_mapping[key] if "_conv" in key and "kernel" in key: __lowerCAmelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowerCAmelCase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowerCAmelCase : Dict = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE ) ) else: __lowerCAmelCase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any ) -> List[str]: __lowerCAmelCase : List[str] = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE , weights="""imagenet""" , input_tensor=SCREAMING_SNAKE_CASE , input_shape=SCREAMING_SNAKE_CASE , pooling=SCREAMING_SNAKE_CASE , classes=1_000 , classifier_activation="""softmax""" , ) __lowerCAmelCase : int = original_model.trainable_variables __lowerCAmelCase : Tuple = original_model.non_trainable_variables __lowerCAmelCase : Optional[int] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowerCAmelCase : int = param.numpy() __lowerCAmelCase : int = list(tf_params.keys() ) # Load HuggingFace model __lowerCAmelCase : int = get_efficientnet_config(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE ).eval() __lowerCAmelCase : Union[str, Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __lowerCAmelCase : Any = rename_keys(SCREAMING_SNAKE_CASE ) replace_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image __lowerCAmelCase : Dict = convert_image_processor(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __lowerCAmelCase : Dict = hf_model(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = outputs.logits.detach().numpy() # Original model inference __lowerCAmelCase : List[str] = False __lowerCAmelCase : int = CONFIG_MAP[model_name]["""image_size"""] __lowerCAmelCase : Dict = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowerCAmelCase : Optional[int] = image.img_to_array(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = np.expand_dims(SCREAMING_SNAKE_CASE , axis=0 ) __lowerCAmelCase : Any = original_model.predict(SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE ): os.mkdir(SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) __lowerCAmelCase : Tuple = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') _UpperCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
504
1
_UpperCAmelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } _UpperCAmelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def UpperCamelCase ( lowercase_ : float , lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowercase =( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(lowerCamelCase_ )}' ) raise ValueError(lowerCamelCase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : str = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct_text_model' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=5_02_44 , snake_case_=7_68 , snake_case_=64 , snake_case_=20_48 , snake_case_=12 , snake_case_=12 , snake_case_=32 , snake_case_=1_28 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=False , snake_case_=True , **snake_case_ , ): lowercase =vocab_size lowercase =hidden_size lowercase =d_kv lowercase =d_ff lowercase =num_layers lowercase =num_heads lowercase =relative_attention_num_buckets lowercase =relative_attention_max_distance lowercase =dropout_rate lowercase =layer_norm_epsilon lowercase =initializer_factor lowercase =use_cache lowercase =eos_token_id lowercase =decoder_start_token_id # for backwards compatibility lowercase =dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def _A( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct_vision_model' def __init__( self , snake_case_=7_68 , snake_case_=7_68 , snake_case_=20_48 , snake_case_=64 , snake_case_=12 , snake_case_=12 , snake_case_="gelu_new" , snake_case_=1E-6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=1E-10 , snake_case_=1.0 , snake_case_=40_96 , snake_case_=32 , snake_case_=1_28 , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =hidden_size lowercase =patch_embed_hidden_size lowercase =d_ff lowercase =dropout_rate lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =initializer_range lowercase =initializer_factor lowercase =attention_dropout lowercase =layer_norm_eps lowercase =dense_act_fn lowercase =seq_len lowercase =relative_attention_num_buckets lowercase =relative_attention_max_distance lowercase =d_kv @classmethod def _A( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct' UpperCamelCase__ = True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=1.0 , snake_case_=0.02 , snake_case_=False , snake_case_=False , snake_case_=True , **snake_case_ , ): super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: lowercase ={} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: lowercase ={} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) lowercase =PixaStructTextConfig(**snake_case_ ) lowercase =PixaStructVisionConfig(**snake_case_ ) lowercase =self.text_config.decoder_start_token_id lowercase =self.text_config.pad_token_id lowercase =self.text_config.eos_token_id lowercase =initializer_factor lowercase =initializer_range lowercase =self.initializer_range lowercase =self.initializer_range lowercase =is_vqa @classmethod def _A( cls , snake_case_ , snake_case_ , **snake_case_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def _A( self ): lowercase =copy.deepcopy(self.__dict__ ) lowercase =self.text_config.to_dict() lowercase =self.vision_config.to_dict() lowercase =self.__class__.model_type return output
145
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
155
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : str = {'vocab_file': 'sentencepiece.model'} snake_case : List[str] = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } snake_case : List[str] = { 'google/rembert': 256, } class lowerCamelCase__( snake_case_ ): UpperCamelCase : int = VOCAB_FILES_NAMES UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ): """simple docstring""" super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor() self.sp_model.Load(__UpperCAmelCase ) @property def __magic_name__ ( self ): """simple docstring""" return len(self.sp_model ) def __magic_name__ ( self ): """simple docstring""" __lowercase = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self , __UpperCAmelCase ): """simple docstring""" __lowercase = d __lowercase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase=False ): """simple docstring""" __lowercase = self.sp_model.EncodeAsPieces(__UpperCAmelCase ) return pieces def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = self.sp_model.decode_pieces(__UpperCAmelCase ) return out_string def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(__UpperCAmelCase ) ) return __lowercase = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
566
0
"""simple docstring""" import re import subprocess import sys __SCREAMING_SNAKE_CASE : Optional[Any] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() __SCREAMING_SNAKE_CASE : List[str] = """|""".join(sys.argv[1:]) __SCREAMING_SNAKE_CASE : Optional[int] = re.compile(RF"""^({joined_dirs}).*?\.py$""") __SCREAMING_SNAKE_CASE : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
700
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __SCREAMING_SNAKE_CASE : List[str] = numpy.array([0, 0]) __SCREAMING_SNAKE_CASE : Optional[Any] = numpy.array([0.5, 0.866_0254]) __SCREAMING_SNAKE_CASE : Tuple = numpy.array([1, 0]) __SCREAMING_SNAKE_CASE : List[Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCAmelCase_( lowercase_ : list[numpy.ndarray] , lowercase_ : int ) -> list[numpy.ndarray]: _lowerCamelCase = initial_vectors for _ in range(lowercase_ ): _lowerCamelCase = iteration_step(lowercase_ ) return vectors def lowerCAmelCase_( lowercase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: _lowerCamelCase = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCamelCase = vectors[i + 1] new_vectors.append(lowercase_ ) _lowerCamelCase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCAmelCase_( lowercase_ : numpy.ndarray , lowercase_ : float ) -> numpy.ndarray: _lowerCamelCase = numpy.radians(lowercase_ ) _lowerCamelCase , _lowerCamelCase = numpy.cos(lowercase_ ), numpy.sin(lowercase_ ) _lowerCamelCase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowercase_ , lowercase_ ) def lowerCAmelCase_( lowercase_ : list[numpy.ndarray] ) -> None: _lowerCamelCase = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCamelCase , _lowerCamelCase = zip(*lowercase_ ) plt.plot(lowercase_ , lowercase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : str = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
623
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[str]=7 ,_a : Dict=True ,_a : List[Any]=True ,_a : Dict=False ,_a : Optional[int]=True ,_a : List[Any]=99 ,_a : Any=32 ,_a : Optional[int]=5 ,_a : List[Any]=4 ,_a : int=37 ,_a : List[Any]="gelu" ,_a : List[str]=0.1 ,_a : Union[str, Any]=0.1 ,_a : Any=512 ,_a : int=16 ,_a : Optional[int]=2 ,_a : Any=0.02 ,_a : Any=3 ,_a : Any=4 ,_a : List[str]=None ,): '''simple docstring''' A_ : List[str] = parent A_ : Any = batch_size A_ : Tuple = seq_length A_ : List[str] = is_training A_ : Tuple = use_input_mask A_ : Dict = use_token_type_ids A_ : List[Any] = use_labels A_ : Union[str, Any] = vocab_size A_ : Any = hidden_size A_ : str = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : str = intermediate_size A_ : Tuple = hidden_act A_ : Any = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : List[str] = max_position_embeddings A_ : int = type_vocab_size A_ : Union[str, Any] = type_sequence_label_size A_ : Any = initializer_range A_ : List[Any] = num_labels A_ : Optional[Any] = num_choices A_ : List[Any] = scope def _a ( self : Optional[int] ): '''simple docstring''' A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : int = None if self.use_input_mask: A_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Dict = None if self.use_token_type_ids: A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : str = None A_ : Any = None A_ : str = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) A_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_a ,initializer_range=self.initializer_range ,) def _a ( self : Union[str, Any] ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Any ,_a : Any ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Tuple ): '''simple docstring''' A_ : Any = LlamaModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[Any] = model(_a ,attention_mask=_a ) A_ : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Optional[int] ,_a : int ,_a : List[str] ,_a : Any ,_a : Any ,_a : Dict ,_a : List[str] ,_a : Optional[int] ,_a : Any ,_a : List[str] ,): '''simple docstring''' A_ : List[str] = True A_ : Union[str, Any] = LlamaModel(_a ) model.to(_a ) model.eval() A_ : Tuple = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,) A_ : List[Any] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,) A_ : int = model(_a ,attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Any ,_a : Any ,_a : Optional[int] ,_a : List[Any] ,_a : List[Any] ,_a : Dict ,_a : Tuple ,_a : Optional[int] ,_a : List[Any] ,_a : Union[str, Any] ,): '''simple docstring''' A_ : List[Any] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() A_ : Dict = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : str ,_a : List[Any] ,_a : Dict ,_a : str ,_a : Tuple ,_a : Tuple ,_a : Tuple ,_a : Optional[Any] ,_a : Dict ,_a : Union[str, Any] ,): '''simple docstring''' A_ : Optional[Any] = True A_ : Any = True A_ : Tuple = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass A_ : Optional[int] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,use_cache=_a ,) A_ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) A_ : List[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and A_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) A_ : int = torch.cat([input_mask, next_mask] ,dim=-1 ) A_ : List[str] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,output_hidden_states=_a ,)["""hidden_states"""][0] A_ : Any = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,past_key_values=_a ,output_hidden_states=_a ,)["""hidden_states"""][0] # select random slice A_ : List[str] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() A_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a ,_a ,atol=1e-3 ) ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Any = config_and_inputs A_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () a_ = (LlamaForCausalLM,) if is_torch_available() else () a_ = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = False def _a ( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = LlamaModelTester(self ) A_ : List[str] = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def _a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Dict = type self.model_tester.create_and_check_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = 3 A_ : Any = input_dict["""input_ids"""] A_ : Union[str, Any] = input_ids.ne(1 ).to(_a ) A_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) A_ : List[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : int = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Dict ): '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = 3 A_ : Union[str, Any] = """single_label_classification""" A_ : Union[str, Any] = input_dict["""input_ids"""] A_ : List[Any] = input_ids.ne(1 ).to(_a ) A_ : Dict = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) A_ : List[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : List[str] = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = 3 A_ : Dict = """multi_label_classification""" A_ : Any = input_dict["""input_ids"""] A_ : Optional[Any] = input_ids.ne(1 ).to(_a ) A_ : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : Optional[int] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def _a ( self : Any ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _a ( self : Optional[Any] ,_a : List[Any] ): '''simple docstring''' A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ids_tensor([1, 10] ,config.vocab_size ) A_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : int = LlamaModel(_a ) original_model.to(_a ) original_model.eval() A_ : Tuple = original_model(_a ).last_hidden_state A_ : Union[str, Any] = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : Tuple = {"""type""": scaling_type, """factor""": 10.0} A_ : int = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() A_ : List[Any] = scaled_model(_a ).last_hidden_state A_ : Any = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a ,_a ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a ,_a ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a ,_a ,atol=1e-5 ) ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : Tuple ): '''simple docstring''' A_ : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" ,device_map="""auto""" ) A_ : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 A_ : Union[str, Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : str = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : str ): '''simple docstring''' A_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" ,device_map="""auto""" ) A_ : Tuple = model(torch.tensor(_a ) ) # Expected mean on dim = -1 A_ : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ,device_map="""auto""" ) A_ : int = model(torch.tensor(_a ) ) # Expected mean on dim = -1 A_ : Union[str, Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : Optional[int] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" ,device_map="""auto""" ) A_ : Tuple = model(torch.tensor(_a ) ) A_ : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # fmt: off A_ : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" A_ : List[str] = """Simply put, the theory of relativity states that """ A_ : Any = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) A_ : Union[str, Any] = tokenizer.encode(_a ,return_tensors="""pt""" ) A_ : List[str] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" ,device_map="""sequential""" ,use_safetensors=_a ) # greedy generation outputs A_ : str = model.generate(_a ,max_new_tokens=64 ,top_p=_a ,temperature=1 ,do_sample=_a ) A_ : Optional[Any] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=_a ) self.assertEqual(_a ,_a )
665
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __magic_name__ = 16 __magic_name__ = 32 def lowerCamelCase ( lowerCamelCase : Accelerator , lowerCamelCase : int = 16): A_ : Any = AutoTokenizer.from_pretrained("""bert-base-cased""") A_ : str = load_dataset("""glue""" , """mrpc""") def tokenize_function(lowerCamelCase : Dict): # max_length=None => use the model max length (it's actually the default) A_ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ : Tuple = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : List[str] = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(lowerCamelCase : Tuple): # On TPU it's best to pad everything to the same length or training will be very slow. A_ : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ : List[Any] = 16 elif accelerator.mixed_precision != "no": A_ : Any = 8 else: A_ : Tuple = None return tokenizer.pad( lowerCamelCase , padding="""longest""" , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. A_ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase , drop_last=lowerCamelCase) A_ : str = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Dict): # Initialize accelerator A_ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : List[Any] = config["""lr"""] A_ : List[Any] = int(config["""num_epochs"""]) A_ : int = int(config["""seed"""]) A_ : Dict = int(config["""batch_size"""]) A_ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""") # If the batch size is too big we use gradient accumulation A_ : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A_ : Any = batch_size // MAX_GPU_BATCH_SIZE A_ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase) A_ , A_ : List[str] = get_dataloaders(lowerCamelCase , lowerCamelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ : str = model.to(accelerator.device) # Instantiate optimizer A_ : str = AdamW(params=model.parameters() , lr=lowerCamelCase) # Instantiate scheduler A_ : Tuple = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ , A_ , A_ , A_ , A_ : Union[str, Any] = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) # Now we train the model for epoch in range(lowerCamelCase): model.train() for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) A_ : Optional[int] = model(**lowerCamelCase) A_ : List[Any] = outputs.loss A_ : Tuple = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): A_ : Union[str, Any] = model(**lowerCamelCase) A_ : Any = outputs.logits.argmax(dim=-1) A_ , A_ : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""])) metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) A_ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase) def lowerCamelCase ( ): A_ : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""") parser.add_argument( """--mixed_precision""" , type=lowerCamelCase , default=lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""") A_ : Dict = parser.parse_args() A_ : Dict = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase) if __name__ == "__main__": main()
665
1
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = fname.split(os.path.sep )[-1] return re.search(r"""^(.*)_\d+\.jpg$""" , __UpperCamelCase ).groups()[0] class __lowercase ( __lowerCamelCase ): def __init__( self : List[Any] ,A : List[Any] ,A : Dict=None ,A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = file_names UpperCAmelCase__ : Optional[Any] = image_transform UpperCAmelCase__ : str = label_to_id def __len__( self : List[str] ): '''simple docstring''' return len(self.file_names ) def __getitem__( self : List[str] ,A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.file_names[idx] UpperCAmelCase__ : str = PIL.Image.open(A ) UpperCAmelCase__ : Any = raw_image.convert("""RGB""" ) if self.image_transform is not None: UpperCAmelCase__ : Tuple = self.image_transform(A ) UpperCAmelCase__ : Union[str, Any] = extract_label(A ) if self.label_to_id is not None: UpperCAmelCase__ : Dict = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if args.with_tracking: UpperCAmelCase__ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: UpperCAmelCase__ : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : List[str] = config["""lr"""] UpperCAmelCase__ : Optional[int] = int(config["""num_epochs"""] ) UpperCAmelCase__ : str = int(config["""seed"""] ) UpperCAmelCase__ : Tuple = int(config["""batch_size"""] ) UpperCAmelCase__ : int = config["""image_size"""] if not isinstance(__UpperCamelCase , (list, tuple) ): UpperCAmelCase__ : Any = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": UpperCAmelCase__ : Any = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase__ : Any = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: UpperCAmelCase__ : Any = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase__ : int = os.path.split(__UpperCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(__UpperCamelCase , __UpperCamelCase ) # Grab all the image filenames UpperCAmelCase__ : str = [os.path.join(args.data_dir , __UpperCamelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences UpperCAmelCase__ : Any = [extract_label(__UpperCamelCase ) for fname in file_names] UpperCAmelCase__ : Any = list(set(__UpperCamelCase ) ) id_to_label.sort() UpperCAmelCase__ : Tuple = {lbl: i for i, lbl in enumerate(__UpperCamelCase )} # Set the seed before splitting the data. np.random.seed(__UpperCamelCase ) torch.manual_seed(__UpperCamelCase ) torch.cuda.manual_seed_all(__UpperCamelCase ) # Split our filenames between train and validation UpperCAmelCase__ : Optional[int] = np.random.permutation(len(__UpperCamelCase ) ) UpperCAmelCase__ : Dict = int(0.8 * len(__UpperCamelCase ) ) UpperCAmelCase__ : List[str] = random_perm[:cut] UpperCAmelCase__ : int = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase__ : int = Compose([RandomResizedCrop(__UpperCamelCase , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase__ : Union[str, Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=__UpperCamelCase , label_to_id=__UpperCamelCase ) # For evaluation, we use a deterministic Resize UpperCAmelCase__ : List[Any] = Compose([Resize(__UpperCamelCase ), ToTensor()] ) UpperCAmelCase__ : Dict = PetsDataset([file_names[i] for i in eval_split] , image_transform=__UpperCamelCase , label_to_id=__UpperCamelCase ) # Instantiate dataloaders. UpperCAmelCase__ : Union[str, Any] = DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 ) UpperCAmelCase__ : Optional[int] = DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : Dict = create_model("""resnet50d""" , pretrained=__UpperCamelCase , num_classes=len(__UpperCamelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[int] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase__ : List[str] = False for param in model.get_classifier().parameters(): UpperCAmelCase__ : Tuple = True # We normalize the batches of images to be a bit faster. UpperCAmelCase__ : Union[str, Any] = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase__ : Optional[int] = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Any = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase__ : Optional[Any] = OneCycleLR(optimizer=__UpperCamelCase , max_lr=__UpperCamelCase , epochs=__UpperCamelCase , steps_per_epoch=len(__UpperCamelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase__ : Optional[Any] = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase__ : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase__ : Dict = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase__ : Union[str, Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase__ : Optional[int] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase__ : Dict = os.path.splitext(__UpperCamelCase )[0] if "epoch" in training_difference: UpperCAmelCase__ : Any = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 UpperCAmelCase__ : Union[str, Any] = None else: UpperCAmelCase__ : Tuple = int(training_difference.replace("""step_""" , """""" ) ) UpperCAmelCase__ : List[str] = resume_step // len(__UpperCamelCase ) resume_step -= starting_epoch * len(__UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() if args.with_tracking: UpperCAmelCase__ : Optional[Any] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase__ : Dict = accelerator.skip_first_batches(__UpperCamelCase , __UpperCamelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase__ : List[Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase__ : Dict = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase__ : Union[str, Any] = (batch["""image"""] - mean) / std UpperCAmelCase__ : Tuple = model(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = torch.nn.functional.cross_entropy(__UpperCamelCase , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Tuple = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase__ : Dict = os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : List[Any] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase__ : Tuple = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase__ : Tuple = (batch["""image"""] - mean) / std with torch.no_grad(): UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = outputs.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) UpperCAmelCase__ : List[str] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase__ : str = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(__UpperCamelCase ), """epoch""": epoch, } , step=__UpperCamelCase , ) if checkpointing_steps == "epoch": UpperCAmelCase__ : Optional[int] = F"epoch_{epoch}" if args.output_dir is not None: UpperCAmelCase__ : Union[str, Any] = os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=__UpperCamelCase , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=__UpperCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) UpperCAmelCase__ : Any = parser.parse_args() UpperCAmelCase__ : Optional[Any] = {"""lr""": 3e-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
194
"""simple docstring""" import argparse import os import re import packaging.version __UpperCAmelCase = 'examples/' __UpperCAmelCase = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } __UpperCAmelCase = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } __UpperCAmelCase = 'README.md' def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ : Dict = f.read() UpperCAmelCase__ , UpperCAmelCase__ : Any = REPLACE_PATTERNS[pattern] UpperCAmelCase__ : List[str] = replace.replace("""VERSION""" , __UpperCamelCase ) UpperCAmelCase__ : Tuple = re_pattern.sub(__UpperCamelCase , __UpperCamelCase ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , pattern="""examples""" ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Dict = """🤗 Transformers currently provides the following architectures""" UpperCAmelCase__ : Union[str, Any] = """1. Want to contribute a new model?""" with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ : str = f.readlines() # Find the start of the list. UpperCAmelCase__ : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase__ : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCAmelCase__ : List[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCamelCase ) def lowerCAmelCase ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCAmelCase__ : Optional[Any] = f.read() UpperCAmelCase__ : int = REPLACE_PATTERNS["""init"""][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCAmelCase__ : List[str] = default_version.base_version elif patch: UpperCAmelCase__ : Any = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCAmelCase__ : Optional[Any] = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCAmelCase__ : Optional[int] = input(F"Which version are you releasing? [{default_version}]" ) if len(__UpperCamelCase ) == 0: UpperCAmelCase__ : Union[str, Any] = default_version print(F"Updating version to {version}." ) global_version_update(__UpperCamelCase , patch=__UpperCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = get_version() UpperCAmelCase__ : Any = F"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCAmelCase__ : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase__ : Dict = input(F"Which version are we developing now? [{dev_version}]" ) if len(__UpperCamelCase ) == 0: UpperCAmelCase__ : List[Any] = dev_version print(F"Updating version to {version}." ) global_version_update(__UpperCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') __UpperCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
194
1
from heapq import heappop, heappush import numpy as np def a ( A__ , A__ , A__ , A__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = grid.shape SCREAMING_SNAKE_CASE__ : Union[str, Any] = [-1, 1, 0, 0] SCREAMING_SNAKE_CASE__ : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = [(0, source)], set() SCREAMING_SNAKE_CASE__ : Optional[int] = np.full((rows, cols) , np.inf ) SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : Any = np.empty((rows, cols) , dtype=A__ ) SCREAMING_SNAKE_CASE__ : List[str] = None while queue: ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Any = heappop(A__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: SCREAMING_SNAKE_CASE__ : Any = [] while (x, y) != source: path.append((x, y) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = predecessors[x, y] path.append(A__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(A__ ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: SCREAMING_SNAKE_CASE__ : Union[str, Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(A__ , (dist + 1, (nx, ny)) ) SCREAMING_SNAKE_CASE__ : List[Any] = dist + 1 SCREAMING_SNAKE_CASE__ : List[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
35
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _lowerCAmelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A=None ,_A=1 ): '''simple docstring''' _lowerCAmelCase : Any = tokenizer _lowerCAmelCase : str = dataset _lowerCAmelCase : List[Any] = len(_A ) if n_tasks is None else n_tasks _lowerCAmelCase : Union[str, Any] = n_copies def __iter__( self ): '''simple docstring''' _lowerCAmelCase : Tuple = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) _lowerCAmelCase : List[Any] = self.tokenizer(_A ,padding=_A ,return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = start_length _lowerCAmelCase : str = eof_strings _lowerCAmelCase : int = tokenizer def __call__( self ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowerCAmelCase : str = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_A ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): _lowerCAmelCase : Any = batch['ids'].shape[-1] _lowerCAmelCase : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times _lowerCAmelCase : List[Any] = batch['task_id'].repeat(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) _lowerCAmelCase : Union[str, Any] = generated_tokens.cpu().numpy() _lowerCAmelCase : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowerCAmelCase : Union[str, Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowerCAmelCase : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowerCAmelCase : Optional[int] = 'false' if args.num_workers is None: _lowerCAmelCase : str = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowerCAmelCase : List[str] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) _lowerCAmelCase : List[str] = tokenizer.eos_token _lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowerCAmelCase : int = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric _lowerCAmelCase : List[Any] = load_dataset('openai_humaneval' ) _lowerCAmelCase : int = load_metric('code_eval' ) _lowerCAmelCase : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) _lowerCAmelCase : int = args.n_samples // args.batch_size _lowerCAmelCase : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowerCAmelCase : Any = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowerCAmelCase : Dict = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception _lowerCAmelCase, _lowerCAmelCase : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: _lowerCAmelCase : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): _lowerCAmelCase : Any = human_eval['test'][task]['test'] _lowerCAmelCase : Union[str, Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric _lowerCAmelCase, _lowerCAmelCase : List[str] = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
259
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class a ( __UpperCAmelCase ): def __init__( self : List[Any] , *snake_case__ : Dict , **snake_case__ : Optional[Any] ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , "vision" ) self.check_model_type(snake_case__ ) def __call__( self : int , snake_case__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case__ : int ): """simple docstring""" return super().__call__(snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : Dict , **snake_case__ : Optional[int] ): """simple docstring""" return {}, {}, {} def UpperCAmelCase__ ( self : List[str] , snake_case__ : List[Any] ): """simple docstring""" __lowerCAmelCase = load_image(snake_case__ ) __lowerCAmelCase = image.size __lowerCAmelCase = self.image_processor(images=snake_case__ , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : int ): """simple docstring""" __lowerCAmelCase = self.model(**snake_case__ ) return model_outputs def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase = model_outputs.predicted_depth __lowerCAmelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=snake_case__ ) __lowerCAmelCase = prediction.squeeze().cpu().numpy() __lowerCAmelCase = (output * 255 / np.max(snake_case__ )).astype("uint8" ) __lowerCAmelCase = Image.fromarray(snake_case__ ) __lowerCAmelCase = {} __lowerCAmelCase = predicted_depth __lowerCAmelCase = depth return output_dict
702
import fire from utils import calculate_rouge, save_json def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any]=None , **UpperCamelCase: Optional[int] ): """simple docstring""" __lowerCAmelCase = [x.strip() for x in open(UpperCamelCase ).readlines()] __lowerCAmelCase = [x.strip() for x in open(UpperCamelCase ).readlines()][: len(UpperCamelCase )] __lowerCAmelCase = calculate_rouge(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) if save_path is not None: save_json(UpperCamelCase , UpperCamelCase , indent=UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
376
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : Any = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''align_text_model''' def __init__( self : int , __a : Optional[int]=30522 , __a : int=768 , __a : Optional[Any]=12 , __a : Any=12 , __a : Tuple=3072 , __a : Tuple="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Dict=512 , __a : List[Any]=2 , __a : Dict=0.02 , __a : Optional[int]=1E-12 , __a : int=0 , __a : Optional[int]="absolute" , __a : Tuple=True , **__a : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = vocab_size __lowercase : Dict = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Optional[Any] = hidden_act __lowercase : Tuple = intermediate_size __lowercase : List[str] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Any = max_position_embeddings __lowercase : str = type_vocab_size __lowercase : List[str] = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Optional[int] = position_embedding_type __lowercase : Union[str, Any] = use_cache __lowercase : int = pad_token_id @classmethod def lowerCAmelCase ( cls : Tuple , __a : Union[str, os.PathLike] , **__a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : List[Any] = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __lowercase : Tuple = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''align_vision_model''' def __init__( self : List[str] , __a : int = 3 , __a : int = 600 , __a : float = 2.0 , __a : float = 3.1 , __a : int = 8 , __a : List[int] = [3, 3, 5, 3, 5, 5, 3] , __a : List[int] = [32, 16, 24, 40, 80, 112, 192] , __a : List[int] = [16, 24, 40, 80, 112, 192, 320] , __a : List[int] = [] , __a : List[int] = [1, 2, 2, 2, 1, 2, 1] , __a : List[int] = [1, 2, 2, 3, 3, 4, 1] , __a : List[int] = [1, 6, 6, 6, 6, 6, 6] , __a : float = 0.25 , __a : str = "swish" , __a : int = 2560 , __a : str = "mean" , __a : float = 0.02 , __a : float = 0.001 , __a : float = 0.99 , __a : float = 0.2 , **__a : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(**__a ) __lowercase : Any = num_channels __lowercase : Tuple = image_size __lowercase : Tuple = width_coefficient __lowercase : Any = depth_coefficient __lowercase : str = depth_divisor __lowercase : Union[str, Any] = kernel_sizes __lowercase : int = in_channels __lowercase : List[Any] = out_channels __lowercase : int = depthwise_padding __lowercase : Union[str, Any] = strides __lowercase : Optional[int] = num_block_repeats __lowercase : List[str] = expand_ratios __lowercase : int = squeeze_expansion_ratio __lowercase : str = hidden_act __lowercase : List[str] = hidden_dim __lowercase : Dict = pooling_type __lowercase : Any = initializer_range __lowercase : Tuple = batch_norm_eps __lowercase : int = batch_norm_momentum __lowercase : Tuple = drop_connect_rate __lowercase : Tuple = sum(__a ) * 4 @classmethod def lowerCAmelCase ( cls : str , __a : Union[str, os.PathLike] , **__a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : Optional[int] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __lowercase : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''align''' _A : Optional[int] = True def __init__( self : Optional[Any] , __a : Optional[int]=None , __a : str=None , __a : int=640 , __a : List[Any]=1.0 , __a : Optional[int]=0.02 , **__a : List[Any] , ) -> Any: """simple docstring""" super().__init__(**__a ) if text_config is None: __lowercase : Optional[Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: __lowercase : Dict = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) __lowercase : str = AlignTextConfig(**__a ) __lowercase : int = AlignVisionConfig(**__a ) __lowercase : str = projection_dim __lowercase : Optional[int] = temperature_init_value __lowercase : Dict = initializer_range @classmethod def lowerCAmelCase ( cls : List[Any] , __a : AlignTextConfig , __a : AlignVisionConfig , **__a : Any ) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = copy.deepcopy(self.__dict__ ) __lowercase : Tuple = self.text_config.to_dict() __lowercase : List[Any] = self.vision_config.to_dict() __lowercase : List[str] = self.__class__.model_type return output
149
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __snake_case ( UpperCamelCase__ ) -> Any: """simple docstring""" if not is_accelerate_available(): return method A = version.parse(accelerate.__version__ ).base_version if version.parse(snake_case_ ) < version.parse('0.17.0' ): return method def wrapper(self , *UpperCamelCase__ , **UpperCamelCase__ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *snake_case_ , **snake_case_ ) return wrapper
718
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = TransfoXLTokenizer lowerCAmelCase = False lowerCAmelCase = False def __a ( self : Union[str, Any] ): super().setUp() A = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __a ( self : int , **_lowercase : List[str] ): A = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def __a ( self : int , _lowercase : List[Any] ): A = '<unk> UNwanted , running' A = '<unk> unwanted, running' return input_text, output_text def __a ( self : List[str] ): A = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_lowercase ) A = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(_lowercase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [0, 4, 8, 7] ) def __a ( self : int ): A = TransfoXLTokenizer(lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def __a ( self : Optional[Any] ): A = TransfoXLTokenizer(lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self : str ): A = TransfoXLTokenizer(lower_case=_lowercase ) A = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' A = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(_lowercase ) , _lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(_lowercase ) , _lowercase ) def __a ( self : Dict ): A = self.get_tokenizer() A = len(_lowercase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_lowercase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
91
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets _UpperCAmelCase : Dict = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' _UpperCAmelCase : str = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' _UpperCAmelCase : str = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ), reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'], ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : int, UpperCamelCase__ : List[Any], UpperCamelCase__ : Dict=None, UpperCamelCase__ : Dict=1, UpperCamelCase__ : List[Any]="binary", UpperCamelCase__ : str=None ) -> Optional[int]: _A = fa_score( UpperCamelCase__, UpperCamelCase__, labels=UpperCamelCase__, pos_label=UpperCamelCase__, average=UpperCamelCase__, sample_weight=UpperCamelCase__ ) return {"f1": float(UpperCamelCase__ ) if score.size == 1 else score}
107
"""simple docstring""" def lowercase__(A ) ->bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
218
0
import doctest from collections import deque import numpy as np class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ) -> None: SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def lowercase_ ( self : List[str] ) -> list[float]: SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , __lowerCamelCase ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(__lowerCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(__lowerCamelCase ) for j, item in enumerate(__lowerCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(__lowerCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
472
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) a = Features({"question": Value("string" ), "context": Value("string" )} ) a = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) a = "question" a = "context" a = "answers" @property def lowercase_ ( self : Dict ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
472
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase_ = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
'''simple docstring''' # Function to print upper half of diamond (pyramid) def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' for i in range(0 , SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' for i in range(SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") _UpperCamelCase = 1 while K: _UpperCamelCase = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) _UpperCamelCase = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
111
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = k_size // 2 __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __SCREAMING_SNAKE_CASE : Dict = 1 / (2 * pi * sigma) * exp(-(square(snake_case ) + square(snake_case )) / (2 * square(snake_case )) ) return g def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = image.shape[0], image.shape[1] # dst image height and width __SCREAMING_SNAKE_CASE : str = height - k_size + 1 __SCREAMING_SNAKE_CASE : int = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __SCREAMING_SNAKE_CASE : Any = zeros((dst_height * dst_width, k_size * k_size) ) __SCREAMING_SNAKE_CASE : List[str] = 0 for i, j in product(range(snake_case ) , range(snake_case ) ): __SCREAMING_SNAKE_CASE : int = ravel(image[i : i + k_size, j : j + k_size] ) __SCREAMING_SNAKE_CASE : Tuple = window row += 1 # turn the kernel into shape(k*k, 1) __SCREAMING_SNAKE_CASE : int = gen_gaussian_kernel(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Dict = ravel(snake_case ) # reshape and get the dst image __SCREAMING_SNAKE_CASE : str = dot(snake_case , snake_case ).reshape(snake_case , snake_case ).astype(snake_case ) return dst if __name__ == "__main__": # read original image lowercase_ = imread(R"""../image_data/lena.jpg""") # turn image in gray scale value lowercase_ = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowercase_ = gaussian_filter(gray, 3, sigma=1) lowercase_ = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
131
import math import random def a__ ( snake_case , snake_case = False ): """simple docstring""" if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowercase_ = 0.02 def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case ): # Forward propagation __SCREAMING_SNAKE_CASE : Union[str, Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE : Union[str, Any] = (expected / 100) - layer_a # Error delta __SCREAMING_SNAKE_CASE : Optional[int] = layer_1_error * sigmoid_function(snake_case , snake_case ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input("""Expected value: """)) lowercase_ = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
131
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _A : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _A : List[Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=8 ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase__ : str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Any , A : UNetaDConditionModel , A : DDPMScheduler , A : VQModel , ) ->List[str]: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) lowerCamelCase__ : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self : List[Any] , A : List[str] , A : Union[str, Any] , A : Any , A : Optional[Any] , A : List[str] , A : Optional[int] ) ->Union[str, Any]: if latents is None: lowerCamelCase__ : List[Any] = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowerCamelCase__ : Optional[int] = latents.to(A ) lowerCamelCase__ : Optional[Any] = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self : Optional[Any] , A : Tuple=0 ) ->List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase__ : Optional[Any] = torch.device(F"cuda:{gpu_id}" ) lowerCamelCase__ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def __lowerCamelCase ( self : int , A : Tuple=0 ) ->Optional[Any]: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) lowerCamelCase__ : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. lowerCamelCase__ : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self : List[Any] ) ->Dict: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self : int , A : Union[torch.FloatTensor, List[torch.FloatTensor]] , A : Union[torch.FloatTensor, List[torch.FloatTensor]] , A : int = 5_1_2 , A : int = 5_1_2 , A : int = 1_0_0 , A : float = 4.0 , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : Optional[torch.FloatTensor] = None , A : Optional[str] = "pil" , A : bool = True , ) ->Dict: lowerCamelCase__ : int = self._execution_device lowerCamelCase__ : Union[str, Any] = guidance_scale > 1.0 if isinstance(A , A ): lowerCamelCase__ : Dict = torch.cat(A , dim=0 ) lowerCamelCase__ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(A , A ): lowerCamelCase__ : Dict = torch.cat(A , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ : Optional[int] = image_embeds.repeat_interleave(A , dim=0 ) lowerCamelCase__ : List[str] = negative_image_embeds.repeat_interleave(A , dim=0 ) lowerCamelCase__ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) lowerCamelCase__ : Optional[Any] = self.scheduler.timesteps lowerCamelCase__ : str = self.unet.config.in_channels lowerCamelCase__ , lowerCamelCase__ : int = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent lowerCamelCase__ : List[str] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ : Dict = {'''image_embeds''': image_embeds} lowerCamelCase__ : str = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = noise_pred.chunk(2 ) lowerCamelCase__ , lowerCamelCase__ : Dict = variance_pred.chunk(2 ) lowerCamelCase__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase__ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase__ , lowerCamelCase__ : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Dict = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing lowerCamelCase__ : List[Any] = self.movq.decode(A , force_not_quantize=A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowerCamelCase__ : str = image * 0.5 + 0.5 lowerCamelCase__ : Optional[int] = image.clamp(0 , 1 ) lowerCamelCase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase__ : List[str] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
315
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _A : List[str] = logging.getLogger(__name__) _A : Any = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _A : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase_ )} ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) _UpperCAmelCase : bool = field( default=lowerCAmelCase_ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) _UpperCAmelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) _UpperCAmelCase : bool = field( default=lowerCAmelCase_ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) def __lowerCamelCase ( self : int ) ->Optional[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "The name of the dataset to use (via the datasets library)."} ) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _UpperCAmelCase : Optional[str] = field(default=lowerCAmelCase_ ,metadata={"help": "The input training data file (a text file)."} ) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} ,) _UpperCAmelCase : bool = field( default=lowerCAmelCase_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) _UpperCAmelCase : Optional[int] = field( default=5 ,metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } ,) _UpperCAmelCase : Optional[int] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } ,) _UpperCAmelCase : Optional[int] = field( default=lowerCAmelCase_ ,metadata={"help": "The number of processes to use for the preprocessing."} ,) _UpperCAmelCase : float = field( default=0.15 ,metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) _UpperCAmelCase : bool = field( default=lowerCAmelCase_ ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) def __lowerCamelCase ( self : List[Any] ) ->List[str]: if self.train_file is not None: lowerCamelCase__ : int = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase__ : Tuple = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: lowerCamelCase__ : str = [json.loads(UpperCAmelCase ) for line in f.read().splitlines() if (len(UpperCAmelCase ) > 0 and not line.isspace())] assert len(UpperCAmelCase ) == len(UpperCAmelCase ) lowerCamelCase__ : int = {c: dataset[c] for c in dataset.column_names} lowerCamelCase__ : str = refs return Dataset.from_dict(UpperCAmelCase ) def _a ( ) -> Optional[Any]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase__ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ : Union[str, Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase__ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[:{data_args.validation_split_percentage}%]" , ) lowerCamelCase__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[{data_args.validation_split_percentage}%:]" , ) else: lowerCamelCase__ : List[Any] = {} if data_args.train_file is not None: lowerCamelCase__ : List[Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase__ : Optional[int] = data_args.validation_file lowerCamelCase__ : Tuple = data_args.train_file.split('''.''' )[-1] if extension == "txt": lowerCamelCase__ : List[Any] = '''text''' lowerCamelCase__ : Tuple = load_dataset(UpperCAmelCase , data_files=UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Optional[int] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ : int = AutoConfig.from_pretrained(model_args.config_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Dict = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: lowerCamelCase__ : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) lowerCamelCase__ : List[str] = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: lowerCamelCase__ : Tuple = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowerCamelCase__ : List[Any] = AutoModelForMaskedLM.from_config(UpperCAmelCase ) model.resize_token_embeddings(len(UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase__ : Optional[int] = datasets['''train'''].column_names else: lowerCamelCase__ : Optional[int] = datasets['''validation'''].column_names lowerCamelCase__ : List[str] = '''text''' if '''text''' in column_names else column_names[0] lowerCamelCase__ : Dict = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase ): # Remove empty lines lowerCamelCase__ : int = [line for line in examples['''text'''] if len(UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=data_args.max_seq_length ) lowerCamelCase__ : Optional[int] = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase__ : Optional[Any] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase__ : str = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase__ : int = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase__ : Tuple = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase__ : List[Any] = DataCollatorForWholeWordMask(tokenizer=UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase__ : Tuple = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase__ : Optional[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase__ : Union[str, Any] = model_args.model_name_or_path else: lowerCamelCase__ : List[str] = None lowerCamelCase__ : Dict = trainer.train(resume_from_checkpoint=UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation lowerCamelCase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase__ : Tuple = trainer.evaluate() lowerCamelCase__ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) lowerCamelCase__ : str = perplexity lowerCamelCase__ : List[Any] = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) return results def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
315
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[int] = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''open-llama''' def __init__( self : List[Any] , UpperCAmelCase__ : Any=10_0000 , UpperCAmelCase__ : Union[str, Any]=4096 , UpperCAmelCase__ : int=1_1008 , UpperCAmelCase__ : Any=32 , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : Union[str, Any]="silu" , UpperCAmelCase__ : List[str]=2048 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : Dict=1e-6 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Tuple=1 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : str , ) ->int: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , UpperCAmelCase__ ) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , tie_word_embeddings=UpperCAmelCase__ , **UpperCAmelCase__ , ) def lowerCAmelCase__ ( self : str ) ->Tuple: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get('''type''' , UpperCAmelCase__ ) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , UpperCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
43
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = XLMTokenizer lowerCAmelCase__ = False def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) UpperCAmelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase__ ) ) def lowerCAmelCase__ ( self : Optional[int] , UpperCAmelCase__ : Any ) ->List[Any]: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: UpperCAmelCase_ = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ = '''lower''' UpperCAmelCase_ = ['''low''', '''er</w>'''] UpperCAmelCase_ = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = tokens + ['''<unk>'''] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Any ) ->str: UpperCAmelCase_ = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
43
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase_ ( __lowerCamelCase : Tuple ): lowercase_ :Union[str, Any] = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] lowercase_ :int = True if "large" in model_name or "huge" in model_name else False lowercase_ :Union[str, Any] = True if "large" in model_name or "huge" in model_name else False lowercase_ :List[str] = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase_ :Optional[int] = [3, 3, 3, 3] lowercase_ :Union[str, Any] = [5, 5, 5, 5] elif "fl4" in model_name: lowercase_ :Any = [4, 4, 4, 4] lowercase_ :List[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase_ :List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase_ :Optional[Any] = [3, 3, 3, 3] else: lowercase_ :Any = [2, 2, 2, 2] if "tiny" in model_name: lowercase_ :int = 96 elif "small" in model_name: lowercase_ :List[Any] = 96 elif "base" in model_name: lowercase_ :List[str] = 1_28 elif "large" in model_name: lowercase_ :Any = 1_92 elif "xlarge" in model_name: lowercase_ :Any = 2_56 elif "huge" in model_name: lowercase_ :Tuple = 3_52 # set label information lowercase_ :Tuple = "huggingface/label-files" if "large" in model_name or "huge" in model_name: lowercase_ :Optional[int] = "imagenet-22k-id2label.json" else: lowercase_ :Dict = "imagenet-1k-id2label.json" lowercase_ :Dict = json.load(open(hf_hub_download(__lowerCamelCase ,__lowerCamelCase ,repo_type="dataset" ) ,"r" ) ) lowercase_ :Dict = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase_ :Dict = {v: k for k, v in idalabel.items()} lowercase_ :Optional[int] = FocalNetConfig( embed_dim=__lowerCamelCase ,depths=__lowerCamelCase ,focal_levels=__lowerCamelCase ,focal_windows=__lowerCamelCase ,use_conv_embed=__lowerCamelCase ,idalabel=__lowerCamelCase ,labelaid=__lowerCamelCase ,use_post_layernorm=__lowerCamelCase ,use_layerscale=__lowerCamelCase ,) return config def UpperCAmelCase_ ( __lowerCamelCase : Tuple ): if "patch_embed.proj" in name: lowercase_ :Optional[int] = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowercase_ :int = name.replace("patch_embed.norm" ,"embeddings.norm" ) if "layers" in name: lowercase_ :List[Any] = "encoder." + name if "encoder.layers" in name: lowercase_ :List[Any] = name.replace("encoder.layers" ,"encoder.stages" ) if "downsample.proj" in name: lowercase_ :List[Any] = name.replace("downsample.proj" ,"downsample.projection" ) if "blocks" in name: lowercase_ :Any = name.replace("blocks" ,"layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase_ :Tuple = name.replace("modulation.f" ,"modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase_ :Dict = name.replace("modulation.h" ,"modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase_ :Optional[int] = name.replace("modulation.proj" ,"modulation.projection_out" ) if name == "norm.weight": lowercase_ :Any = "layernorm.weight" if name == "norm.bias": lowercase_ :Optional[int] = "layernorm.bias" if "head" in name: lowercase_ :List[Any] = name.replace("head" ,"classifier" ) else: lowercase_ :Optional[int] = "focalnet." + name return name def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : List[Any]=False ): # fmt: off lowercase_ :Dict = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on lowercase_ :int = model_name_to_url[model_name] print("Checkpoint URL: " ,__lowerCamelCase ) lowercase_ :str = torch.hub.load_state_dict_from_url(__lowerCamelCase ,map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): lowercase_ :Tuple = state_dict.pop(__lowerCamelCase ) lowercase_ :Tuple = val lowercase_ :List[str] = get_focalnet_config(__lowerCamelCase ) lowercase_ :List[Any] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase_ :List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ :List[Any] = BitImageProcessor( do_resize=__lowerCamelCase ,size={"shortest_edge": 2_56} ,resample=PILImageResampling.BILINEAR ,do_center_crop=__lowerCamelCase ,crop_size=2_24 ,do_normalize=__lowerCamelCase ,image_mean=__lowerCamelCase ,image_std=__lowerCamelCase ,) lowercase_ :List[str] = Image.open(requests.get(__lowerCamelCase ,stream=__lowerCamelCase ).raw ) lowercase_ :Optional[int] = processor(images=__lowerCamelCase ,return_tensors="pt" ) lowercase_ :Tuple = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowercase_ :List[str] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,__lowerCamelCase ,atol=1e-4 ) lowercase_ :Union[str, Any] = model(**__lowerCamelCase ) lowercase_ :Tuple = outputs.logits.argmax(-1 ).item() print("Predicted class:" ,model.config.idalabel[predicted_class_idx] ) print("First values of logits:" ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase_ :str = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowercase_ :Any = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowercase_ :str = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowercase_ :int = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowercase_ :Optional[int] = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowercase_ :List[str] = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(F'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(F'{model_name}' ) processor.push_to_hub(F'{model_name}' ) if __name__ == "__main__": lowerCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase : Tuple =parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
172
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase : Union[str, Any] =2 class a_ : def __init__( self : int , *, # begin keyword-only arguments lowercase : str="<s>" , lowercase : List[str]="<pad>" , lowercase : str="</s>" , lowercase : str="<unk>" , lowercase : List[Any]=None , ): """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ :Dict = bos, unk, pad, eos lowercase_ :str = [] lowercase_ :Optional[int] = [] lowercase_ :Union[str, Any] = {} lowercase_ :Any = self.add_symbol(lowercase ) lowercase_ :List[Any] = self.add_symbol(lowercase ) lowercase_ :Optional[int] = self.add_symbol(lowercase ) lowercase_ :int = self.add_symbol(lowercase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowercase ) lowercase_ :Optional[Any] = len(self.symbols ) def __eq__( self : str , lowercase : Dict ): """simple docstring""" return self.indices == other.indices def __getitem__( self : Optional[int] , lowercase : Tuple ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Optional[Any] ): """simple docstring""" return len(self.symbols ) def __contains__( self : List[str] , lowercase : Union[str, Any] ): """simple docstring""" return sym in self.indices @classmethod def lowercase__ ( cls : Optional[int] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :str = cls() d.add_from_file(lowercase ) return d def lowercase__ ( self : Dict , lowercase : Dict , lowercase : Any=1 , lowercase : str=False ): """simple docstring""" if word in self.indices and not overwrite: lowercase_ :Optional[int] = self.indices[word] lowercase_ :int = self.count[idx] + n return idx else: lowercase_ :int = len(self.symbols ) lowercase_ :List[Any] = idx self.symbols.append(lowercase ) self.count.append(lowercase ) return idx def lowercase__ ( self : List[str] , lowercase : Dict ): """simple docstring""" return 0 def lowercase__ ( self : int , lowercase : List[Any] ): """simple docstring""" if isinstance(lowercase , lowercase ): try: with open(lowercase , "r" , encoding="utf-8" ) as fd: self.add_from_file(lowercase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(lowercase ) ) return lowercase_ :Optional[int] = f.readlines() lowercase_ :Union[str, Any] = self._load_meta(lowercase ) for line in lines[indices_start_line:]: try: lowercase_ , lowercase_ :List[Any] = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": lowercase_ :Optional[int] = True lowercase_ , lowercase_ :List[Any] = line.rsplit(" " , 1 ) else: lowercase_ :str = False lowercase_ :str = int(lowercase ) lowercase_ :Optional[Any] = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(lowercase ) ) self.add_symbol(lowercase , n=lowercase , overwrite=lowercase ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def UpperCAmelCase_ ( __lowerCamelCase : Any ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowercase_ :Dict = dict((re.sub(r"@@$" ,"" ,__lowerCamelCase ), v) if k.endswith("@@" ) else (re.sub(r"$" ,"</w>" ,__lowerCamelCase ), v) for k, v in d.items() ) lowercase_ :Any = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] lowercase_ :str = d[k] # restore return da def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[int] ): # prep if not os.path.exists(__lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase_ :Dict = os.path.join(__lowerCamelCase ,"checkpoint.pt" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) lowercase_ :str = torch.load(__lowerCamelCase ,map_location="cpu" ) lowercase_ :Optional[int] = chkpt["cfg"]["model"] # dicts lowercase_ :str = os.path.join(__lowerCamelCase ,"dict.txt" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) lowercase_ :Tuple = Dictionary.load(__lowerCamelCase ) lowercase_ :int = rewrite_dict_keys(src_dict.indices ) lowercase_ :List[Any] = len(__lowerCamelCase ) lowercase_ :Tuple = os.path.join(__lowerCamelCase ,VOCAB_FILES_NAMES["vocab_file"] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase ,ensure_ascii=__lowerCamelCase ,indent=__lowerCamelCase ) ) # merges_file (bpecodes) lowercase_ :Dict = os.path.join(__lowerCamelCase ,"bpecodes" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) lowercase_ :List[str] = os.path.join(__lowerCamelCase ,VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(__lowerCamelCase ,__lowerCamelCase ) # model config lowercase_ :Optional[Any] = os.path.join(__lowerCamelCase ,"config.json" ) lowercase_ :Union[str, Any] = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1e-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase ,ensure_ascii=__lowerCamelCase ,indent=__lowerCamelCase ) ) # tokenizer config lowercase_ :Dict = os.path.join(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :List[str] = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 10_24, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase ,ensure_ascii=__lowerCamelCase ,indent=__lowerCamelCase ) ) # model lowercase_ :str = chkpt["model"] # remove unneeded keys lowercase_ :str = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Optional[int] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): lowercase_ :List[Any] = model_state_dict.pop(__lowerCamelCase ) else: lowercase_ :List[Any] = model_state_dict.pop(__lowerCamelCase ) lowercase_ :int = BioGptConfig.from_pretrained(__lowerCamelCase ) lowercase_ :Union[str, Any] = BioGptForCausalLM(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase ) # save lowercase_ :int = os.path.join(__lowerCamelCase ,__lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(__lowerCamelCase ,__lowerCamelCase ) print("Conversion is done!" ) if __name__ == "__main__": lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase : List[str] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
172
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowercase_ : Optional[Any] = logging.get_logger(__name__) # General docstring lowercase_ : int = 'MobileNetV1Config' # Base docstring lowercase_ : Tuple = 'google/mobilenet_v1_1.0_224' lowercase_ : Tuple = [1, 1_0_2_4, 7, 7] # Image classification docstring lowercase_ : List[Any] = 'google/mobilenet_v1_1.0_224' lowercase_ : List[str] = 'tabby, tabby cat' lowercase_ : int = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A__ ( snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : str=None ): SCREAMING_SNAKE_CASE__: Dict= {} if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__: int= model.mobilenet_va else: SCREAMING_SNAKE_CASE__: Optional[int]= model SCREAMING_SNAKE_CASE__: str= '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE__: str= backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE__: str= backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE__: Tuple= backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE__: str= backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE__: Union[str, Any]= backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE__: Union[str, Any]= i + 1 SCREAMING_SNAKE_CASE__: List[str]= i * 2 SCREAMING_SNAKE_CASE__: List[str]= backbone.layer[pt_index] SCREAMING_SNAKE_CASE__: List[str]= F'MobilenetV1/Conv2d_{tf_index}_depthwise/' SCREAMING_SNAKE_CASE__: Tuple= pointer.convolution.weight SCREAMING_SNAKE_CASE__: List[str]= pointer.normalization.bias SCREAMING_SNAKE_CASE__: Tuple= pointer.normalization.weight SCREAMING_SNAKE_CASE__: Dict= pointer.normalization.running_mean SCREAMING_SNAKE_CASE__: str= pointer.normalization.running_var SCREAMING_SNAKE_CASE__: int= backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE__: List[str]= F'MobilenetV1/Conv2d_{tf_index}_pointwise/' SCREAMING_SNAKE_CASE__: int= pointer.convolution.weight SCREAMING_SNAKE_CASE__: Optional[int]= pointer.normalization.bias SCREAMING_SNAKE_CASE__: int= pointer.normalization.weight SCREAMING_SNAKE_CASE__: Any= pointer.normalization.running_mean SCREAMING_SNAKE_CASE__: Union[str, Any]= pointer.normalization.running_var if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__: Tuple= '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE__: List[str]= model.classifier.weight SCREAMING_SNAKE_CASE__: List[Any]= model.classifier.bias return tf_to_pt_map def A__ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Any ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE__: List[Any]= tf.train.list_variables(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__: List[Any]= {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) SCREAMING_SNAKE_CASE__: str= tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__: Any= array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE__: Dict= _build_tf_to_pytorch_map(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue SCREAMING_SNAKE_CASE__: Tuple= tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE__: Optional[int]= np.transpose(UpperCAmelCase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE__: Optional[int]= array.squeeze().transpose() else: SCREAMING_SNAKE_CASE__: Any= np.transpose(UpperCAmelCase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) SCREAMING_SNAKE_CASE__: Dict= torch.from_numpy(UpperCAmelCase__ ) tf_weights.pop(UpperCAmelCase__ , UpperCAmelCase__ ) tf_weights.pop(name + '''/RMSProp''' , UpperCAmelCase__ ) tf_weights.pop(name + '''/RMSProp_1''' , UpperCAmelCase__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , UpperCAmelCase__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def A__ ( snake_case_ : torch.Tensor , snake_case_ : nn.Convad ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= features.shape[-2:] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Union[str, Any]= conv_layer.stride SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE__: int= max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE__: Dict= max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE__: List[str]= max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE__: Union[str, Any]= max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= pad_along_width // 2 SCREAMING_SNAKE_CASE__: Optional[int]= pad_along_width - pad_left SCREAMING_SNAKE_CASE__: Dict= pad_along_height // 2 SCREAMING_SNAKE_CASE__: Union[str, Any]= pad_along_height - pad_top SCREAMING_SNAKE_CASE__: Tuple= (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(UpperCAmelCase__ , UpperCAmelCase__ , '''constant''' , 0.0 ) class _lowerCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 , lowerCAmelCase = 1 , lowerCAmelCase = False , lowerCAmelCase = True , lowerCAmelCase = True , ) -> Tuple: super().__init__() SCREAMING_SNAKE_CASE__: str= config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) SCREAMING_SNAKE_CASE__: List[str]= 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE__: Union[str, Any]= nn.Convad( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , kernel_size=__UpperCamelCase , stride=__UpperCamelCase , padding=__UpperCamelCase , groups=__UpperCamelCase , bias=__UpperCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE__: Any= nn.BatchNormad( num_features=__UpperCamelCase , eps=config.layer_norm_eps , momentum=0.9997 , affine=__UpperCamelCase , track_running_stats=__UpperCamelCase , ) else: SCREAMING_SNAKE_CASE__: Any= None if use_activation: if isinstance(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__: int= ACTaFN[use_activation] elif isinstance(config.hidden_act , __UpperCamelCase ): SCREAMING_SNAKE_CASE__: Optional[Any]= ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__: str= config.hidden_act else: SCREAMING_SNAKE_CASE__: Tuple= None def UpperCamelCase_ ( self , lowerCAmelCase ) -> List[Any]: if self.config.tf_padding: SCREAMING_SNAKE_CASE__: Any= apply_tf_padding(__UpperCamelCase , self.convolution ) SCREAMING_SNAKE_CASE__: Dict= self.convolution(__UpperCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE__: List[Any]= self.normalization(__UpperCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE__: Any= self.activation(__UpperCamelCase ) return features class _lowerCamelCase ( UpperCamelCase_ ): __a = MobileNetVaConfig __a = load_tf_weights_in_mobilenet_va __a = "mobilenet_v1" __a = "pixel_values" __a = False def UpperCamelCase_ ( self , lowerCAmelCase ) -> Any: if isinstance(__UpperCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__UpperCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowercase_ : List[Any] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase_ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , UpperCamelCase_ , ) class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase = True ) -> str: super().__init__(__UpperCamelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= config SCREAMING_SNAKE_CASE__: str= 32 SCREAMING_SNAKE_CASE__: Optional[int]= max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE__: Optional[Any]= MobileNetVaConvLayer( __UpperCamelCase , in_channels=config.num_channels , out_channels=__UpperCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE__: Union[str, Any]= [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE__: Dict= nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE__: List[Any]= out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE__: Dict= max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __UpperCamelCase , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , kernel_size=3 , stride=strides[i] , groups=__UpperCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( __UpperCamelCase , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE__: int= nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: raise NotImplementedError @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Optional[int]= ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__: int= return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE__: Any= self.conv_stem(__UpperCamelCase ) SCREAMING_SNAKE_CASE__: Dict= () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE__: str= layer_module(__UpperCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE__: str= all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE__: str= hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE__: Dict= torch.flatten(self.pooler(__UpperCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE__: Union[str, Any]= None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCamelCase , pooler_output=__UpperCamelCase , hidden_states=__UpperCamelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCamelCase_ , ) class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase ) -> str: super().__init__(__UpperCamelCase ) SCREAMING_SNAKE_CASE__: str= config.num_labels SCREAMING_SNAKE_CASE__: Any= MobileNetVaModel(__UpperCamelCase ) SCREAMING_SNAKE_CASE__: int= self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE__: int= nn.Dropout(config.classifier_dropout_prob , inplace=__UpperCamelCase ) SCREAMING_SNAKE_CASE__: List[Any]= nn.Linear(__UpperCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> int: SCREAMING_SNAKE_CASE__: Optional[int]= return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__: Any= self.mobilenet_va(__UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) SCREAMING_SNAKE_CASE__: int= outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE__: Optional[Any]= self.classifier(self.dropout(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__: List[Any]= None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__: int= '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__: List[str]= '''single_label_classification''' else: SCREAMING_SNAKE_CASE__: Optional[int]= '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__: int= MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__: List[str]= loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__: Tuple= loss_fct(__UpperCamelCase , __UpperCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__: Optional[int]= CrossEntropyLoss() SCREAMING_SNAKE_CASE__: Tuple= loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__: List[Any]= BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__: Optional[int]= loss_fct(__UpperCamelCase , __UpperCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE__: Optional[Any]= (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states , )
715
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : List[Any] = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _lowerCamelCase ( UpperCamelCase_ ): __a = "xlm-roberta-xl" def __init__( self , lowerCAmelCase=250880 , lowerCAmelCase=2560 , lowerCAmelCase=36 , lowerCAmelCase=32 , lowerCAmelCase=10240 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=514 , lowerCAmelCase=1 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-05 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ) -> Union[str, Any]: super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= vocab_size SCREAMING_SNAKE_CASE__: Dict= hidden_size SCREAMING_SNAKE_CASE__: Tuple= num_hidden_layers SCREAMING_SNAKE_CASE__: Optional[Any]= num_attention_heads SCREAMING_SNAKE_CASE__: int= hidden_act SCREAMING_SNAKE_CASE__: Any= intermediate_size SCREAMING_SNAKE_CASE__: Optional[Any]= hidden_dropout_prob SCREAMING_SNAKE_CASE__: str= attention_probs_dropout_prob SCREAMING_SNAKE_CASE__: List[Any]= max_position_embeddings SCREAMING_SNAKE_CASE__: Dict= type_vocab_size SCREAMING_SNAKE_CASE__: Union[str, Any]= initializer_range SCREAMING_SNAKE_CASE__: Dict= layer_norm_eps SCREAMING_SNAKE_CASE__: Dict= position_embedding_type SCREAMING_SNAKE_CASE__: Optional[Any]= use_cache SCREAMING_SNAKE_CASE__: str= classifier_dropout class _lowerCamelCase ( UpperCamelCase_ ): @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__: Dict= {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__: List[str]= {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
107
0
'''simple docstring''' import os import numpy import onnx def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' __magic_name__ = a.name __magic_name__ = b.name __magic_name__ = '''''' __magic_name__ = '''''' __magic_name__ = a == b __magic_name__ = name_a __magic_name__ = name_b return res def UpperCamelCase ( a , a , a ) -> List[Any]: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a , a ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a , a ) _graph_replace_input_with(node_proto.attribute[1].g , a , a ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a , a ) def UpperCamelCase ( a , a , a ) -> Any: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(a , a , a ) def UpperCamelCase ( a , a , a ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = list(model.graph.initializer ) __magic_name__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __magic_name__ = inits[i].name __magic_name__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a , a ) def UpperCamelCase ( a ) -> Any: '''simple docstring''' __magic_name__ = os.path.dirname(a ) __magic_name__ = os.path.basename(a ) __magic_name__ = onnx.load(os.path.join(a , a ) ) __magic_name__ = list(model.graph.initializer ) __magic_name__ = set() __magic_name__ = {} __magic_name__ = [] __magic_name__ = 0 for i in range(len(a ) ): if i in dup_set: continue for j in range(i + 1 , len(a ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a ) dup_set.add(a ) __magic_name__ = inits[j].data_type __magic_name__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a ) total_reduced_size += mem_size __magic_name__ = inits[i].name __magic_name__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(a ) else: __magic_name__ = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __magic_name__ = sorted(a ) _remove_dup_initializers_from_model(a , a , a ) __magic_name__ = '''optimized_''' + model_file_name __magic_name__ = os.path.join(a , a ) onnx.save(a , a ) return new_model
432
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = """ClapFeatureExtractor""" __SCREAMING_SNAKE_CASE :List[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[Any] , a__ : Dict , a__ : Dict ): super().__init__(a__ , a__ ) def __call__( self : Dict , a__ : List[str]=None , a__ : List[Any]=None , a__ : Any=None , **a__ : Tuple ): __magic_name__ = kwargs.pop('''sampling_rate''' , a__ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: __magic_name__ = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if audios is not None: __magic_name__ = self.feature_extractor( a__ , sampling_rate=a__ , return_tensors=a__ , **a__ ) if text is not None and audios is not None: __magic_name__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def snake_case__ ( self : List[Any] , *a__ : str , **a__ : List[str] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case__ ( self : int , *a__ : Tuple , **a__ : Tuple ): return self.tokenizer.decode(*a__ , **a__ ) @property def snake_case__ ( self : Any ): __magic_name__ = self.tokenizer.model_input_names __magic_name__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
432
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __lowerCamelCase : int = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) __magic_name__ : Tuple = '''A painting of a squirrel eating a burger ''' __magic_name__ : int = torch.manual_seed(0 ) __magic_name__ : int = pipe( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) __magic_name__ : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) __magic_name__ : Optional[Any] = generator.manual_seed(0 ) __magic_name__ : Tuple = pipe( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: __magic_name__ : List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) __magic_name__ : List[Any] = '''A painting of a squirrel eating a burger ''' __magic_name__ : List[Any] = torch.manual_seed(0 ) __magic_name__ : Dict = pipe( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __magic_name__ : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __magic_name__ : int = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
501
import sys import turtle def lowercase__ ( __A: tuple[float, float] ,__A: tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase__ ( __A: tuple[float, float] ,__A: tuple[float, float] ,__A: tuple[float, float] ,__A: int ,): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __lowerCamelCase : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __lowerCamelCase : Optional[Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
501
1
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Tuple: A__ = ["a", "b", "c"] # Defaults to last layer if both are None A__ = get_aligned_output_features_output_indices(a_ , a_ , a_ ) self.assertEqual(a_ , ["c"] ) self.assertEqual(a_ , [2] ) # Out indices set to match out features A__ = get_aligned_output_features_output_indices(["a", "c"] , a_ , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [0, 2] ) # Out features set to match out indices A__ = get_aligned_output_features_output_indices(a_ , [0, 2] , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [0, 2] ) # Out features selected from negative indices A__ = get_aligned_output_features_output_indices(a_ , [-3, -1] , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [-3, -1] ) def snake_case__ ( self ) -> List[Any]: # Stage names must be set with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , a_ ) # Out features must be a list with self.assertRaises(a_ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(a_ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def snake_case__ ( self ) -> Tuple: A__ = BackboneMixin() A__ = ["a", "b", "c"] A__ = ["a", "c"] A__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly A__ = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) A__ = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
104
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Dict = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( A ,A ,A ,A ,A ) -> Tuple: for attribute in key.split("." ): lowercase : Dict = getattr(A ,A ) if weight_type is not None: lowercase : List[str] = getattr(A ,A ).shape else: lowercase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase : List[Any] = value elif weight_type == "weight_g": lowercase : List[Any] = value elif weight_type == "weight_v": lowercase : int = value elif weight_type == "bias": lowercase : Any = value elif weight_type == "running_mean": lowercase : Tuple = value elif weight_type == "running_var": lowercase : Dict = value elif weight_type == "num_batches_tracked": lowercase : Optional[int] = value elif weight_type == "inv_freq": lowercase : List[Any] = value else: lowercase : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( A ,A ,A ) -> int: lowercase : Optional[int] = [] lowercase : Tuple = fairseq_model.state_dict() lowercase : Optional[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowercase : str = False if "conv_layers" in name: load_conv_layer( A ,A ,A ,A ,hf_model.config.feat_extract_norm == "group" ,) lowercase : Dict = True else: for key, mapped_key in MAPPING.items(): lowercase : List[str] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase : List[str] = True if "*" in mapped_key: lowercase : int = name.split(A )[0].split("." )[-2] lowercase : Optional[Any] = mapped_key.replace("*" ,A ) if "pos_bias_u" in name: lowercase : str = None elif "pos_bias_v" in name: lowercase : Optional[int] = None elif "weight_g" in name: lowercase : int = "weight_g" elif "weight_v" in name: lowercase : Dict = "weight_v" elif "bias" in name: lowercase : List[str] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : Optional[int] = "weight" elif "running_mean" in name: lowercase : Optional[int] = "running_mean" elif "inv_freq" in name: lowercase : Dict = "inv_freq" elif "running_var" in name: lowercase : int = "running_var" elif "num_batches_tracked" in name: lowercase : Optional[Any] = "num_batches_tracked" else: lowercase : int = None set_recursively(A ,A ,A ,A ,A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _A ( A ,A ,A ,A ,A ) -> List[str]: lowercase : Tuple = full_name.split("conv_layers." )[-1] lowercase : Optional[Any] = name.split("." ) lowercase : str = int(items[0] ) lowercase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def _A ( A ,A ,A=None ,A=None ,A=True ) -> Optional[Any]: if config_path is not None: lowercase : Tuple = WavaVecaConformerConfig.from_pretrained(A ,hidden_act="swish" ) else: lowercase : Any = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowercase : str = "rotary" if is_finetuned: if dict_path: lowercase : List[str] = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase : Optional[int] = target_dict.pad_index lowercase : Optional[int] = target_dict.bos_index lowercase : Optional[Any] = target_dict.eos_index lowercase : str = len(target_dict.symbols ) lowercase : List[Any] = os.path.join(A ,"vocab.json" ) if not os.path.isdir(A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(A ) ) return os.makedirs(A ,exist_ok=A ) lowercase : Any = target_dict.indices # fairseq has the <pad> and <s> switched lowercase : Any = 0 lowercase : Tuple = 1 with open(A ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(A ,A ) lowercase : Tuple = WavaVecaCTCTokenizer( A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=A ,) lowercase : Dict = True if config.feat_extract_norm == "layer" else False lowercase : List[str] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=A ,return_attention_mask=A ,) lowercase : List[str] = WavaVecaProcessor(feature_extractor=A ,tokenizer=A ) processor.save_pretrained(A ) lowercase : Any = WavaVecaConformerForCTC(A ) else: lowercase : str = WavaVecaConformerForPreTraining(A ) if is_finetuned: lowercase , lowercase , lowercase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase : List[str] = argparse.Namespace(task="audio_pretraining" ) lowercase : Union[str, Any] = fairseq.tasks.setup_task(A ) lowercase , lowercase , lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=A ) lowercase : List[str] = model[0].eval() recursively_load_weights(A ,A ,not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
372
0
from __future__ import annotations from cmath import sqrt def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __snake_case : int = b * b - 4 * a * c __snake_case : Dict = (-b + sqrt(__SCREAMING_SNAKE_CASE )) / (2 * a) __snake_case : Optional[Any] = (-b - sqrt(__SCREAMING_SNAKE_CASE )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case , __snake_case : Optional[int] = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
390
lowercase_ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
390
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __lowercase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : Any=3.6 ): """simple docstring""" __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : Any ): """simple docstring""" __A = iter(self.dataset ) __A = True while more_examples: __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_snake_case )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(_snake_case , truncation=_snake_case )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_snake_case ) , self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(_snake_case ) == self.seq_length: yield torch.tensor(_snake_case ) def _SCREAMING_SNAKE_CASE ( __lowercase : int ) -> Dict: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="""train""" , **_SCREAMING_SNAKE_CASE ) __A = ConstantLengthDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , seq_length=args.seq_length ) __A = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) return eval_dataloader def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): with torch.no_grad(): __A = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_SCREAMING_SNAKE_CASE ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(_SCREAMING_SNAKE_CASE ) ) try: __A = torch.exp(_SCREAMING_SNAKE_CASE ) except OverflowError: __A = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator __a : Any = Accelerator() # Parse configuration __a : Dict = HfArgumentParser(EvaluationArguments) __a : Optional[Any] = parser.parse_args() set_seed(args.seed) # Logging __a : Union[str, Any] = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer __a : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __a : Any = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __a : List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. __a ,__a : List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") __a ,__a : List[str] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
637
'''simple docstring''' from statistics import mean, stdev def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 3 ) -> list: """simple docstring""" UpperCAmelCase_ : Dict = min(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = max(_SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) , _SCREAMING_SNAKE_CASE ) for x in data] def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 3 ) -> list: """simple docstring""" UpperCAmelCase_ : Tuple = mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = stdev(_SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) , _SCREAMING_SNAKE_CASE ) for x in data]
71
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : Tuple = "pix2struct_text_model" _lowerCAmelCase : List[Any] = ["past_key_values"] _lowerCAmelCase : Optional[int] = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , UpperCAmelCase__=5_0244 , UpperCAmelCase__=768 , UpperCAmelCase__=64 , UpperCAmelCase__=2048 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=32 , UpperCAmelCase__=128 , UpperCAmelCase__=0.1 , UpperCAmelCase__=1e-6 , UpperCAmelCase__=1.0 , UpperCAmelCase__="gelu_new" , UpperCAmelCase__=0 , UpperCAmelCase__=False , UpperCAmelCase__=0 , UpperCAmelCase__=1 , UpperCAmelCase__=False , UpperCAmelCase__=True , **UpperCAmelCase__ , ): SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = d_kv SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = num_layers SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = relative_attention_max_distance SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = decoder_start_token_id # for backwards compatibility SCREAMING_SNAKE_CASE__ = dense_act_fn super().__init__( pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , tie_word_embeddings=UpperCAmelCase__ , is_decoder=UpperCAmelCase__ , **UpperCAmelCase__ , ) @classmethod def lowerCAmelCase__ ( cls , UpperCAmelCase__ , **UpperCAmelCase__ ): cls._set_token_in_kwargs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": SCREAMING_SNAKE_CASE__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : int = "pix2struct_vision_model" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=768 , UpperCAmelCase__=2048 , UpperCAmelCase__=64 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__="gelu_new" , UpperCAmelCase__=1e-6 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=1e-10 , UpperCAmelCase__=1.0 , UpperCAmelCase__=4096 , UpperCAmelCase__=32 , UpperCAmelCase__=128 , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = patch_embed_hidden_size SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = dense_act_fn SCREAMING_SNAKE_CASE__ = seq_len SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = relative_attention_max_distance SCREAMING_SNAKE_CASE__ = d_kv @classmethod def lowerCAmelCase__ ( cls , UpperCAmelCase__ , **UpperCAmelCase__ ): cls._set_token_in_kwargs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": SCREAMING_SNAKE_CASE__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = "pix2struct" _lowerCAmelCase : List[Any] = True def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=1.0 , UpperCAmelCase__=0.02 , UpperCAmelCase__=False , UpperCAmelCase__=False , UpperCAmelCase__=True , **UpperCAmelCase__ , ): super().__init__(tie_word_embeddings=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) if text_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) SCREAMING_SNAKE_CASE__ = PixaStructTextConfig(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = PixaStructVisionConfig(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = self.text_config.decoder_start_token_id SCREAMING_SNAKE_CASE__ = self.text_config.pad_token_id SCREAMING_SNAKE_CASE__ = self.text_config.eos_token_id SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = self.initializer_range SCREAMING_SNAKE_CASE__ = self.initializer_range SCREAMING_SNAKE_CASE__ = is_vqa @classmethod def lowerCAmelCase__ ( cls , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
701
"""simple docstring""" from math import sqrt def __lowercase ( lowerCamelCase_ : int ): SCREAMING_SNAKE_CASE__ = 0 for i in range(1 , int(sqrt(lowerCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCamelCase_ ): total += i + n // i elif i == sqrt(lowerCamelCase_ ): total += i return total - n def __lowercase ( lowerCamelCase_ : int = 10000 ): SCREAMING_SNAKE_CASE__ = sum( i for i in range(1 , lowerCamelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCamelCase_ ) ) == i and sum_of_divisors(lowerCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
112
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowercase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Dict=7, UpperCamelCase__ : str=3, UpperCamelCase__ : List[Any]=30, UpperCamelCase__ : List[str]=4_00, UpperCamelCase__ : str=True, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Union[str, Any]=0.9, UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : Union[str, Any]=True, UpperCamelCase__ : Any=[0.5, 0.5, 0.5], UpperCamelCase__ : List[str]=[0.5, 0.5, 0.5], ) -> Tuple: _A = size if size is not None else {'shortest_edge': 30} _A = crop_size if crop_size is not None else {'height': 30, 'width': 30} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize_and_center_crop _A = size _A = crop_pct _A = crop_size _A = do_normalize _A = image_mean _A = image_std def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : Optional[Any] ) -> int: _A = PoolFormerImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Dict ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : Dict ) -> Optional[int]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'size' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'crop_pct' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'image_std' ) ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size, {'height': 30, 'width': 30} ) _A = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size, {'height': 84, 'width': 84} ) def __UpperCAmelCase ( self : Optional[int] ) -> str: pass def __UpperCAmelCase ( self : int ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def __UpperCAmelCase ( self : str ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), )
107
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def lowercase__( A ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowerCamelCase = parser.parse_args() if args.check_lib: lowerCamelCase = importlib.import_module('transformers') lowerCamelCase = Path(transformers_module.__file__).parent else: lowerCamelCase = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
707
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def lowercase__( A , A=False ): snake_case__ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( A , A , A=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case__ : int = '' else: snake_case__ : Any = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Dict = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) snake_case__ : int = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Dict = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Any = in_proj_bias[: config.hidden_size] snake_case__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Any = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Dict = in_proj_bias[-config.hidden_size :] def lowercase__( A ): snake_case__ : List[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(A , A ) def lowercase__( A , A , A ): snake_case__ : str = dct.pop(A ) snake_case__ : Optional[int] = val def lowercase__( ): snake_case__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Any = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowercase__( A , A , A=True ): snake_case__ : Any = ViTConfig() # patch_size if model_name[-1] == "8": snake_case__ : Any = 8 # set labels if required if not base_model: snake_case__ : Tuple = 1_0_0_0 snake_case__ : int = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case__ : Union[str, Any] = {int(A ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: snake_case__ : Optional[Any] = 3_8_4 snake_case__ : Optional[int] = 1_5_3_6 snake_case__ : List[Any] = 1_2 snake_case__ : Optional[Any] = 6 # load original model from torch hub snake_case__ : Tuple = torch.hub.load('facebookresearch/dino:main' , A ) original_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : List[Any] = original_model.state_dict() if base_model: remove_classification_head_(A ) snake_case__ : str = create_rename_keys(A , base_model=A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , A , A ) # load HuggingFace model if base_model: snake_case__ : int = ViTModel(A , add_pooling_layer=A ).eval() else: snake_case__ : Dict = ViTForImageClassification(A ).eval() model.load_state_dict(A ) # Check outputs on an image, prepared by ViTImageProcessor snake_case__ : Tuple = ViTImageProcessor() snake_case__ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : str = model(A ) if base_model: snake_case__ : Optional[int] = original_model(A ) assert torch.allclose(A , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: snake_case__ : Optional[Any] = original_model(A ) assert logits.shape == outputs.logits.shape assert torch.allclose(A , outputs.logits , atol=1e-3 ) Path(A ).mkdir(exist_ok=A ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) lowerCamelCase : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
303
0
def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
59
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( __a ) -> float: """simple docstring""" return np.dot(__a , __a ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : List[str] , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ) ->None: '''simple docstring''' lowerCamelCase__: Dict =regularization lowerCamelCase__: Any =gamma if kernel == "linear": lowerCamelCase__: Dict =self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma") if not isinstance(self.gamma , (float, int)): raise ValueError("gamma must be float or int") if not self.gamma > 0: raise ValueError("gamma must be > 0") lowerCamelCase__: Tuple =self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCamelCase__: Optional[Any] =F"""Unknown kernel: {kernel}""" raise ValueError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray) ->float: '''simple docstring''' return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray) ->float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray) ->None: '''simple docstring''' lowerCamelCase__: Optional[Any] =observations lowerCamelCase__: Optional[int] =classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCamelCase__) , ): List[str] =np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: lowerCamelCase__: int =0 ((lowerCamelCase__) , ): Optional[Any] =np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) lowerCamelCase__: List[Any] =LinearConstraint(UpperCAmelCase_ , 0 , 0) lowerCamelCase__: str =Bounds(0 , self.regularization) lowerCamelCase__: Union[str, Any] =minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x lowerCamelCase__: str =l_star # calculating mean offset of separation plane to points lowerCamelCase__: Tuple =0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) lowerCamelCase__: int =s / n def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : ndarray) ->int: '''simple docstring''' lowerCamelCase__: Optional[Any] =sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
59
1
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = word.split() def justify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: snake_case__ = max_width - width snake_case__ = len(A_ ) if len(A_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(A_ ): num_spaces_between_words_list[i] += 1 snake_case__ = [] for i in range(A_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(A_ ) snake_case__ = [] snake_case__ = [] snake_case__ = 0 for word in words: if width + len(A_ ) + len(A_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(A_ ) width += len(A_ ) else: # justify the line and add it to result answer.append(justify(A_ , A_ , A_ ) ) # reset new line and new width snake_case__ , snake_case__ = [word], len(A_ ) snake_case__ = max_width - width - len(A_ ) answer.append(" ".join(A_ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
710
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): return EnvironmentCommand() def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): return EnvironmentCommand(args.accelerate_config_file ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): @staticmethod def A_ ( lowerCamelCase ): snake_case__ = parser.add_parser("env" ) download_parser.set_defaults(func=lowerCamelCase ) download_parser.add_argument( "--accelerate-config_file" , default=lowerCamelCase , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=lowerCamelCase ) def __init__( self , lowerCamelCase , *lowerCamelCase ): snake_case__ = accelerate_config_file def A_ ( self ): snake_case__ = "not installed" if is_safetensors_available(): import safetensors snake_case__ = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors snake_case__ = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" snake_case__ = "not installed" snake_case__ = snake_case__ = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file snake_case__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCamelCase ): snake_case__ = load_config_from_file(self._accelerate_config_file ).to_dict() snake_case__ = ( "\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase , lowerCamelCase ) else F"""\t{accelerate_config}""" ) snake_case__ = "not installed" snake_case__ = "NA" if is_torch_available(): import torch snake_case__ = torch.__version__ snake_case__ = torch.cuda.is_available() snake_case__ = "not installed" snake_case__ = "NA" if is_tf_available(): import tensorflow as tf snake_case__ = tf.__version__ try: # deprecated in v2.1 snake_case__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool snake_case__ = bool(tf.config.list_physical_devices("GPU" ) ) snake_case__ = "not installed" snake_case__ = "not installed" snake_case__ = "not installed" snake_case__ = "NA" if is_flax_available(): import flax import jax import jaxlib snake_case__ = flax.__version__ snake_case__ = jax.__version__ snake_case__ = jaxlib.__version__ snake_case__ = jax.lib.xla_bridge.get_backend().platform snake_case__ = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": F"""{safetensors_version}""", "Accelerate version": F"""{accelerate_version}""", "Accelerate config": F"""{accelerate_config_str}""", "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": F"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": F"""{flax_version} ({jax_backend})""", "Jax version": F"""{jax_version}""", "JaxLib version": F"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(lowerCamelCase ) ) return info @staticmethod def A_ ( lowerCamelCase ): return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
530
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __snake_case (__SCREAMING_SNAKE_CASE ): __a = """M-CLIP""" def __init__( self: Optional[int] , A_: Dict=10_24 , A_: List[Any]=7_68 , **A_: Any ): __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**A_ ) class __snake_case (__SCREAMING_SNAKE_CASE ): __a = MCLIPConfig def __init__( self: Any , A_: Tuple , *A_: Tuple , **A_: List[str] ): super().__init__(A_ , *A_ , **A_ ) __lowerCamelCase = XLMRobertaModel(A_ ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __a ( self: Optional[Any] , A_: Optional[Any] , A_: str ): __lowerCamelCase = self.transformer(input_ids=A_ , attention_mask=A_ )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
281
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class A__ ( nn.Module): def __init__( self , __magic_name__ = 1_6 , __magic_name__ = 8_8 , __magic_name__ = None , __magic_name__ = 1 , __magic_name__ = 0.0 , __magic_name__ = 3_2 , __magic_name__ = None , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = "geglu" , __magic_name__ = None , ): super().__init__() lowerCamelCase : Any = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__magic_name__ , attention_head_dim=__magic_name__ , in_channels=__magic_name__ , num_layers=__magic_name__ , dropout=__magic_name__ , norm_num_groups=__magic_name__ , cross_attention_dim=__magic_name__ , attention_bias=__magic_name__ , sample_size=__magic_name__ , num_vector_embeds=__magic_name__ , activation_fn=__magic_name__ , num_embeds_ada_norm=__magic_name__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCamelCase : Any = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCamelCase : List[Any] = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCamelCase : Optional[int] = [1, 0] def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__ = True , ): lowerCamelCase : List[Any] = hidden_states lowerCamelCase : Dict = [] lowerCamelCase : List[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCamelCase : Dict = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCamelCase : Optional[int] = self.transformer_index_for_condition[i] lowerCamelCase : List[Any] = self.transformers[transformer_index]( __magic_name__ , encoder_hidden_states=__magic_name__ , timestep=__magic_name__ , cross_attention_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCamelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCamelCase : Dict = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__magic_name__ )
681
0
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[Any] =['''sentencepiece'''] def __init__( self :int, *snake_case :Union[str, Any], **snake_case :List[str]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Tuple =['''sentencepiece'''] def __init__( self :Union[str, Any], *snake_case :Tuple, **snake_case :Optional[Any]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[int] =['''sentencepiece'''] def __init__( self :Union[str, Any], *snake_case :str, **snake_case :Dict): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : List[str] =['''sentencepiece'''] def __init__( self :Optional[Any], *snake_case :Any, **snake_case :Optional[Any]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Union[str, Any] =['''sentencepiece'''] def __init__( self :int, *snake_case :Any, **snake_case :List[str]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : str =['''sentencepiece'''] def __init__( self :int, *snake_case :Tuple, **snake_case :Tuple): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[Any] =['''sentencepiece'''] def __init__( self :Optional[Any], *snake_case :int, **snake_case :Optional[Any]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[int] =['''sentencepiece'''] def __init__( self :Union[str, Any], *snake_case :Optional[int], **snake_case :List[Any]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[int] =['''sentencepiece'''] def __init__( self :Union[str, Any], *snake_case :List[Any], **snake_case :Dict): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[Any] =['''sentencepiece'''] def __init__( self :int, *snake_case :Union[str, Any], **snake_case :List[str]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : List[Any] =['''sentencepiece'''] def __init__( self :Dict, *snake_case :List[Any], **snake_case :Dict): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : str =['''sentencepiece'''] def __init__( self :List[str], *snake_case :List[Any], **snake_case :int): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Dict =['''sentencepiece'''] def __init__( self :Union[str, Any], *snake_case :int, **snake_case :Any): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[Any] =['''sentencepiece'''] def __init__( self :List[str], *snake_case :str, **snake_case :List[str]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Union[str, Any] =['''sentencepiece'''] def __init__( self :List[Any], *snake_case :Dict, **snake_case :Optional[Any]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Any =['''sentencepiece'''] def __init__( self :Tuple, *snake_case :Optional[int], **snake_case :Optional[int]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : str =['''sentencepiece'''] def __init__( self :Optional[int], *snake_case :List[str], **snake_case :List[str]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : str =['''sentencepiece'''] def __init__( self :Optional[Any], *snake_case :List[str], **snake_case :Optional[int]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Any =['''sentencepiece'''] def __init__( self :Optional[Any], *snake_case :Tuple, **snake_case :Union[str, Any]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[Any] =['''sentencepiece'''] def __init__( self :Optional[int], *snake_case :Any, **snake_case :Dict): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : int =['''sentencepiece'''] def __init__( self :Optional[int], *snake_case :List[Any], **snake_case :str): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : List[str] =['''sentencepiece'''] def __init__( self :Optional[int], *snake_case :Dict, **snake_case :Optional[Any]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Tuple =['''sentencepiece'''] def __init__( self :Any, *snake_case :Any, **snake_case :Tuple): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : List[str] =['''sentencepiece'''] def __init__( self :Tuple, *snake_case :Any, **snake_case :Tuple): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : str =['''sentencepiece'''] def __init__( self :Dict, *snake_case :Any, **snake_case :List[Any]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Optional[int] =['''sentencepiece'''] def __init__( self :Any, *snake_case :List[str], **snake_case :Dict): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Dict =['''sentencepiece'''] def __init__( self :Any, *snake_case :Optional[Any], **snake_case :Optional[int]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Any =['''sentencepiece'''] def __init__( self :int, *snake_case :str, **snake_case :int): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : int =['''sentencepiece'''] def __init__( self :List[str], *snake_case :Any, **snake_case :Optional[int]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Any =['''sentencepiece'''] def __init__( self :Any, *snake_case :Optional[Any], **snake_case :Optional[int]): """simple docstring""" requires_backends(self, ['sentencepiece']) class SCREAMING_SNAKE_CASE_ ( metaclass=_a ): """simple docstring""" __lowerCAmelCase : Union[str, Any] =['''sentencepiece'''] def __init__( self :int, *snake_case :Optional[Any], **snake_case :Tuple): """simple docstring""" requires_backends(self, ['sentencepiece'])
557
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =1 __lowerCAmelCase : int =1 __lowerCAmelCase : bool =True __lowerCAmelCase : bool =False __lowerCAmelCase : bool =False __lowerCAmelCase : bool =False __lowerCAmelCase : jnp.dtype =jnp.floataa def UpperCamelCase__ ( self :int): """simple docstring""" _lowercase =[] _lowercase =[] for i in range(self.num_layers): _lowercase =self.in_channels if i == 0 else self.out_channels _lowercase =FlaxResnetBlockaD( in_channels=snake_case, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(snake_case) _lowercase =FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(snake_case) _lowercase =resnets _lowercase =attentions if self.add_downsample: _lowercase =FlaxDownsampleaD(self.out_channels, dtype=self.dtype) def __call__( self :str, snake_case :List[Any], snake_case :Optional[Any], snake_case :Tuple, snake_case :Dict=True): """simple docstring""" _lowercase =() for resnet, attn in zip(self.resnets, self.attentions): _lowercase =resnet(snake_case, snake_case, deterministic=snake_case) _lowercase =attn(snake_case, snake_case, deterministic=snake_case) output_states += (hidden_states,) if self.add_downsample: _lowercase =self.downsamplers_a(snake_case) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =1 __lowerCAmelCase : bool =True __lowerCAmelCase : jnp.dtype =jnp.floataa def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =[] for i in range(self.num_layers): _lowercase =self.in_channels if i == 0 else self.out_channels _lowercase =FlaxResnetBlockaD( in_channels=snake_case, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(snake_case) _lowercase =resnets if self.add_downsample: _lowercase =FlaxDownsampleaD(self.out_channels, dtype=self.dtype) def __call__( self :Union[str, Any], snake_case :List[str], snake_case :List[str], snake_case :Optional[Any]=True): """simple docstring""" _lowercase =() for resnet in self.resnets: _lowercase =resnet(snake_case, snake_case, deterministic=snake_case) output_states += (hidden_states,) if self.add_downsample: _lowercase =self.downsamplers_a(snake_case) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =1 __lowerCAmelCase : int =1 __lowerCAmelCase : bool =True __lowerCAmelCase : bool =False __lowerCAmelCase : bool =False __lowerCAmelCase : bool =False __lowerCAmelCase : jnp.dtype =jnp.floataa def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =[] _lowercase =[] for i in range(self.num_layers): _lowercase =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowercase =self.prev_output_channel if i == 0 else self.out_channels _lowercase =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(snake_case) _lowercase =FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(snake_case) _lowercase =resnets _lowercase =attentions if self.add_upsample: _lowercase =FlaxUpsampleaD(self.out_channels, dtype=self.dtype) def __call__( self :int, snake_case :List[str], snake_case :Union[str, Any], snake_case :Any, snake_case :Optional[Any], snake_case :Optional[int]=True): """simple docstring""" for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states _lowercase =res_hidden_states_tuple[-1] _lowercase =res_hidden_states_tuple[:-1] _lowercase =jnp.concatenate((hidden_states, res_hidden_states), axis=-1) _lowercase =resnet(snake_case, snake_case, deterministic=snake_case) _lowercase =attn(snake_case, snake_case, deterministic=snake_case) if self.add_upsample: _lowercase =self.upsamplers_a(snake_case) return hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =1 __lowerCAmelCase : bool =True __lowerCAmelCase : jnp.dtype =jnp.floataa def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =[] for i in range(self.num_layers): _lowercase =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowercase =self.prev_output_channel if i == 0 else self.out_channels _lowercase =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(snake_case) _lowercase =resnets if self.add_upsample: _lowercase =FlaxUpsampleaD(self.out_channels, dtype=self.dtype) def __call__( self :Any, snake_case :Optional[Any], snake_case :Union[str, Any], snake_case :Optional[Any], snake_case :int=True): """simple docstring""" for resnet in self.resnets: # pop res hidden states _lowercase =res_hidden_states_tuple[-1] _lowercase =res_hidden_states_tuple[:-1] _lowercase =jnp.concatenate((hidden_states, res_hidden_states), axis=-1) _lowercase =resnet(snake_case, snake_case, deterministic=snake_case) if self.add_upsample: _lowercase =self.upsamplers_a(snake_case) return hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =1 __lowerCAmelCase : int =1 __lowerCAmelCase : bool =False __lowerCAmelCase : bool =False __lowerCAmelCase : jnp.dtype =jnp.floataa def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =[ FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) ] _lowercase =[] for _ in range(self.num_layers): _lowercase =FlaxTransformeraDModel( in_channels=self.in_channels, n_heads=self.num_attention_heads, d_head=self.in_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(snake_case) _lowercase =FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(snake_case) _lowercase =resnets _lowercase =attentions def __call__( self :List[Any], snake_case :Tuple, snake_case :Union[str, Any], snake_case :List[Any], snake_case :Any=True): """simple docstring""" _lowercase =self.resnets[0](snake_case, snake_case) for attn, resnet in zip(self.attentions, self.resnets[1:]): _lowercase =attn(snake_case, snake_case, deterministic=snake_case) _lowercase =resnet(snake_case, snake_case, deterministic=snake_case) return hidden_states
557
1
'''simple docstring''' import math import random def A (__lowerCamelCase :float , __lowerCamelCase :bool = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value _lowercase = 0.02 def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation _lowerCAmelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _lowerCAmelCase = (expected / 100) - layer_a # Error delta _lowerCAmelCase = layer_1_error * sigmoid_function(__lowerCamelCase , __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() _lowercase = int(input("""Expected value: """)) _lowercase = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
5
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = 10 def a ( self ): snake_case_ = [1, 2, 3, 4] snake_case_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def a ( self ): snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def a ( self ): snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def a ( self ): snake_case_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' snake_case_ , snake_case_ = process_story(snake_case ) self.assertEqual(snake_case , [] ) def a ( self ): snake_case_ = '' snake_case_ , snake_case_ = process_story(snake_case ) self.assertEqual(snake_case , [] ) self.assertEqual(snake_case , [] ) def a ( self ): snake_case_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) snake_case_ , snake_case_ = process_story(snake_case ) snake_case_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(snake_case , snake_case ) snake_case_ = ['It was the best of times.'] self.assertEqual(snake_case , snake_case ) def a ( self ): snake_case_ = torch.tensor([1, 2, 3, 4] ) snake_case_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(snake_case , 0 ).numpy() , expected.numpy() ) def a ( self ): snake_case_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) snake_case_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case , 23 ).numpy() , expected.numpy() ) def a ( self ): snake_case_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) snake_case_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case , 1 ).numpy() , expected.numpy() ) def a ( self ): snake_case_ = 101 snake_case_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) snake_case_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) snake_case_ = compute_token_type_ids(snake_case , snake_case ) np.testing.assert_array_equal(snake_case , snake_case )
362
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ : List[Any] = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowercase_ : str = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class _lowerCamelCase : __a = 42 __a = None __a = None __a = None __a = None def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: int= _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Dict: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def UpperCamelCase_ ( self ) -> List[str]: return self.major, self.minor, self.patch def UpperCamelCase_ ( self , lowerCAmelCase ) -> Dict: if isinstance(lowerCAmelCase , lowerCAmelCase ): return Version(lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): return other raise TypeError(f'{other} (type {type(lowerCAmelCase )}) cannot be compared to version.' ) def __eq__( self , lowerCAmelCase ) -> Optional[int]: try: SCREAMING_SNAKE_CASE__: List[str]= self._validate_operand(lowerCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__: Optional[Any]= self._validate_operand(lowerCAmelCase ) return self.tuple < other.tuple def __hash__( self ) -> List[Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCamelCase_ ( cls , lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__: Dict= {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCamelCase_ ( self ) -> str: return self.version_str def A__ ( snake_case_ : int ): SCREAMING_SNAKE_CASE__: List[Any]= _VERSION_REG.match(snake_case_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case_ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def A__ ( snake_case_ : Union[str, Any] ): return ".".join(str(snake_case_ ) for v in version_tuple )
107
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A : '''simple docstring''' @staticmethod def UpperCAmelCase ( *_snake_case : Any ,**_snake_case : List[str] ) -> List[str]: """simple docstring""" pass def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : List[str] = DepthEstimationPipeline(model=_snake_case ,image_processor=_snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self : str ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : int = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} ,_snake_case ) import datasets lowercase__ : str = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) lowercase__ : Union[str, Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] ,_snake_case ,) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @slow @require_torch def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : int = '''Intel/dpt-large''' lowercase__ : Tuple = pipeline('''depth-estimation''' ,model=_snake_case ) lowercase__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) lowercase__ : Dict = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) ,29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) ,2.662 ) @require_torch def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
560
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowerCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__ ( snake_case__ ): snake_case_ = ['''pixel_values'''] def __init__( self , A__ = True , A__ = None , A__ = PILImageResampling.BICUBIC , A__ = True , A__ = None , A__ = True , A__ = 1 / 255 , A__ = True , A__ = None , A__ = None , A__ = True , **A__ , ): """simple docstring""" super().__init__(**A__ ) UpperCAmelCase_: Optional[Any] = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_: List[str] = get_size_dict(A__ , default_to_square=A__ ) UpperCAmelCase_: Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_: List[Any] = get_size_dict(A__ , default_to_square=A__ , param_name="crop_size" ) UpperCAmelCase_: Union[str, Any] = do_resize UpperCAmelCase_: Optional[int] = size UpperCAmelCase_: str = resample UpperCAmelCase_: List[Any] = do_center_crop UpperCAmelCase_: Optional[int] = crop_size UpperCAmelCase_: List[str] = do_rescale UpperCAmelCase_: List[str] = rescale_factor UpperCAmelCase_: str = do_normalize UpperCAmelCase_: Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_: Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_: Optional[int] = do_convert_rgb def snake_case_ ( self , A__ , A__ , A__ = PILImageResampling.BICUBIC , A__ = None , **A__ , ): """simple docstring""" UpperCAmelCase_: List[str] = get_size_dict(A__ , default_to_square=A__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCAmelCase_: Dict = get_resize_output_image_size(A__ , size=size["shortest_edge"] , default_to_square=A__ ) return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__ ) def snake_case_ ( self , A__ , A__ , A__ = None , **A__ , ): """simple docstring""" UpperCAmelCase_: Optional[int] = get_size_dict(A__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(A__ , size=(size["height"], size["width"]) , data_format=A__ , **A__ ) def snake_case_ ( self , A__ , A__ , A__ = None , **A__ , ): """simple docstring""" return rescale(A__ , scale=A__ , data_format=A__ , **A__ ) def snake_case_ ( self , A__ , A__ , A__ , A__ = None , **A__ , ): """simple docstring""" return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ ) def snake_case_ ( self , A__ , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = ChannelDimension.FIRST , **A__ , ): """simple docstring""" UpperCAmelCase_: Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_: Tuple = size if size is not None else self.size UpperCAmelCase_: Tuple = get_size_dict(A__ , param_name="size" , default_to_square=A__ ) UpperCAmelCase_: Tuple = resample if resample is not None else self.resample UpperCAmelCase_: Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_: Tuple = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_: List[str] = get_size_dict(A__ , param_name="crop_size" , default_to_square=A__ ) UpperCAmelCase_: Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_: List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_: Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_: str = image_std if image_std is not None else self.image_std UpperCAmelCase_: Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_: Optional[int] = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_: int = [convert_to_rgb(A__ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_: Tuple = [to_numpy_array(A__ ) for image in images] if do_resize: UpperCAmelCase_: Any = [self.resize(image=A__ , size=A__ , resample=A__ ) for image in images] if do_center_crop: UpperCAmelCase_: Optional[Any] = [self.center_crop(image=A__ , size=A__ ) for image in images] if do_rescale: UpperCAmelCase_: Union[str, Any] = [self.rescale(image=A__ , scale=A__ ) for image in images] if do_normalize: UpperCAmelCase_: List[Any] = [self.normalize(image=A__ , mean=A__ , std=A__ ) for image in images] UpperCAmelCase_: Optional[int] = [to_channel_dimension_format(A__ , A__ ) for image in images] UpperCAmelCase_: str = {"pixel_values": images} return BatchFeature(data=A__ , tensor_type=A__ )
306
_lowerCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowercase ( _a ,_a ,_a ) -> list[int]: UpperCAmelCase_: Tuple = True UpperCAmelCase_: Optional[int] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_a ,_a ,_a ) order.append(_a ) return order def lowercase ( _a ,_a ,_a ) -> list[int]: UpperCAmelCase_: Optional[int] = True UpperCAmelCase_: str = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_a ,_a ,_a ) return component def lowercase ( _a ) -> list[list[int]]: UpperCAmelCase_: Union[str, Any] = len(_a ) * [False] UpperCAmelCase_: dict[int, list[int]] = {vert: [] for vert in range(len(_a ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_a ) UpperCAmelCase_: Optional[int] = [] for i, was_visited in enumerate(_a ): if not was_visited: order += topology_sort(_a ,_a ,_a ) UpperCAmelCase_: Optional[Any] = [] UpperCAmelCase_: Union[str, Any] = len(_a ) * [False] for i in range(len(_a ) ): UpperCAmelCase_: str = order[len(_a ) - i - 1] if not visited[vert]: UpperCAmelCase_: List[str] = find_components(_a ,_a ,_a ) components_list.append(_a ) return components_list
306
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @staticmethod @abstractmethod def _a ( _snake_case : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def _a ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError()
9
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def lowerCAmelCase_ ( lowercase_ : List[str] , lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfosDict.from_directory(lowercase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def lowerCAmelCase_ ( lowercase_ : Any , lowercase_ : DatasetInfo ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = str(lowercase_ ) dataset_info.write_to_directory(lowercase_ ) __SCREAMING_SNAKE_CASE : Dict = DatasetInfo.from_directory(lowercase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowercase_ , '''dataset_info.json''' ) ) def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) __SCREAMING_SNAKE_CASE : Optional[int] = dataset_info._to_yaml_dict() assert sorted(lowercase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __SCREAMING_SNAKE_CASE : int = yaml.safe_dump(lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = yaml.safe_load(lowercase_ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = DatasetInfo() __SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1337 ), } ), ] , ) def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : DatasetInfosDict ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = str(lowercase_ ) dataset_infos_dict.write_to_directory(lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfosDict.from_directory(lowercase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __SCREAMING_SNAKE_CASE : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __SCREAMING_SNAKE_CASE : Tuple = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowercase_ , '''README.md''' ) )
674
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _lowerCAmelCase = random.Random() def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=1.0 ,_lowerCAmelCase=None ,_lowerCAmelCase=None ): '''simple docstring''' if rng is None: A_ : Any = global_rng A_ : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=400 , a__=2000 , a__=2048 , a__=128 , a__=1 , a__=512 , a__=30 , a__=44100 , ): A_ : str = parent A_ : str = batch_size A_ : str = min_seq_length A_ : Dict = max_seq_length A_ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ : Optional[Any] = spectrogram_length A_ : Optional[int] = feature_size A_ : Tuple = num_audio_channels A_ : Union[str, Any] = hop_length A_ : List[Any] = chunk_length A_ : str = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , a__=False , a__=False ): def _flatten(a__ ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: A_ : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ : Optional[Any] = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCAmelCase ( UpperCamelCase_ ,unittest.TestCase ): a = TvltFeatureExtractor def _lowerCamelCase ( self ): A_ : Dict = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): A_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """spectrogram_length""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """feature_size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """num_audio_channels""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """hop_length""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """chunk_length""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """sampling_rate""" ) ) def _lowerCamelCase ( self ): A_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Optional[Any] = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A_ : List[Any] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) A_ : Optional[Any] = feat_extract_first.to_dict() A_ : str = feat_extract_second.to_dict() A_ : Optional[int] = dict_first.pop("""mel_filters""" ) A_ : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCamelCase ( self ): A_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Tuple = os.path.join(UpperCamelCase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(UpperCamelCase__ ) A_ : List[str] = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) A_ : Any = feat_extract_first.to_dict() A_ : str = feat_extract_second.to_dict() A_ : int = dict_first.pop("""mel_filters""" ) A_ : Any = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCamelCase ( self ): A_ : int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A_ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ : Optional[int] = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input A_ : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A_ : Optional[Any] = feature_extractor(UpperCamelCase__ , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A_ : List[str] = feature_extractor( UpperCamelCase__ , return_tensors="""np""" , sampling_rate=44100 , mask_audio=UpperCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A_ : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ : Dict = np.asarray(UpperCamelCase__ ) A_ : str = feature_extractor(UpperCamelCase__ , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , a__ ): A_ : List[str] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A_ : Dict = ds.sort("""id""" ).select(range(UpperCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): A_ : Optional[Any] = self._load_datasamples(1 ) A_ : int = TvltFeatureExtractor() A_ : List[Any] = feature_extractor(UpperCamelCase__ , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) A_ : str = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , UpperCamelCase__ , atol=1E-4 ) )
712
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' A_ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A_ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: A_ : str = """""" else: A_ : List[str] = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) A_ : str = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] A_ : Optional[Any] = in_proj_bias[: config.hidden_size] A_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : str = in_proj_weight[ -config.hidden_size :, : ] A_ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : List[str] = dct.pop(_lowerCAmelCase ) A_ : Any = val def _lowerCAmelCase ( ): '''simple docstring''' A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Union[str, Any] = Image.open(requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Any = DeiTConfig() # all deit models have fine-tuned heads A_ : Optional[Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A_ : Optional[int] = 1_0_0_0 A_ : List[Any] = """huggingface/label-files""" A_ : str = """imagenet-1k-id2label.json""" A_ : Union[str, Any] = json.load(open(hf_hub_download(_lowerCAmelCase ,_lowerCAmelCase ,repo_type="""dataset""" ) ,"""r""" ) ) A_ : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A_ : Union[str, Any] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} A_ : Dict = int(deit_name[-6:-4] ) A_ : Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A_ : str = 1_9_2 A_ : Dict = 7_6_8 A_ : List[Any] = 1_2 A_ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A_ : Optional[int] = 3_8_4 A_ : List[Any] = 1_5_3_6 A_ : Optional[Any] = 1_2 A_ : List[str] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A_ : Dict = 1_0_2_4 A_ : int = 4_0_9_6 A_ : Any = 2_4 A_ : str = 1_6 # load original model from timm A_ : int = timm.create_model(_lowerCAmelCase ,pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ : Union[str, Any] = timm_model.state_dict() A_ : Optional[Any] = create_rename_keys(_lowerCAmelCase ,_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # load HuggingFace model A_ : List[str] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor A_ : List[Any] = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A_ : Any = DeiTImageProcessor(size=_lowerCAmelCase ,crop_size=config.image_size ) A_ : Optional[int] = image_processor(images=prepare_img() ,return_tensors="""pt""" ) A_ : List[str] = encoding["""pixel_values"""] A_ : List[Any] = model(_lowerCAmelCase ) A_ : Tuple = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase ,outputs.logits ,atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
481
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Union[str, Any] = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["PerceiverFeatureExtractor"] _lowerCamelCase : List[str] = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
429
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __snake_case : lowerCAmelCase__ = 42 lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="Translation" , init=_a , repr=_a ) def __call__( self : Tuple ) -> Optional[int]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __snake_case : lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="TranslationVariableLanguages" , init=_a , repr=_a ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase : Optional[int] = len(self.languages ) if self.languages else None def __call__( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(_UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase : int = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
429
1
'''simple docstring''' import argparse import datetime def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : str = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } snake_case_ : Optional[Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(A_ ) < 1_1: raise ValueError("Must be 10 characters long" ) # Get month snake_case_ : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError("Month must be between 1 - 12" ) snake_case_ : Optional[Any] = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day snake_case_ : Optional[Any] = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError("Date must be between 1 - 31" ) # Get second separator snake_case_ : Union[str, Any] = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year snake_case_ : List[str] = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation snake_case_ : int = datetime.date(int(A_ ), int(A_ ), int(A_ ) ) # Start math if m <= 2: snake_case_ : Dict = y - 1 snake_case_ : Tuple = m + 1_2 # maths var snake_case_ : Union[str, Any] = int(str(A_ )[:2] ) snake_case_ : List[Any] = int(str(A_ )[2:] ) snake_case_ : int = int(2.6 * m - 5.39 ) snake_case_ : Optional[int] = int(c / 4 ) snake_case_ : Any = int(k / 4 ) snake_case_ : Any = int(d + k ) snake_case_ : Tuple = int(t + u + v + x ) snake_case_ : int = int(z - (2 * c) ) snake_case_ : Union[str, Any] = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response snake_case_ : Any = f'Your date {date_input}, is a {days[str(A_ )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() a_ = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) a_ = parser.parse_args() zeller(args.date_input)
710
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ = "src/diffusers" a_ = "." # This is to make sure the diffusers module imported is the one in the repo. a_ = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a_ = spec.loader.load_module() def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" return line.startswith(__SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$", __SCREAMING_SNAKE_CASE ) is not None def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[int] = object_name.split("." ) snake_case_ : Dict = 0 # First let's find the module where our object lives. snake_case_ : int = parts[i] while i < len(__SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE, f'{module}.py' ) ): i += 1 if i < len(__SCREAMING_SNAKE_CASE ): snake_case_ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE, parts[i] ) if i >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__SCREAMING_SNAKE_CASE, f'{module}.py' ), "r", encoding="utf-8", newline="\n" ) as f: snake_case_ : str = f.readlines() # Now let's find the class / func in the code! snake_case_ : Any = "" snake_case_ : Optional[Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__SCREAMING_SNAKE_CASE ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). snake_case_ : Union[str, Any] = line_index while line_index < len(__SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index], __SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ : Dict = lines[start_index:line_index] return "".join(__SCREAMING_SNAKE_CASE ) a_ = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a_ = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") a_ = re.compile(R"<FILL\s+[^>]*>") def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : str = code.split("\n" ) snake_case_ : Union[str, Any] = 0 while idx < len(__SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__SCREAMING_SNAKE_CASE ): return re.search(r"^(\s*)\S", lines[idx] ).groups()[0] return "" def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[Any] = len(get_indent(__SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: snake_case_ : Optional[Any] = f'class Bla:\n{code}' snake_case_ : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=__SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = black.format_str(__SCREAMING_SNAKE_CASE, mode=__SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ : Optional[Any] = style_docstrings_in_code(__SCREAMING_SNAKE_CASE ) return result[len("class Bla:\n" ) :] if has_indent else result def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE=False ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE, "r", encoding="utf-8", newline="\n" ) as f: snake_case_ : List[Any] = f.readlines() snake_case_ : str = [] snake_case_ : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__SCREAMING_SNAKE_CASE ): snake_case_ : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = search.groups() snake_case_ : int = find_code_in_diffusers(__SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = get_indent(__SCREAMING_SNAKE_CASE ) snake_case_ : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 snake_case_ : Dict = theoretical_indent snake_case_ : Tuple = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. snake_case_ : str = True while line_index < len(__SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): break snake_case_ : Dict = lines[line_index] snake_case_ : List[Any] = _should_continue(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) and re.search(f'^{indent}# End copy', __SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ : Optional[int] = lines[start_index:line_index] snake_case_ : Optional[Any] = "".join(__SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies snake_case_ : int = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__SCREAMING_SNAKE_CASE ) is None] snake_case_ : Dict = "\n".join(__SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case_ : Union[str, Any] = replace_pattern.replace("with", "" ).split("," ) snake_case_ : Optional[Any] = [_re_replace_pattern.search(__SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue snake_case_ , snake_case_ , snake_case_ : Optional[Any] = pattern.groups() snake_case_ : Optional[int] = re.sub(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": snake_case_ : List[Any] = re.sub(obja.lower(), obja.lower(), __SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = re.sub(obja.upper(), obja.upper(), __SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line snake_case_ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) snake_case_ : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: snake_case_ : List[str] = lines[:start_index] + [theoretical_code] + lines[line_index:] snake_case_ : List[str] = start_index + 1 if overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(__SCREAMING_SNAKE_CASE, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) return diffs def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE = False ): """simple docstring""" snake_case_ : List[str] = glob.glob(os.path.join(__SCREAMING_SNAKE_CASE, "**/*.py" ), recursive=__SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = [] for filename in all_files: snake_case_ : Tuple = is_copy_consistent(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: snake_case_ : str = "\n".join(__SCREAMING_SNAKE_CASE ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a_ = parser.parse_args() check_copies(args.fix_and_overwrite)
92
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): def constraint_to_multiple_of(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=0 , lowerCAmelCase__=None ): UpperCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: UpperCAmelCase_ = math.ceil(val / multiple ) * multiple return x UpperCAmelCase_ = (output_size, output_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else output_size UpperCAmelCase_ , UpperCAmelCase_ = get_image_size(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = output_size # determine new height and width UpperCAmelCase_ = output_height / input_height UpperCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCAmelCase_ = scale_width else: # fit height UpperCAmelCase_ = scale_height UpperCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase__ ) UpperCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase__ ) return (new_height, new_width) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : int , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"height": 384, "width": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = keep_aspect_ratio UpperCAmelCase_ = ensure_multiple_of UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCAmelCase_ = get_resize_output_image_size( _UpperCAmelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Any , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) UpperCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Tuple] = None ) -> int: '''simple docstring''' UpperCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_UpperCAmelCase ): UpperCAmelCase_ = target_sizes.numpy() UpperCAmelCase_ = [] for idx in range(len(_UpperCAmelCase ) ): UpperCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_UpperCAmelCase ) UpperCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_UpperCAmelCase ) else: UpperCAmelCase_ = logits.argmax(dim=1 ) UpperCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
82
from string import ascii_uppercase __A = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) __lowerCamelCase = '' __lowerCamelCase = 0 __lowerCamelCase = 0 while div != 1: __lowerCamelCase , __lowerCamelCase = divmod(UpperCamelCase__ , UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: __lowerCamelCase = ALPHABET_VALUES[str(UpperCamelCase__ )] else: __lowerCamelCase = str(UpperCamelCase__ ) new_value += actual_value __lowerCamelCase = num // base __lowerCamelCase = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
469
0
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
267
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
267
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase__ = {} for old_key in state_dict.keys(): lowercase__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowercase__ = key.replace('''moe_layer.experts.0''' , f'ffn.experts.expert_{expert_idx}' ) else: lowercase__ = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowercase__ = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowercase__ = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowercase__ = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowercase__ = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowercase__ = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowercase__ = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowercase__ = state_dict[old_key] return new_dict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ): """simple docstring""" lowercase__ = [] lowercase__ = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) for expert in range(SCREAMING_SNAKE_CASE ): lowercase__ = switch_checkpoint_path + f'-rank-{expert}.pt' if os.path.isfile(SCREAMING_SNAKE_CASE ): lowercase__ = torch.load(SCREAMING_SNAKE_CASE )['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) lowercase__ = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) lowercase__ = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) lowercase__ = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(SCREAMING_SNAKE_CASE ) == 1: lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index lowercase__ = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin' ) lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) for key in shard: lowercase__ = shard_file # Add the metadata lowercase__ = {'''total_size''': total_size} lowercase__ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' , encoding='''utf-8''' ) as f: lowercase__ = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '''\n''' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCAmelCase = parser.parse_args() lowerCAmelCase, lowerCAmelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
43
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=0.9 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , )-> List[str]: """simple docstring""" UpperCamelCase = size if size is not None else {"shortest_edge": 30} UpperCamelCase = crop_size if crop_size is not None else {"height": 30, "width": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> str: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : List[Any] = PoolFormerImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> str: """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[int]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) def _SCREAMING_SNAKE_CASE ( self : int )-> List[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Dict: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> List[str]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : str )-> str: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
554
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): UpperCAmelCase_ : Optional[int] = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: UpperCAmelCase_ : Dict = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def _lowerCAmelCase ( _a : Tuple ) -> Optional[Any]: lowerCAmelCase_ : int = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ : List[str] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase_ : Tuple = numpy_to_pil(_a ) return images def _lowerCAmelCase ( _a : Optional[Any] ) -> Union[str, Any]: if images.ndim == 3: lowerCAmelCase_ : str = images[None, ...] lowerCAmelCase_ : Optional[int] = (images * 2_55).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCAmelCase_ : Any = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowerCAmelCase_ : str = [Image.fromarray(_a ) for image in images] return pil_images
440
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase__ ( __A ): __UpperCamelCase = ["""vqvae"""] def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , ): super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase , mel=_lowercase , vqvae=_lowercase ) def UpperCAmelCase__ ( self ): return 50 if isinstance(self.scheduler , _lowercase ) else 1_000 @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = None , _lowercase = 0 , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase = 0 , _lowercase = 0 , _lowercase = None , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase=True , ): lowerCAmelCase_ : Tuple = steps or self.get_default_steps() self.scheduler.set_timesteps(_lowercase ) lowerCAmelCase_ : Union[str, Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ : Optional[Any] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ : Tuple = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_lowercase , device=self.device , ) lowerCAmelCase_ : List[str] = noise lowerCAmelCase_ : List[str] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_lowercase , _lowercase ) lowerCAmelCase_ : Tuple = self.mel.audio_slice_to_image(_lowercase ) lowerCAmelCase_ : List[Any] = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ : Optional[Any] = (input_image / 255) * 2 - 1 lowerCAmelCase_ : Optional[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ : List[Any] = self.vqvae.encode(torch.unsqueeze(_lowercase , 0 ) ).latent_dist.sample( generator=_lowercase )[0] lowerCAmelCase_ : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ : str = self.scheduler.add_noise(_lowercase , _lowercase , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ : Union[str, Any] = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ : str = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ : List[Any] = self.scheduler.add_noise(_lowercase , _lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _lowercase ): lowerCAmelCase_ : List[Any] = self.unet(_lowercase , _lowercase , _lowercase )["""sample"""] else: lowerCAmelCase_ : Any = self.unet(_lowercase , _lowercase )["""sample"""] if isinstance(self.scheduler , _lowercase ): lowerCAmelCase_ : str = self.scheduler.step( model_output=_lowercase , timestep=_lowercase , sample=_lowercase , eta=_lowercase , generator=_lowercase , )["""prev_sample"""] else: lowerCAmelCase_ : List[str] = self.scheduler.step( model_output=_lowercase , timestep=_lowercase , sample=_lowercase , generator=_lowercase , )["""prev_sample"""] if mask is not None: if mask_start > 0: lowerCAmelCase_ : Optional[Any] = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ : Dict = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ : Dict = self.vqvae.decode(_lowercase )["""sample"""] lowerCAmelCase_ : List[Any] = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ : Optional[Any] = (images * 255).round().astype("""uint8""" ) lowerCAmelCase_ : str = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_lowercase , mode="""RGB""" ).convert("""L""" ) for _ in images) ) lowerCAmelCase_ : str = [self.mel.image_to_audio(_lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_lowercase ) ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase = 50 ): assert isinstance(self.scheduler , _lowercase ) self.scheduler.set_timesteps(_lowercase ) lowerCAmelCase_ : List[Any] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ : List[str] = (sample / 255) * 2 - 1 lowerCAmelCase_ : Optional[Any] = torch.Tensor(_lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ : int = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ : Optional[int] = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ : Any = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ : Optional[int] = 1 - alpha_prod_t lowerCAmelCase_ : Union[str, Any] = self.unet(_lowercase , _lowercase )["""sample"""] lowerCAmelCase_ : int = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( _lowercase , _lowercase , _lowercase ): lowerCAmelCase_ : Optional[int] = acos(torch.dot(torch.flatten(_lowercase ) , torch.flatten(_lowercase ) ) / torch.norm(_lowercase ) / torch.norm(_lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(_lowercase ) + sin(alpha * theta ) * xa / sin(_lowercase )
440
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCAmelCase : Optional[int] = datasets.utils.logging.get_logger(__name__) UpperCAmelCase : Optional[int] = ["""names""", """prefix"""] UpperCAmelCase : List[Any] = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] UpperCAmelCase : str = ["""encoding_errors""", """on_bad_lines"""] UpperCAmelCase : Tuple = ["""date_format"""] @dataclass class __lowercase ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase : Dict = "," UpperCamelCase : Optional[Any] = None UpperCamelCase : Tuple = "infer" UpperCamelCase : List[str] = None UpperCamelCase : Dict = None UpperCamelCase : Optional[Any] = None UpperCamelCase : Optional[int] = None UpperCamelCase : int = None UpperCamelCase : str = True UpperCamelCase : List[Any] = None UpperCamelCase : Tuple = None UpperCamelCase : List[Any] = None UpperCamelCase : Optional[int] = None UpperCamelCase : int = False UpperCamelCase : List[str] = None UpperCamelCase : Union[str, Any] = None UpperCamelCase : Tuple = None UpperCamelCase : int = True UpperCamelCase : Union[str, Any] = True UpperCamelCase : Tuple = False UpperCamelCase : Dict = True UpperCamelCase : Dict = None UpperCamelCase : Any = "." UpperCamelCase : Tuple = None UpperCamelCase : int = "\"" UpperCamelCase : Any = 0 UpperCamelCase : Optional[Any] = None UpperCamelCase : Optional[Any] = None UpperCamelCase : List[Any] = None UpperCamelCase : Optional[Any] = None UpperCamelCase : List[Any] = True UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = 0 UpperCamelCase : List[Any] = True UpperCamelCase : Optional[int] = False UpperCamelCase : List[Any] = None UpperCamelCase : List[str] = 1_0_0_0_0 UpperCamelCase : List[Any] = None UpperCamelCase : int = "strict" UpperCamelCase : Any = "error" UpperCamelCase : Optional[Any] = None def __A ( self ) -> str: '''simple docstring''' if self.delimiter is not None: lowerCamelCase = self.delimiter if self.column_names is not None: lowerCamelCase = self.column_names @property def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __lowercase ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase : Optional[int] = CsvConfig def __A ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __A ( self , A ) -> Any: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): lowerCamelCase = data_files if isinstance(a_ , a_ ): lowerCamelCase = [files] lowerCamelCase = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowerCamelCase = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): lowerCamelCase = [files] lowerCamelCase = [dl_manager.iter_files(a_ ) for file in files] splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , A ) -> pa.Table: '''simple docstring''' if self.config.features is not None: lowerCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(a_ ) for feature in self.config.features.values() ): # cheaper cast lowerCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowerCamelCase = table_cast(a_ , a_ ) return pa_table def __A ( self , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowerCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(a_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): lowerCamelCase = pd.read_csv(a_ , iterator=a_ , dtype=a_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(a_ ): lowerCamelCase = pa.Table.from_pandas(a_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a_ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(a_ )}: {e}' ) raise
457
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase : List[str] = """src/transformers""" # Matches is_xxx_available() lowerCAmelCase : List[str] = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCAmelCase : str = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase : Optional[int] = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCAmelCase : Optional[int] = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase : str = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase : List[Any] = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase : Dict = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase : Tuple = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCAmelCase : Optional[int] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCAmelCase : Optional[int] = re.compile(R"""^\s*try:""") # Catches a line with else: lowerCAmelCase : Optional[int] = re.compile(R"""^\s*else:""") def _A ( A ) -> List[Any]: if _re_test_backend.search(A ) is None: return None lowercase : Union[str, Any] = [b[0] for b in _re_backend.findall(A )] backends.sort() return "_and_".join(A ) def _A ( A ) -> Optional[Any]: with open(A ,"r" ,encoding="utf-8" ,newline="\n" ) as f: lowercase : Tuple = f.readlines() lowercase : List[str] = 0 while line_index < len(A ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A ): return None # First grab the objects without a specific backend in _import_structure lowercase : Union[str, Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowercase : Any = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A ): lowercase : int = _re_one_line_import_struct.search(A ).groups()[0] lowercase : Union[str, Any] = re.findall("\[([^\]]+)\]" ,A ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowercase : Optional[Any] = _re_import_struct_key_value.search(A ) if single_line_import_search is not None: lowercase : List[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(A ) > 0] objects.extend(A ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowercase : Tuple = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowercase : List[Any] = lines[line_index] if _re_import_struct_add_one.search(A ) is not None: objects.append(_re_import_struct_add_one.search(A ).groups()[0] ) elif _re_import_struct_add_many.search(A ) is not None: lowercase : Dict = _re_import_struct_add_many.search(A ).groups()[0].split(", " ) lowercase : Any = [obj[1:-1] for obj in imports if len(A ) > 0] objects.extend(A ) elif _re_between_brackets.search(A ) is not None: lowercase : Optional[Any] = _re_between_brackets.search(A ).groups()[0].split(", " ) lowercase : Tuple = [obj[1:-1] for obj in imports if len(A ) > 0] objects.extend(A ) elif _re_quote_object.search(A ) is not None: objects.append(_re_quote_object.search(A ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 lowercase : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase : str = [] while ( line_index < len(A ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowercase : int = lines[line_index] lowercase : Any = _re_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(A ): # If the line is an if is_backend_available, we grab all objects associated. lowercase : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowercase : List[Any] = lines[line_index] lowercase : Tuple = _re_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowercase : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _A ( A ,A ) -> List[str]: def find_duplicates(A ): return [k for k, v in collections.Counter(A ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase : str = [] for key in import_dict_objects.keys(): lowercase : List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowercase : List[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase : Optional[int] = "base imports" if key == "none" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _A ( ) -> List[Any]: lowercase : Any = [] for root, _, files in os.walk(A ): if "__init__.py" in files: lowercase : Optional[Any] = os.path.join(A ,"__init__.py" ) lowercase : Tuple = parse_init(A ) if objects is not None: lowercase : Tuple = analyze_results(*A ) if len(A ) > 0: lowercase : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("\n".join(A ) ) if len(A ) > 0: raise ValueError("\n\n".join(A ) ) def _A ( ) -> Union[str, Any]: lowercase : Dict = [] for path, directories, files in os.walk(A ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(A ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A ) / folder).glob("*.py" ) ) ) == 0: continue lowercase : str = str((Path(A ) / folder).relative_to(A ) ) lowercase : Optional[Any] = short_path.replace(os.path.sep ,"." ) submodules.append(A ) for fname in files: if fname == "__init__.py": continue lowercase : Tuple = str((Path(A ) / fname).relative_to(A ) ) lowercase : int = short_path.replace(".py" ,"" ).replace(os.path.sep ,"." ) if len(submodule.split("." ) ) == 1: submodules.append(A ) return submodules lowerCAmelCase : Dict = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def _A ( ) -> Optional[int]: # This is to make sure the transformers module imported is the one in the repo. lowercase : int = importlib.util.spec_from_file_location( "transformers" ,os.path.join(A ,"__init__.py" ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) lowercase : Optional[int] = spec.loader.load_module() lowercase : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(A ) > 0: lowercase : Optional[int] = "\n".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F'''{list_of_modules}\n''' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
372
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCamelCase : @staticmethod def _a ( *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowercase_ : str = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): __A = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase = pipeline( """document-question-answering""" , model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase = INVOICE_URL lowercase = list(zip(*apply_tesseract(load_image(_lowerCAmelCase ) , _lowerCAmelCase , """""" ) ) ) lowercase = """What is the placebo?""" lowercase = [ { """image""": load_image(_lowerCAmelCase ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = dqa_pipeline(_lowerCAmelCase , top_k=2 ) self.assertEqual( _lowerCAmelCase , [ [ {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase ), """start""": ANY(_lowerCAmelCase ), """end""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase ), """start""": ANY(_lowerCAmelCase ), """end""": ANY(_lowerCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _a ( self ) -> str: '''simple docstring''' lowercase = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) lowercase = INVOICE_URL lowercase = """How many cats are there?""" lowercase = [ {"""score""": 0.0001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] lowercase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(_lowerCAmelCase , decimals=4 ) , _lowerCAmelCase ) lowercase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(_lowerCAmelCase , decimals=4 ) , _lowerCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual(_lowerCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase = [] lowercase = [] lowercase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , words=_lowerCAmelCase , boxes=_lowerCAmelCase , top_k=2 ) self.assertEqual(_lowerCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _a ( self ) -> str: '''simple docstring''' lowercase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) lowercase = INVOICE_URL lowercase = """What is the invoice number?""" lowercase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowercase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowercase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _a ( self ) -> Dict: '''simple docstring''' lowercase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) lowercase = INVOICE_URL lowercase = """What is the invoice number?""" lowercase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowercase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowercase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=_lowerCAmelCase ) lowercase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=_lowerCAmelCase , revision="""3dc6de3""" , ) lowercase = INVOICE_URL lowercase = """What is the invoice number?""" lowercase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) lowercase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) lowercase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) lowercase = list(zip(*apply_tesseract(load_image(_lowerCAmelCase ) , _lowerCAmelCase , """""" ) ) ) # This model should also work if `image` is set to None lowercase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _a ( self ) -> Any: '''simple docstring''' lowercase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=_lowerCAmelCase ) lowercase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=_lowerCAmelCase , revision="""3dc6de3""" , max_seq_len=50 , ) lowercase = INVOICE_URL lowercase = """What is the invoice number?""" lowercase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) lowercase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) lowercase = list(zip(*apply_tesseract(load_image(_lowerCAmelCase ) , _lowerCAmelCase , """""" ) ) ) # This model should also work if `image` is set to None lowercase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def _a ( self ) -> str: '''simple docstring''' lowercase = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) lowercase = INVOICE_URL lowercase = """What is the invoice number?""" lowercase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def _a ( self ) -> Dict: '''simple docstring''' pass
653
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCAmelCase: Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase( __a : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , __a , ) if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): a__ =[image] if isinstance(image[0] , PIL.Image.Image ): a__ , a__ =image[0].size a__ , a__ =(x - x % 8 for x in (w, h)) # resize to integer multiple of 8 a__ =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] a__ =np.concatenate(__a , axis=0 ) a__ =np.array(__a ).astype(np.floataa ) / 2_55.0 a__ =image.transpose(0 , 3 , 1 , 2 ) a__ =2.0 * image - 1.0 a__ =torch.from_numpy(__a ) elif isinstance(image[0] , torch.Tensor ): a__ =torch.cat(__a , dim=0 ) return image def _lowercase( __a : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(__a , torch.Tensor ): return mask elif isinstance(__a , PIL.Image.Image ): a__ =[mask] if isinstance(mask[0] , PIL.Image.Image ): a__ , a__ =mask[0].size a__ , a__ =(x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ =[np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] a__ =np.concatenate(__a , axis=0 ) a__ =mask.astype(np.floataa ) / 2_55.0 a__ =0 a__ =1 a__ =torch.from_numpy(__a ) elif isinstance(mask[0] , torch.Tensor ): a__ =torch.cat(__a , dim=0 ) return mask class lowercase_ (lowercase__ ): snake_case =42 snake_case =42 def __init__( self , lowercase_ , lowercase_) -> Tuple: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_ , lowercase_ = 250 , lowercase_ = 0.0 , lowercase_ = 10 , lowercase_ = 10 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: a__ =image a__ =_preprocess_image(lowercase_) a__ =original_image.to(device=self.device , dtype=self.unet.dtype) a__ =_preprocess_mask(lowercase_) a__ =mask_image.to(device=self.device , dtype=self.unet.dtype) a__ =original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowercase_ , lowercase_) and len(lowercase_) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowercase_)}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") a__ =original_image.shape a__ =randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowercase_ , lowercase_ , lowercase_ , self.device) a__ =eta a__ =self.scheduler.timesteps[0] + 1 a__ =generator[0] if isinstance(lowercase_ , lowercase_) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): if t < t_last: # predict the noise residual a__ =self.unet(lowercase_ , lowercase_).sample # compute previous image: x_t -> x_t-1 a__ =self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_).prev_sample else: # compute the reverse: x_t-1 -> x_t a__ =self.scheduler.undo_step(lowercase_ , lowercase_ , lowercase_) a__ =t a__ =(image / 2 + 0.5).clamp(0 , 1) a__ =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": a__ =self.numpy_to_pil(lowercase_) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_)
20
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class UpperCamelCase__ ( __lowerCamelCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = """deberta-v2""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : Optional[int]=1_2_8_1_0_0 , SCREAMING_SNAKE_CASE_ : List[str]=1_5_3_6 , SCREAMING_SNAKE_CASE_ : List[Any]=2_4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2_4 , SCREAMING_SNAKE_CASE_ : Any=6_1_4_4 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=5_1_2 , SCREAMING_SNAKE_CASE_ : Tuple=0 , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=1E-7 , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Dict=-1 , SCREAMING_SNAKE_CASE_ : Optional[int]=0 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Tuple = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Any = relative_attention lowerCAmelCase_ : Tuple = max_relative_positions lowerCAmelCase_ : Dict = pad_token_id lowerCAmelCase_ : Dict = position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE_ ) == str: lowerCAmelCase_ : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase_ : Tuple = pos_att_type lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Any = kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = pooler_dropout lowerCAmelCase_ : Optional[Any] = pooler_hidden_act class UpperCamelCase__ ( __lowerCamelCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase_ : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase_ : str = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): return 1_2 def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] = -1 , SCREAMING_SNAKE_CASE_ : Any = -1 , SCREAMING_SNAKE_CASE_ : Optional[int] = -1 , SCREAMING_SNAKE_CASE_ : Optional[Any] = False , SCREAMING_SNAKE_CASE_ : List[str] = None , SCREAMING_SNAKE_CASE_ : Tuple = 3 , SCREAMING_SNAKE_CASE_ : Any = 4_0 , SCREAMING_SNAKE_CASE_ : Optional[Any] = 4_0 , SCREAMING_SNAKE_CASE_ : List[str] = None , ): lowerCAmelCase_ : int = super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
720
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = VQModel _SCREAMING_SNAKE_CASE = """sample""" @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=(3_2, 3_2) ): lowerCAmelCase_ : Tuple = 4 lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : int = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } lowerCAmelCase_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : str ): pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Any = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(SCREAMING_SNAKE_CASE_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase_ : int = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCAmelCase_ : Dict = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ).sample lowerCAmelCase_ : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase_ : int = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
317
0
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = val __UpperCAmelCase : List[str] = None __UpperCAmelCase : str = None def _snake_case ( self , UpperCamelCase_ ): if self.val: if val < self.val: if self.left is None: __UpperCAmelCase : Dict = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: __UpperCAmelCase : Dict = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[Any] = val def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" if root: inorder(root.left , _lowercase ) res.append(root.val ) inorder(root.right , _lowercase ) def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" if len(_lowercase ) == 0: return arr __UpperCAmelCase : Union[str, Any] = Node(arr[0] ) for i in range(1 , len(_lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. __UpperCAmelCase : Optional[Any] = [] inorder(_lowercase , _lowercase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
168
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case_ : str = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] def __init__( self : Any , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Union[int, float] = 1 / 2_55 , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , **lowercase : Tuple , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_24} UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} UpperCAmelCase : List[Any] = get_size_dict(lowercase , param_name="crop_size" ) UpperCAmelCase : str = do_resize UpperCAmelCase : Union[str, Any] = size UpperCAmelCase : Any = resample UpperCAmelCase : str = do_rescale UpperCAmelCase : List[str] = rescale_factor UpperCAmelCase : List[str] = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : str = do_flip_channel_order def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PIL.Image.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase : Dict = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : Dict = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : List[str] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase : int = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : Any , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(lowercase , data_format=lowercase ) def __lowerCAmelCase ( self : Optional[Any] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : str , ): '''simple docstring''' UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : List[str] = resample if resample is not None else self.resample UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : int = get_size_dict(lowercase , param_name="crop_size" ) UpperCAmelCase : List[str] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCAmelCase : List[str] = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase : Dict = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase : Optional[Any] = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase : Optional[Any] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase : Tuple = [self.flip_channel_order(image=lowercase ) for image in images] UpperCAmelCase : Tuple = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase : Tuple = {"pixel_values": images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def __lowerCAmelCase ( self : Dict , lowercase : Union[str, Any] , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase ): UpperCAmelCase : Optional[Any] = target_sizes.numpy() UpperCAmelCase : Tuple = [] for idx in range(len(lowercase ) ): UpperCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase ) UpperCAmelCase : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase : Dict = logits.argmax(dim=1 ) UpperCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
595
0
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( A : int = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Optional[int] = 4_2 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCamelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
712
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : Optional[int] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 'deberta-v2' def __init__( self , _lowerCAmelCase=128100 , _lowerCAmelCase=1536 , _lowerCAmelCase=24 , _lowerCAmelCase=24 , _lowerCAmelCase=6144 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=1e-7 , _lowerCAmelCase=False , _lowerCAmelCase=-1 , _lowerCAmelCase=0 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=0 , _lowerCAmelCase="gelu" , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : Tuple = type_vocab_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : List[Any] = relative_attention UpperCAmelCase__ : Tuple = max_relative_positions UpperCAmelCase__ : List[str] = pad_token_id UpperCAmelCase__ : Any = position_biased_input # Backwards compatibility if type(_lowerCAmelCase ) == str: UpperCAmelCase__ : Tuple = [x.strip() for x in pos_att_type.lower().split("""|""" )] UpperCAmelCase__ : Dict = pos_att_type UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Any = kwargs.get("""pooler_hidden_size""" , _lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = pooler_dropout UpperCAmelCase__ : int = pooler_hidden_act class UpperCAmelCase_ ( __lowerCamelCase ): @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": UpperCAmelCase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ : Tuple = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = 3 , _lowerCAmelCase = 40 , _lowerCAmelCase = 40 , _lowerCAmelCase = None , ): UpperCAmelCase__ : int = super().generate_dummy_inputs(preprocessor=_lowerCAmelCase , framework=_lowerCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
79
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , ): UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : int = patch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : int = is_training UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Any = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : Any = (image_size // patch_size) ** 2 UpperCAmelCase__ : Tuple = num_patches + 1 def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : str = TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase__ : str = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase__ : Optional[Any] = self.image_size // 2 UpperCAmelCase__ : List[str] = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase__ : List[Any] = model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase__ : str = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Tuple = self.type_sequence_label_size UpperCAmelCase__ : List[Any] = TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase__ : Tuple = self.image_size // 2 UpperCAmelCase__ : Union[str, Any] = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __lowerCamelCase = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = TFViTModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def _lowerCamelCase ( ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) UpperCAmelCase__ : List[Any] = self.default_image_processor UpperCAmelCase__ : Union[str, Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass UpperCAmelCase__ : int = model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase__ : int = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
79
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : int = logging.get_logger(__name__) set_seed(7_70) _UpperCAmelCase : Optional[Any] = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } _UpperCAmelCase : List[Any] = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } _UpperCAmelCase : Dict = os.path.dirname(os.path.abspath(__file__)) _UpperCAmelCase : Optional[int] = os.path.join(os.path.expanduser('''~'''), '''.cache''') _UpperCAmelCase : Any = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : int=False ) -> str: '''simple docstring''' lowercase =model_type if use_small: key += "_small" return os.path.join(lowercase_ , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def UpperCamelCase ( lowercase_ : int , lowercase_ : str ) -> Union[str, Any]: '''simple docstring''' os.makedirs(lowercase_ , exist_ok=lowercase_ ) hf_hub_download(repo_id=lowercase_ , filename=lowercase_ , local_dir=lowercase_ ) def UpperCamelCase ( lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]=False , lowercase_ : Optional[int]="text" ) -> Optional[Any]: '''simple docstring''' if model_type == "text": lowercase =BarkSemanticModel lowercase =BarkSemanticConfig lowercase =BarkSemanticGenerationConfig elif model_type == "coarse": lowercase =BarkCoarseModel lowercase =BarkCoarseConfig lowercase =BarkCoarseGenerationConfig elif model_type == "fine": lowercase =BarkFineModel lowercase =BarkFineConfig lowercase =BarkFineGenerationConfig else: raise NotImplementedError() lowercase =f'{model_type}_small' if use_small else model_type lowercase =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase_ ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) lowercase =torch.load(lowercase_ , map_location=lowercase_ ) # this is a hack lowercase =checkpoint['''model_args'''] if "input_vocab_size" not in model_args: lowercase =model_args['''vocab_size'''] lowercase =model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase =model_args.pop('''n_head''' ) lowercase =model_args.pop('''n_embd''' ) lowercase =model_args.pop('''n_layer''' ) lowercase =ConfigClass(**checkpoint['''model_args'''] ) lowercase =ModelClass(config=lowercase_ ) lowercase =GenerationConfigClass() lowercase =model_generation_config lowercase =checkpoint['''model'''] # fixup checkpoint lowercase ='''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(lowercase_ ): # replace part of the key with corresponding layer name in HF implementation lowercase =k[len(lowercase_ ) :] for old_layer_name in new_layer_name_dict: lowercase =new_k.replace(lowercase_ , new_layer_name_dict[old_layer_name] ) lowercase =state_dict.pop(lowercase_ ) lowercase =set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase ={k for k in extra_keys if not k.endswith('''.attn.bias''' )} lowercase =set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase ={k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(lowercase_ ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(lowercase_ ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(lowercase_ , strict=lowercase_ ) lowercase =model.num_parameters(exclude_embeddings=lowercase_ ) lowercase =checkpoint['''best_val_loss'''].item() logger.info(f'model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowercase_ , 3 )} loss' ) model.eval() model.to(lowercase_ ) del checkpoint, state_dict return model def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : Any=False , lowercase_ : Any="text" ) -> int: '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase ='''cpu''' # do conversion on cpu lowercase =_get_ckpt_path(lowercase_ , use_small=lowercase_ ) lowercase =_load_model(lowercase_ , lowercase_ , model_type=lowercase_ , use_small=lowercase_ ) # load bark initial model lowercase =_bark_load_model(lowercase_ , '''cpu''' , model_type=lowercase_ , use_small=lowercase_ ) if model_type == "text": lowercase =bark_model['''model'''] if model.num_parameters(exclude_embeddings=lowercase_ ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model lowercase =5 lowercase =1_0 if model_type in ["text", "coarse"]: lowercase =torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) lowercase =bark_model(lowercase_ )[0] lowercase =model(lowercase_ ) # take last logits lowercase =output_new_model_total.logits[:, [-1], :] else: lowercase =3 lowercase =8 lowercase =torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase =model(lowercase_ , lowercase_ ) lowercase =bark_model(lowercase_ , lowercase_ ) lowercase =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('''initial and new outputs are not equal''' ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Tuple , ) -> int: '''simple docstring''' lowercase =os.path.join(lowercase_ , lowercase_ ) lowercase =BarkSemanticConfig.from_pretrained(os.path.join(lowercase_ , '''config.json''' ) ) lowercase =BarkCoarseConfig.from_pretrained(os.path.join(lowercase_ , '''config.json''' ) ) lowercase =BarkFineConfig.from_pretrained(os.path.join(lowercase_ , '''config.json''' ) ) lowercase =EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) lowercase =BarkSemanticModel.from_pretrained(lowercase_ ) lowercase =BarkCoarseModel.from_pretrained(lowercase_ ) lowercase =BarkFineModel.from_pretrained(lowercase_ ) lowercase =EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) lowercase =BarkConfig.from_sub_model_configs( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase =BarkModel(lowercase_ ) lowercase =semantic lowercase =coarseAcoustic lowercase =fineAcoustic lowercase =codec lowercase =bark_generation_config Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) bark.save_pretrained(lowercase_ , repo_id=lowercase_ , push_to_hub=lowercase_ ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') _UpperCAmelCase : List[str] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
714
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict ) -> Optional[int]: '''simple docstring''' lowercase =1.5 lowercase =int(factor * num_class_images ) lowercase =ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=lowercase_ , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=lowercase_ ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: lowercase =client.query(text=lowercase_ ) if len(lowercase_ ) >= factor * num_class_images or num_images > 1E4: break else: lowercase =int(factor * num_images ) lowercase =ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=lowercase_ , aesthetic_weight=0.1 , ) lowercase =0 lowercase =0 lowercase =tqdm(desc='''downloading real regularization images''' , total=lowercase_ ) with open(f'{class_data_dir}/caption.txt' , '''w''' ) as fa, open(f'{class_data_dir}/urls.txt' , '''w''' ) as fa, open( f'{class_data_dir}/images.txt' , '''w''' ) as fa: while total < num_class_images: lowercase =class_images[count] count += 1 try: lowercase =requests.get(images['''url'''] ) if img.status_code == 2_0_0: lowercase =Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'{class_data_dir}/images/{total}.jpg' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase ( ) -> Dict: '''simple docstring''' lowercase =argparse.ArgumentParser('''''' , add_help=lowercase_ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=lowercase_ , type=lowercase_ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=lowercase_ , type=lowercase_ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_0_0 , type=lowercase_ ) return parser.parse_args() if __name__ == "__main__": _UpperCAmelCase : Optional[int] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
145
0
from __future__ import annotations import math from collections.abc import Callable def lowercase ( __A : List[Any] , __A : Any , __A : Tuple , __A : Optional[Any] = 100 , ) -> float: '''simple docstring''' snake_case : Dict = x_start snake_case : str = fnc(lowerCamelCase_ ) snake_case : Tuple = 0.0 for _ in range(lowerCamelCase_ ): # Approximates curve as a sequence of linear lines and sums their length snake_case : List[Any] = (x_end - x_start) / steps + xa snake_case : Dict = fnc(lowerCamelCase_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case : int = xa snake_case : Union[str, Any] = fxa return length if __name__ == "__main__": def lowercase ( __A : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') __lowercase : Any = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
36
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCAmelCase__ = 'CompVis/stable-diffusion-v1-1' lowerCAmelCase__ = 'CompVis/stable-diffusion-v1-2' lowerCAmelCase__ = 'CompVis/stable-diffusion-v1-3' lowerCAmelCase__ = 'CompVis/stable-diffusion-v1-4' class __lowercase (__lowerCamelCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , UpperCAmelCase_ : bool = True , ): super()._init_() UpperCamelCase__ : int = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[Any] = StableDiffusionPipeline( vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , requires_safety_checker=UpperCAmelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea) @property def __UpperCamelCase ( self : Optional[Any]): return {k: getattr(self , UpperCAmelCase_) for k in self.config.keys() if not k.startswith('_')} def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[Union[str, int]] = "auto"): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase__ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_) def __UpperCamelCase ( self : Any): self.enable_attention_slicing(UpperCAmelCase_) @torch.no_grad() def __UpperCamelCase ( self : str , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Optional[int] , ): return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Tuple , ): return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : str , ): return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Dict , ): return self.pipea( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) @torch.no_grad() def __UpperCamelCase ( self : int , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Tuple , ): UpperCamelCase__ : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(UpperCAmelCase_) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` must be divisible by 8 but are {height} and {width}.') # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase__ : Dict = self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase__ : Optional[Any] = self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase__ : Optional[Any] = self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase__ : List[str] = self.textaimg_sda_a( prompt=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]])
596
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def UpperCamelCase( lowercase_ , lowercase_=False , lowercase_=False ) -> Tuple: '''simple docstring''' snake_case_ = """backbone.""" if is_semantic else """""" snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', """beit.embeddings.cls_token"""), (f'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""), (f'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""), (f'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' for i in range(config.num_hidden_layers ): snake_case_ = """backbone.""" if is_semantic else """""" # queries, keys and values snake_case_ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) snake_case_ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) snake_case_ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = q_bias snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case_ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) snake_case_ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) snake_case_ = gamma_a snake_case_ = gamma_a def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = dct.pop(lowercase_ ) snake_case_ = val def UpperCamelCase( ) -> Optional[int]: '''simple docstring''' snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=False ) -> Dict: '''simple docstring''' snake_case_ = False if """rvlcdip""" in checkpoint_url else True snake_case_ = BeitConfig(use_absolute_position_embeddings=lowercase_ , use_mask_token=lowercase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 # labels if "rvlcdip" in checkpoint_url: snake_case_ = 16 snake_case_ = """huggingface/label-files""" snake_case_ = """rvlcdip-id2label.json""" snake_case_ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(lowercase_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case_ = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )["""model"""] snake_case_ = create_rename_keys(lowercase_ , has_lm_head=lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ , has_lm_head=lowercase_ ) # load HuggingFace model snake_case_ = BeitForMaskedImageModeling(lowercase_ ) if has_lm_head else BeitForImageClassification(lowercase_ ) model.eval() model.load_state_dict(lowercase_ ) # Check outputs on an image snake_case_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors="""pt""" ) snake_case_ = encoding["""pixel_values"""] snake_case_ = model(lowercase_ ) snake_case_ = outputs.logits # verify logits snake_case_ = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowercase_ ), "Shape of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: if has_lm_head: snake_case_ = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: snake_case_ = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowercase_ , lowercase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowercase_ , ) model.push_to_hub( repo_path_or_name=Path(lowercase_ , lowercase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowercase_ , ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase_ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
161
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.txt'''} lowerCamelCase_ = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } lowerCamelCase_ = { '''openbmb/cpm-ant-10b''': 1024, } def UpperCamelCase( lowercase_ ) -> int: '''simple docstring''' snake_case_ = collections.OrderedDict() with open(lowercase_ , """r""" , encoding="""utf-8""" ) as reader: snake_case_ = reader.readlines() for index, token in enumerate(lowercase_ ): snake_case_ = token.rstrip("""\n""" ) snake_case_ = index return vocab class __lowerCamelCase ( __snake_case ): def __init__( self , lowerCamelCase , lowerCamelCase="<unk>" , lowerCamelCase=200 ) -> List[Any]: snake_case_ = vocab snake_case_ = unk_token snake_case_ = max_input_chars_per_word def lowerCAmelCase_ ( self , lowerCamelCase ) -> Union[str, Any]: snake_case_ = list(lowerCamelCase ) if len(lowerCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] snake_case_ = 0 snake_case_ = [] while start < len(lowerCamelCase ): snake_case_ = len(lowerCamelCase ) snake_case_ = None while start < end: snake_case_ = """""".join(chars[start:end] ) if substr in self.vocab: snake_case_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase ) snake_case_ = end return sub_tokens class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Tuple = ['input_ids', 'attention_mask'] lowerCamelCase_ : Optional[int] = False def __init__( self , lowerCamelCase , lowerCamelCase="<d>" , lowerCamelCase="</d>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="<unk>" , lowerCamelCase="</n>" , lowerCamelCase="</_>" , lowerCamelCase="left" , **lowerCamelCase , ) -> Any: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=lowerCamelCase , eod_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , unk_token=lowerCamelCase , line_token=lowerCamelCase , space_token=lowerCamelCase , padding_side=lowerCamelCase , **lowerCamelCase , ) snake_case_ = bod_token snake_case_ = eod_token snake_case_ = load_vocab(lowerCamelCase ) snake_case_ = self.encoder[space_token] snake_case_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) snake_case_ = {v: k for k, v in self.encoder.items()} snake_case_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase_ ( self ) -> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: return self.encoder[self.eod_token] @property def lowerCAmelCase_ ( self ) -> Tuple: return self.encoder["\n"] @property def lowerCAmelCase_ ( self ) -> int: return len(self.encoder ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> List[str]: snake_case_ = [] for x in jieba.cut(lowerCamelCase , cut_all=lowerCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase ) ) return output_tokens def lowerCAmelCase_ ( self , lowerCamelCase , **lowerCamelCase ) -> Dict: snake_case_ = [i for i in token_ids if i >= 0] snake_case_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase , **lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Any: return token in self.encoder def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: return "".join(lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> List[Any]: return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Optional[Any]: return self.decoder.get(lowerCamelCase , self.unk_token ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: if os.path.isdir(lowerCamelCase ): snake_case_ = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case_ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case_ = 0 if " " in self.encoder: snake_case_ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case_ = self.encoder["""\n"""] del self.encoder["\n"] snake_case_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case_ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) return [1] + ([0] * len(lowerCamelCase ))
161
1