code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : Optional[Any] = logging.get_logger(__name__) a : Dict = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a : Dict = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class SCREAMING_SNAKE_CASE__ ( snake_case_ ): __SCREAMING_SNAKE_CASE = 'whisper' __SCREAMING_SNAKE_CASE = ['past_key_values'] __SCREAMING_SNAKE_CASE = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Union[str, Any] , a_ : Tuple=51_865 , a_ : Dict=80 , a_ : Any=6 , a_ : Optional[Any]=4 , a_ : Optional[int]=6 , a_ : Any=4 , a_ : str=1_536 , a_ : Optional[int]=1_536 , a_ : Optional[Any]=0.0 , a_ : Any=0.0 , a_ : Tuple=50_257 , a_ : List[str]=True , a_ : str=True , a_ : str="gelu" , a_ : Optional[Any]=256 , a_ : Union[str, Any]=0.0 , a_ : Any=0.0 , a_ : str=0.0 , a_ : List[str]=0.02 , a_ : List[str]=False , a_ : str=1_500 , a_ : Any=448 , a_ : str=50_256 , a_ : List[Any]=50_256 , a_ : Any=50_256 , a_ : int=None , a_ : Optional[Any]=[220, 50_256] , a_ : Optional[Any]=False , a_ : int=256 , a_ : List[str]=False , a_ : Dict=0.05 , a_ : List[str]=10 , a_ : int=2 , a_ : Tuple=0.0 , a_ : int=10 , a_ : Optional[int]=0 , a_ : Dict=7 , **a_ : List[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = num_mel_bins __snake_case = d_model __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = encoder_ffn_dim __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case = max_source_positions __snake_case = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __snake_case = classifier_proj_size __snake_case = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = apply_spec_augment __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length __snake_case = mask_feature_min_masks __snake_case = median_filter_width super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , suppress_tokens=a_ , begin_suppress_tokens=a_ , **a_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ ): @property def A ( self : Optional[Any] ): """simple docstring""" __snake_case = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: __snake_case = {0: "batch"} else: __snake_case = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) return common_inputs def A ( self : List[Any] , a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional["TensorType"] = None , a_ : int = 22_050 , a_ : float = 5.0 , a_ : int = 220 , ): """simple docstring""" __snake_case = OrderedDict() __snake_case = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a_ , framework=a_ , sampling_rate=a_ , time_duration=a_ , frequency=a_ , ) __snake_case = encoder_inputs["input_features"].shape[2] __snake_case = encoder_sequence_length // 2 if self.use_past else seq_length __snake_case = super().generate_dummy_inputs( preprocessor.tokenizer , a_ , a_ , a_ , a_ ) __snake_case = encoder_inputs.pop("input_features" ) __snake_case = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: __snake_case = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def A ( self : Dict ): """simple docstring""" return 1e-3
69
from jiwer import compute_measures import datasets __a :List[Any] = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __a :Union[str, Any] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __a :str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __A ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def __A ( self : Dict , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: A_ = 0 A_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): A_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
86
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
712
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Optional[int]=0 ): snake_case__ = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_a ) ) snake_case__ = np.random.RandomState(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) # warmup pass to apply optimizations snake_case__ = pipe(**self.get_dummy_inputs() ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = ort.SessionOptions() snake_case__ = False return options def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) snake_case__ = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = '''A fantasy landscape, trending on artstation''' snake_case__ = np.random.RandomState(0 ) snake_case__ = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type='''np''' , ) snake_case__ = output.images snake_case__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) snake_case__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) snake_case__ = init_image.resize((7_68, 5_12) ) snake_case__ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = '''A fantasy landscape, trending on artstation''' snake_case__ = np.random.RandomState(0 ) snake_case__ = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type='''np''' , ) snake_case__ = output.images snake_case__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) snake_case__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
33
def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[float, float]: # Check if the input is valid if not len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
684
0
'''simple docstring''' def _lowerCAmelCase( _lowerCAmelCase ) -> int: snake_case__ : list[list[int]] = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): snake_case__ : Tuple = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __a = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: __a = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
718
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[int] = tmp_path / """cache""" snake_case__ : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ : Tuple = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = tmp_path / """cache""" snake_case__ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : int = features.copy() if features else default_expected_features snake_case__ : int = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = tmp_path / """cache""" snake_case__ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : List[str] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Union[str, Any] = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Dict = [parquet_path] snake_case__ : int = tmp_path / """cache""" snake_case__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : int = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=("train",) ) -> List[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: snake_case__ : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : List[str] = tmp_path / """cache""" snake_case__ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ : Union[str, Any] = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : List[Any] = tmp_path / """cache""" snake_case__ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : Optional[Any] = features.copy() if features else default_expected_features snake_case__ : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ : List[str] = ParquetDatasetReader({"""train""": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: if split: snake_case__ : List[str] = {split: parquet_path} else: snake_case__ : Optional[int] = """train""" snake_case__ : Tuple = {"""train""": parquet_path, """test""": parquet_path} snake_case__ : Optional[Any] = tmp_path / """cache""" snake_case__ : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : Tuple = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : Any = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case__ : Optional[Any] = pq.ParquetFile(tmp_path / """foo.parquet""" ) snake_case__ : Optional[int] = pf.read() assert dataset.data.table == output_table def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : int = str(shared_datadir / """test_image_rgb.jpg""" ) snake_case__ : List[Any] = {"""image""": [image_path]} snake_case__ : Dict = Features({"""image""": Image()} ) snake_case__ : Optional[int] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) snake_case__ : str = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case__ : Dict = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features snake_case__ : List[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: assert get_writer_batch_size(_lowerCAmelCase ) == expected
301
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase__ : Optional[int] = random.Random() def a__ ( lowercase : Optional[int], lowercase : List[Any]=1.0, lowercase : Dict=None, lowercase : Optional[Any]=None ) -> List[str]: """simple docstring""" if rng is None: _UpperCamelCase = global_rng _UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple=7 , lowerCAmelCase__ : List[str]=400 , lowerCAmelCase__ : str=2000 , lowerCAmelCase__ : List[Any]=1 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Optional[int]=16000 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : int=80 , lowerCAmelCase__ : Union[str, Any]=16 , lowerCAmelCase__ : Optional[Any]=64 , lowerCAmelCase__ : Union[str, Any]="hann_window" , lowerCAmelCase__ : List[str]=80 , lowerCAmelCase__ : Union[str, Any]=7600 , lowerCAmelCase__ : List[Any]=1e-1_0 , lowerCAmelCase__ : List[Any]=True , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = min_seq_length _UpperCamelCase = max_seq_length _UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCamelCase = feature_size _UpperCamelCase = padding_value _UpperCamelCase = sampling_rate _UpperCamelCase = do_normalize _UpperCamelCase = num_mel_bins _UpperCamelCase = hop_length _UpperCamelCase = win_length _UpperCamelCase = win_function _UpperCamelCase = fmin _UpperCamelCase = fmax _UpperCamelCase = mel_floor _UpperCamelCase = return_attention_mask def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Optional[int]=False ) -> List[str]: '''simple docstring''' def _flatten(lowerCAmelCase__ : Union[str, Any] ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: _UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCamelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCamelCase = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs def snake_case__ ( self : str , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Union[str, Any]=False ) -> Any: '''simple docstring''' if equal_length: _UpperCamelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCamelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCamelCase = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : str = SpeechTaFeatureExtractor def snake_case__ ( self : str ) -> str: '''simple docstring''' _UpperCamelCase = SpeechTaFeatureExtractionTester(self ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' self.assertTrue(np.all(np.mean(lowerCAmelCase__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ , axis=0 ) - 1 ) < 1e-3 ) ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCamelCase = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input _UpperCamelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _UpperCamelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test batched _UpperCamelCase = feat_extract(lowerCAmelCase__ , return_tensors='''np''' ).input_values _UpperCamelCase = feat_extract(lowerCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCamelCase = ['''longest''', '''max_length''', '''do_not_pad'''] _UpperCamelCase = [None, 1600, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors='''np''' ) _UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase = range(800 , 1400 , 200 ) _UpperCamelCase = [floats_list((1, x) )[0] for x in lengths] _UpperCamelCase = ['''longest''', '''max_length''', '''do_not_pad'''] _UpperCamelCase = [None, 1600, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = feat_extract(lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding=lowerCAmelCase__ ) _UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCamelCase = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) _UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCamelCase = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) _UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCamelCase = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) _UpperCamelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def snake_case__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase = np.random.rand(100 ).astype(np.floataa ) _UpperCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCamelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCamelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case__ ( self : str ) -> str: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCamelCase = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test feature size _UpperCamelCase = feature_extractor(audio_target=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _UpperCamelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values _UpperCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test batched _UpperCamelCase = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_values _UpperCamelCase = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCamelCase = np.asarray(lowerCAmelCase__ ) _UpperCamelCase = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_values _UpperCamelCase = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target() _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) for x, y in zip(lowerCAmelCase__ , processed_features[input_name] ) ) ) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase__ ) _UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) _UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase__ ) _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) _UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def snake_case__ ( self : int ) -> Any: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target() _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} ) _UpperCamelCase = feat_extract.num_mel_bins # hack! _UpperCamelCase = feat_extract.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''np''' )[input_name] _UpperCamelCase = feat_extract.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.feat_extract_dict _UpperCamelCase = True _UpperCamelCase = self.feature_extraction_class(**lowerCAmelCase__ ) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target() _UpperCamelCase = [len(lowerCAmelCase__ ) for x in speech_inputs] _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} ) _UpperCamelCase = feat_extract.num_mel_bins # hack! _UpperCamelCase = feat_extract.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowerCAmelCase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.feat_extract_dict _UpperCamelCase = True _UpperCamelCase = self.feature_extraction_class(**lowerCAmelCase__ ) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_target() _UpperCamelCase = [len(lowerCAmelCase__ ) for x in speech_inputs] _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} ) _UpperCamelCase = min(lowerCAmelCase__ ) _UpperCamelCase = feat_extract.num_mel_bins # hack! _UpperCamelCase = feat_extract.pad( lowerCAmelCase__ , padding='''max_length''' , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowerCAmelCase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' from datasets import load_dataset _UpperCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _UpperCamelCase = ds.sort('''id''' ).select(range(lowerCAmelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on _UpperCamelCase = self._load_datasamples(1 ) _UpperCamelCase = SpeechTaFeatureExtractor() _UpperCamelCase = feature_extractor(lowerCAmelCase__ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCAmelCase__ , atol=1e-6 ) ) def snake_case__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on _UpperCamelCase = self._load_datasamples(1 ) _UpperCamelCase = SpeechTaFeatureExtractor() _UpperCamelCase = feature_extractor(audio_target=lowerCAmelCase__ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCAmelCase__ , atol=1e-4 ) )
98
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : List[Any] = """segformer""" def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=[2, 2, 2, 2] , lowerCamelCase_=[8, 4, 2, 1] , lowerCamelCase_=[3_2, 6_4, 1_6_0, 2_5_6] , lowerCamelCase_=[7, 3, 3, 3] , lowerCamelCase_=[4, 2, 2, 2] , lowerCamelCase_=[1, 2, 5, 8] , lowerCamelCase_=[4, 4, 4, 4] , lowerCamelCase_="gelu" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=0.1 , lowerCamelCase_=1e-6 , lowerCamelCase_=2_5_6 , lowerCamelCase_=2_5_5 , **lowerCamelCase_ , ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowerCamelCase_ , ) _a : Union[str, Any] = num_channels _a : Any = num_encoder_blocks _a : Union[str, Any] = depths _a : int = sr_ratios _a : List[str] = hidden_sizes _a : Tuple = patch_sizes _a : Any = strides _a : List[Any] = mlp_ratios _a : str = num_attention_heads _a : str = hidden_act _a : List[Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Any = classifier_dropout_prob _a : Optional[Any] = initializer_range _a : int = drop_path_rate _a : int = layer_norm_eps _a : Optional[Any] = decoder_hidden_size _a : int = kwargs.get('reshape_last_stage' , lowerCamelCase_ ) _a : str = semantic_loss_ignore_index class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Any = version.parse("""1.11""" ) @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCamelCase ( self ) -> float: return 1e-4 @property def __UpperCamelCase ( self ) -> int: return 1_2
120
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ (_UpperCAmelCase ): def __init__( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) ->str: '''simple docstring''' super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: _a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , a_ , standard_warn=a_ ) _a = dict(scheduler.config ) _a = 1 _a = FrozenDict(a_ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: _a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , a_ , standard_warn=a_ ) _a = dict(scheduler.config ) _a = True _a = FrozenDict(a_ ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=a_ , segmentation_processor=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , unet=a_ , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , ) def lowerCamelCase__ ( self , a_ = "auto" ) ->str: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a_ ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' self.enable_attention_slicing(a_ ) def lowerCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _a = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(a_ , a_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , a_ , a_ , a_ , a_ = 5_1_2 , a_ = 5_1_2 , a_ = 5_0 , a_ = 7.5 , a_ = None , a_ = 1 , a_ = 0.0 , a_ = None , a_ = None , a_ = "pil" , a_ = True , a_ = None , a_ = 1 , **a_ , ) ->Optional[Any]: '''simple docstring''' _a = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) _a = self.segmentation_model(**a_ ) _a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _a = self.numpy_to_pil(a_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=a_ , image=a_ , mask_image=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , )
612
"""simple docstring""" def lowerCAmelCase ( UpperCamelCase_: Optional[int] , UpperCamelCase_: str ) -> List[Any]: '''simple docstring''' _a = (boundary[1] - boundary[0]) / steps _a = boundary[0] _a = boundary[1] _a = make_points(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _a = 0.0 y += (h / 2.0) * f(UpperCamelCase_ ) for i in x_i: # print(i) y += h * f(UpperCamelCase_ ) y += (h / 2.0) * f(UpperCamelCase_ ) return y def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Any ) -> str: '''simple docstring''' _a = a + h while x < (b - h): yield x _a = x + h def lowerCAmelCase ( UpperCamelCase_: List[str] ) -> int: # enter your function here '''simple docstring''' _a = (x - 0) * (x - 0) return y def lowerCAmelCase ( ) -> Tuple: '''simple docstring''' _a = 0.0 # Lower bound of integration _a = 1.0 # Upper bound of integration _a = 10.0 # define number of steps or resolution _a = [a, b] # define boundary of integration _a = method_a(UpperCamelCase_ , UpperCamelCase_ ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
612
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _a = get_logger(__name__) _a = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class __A : '''simple docstring''' @add_start_docstrings(__lowerCAmelCase ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class __A : '''simple docstring''' @add_start_docstrings(__lowerCAmelCase ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class __A ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(__lowerCAmelCase ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' for processor in self: lowerCamelCase__ = inspect.signature(processor.__call__ ).parameters if len(__lowerCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) lowerCamelCase__ = processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) else: lowerCamelCase__ = processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase ): '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) lowerCamelCase__ = temperature def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = scores / self.temperature return scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase = -float('''Inf''' ) , __lowerCAmelCase = 1 ): '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) lowerCamelCase__ = top_p lowerCamelCase__ = filter_value lowerCamelCase__ = min_tokens_to_keep def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = lax.top_k(__lowerCAmelCase , scores.shape[-1] ) lowerCamelCase__ = jnp.full_like(__lowerCAmelCase , self.filter_value ) lowerCamelCase__ = jax.nn.softmax(__lowerCAmelCase , axis=-1 ).cumsum(axis=-1 ) lowerCamelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowerCamelCase__ = jnp.roll(__lowerCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(__lowerCAmelCase ) # min tokens to keep lowerCamelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCAmelCase ) lowerCamelCase__ = jnp.where(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = jax.lax.sort_key_val(__lowerCAmelCase , __lowerCAmelCase )[-1] return next_scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase = -float('''Inf''' ) , __lowerCAmelCase = 1 ): '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) lowerCamelCase__ = max(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = filter_value def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = scores.shape lowerCamelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) lowerCamelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check lowerCamelCase__ , lowerCamelCase__ = lax.top_k(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = jnp.broadcast_to((jnp.arange(__lowerCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowerCamelCase__ = topk_scores.flatten() lowerCamelCase__ = topk_indices.flatten() + shift lowerCamelCase__ = next_scores_flat.at[topk_indices_flat].set(__lowerCAmelCase ) lowerCamelCase__ = next_scores_flat.reshape(__lowerCAmelCase , __lowerCAmelCase ) return next_scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = bos_token_id def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = jnp.full(scores.shape , -float('''inf''' ) ) lowerCamelCase__ = 1 - jnp.bool_(cur_len - 1 ) lowerCamelCase__ = jnp.where(__lowerCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowerCAmelCase ) return scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = max_length lowerCamelCase__ = eos_token_id def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = jnp.full(scores.shape , -float('''inf''' ) ) lowerCamelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowerCamelCase__ = jnp.where(__lowerCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowerCAmelCase ) return scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) lowerCamelCase__ = min_length lowerCamelCase__ = eos_token_id def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowerCamelCase__ = jnp.where(__lowerCAmelCase , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , __lowerCAmelCase ) return scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = list(__lowerCAmelCase ) lowerCamelCase__ = begin_index def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) lowerCamelCase__ = jnp.where(__lowerCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , __lowerCAmelCase ) return scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = list(__lowerCAmelCase ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = dict(__lowerCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowerCamelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowerCamelCase__ = force_token_array.at[index].set(__lowerCAmelCase ) lowerCamelCase__ = jnp.intaa(__lowerCAmelCase ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' def _force_token(__lowerCAmelCase ): lowerCamelCase__ = scores.shape[0] lowerCamelCase__ = self.force_token_array[generation_idx] lowerCamelCase__ = jnp.ones_like(__lowerCAmelCase , dtype=scores.dtype ) * -float('''inf''' ) lowerCamelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowerCamelCase__ = lax.dynamic_update_slice(__lowerCAmelCase , __lowerCAmelCase , (0, current_token) ) return new_scores lowerCamelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowerCAmelCase ) , lambda: scores , ) , ) return scores class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = generate_config.eos_token_id lowerCamelCase__ = generate_config.no_timestamps_token_id lowerCamelCase__ = generate_config.no_timestamps_token_id + 1 lowerCamelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__lowerCAmelCase , '''max_initial_timestamp_index''' ): lowerCamelCase__ = generate_config.max_initial_timestamp_index else: lowerCamelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: lowerCamelCase__ = model_config.vocab_size def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowerCAmelCase , ) lowerCamelCase__ = jnp.where((cur_len - self.begin_index) < 2 , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowerCAmelCase , __lowerCAmelCase , ) return jnp.where( __lowerCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , __lowerCAmelCase , ) lowerCamelCase__ = jax.vmap(__lowerCAmelCase )(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = jnp.where(cur_len == self.begin_index , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowerCAmelCase , ) lowerCamelCase__ = self.timestamp_begin + self.max_initial_timestamp_index lowerCamelCase__ = jnp.where( __lowerCAmelCase , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , __lowerCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp lowerCamelCase__ = jax.nn.log_softmax(__lowerCAmelCase , axis=-1 ) def handle_cumulative_probs(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowerCamelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , __lowerCAmelCase , ) lowerCamelCase__ = jax.vmap(__lowerCAmelCase )(__lowerCAmelCase , __lowerCAmelCase ) return scores
481
from __future__ import annotations _a = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ = {} lowerCamelCase__ = source_vertex def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.source_vertex} lowerCamelCase__ = None lowerCamelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowerCAmelCase ) lowerCamelCase__ = vertex queue.append(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ = self.parent.get(__lowerCAmelCase ) if target_vertex_parent is None: lowerCamelCase__ = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__lowerCAmelCase ) return self.shortest_path(__lowerCAmelCase ) + F'->{target_vertex}' if __name__ == "__main__": _a = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
481
1
"""simple docstring""" __A : Optional[int] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowercase ( UpperCamelCase : bytes ): """simple docstring""" # Make sure the supplied data is a bytes-like object if not isinstance(UpperCamelCase , UpperCamelCase ): A__ : Union[str, Any] =F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(UpperCamelCase ) A__ : Optional[Any] ="".join(bin(UpperCamelCase )[2:].zfill(8 ) for byte in data ) A__ : Any =len(UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later A__ : Dict =B"=" * ((6 - len(UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCamelCase ) % 6) else: A__ : str =B"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCamelCase ) , 6 ) ).encode() + padding ) def lowercase ( UpperCamelCase : str ): """simple docstring""" # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCamelCase , UpperCamelCase ) and not isinstance(UpperCamelCase , UpperCamelCase ): A__ : Optional[Any] =( "argument should be a bytes-like object or ASCII string, " F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCamelCase , UpperCamelCase ): try: A__ : Optional[Any] =encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) A__ : Any =encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one A__ : Dict =encoded_data[:-padding] A__ : Optional[int] ="".join( bin(B64_CHARSET.index(UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: A__ : Optional[Any] ="".join( bin(B64_CHARSET.index(UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) A__ : Optional[int] =[ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCamelCase ) , 8 ) ] return bytes(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
595
"""simple docstring""" __A : int = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def lowercase ( UpperCamelCase : str ): """simple docstring""" A__ : Union[str, Any] ={"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} A__ : Tuple =0 A__ : List[str] =0 while place < len(UpperCamelCase ): if (place + 1 < len(UpperCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase ( UpperCamelCase : int ): """simple docstring""" A__ : Dict =[] for arabic, roman in ROMAN: ((A__) , (A__)) : Union[str, Any] =divmod(UpperCamelCase , UpperCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
595
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _A ( __lowercase ): def __init__( self : str , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Any = dataset __snake_case : str = process __snake_case : Union[str, Any] = params def __len__( self : int ) -> Any: """simple docstring""" return len(self.dataset ) def __getitem__( self : Any , __magic_name__ : List[str] ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.dataset[i] __snake_case : Dict = self.process(__magic_name__ , **self.params ) return processed class _A ( __lowercase ): def __init__( self : List[str] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[int]=None ) -> List[Any]: """simple docstring""" __snake_case : Tuple = loader __snake_case : List[Any] = infer __snake_case : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __snake_case : Any = None __snake_case : Tuple = loader_batch_size # Internal bookkeeping __snake_case : Union[str, Any] = None __snake_case : Optional[Any] = None def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return len(self.loader ) def __iter__( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = iter(self.loader ) return self def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __snake_case : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __snake_case : Optional[Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(__magic_name__ , __magic_name__ ): # Convert ModelOutput to tuple first __snake_case : int = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __snake_case : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__magic_name__ , __magic_name__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __snake_case : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __snake_case : Tuple = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : List[str] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : Union[str, Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __snake_case : int = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __snake_case : Union[str, Any] = self._loader_batch_data.__class__(__magic_name__ ) self._loader_batch_index += 1 return result def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __snake_case : List[Any] = next(self.iterator ) __snake_case : Union[str, Any] = self.infer(__magic_name__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__magic_name__ , torch.Tensor ): __snake_case : List[Any] = processed else: __snake_case : Optional[Any] = list(processed.keys() )[0] __snake_case : Dict = processed[key] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : List[str] = len(__magic_name__ ) else: __snake_case : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Optional[int] = observed_batch_size # Setting internal index to unwrap the batch __snake_case : Union[str, Any] = processed __snake_case : Any = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _A ( __lowercase ): def __init__( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : int=None ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , __magic_name__ , __magic_name__ ) def __iter__( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = iter(self.loader ) __snake_case : List[str] = None return self def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" if self.subiterator is None: __snake_case : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __snake_case : List[Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __snake_case : List[Any] = self.infer(next(self.iterator ) , **self.params ) __snake_case : List[str] = next(self.subiterator ) return processed class _A ( __lowercase ): def __iter__( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = iter(self.loader ) return self def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Dict = False __snake_case : Union[str, Any] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __snake_case : Union[str, Any] = self.loader_batch_item() __snake_case : List[str] = item.pop("""is_last""" ) accumulator.append(__magic_name__ ) if is_last: return accumulator while not is_last: __snake_case : Union[str, Any] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__magic_name__ , torch.Tensor ): __snake_case : str = processed else: __snake_case : Optional[Any] = list(processed.keys() )[0] __snake_case : List[str] = processed[key] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = len(__magic_name__ ) else: __snake_case : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : List[str] = observed_batch_size __snake_case : List[Any] = processed __snake_case : str = 0 while self._loader_batch_index < self.loader_batch_size: __snake_case : List[Any] = self.loader_batch_item() __snake_case : List[Any] = item.pop("""is_last""" ) accumulator.append(__magic_name__ ) if is_last: return accumulator else: __snake_case : Tuple = processed __snake_case : List[Any] = item.pop("""is_last""" ) accumulator.append(__magic_name__ ) return accumulator class _A ( __lowercase ): def __init__( self : str , __magic_name__ : Dataset , __magic_name__ : str ) -> str: """simple docstring""" __snake_case : List[Any] = dataset __snake_case : Optional[int] = key def __len__( self : str ) -> Tuple: """simple docstring""" return len(self.dataset ) def __getitem__( self : Optional[Any] , __magic_name__ : Dict ) -> Optional[Any]: """simple docstring""" return self.dataset[i][self.key] class _A ( __lowercase ): def __init__( self : Optional[Any] , __magic_name__ : Dataset , __magic_name__ : str , __magic_name__ : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = dataset __snake_case : Any = keya __snake_case : int = keya def __len__( self : Union[str, Any] ) -> Tuple: """simple docstring""" return len(self.dataset ) def __getitem__( self : Union[str, Any] , __magic_name__ : Tuple ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
26
def lowerCAmelCase__ ( a__: list ) -> list: '''simple docstring''' if len(a__ ) < 2: return collection def circle_sort_util(a__: list , a__: int , a__: int ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(a__ , a__ , a__ ) _UpperCAmelCase = circle_sort_util(a__ , mid + 1 , a__ ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(a__ , 0 , len(a__ ) - 1 ) return collection if __name__ == "__main__": lowerCAmelCase__ :Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ :List[str] = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
618
0
"""simple docstring""" def lowerCamelCase_(__SCREAMING_SNAKE_CASE = 100 )-> int: _SCREAMING_SNAKE_CASE : Any = set() _SCREAMING_SNAKE_CASE : List[Any] = 0 _SCREAMING_SNAKE_CASE : Tuple = n + 1 # maximum limit for a in range(2 , __SCREAMING_SNAKE_CASE ): for b in range(2 , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = a**b # calculates the current power collect_powers.add(__SCREAMING_SNAKE_CASE ) # adds the result to the set return len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
635
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = ['''model.decoder.embed_positions.weights'''] def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> Optional[int]: if "emb" in name: _SCREAMING_SNAKE_CASE : List[Any] = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: _SCREAMING_SNAKE_CASE : int = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: _SCREAMING_SNAKE_CASE : Dict = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: _SCREAMING_SNAKE_CASE : Dict = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: _SCREAMING_SNAKE_CASE : str = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Tuple[Dict, Dict]: _SCREAMING_SNAKE_CASE : str = list(state_dict.keys() ) _SCREAMING_SNAKE_CASE : Tuple = {} for key in keys: _SCREAMING_SNAKE_CASE : Dict = state_dict.pop(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : int = rename_keys(__SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj _SCREAMING_SNAKE_CASE : str = val[:hidden_size, :] _SCREAMING_SNAKE_CASE : Any = val[hidden_size : 2 * hidden_size, :] _SCREAMING_SNAKE_CASE : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _SCREAMING_SNAKE_CASE : int = val else: _SCREAMING_SNAKE_CASE : Dict = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> MusicgenDecoderConfig: if checkpoint == "small": # default config values _SCREAMING_SNAKE_CASE : Optional[Any] = 1_024 _SCREAMING_SNAKE_CASE : str = 24 _SCREAMING_SNAKE_CASE : Any = 16 elif checkpoint == "medium": _SCREAMING_SNAKE_CASE : Dict = 1_536 _SCREAMING_SNAKE_CASE : Union[str, Any] = 48 _SCREAMING_SNAKE_CASE : Optional[Any] = 24 elif checkpoint == "large": _SCREAMING_SNAKE_CASE : List[Any] = 2_048 _SCREAMING_SNAKE_CASE : Optional[int] = 48 _SCREAMING_SNAKE_CASE : str = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = MusicgenDecoderConfig( hidden_size=__SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=__SCREAMING_SNAKE_CASE , num_attention_heads=__SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="cpu" )-> str: _SCREAMING_SNAKE_CASE : str = MusicGen.get_pretrained(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[str] = decoder_config_from_checkpoint(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = fairseq_model.lm.state_dict() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = rename_state_dict( __SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) _SCREAMING_SNAKE_CASE : Tuple = TaEncoderModel.from_pretrained("""t5-base""" ) _SCREAMING_SNAKE_CASE : List[Any] = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) _SCREAMING_SNAKE_CASE : str = MusicgenForCausalLM(__SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model _SCREAMING_SNAKE_CASE : Dict = MusicgenForConditionalGeneration(text_encoder=__SCREAMING_SNAKE_CASE , audio_encoder=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__SCREAMING_SNAKE_CASE ) # check we can do a forward pass _SCREAMING_SNAKE_CASE : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _SCREAMING_SNAKE_CASE : Dict = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[int] = model(input_ids=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor _SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("""t5-base""" ) _SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) _SCREAMING_SNAKE_CASE : Optional[int] = MusicgenProcessor(feature_extractor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids _SCREAMING_SNAKE_CASE : Optional[Any] = 2_048 _SCREAMING_SNAKE_CASE : List[Any] = 2_048 # set other default generation config params _SCREAMING_SNAKE_CASE : Any = int(30 * audio_encoder.config.frame_rate ) _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : int = 3.0 if pytorch_dump_folder is not None: Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(__SCREAMING_SNAKE_CASE ) processor.push_to_hub(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) lowerCAmelCase_ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
635
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[Any] = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _lowerCAmelCase : def __init__(self , lowercase = None ): if components is None: A_ : Tuple = [] A_ : List[Any] = list(lowercase ) def __len__(self ): return len(self.__components ) def __str__(self ): return "(" + ",".join(map(lowercase , self.__components ) ) + ")" def __add__(self , lowercase ): A_ : Dict = len(self ) if size == len(lowercase ): A_ : List[Any] = [self.__components[i] + other.component(lowercase ) for i in range(lowercase )] return Vector(lowercase ) else: raise Exception("""must have the same size""" ) def __sub__(self , lowercase ): A_ : Any = len(self ) if size == len(lowercase ): A_ : List[Any] = [self.__components[i] - other.component(lowercase ) for i in range(lowercase )] return Vector(lowercase ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__(self , lowercase ): ... @overload def __mul__(self , lowercase ): ... def __mul__(self , lowercase ): if isinstance(lowercase , (float, int) ): A_ : Dict = [c * other for c in self.__components] return Vector(lowercase ) elif isinstance(lowercase , lowercase ) and len(self ) == len(lowercase ): A_ : Optional[int] = len(self ) A_ : int = [self.__components[i] * other.component(lowercase ) for i in range(lowercase )] return sum(lowercase ) else: # error case raise Exception("""invalid operand!""" ) def _a (self ): return Vector(self.__components ) def _a (self , lowercase ): if isinstance(lowercase , lowercase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def _a (self , lowercase , lowercase ): assert -len(self.__components ) <= pos < len(self.__components ) A_ : List[str] = value def _a (self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) A_ : int = [c**2 for c in self.__components] return math.sqrt(sum(lowercase ) ) def _a (self , lowercase , lowercase = False ): A_ : Dict = self * other A_ : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) return Vector([0] * dimension ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , lowerCamelCase__ )) A_ : Optional[Any] = [0] * dimension A_ : Tuple = 1 return Vector(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , (int, float) )) ) return x * scalar + y def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' random.seed(lowerCamelCase__ ) A_ : Optional[int] = [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase ): A_ : int = matrix A_ : List[str] = w A_ : Optional[Any] = h def __str__(self ): A_ : Union[str, Any] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__(self , lowercase ): if self.__width == other.width() and self.__height == other.height(): A_ : Optional[Any] = [] for i in range(self.__height ): A_ : int = [ self.__matrix[i][j] + other.component(lowercase , lowercase ) for j in range(self.__width ) ] matrix.append(lowercase ) return Matrix(lowercase , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__(self , lowercase ): if self.__width == other.width() and self.__height == other.height(): A_ : Tuple = [] for i in range(self.__height ): A_ : List[str] = [ self.__matrix[i][j] - other.component(lowercase , lowercase ) for j in range(self.__width ) ] matrix.append(lowercase ) return Matrix(lowercase , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__(self , lowercase ): ... @overload def __mul__(self , lowercase ): ... def __mul__(self , lowercase ): if isinstance(lowercase , lowercase ): # matrix-vector if len(lowercase ) == self.__width: A_ : Optional[Any] = zero_vector(self.__height ) for i in range(self.__height ): A_ : int = [ self.__matrix[i][j] * other.component(lowercase ) for j in range(self.__width ) ] ans.change_component(lowercase , sum(lowercase ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowercase , (int, float) ): # matrix-scalar A_ : List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowercase , self.__width , self.__height ) return None def _a (self ): return self.__height def _a (self ): return self.__width def _a (self , lowercase , lowercase ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def _a (self , lowercase , lowercase , lowercase ): if 0 <= x < self.__height and 0 <= y < self.__width: A_ : Optional[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def _a (self , lowercase , lowercase ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) A_ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowercase ) ): A_ : Optional[Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowercase , self.__width - 1 , self.__height - 1 ).determinant() def _a (self , lowercase , lowercase ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowercase , lowercase ) else: raise Exception("""Indices out of bounds""" ) def _a (self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A_ : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , lowercase ) for y in range(self.__width ) ] return sum(lowercase ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : list[list[float]] = [[0] * n for _ in range(lowerCamelCase__ )] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' random.seed(lowerCamelCase__ ) A_ : list[list[float]] = [ [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ ) ] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
686
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase :Any = re.compile(R'''\s+''') def a ( lowerCamelCase__ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowerCamelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = [len(lowerCamelCase__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(lowerCamelCase__ ), "line_max": max(lowerCamelCase__ )} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def a ( lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : Tuple = ["""auto-generated""", """autogenerated""", """automatically generated"""] A_ : Optional[int] = example["""content"""].splitlines() for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a ( lowerCamelCase__ , lowerCamelCase__=5 , lowerCamelCase__=0.05 ): '''simple docstring''' A_ : Any = ["""unit tests""", """test file""", """configuration file"""] A_ : List[str] = example["""content"""].splitlines() A_ : str = 0 A_ : Union[str, Any] = 0 # first test for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : List[Any] = example["""content"""].count("""\n""" ) A_ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = ["""def """, """class """, """for """, """while """] A_ : Optional[int] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a ( lowerCamelCase__ , lowerCamelCase__=4 ): '''simple docstring''' A_ : Tuple = example["""content"""].splitlines() A_ : int = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = tokenizer(example["""content"""] , truncation=lowerCamelCase__ )["""input_ids"""] A_ : Optional[Any] = len(example["""content"""] ) / len(lowerCamelCase__ ) return {"ratio": ratio} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = {} results.update(get_hash(lowerCamelCase__ ) ) results.update(line_stats(lowerCamelCase__ ) ) results.update(alpha_stats(lowerCamelCase__ ) ) results.update(char_token_ratio(lowerCamelCase__ ) ) results.update(is_autogenerated(lowerCamelCase__ ) ) results.update(is_config_or_test(lowerCamelCase__ ) ) results.update(has_no_keywords(lowerCamelCase__ ) ) results.update(has_few_assignments(lowerCamelCase__ ) ) return results def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not check_uniques(lowerCamelCase__ , lowerCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a ( lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """rb""" ) as f_in: with gzip.open(str(lowerCamelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCamelCase__ , lowerCamelCase__ ) os.unlink(lowerCamelCase__ ) # Settings lowerCamelCase :Optional[int] = HfArgumentParser(PreprocessingArguments) lowerCamelCase :Tuple = parser.parse_args() if args.num_workers is None: lowerCamelCase :Tuple = multiprocessing.cpu_count() lowerCamelCase :List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase :List[Any] = time.time() lowerCamelCase :Optional[int] = load_dataset(args.dataset_name, split='''train''') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCamelCase :int = time.time() lowerCamelCase :List[str] = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCamelCase :int = set(ds.unique('''hash''')) lowerCamelCase :List[str] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCamelCase :Dict = time.time() lowerCamelCase :int = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase :List[str] = time.time() lowerCamelCase , lowerCamelCase :int = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCamelCase :int = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) lowerCamelCase :Tuple = output_dir / '''data''' data_dir.mkdir(exist_ok=True) lowerCamelCase :Tuple = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase :List[str] = str(data_dir / F"file-{file_number+1:012}.json") lowerCamelCase :Tuple = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
686
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any]=13 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[str]=99 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : int=4 , __UpperCAmelCase : List[str]=37 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : str=16 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Optional[Any]=4 , ) ->int: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = True a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase_ ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = True __snake_case = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = FlaxRobertaModelTester(self ) @slow def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained('''roberta-base''' , from_pt=_a ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a )
117
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[Any]=None , _a : Optional[Any]=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.layer[current_layer](_a , _a , head_mask[current_layer] ) _SCREAMING_SNAKE_CASE =layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : List[str] , _a : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =BertEncoderWithPabee(_a ) self.init_weights() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : List[str] , _a : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =threshold def __UpperCamelCase ( self : Dict , _a : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =patience def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.inference_layers_num / self.inference_instances_num _SCREAMING_SNAKE_CASE =( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[Any] , _a : Optional[Any]=None , _a : Optional[int]=None , _a : Any=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : str=None , _a : Any=None , _a : str=None , _a : Optional[Any]=None , _a : Dict=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _SCREAMING_SNAKE_CASE =input_ids.size() elif inputs_embeds is not None: _SCREAMING_SNAKE_CASE =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _SCREAMING_SNAKE_CASE =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) if token_type_ids is None: _SCREAMING_SNAKE_CASE =torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _SCREAMING_SNAKE_CASE =self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =encoder_hidden_states.size() _SCREAMING_SNAKE_CASE =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) _SCREAMING_SNAKE_CASE =self.invert_attention_mask(_a ) else: _SCREAMING_SNAKE_CASE =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _SCREAMING_SNAKE_CASE =self.get_head_mask(_a , self.config.num_hidden_layers ) _SCREAMING_SNAKE_CASE =self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) _SCREAMING_SNAKE_CASE =embedding_output if self.training: _SCREAMING_SNAKE_CASE =[] for i in range(self.config.num_hidden_layers ): _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference _SCREAMING_SNAKE_CASE =self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _SCREAMING_SNAKE_CASE =self.pooler(encoder_outputs[0] ) _SCREAMING_SNAKE_CASE =[output_layers[self.config.num_hidden_layers - 1](_a )] else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](_a ) if regression: _SCREAMING_SNAKE_CASE =logits.detach() if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =logits.detach().argmax(dim=1 ) if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =logits if patient_counter == self.patience: break _SCREAMING_SNAKE_CASE =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : Optional[int] , _a : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =config.num_labels _SCREAMING_SNAKE_CASE =BertModelWithPabee(_a ) _SCREAMING_SNAKE_CASE =nn.Dropout(config.hidden_dropout_prob ) _SCREAMING_SNAKE_CASE =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[str] , _a : Optional[Any]=None , _a : List[Any]=None , _a : Union[str, Any]=None , _a : List[str]=None , _a : Dict=None , _a : Optional[Any]=None , _a : Optional[Any]=None , ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _SCREAMING_SNAKE_CASE =(logits[-1],) if labels is not None: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression _SCREAMING_SNAKE_CASE =MSELoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _SCREAMING_SNAKE_CASE =CrossEntropyLoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _SCREAMING_SNAKE_CASE =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _SCREAMING_SNAKE_CASE =(total_loss / total_weights,) + outputs return outputs
691
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def lowerCAmelCase (__A): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''') class __A ( lowercase__ ): '''simple docstring''' __lowerCamelCase : List[Any] = ['pixel_values'] def __init__(self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> str: """simple docstring""" super().__init__(**A ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(A , default_to_square=A ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(A , param_name='''crop_size''' ) _a = do_resize _a = size _a = do_center_crop _a = crop_size _a = resample _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ (self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> List[Any]: """simple docstring""" _a = get_size_dict(A , default_to_square=A ) if "shortest_edge" in size: _a = get_resize_output_image_size(A , size['''shortest_edge'''] , default_to_square=A ) elif "height" in size and "width" in size: _a = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(A , size=A , resample=A , data_format=A , **A ) def a__ (self , A , A , A = None , **A , ) -> Optional[int]: """simple docstring""" _a = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def a__ (self , A , A , A = None , **A , ) -> Union[str, Any]: """simple docstring""" return rescale(A , scale=A , data_format=A , **A ) def a__ (self , A , A , A , A = None , **A , ) -> int: """simple docstring""" return normalize(A , mean=A , std=A , data_format=A , **A ) def a__ (self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , ) -> str: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a = to_numpy_array(A ) if do_resize: _a = self.resize(image=A , size=A , resample=A ) if do_center_crop: _a = self.center_crop(A , size=A ) if do_rescale: _a = self.rescale(image=A , scale=A ) if do_normalize: _a = self.normalize(image=A , mean=A , std=A ) _a = to_channel_dimension_format(A , A ) return image def a__ (self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> List[str]: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = size if size is not None else self.size _a = get_size_dict(A , default_to_square=A ) _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(A , param_name='''crop_size''' ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _a = make_batched(A ) _a = [ [ self._preprocess_image( image=A , do_resize=A , size=A , resample=A , do_center_crop=A , crop_size=A , do_rescale=A , rescale_factor=A , do_normalize=A , image_mean=A , image_std=A , data_format=A , ) for img in video ] for video in videos ] _a = {'''pixel_values''': videos} return BatchFeature(data=A , tensor_type=A )
701
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): lowercase_ = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: lowercase_ = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def lowerCAmelCase (__A): """simple docstring""" _a = (images / 2 + 0.5).clamp(0 , 1) _a = images.cpu().permute(0 , 2 , 3 , 1).float().numpy() _a = numpy_to_pil(__A) return images def lowerCAmelCase (__A): """simple docstring""" if images.ndim == 3: _a = images[None, ...] _a = (images * 255).round().astype('''uint8''') if images.shape[-1] == 1: # special case for grayscale (single channel) images _a = [Image.fromarray(image.squeeze() , mode='''L''') for image in images] else: _a = [Image.fromarray(__A) for image in images] return pil_images
352
0
'''simple docstring''' from __future__ import annotations from collections import deque class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : list[dict] = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(A ) self.set_fail_transitions() def UpperCamelCase_ ( self, A, A ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = 0 for character in keyword: SCREAMING_SNAKE_CASE : Any = self.find_next_state(A, A ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) SCREAMING_SNAKE_CASE : List[str] = len(self.adlist ) - 1 else: SCREAMING_SNAKE_CASE : int = next_state self.adlist[current_state]["output"].append(A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : deque = deque() for node in self.adlist[0]["next_states"]: q.append(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 while q: SCREAMING_SNAKE_CASE : List[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.adlist[r]['fail_state'] while ( self.find_next_state(A, self.adlist[child]['value'] ) is None and state != 0 ): SCREAMING_SNAKE_CASE : str = self.adlist[state]['fail_state'] SCREAMING_SNAKE_CASE : int = self.find_next_state( A, self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : int = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : dict = {} # returns a dict with keywords and list of its occurrences SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(len(A ) ): while ( self.find_next_state(A, string[i] ) is None and current_state != 0 ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.adlist[current_state]['fail_state'] SCREAMING_SNAKE_CASE : Tuple = self.find_next_state(A, string[i] ) if next_state is None: SCREAMING_SNAKE_CASE : Any = 0 else: SCREAMING_SNAKE_CASE : Dict = next_state for key in self.adlist[current_state]["output"]: if key not in result: SCREAMING_SNAKE_CASE : Dict = [] result[key].append(i - len(A ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
28
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Tuple = 'efficientnet' def __init__( self : int , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 600 , __lowerCAmelCase : float = 2.0 , __lowerCAmelCase : float = 3.1 , __lowerCAmelCase : int = 8 , __lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , __lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , __lowerCAmelCase : List[int] = [] , __lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCAmelCase : float = 0.25 , __lowerCAmelCase : str = "swish" , __lowerCAmelCase : int = 2560 , __lowerCAmelCase : str = "mean" , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : float = 0.001 , __lowerCAmelCase : float = 0.99 , __lowerCAmelCase : float = 0.5 , __lowerCAmelCase : float = 0.2 , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = width_coefficient _UpperCAmelCase = depth_coefficient _UpperCAmelCase = depth_divisor _UpperCAmelCase = kernel_sizes _UpperCAmelCase = in_channels _UpperCAmelCase = out_channels _UpperCAmelCase = depthwise_padding _UpperCAmelCase = strides _UpperCAmelCase = num_block_repeats _UpperCAmelCase = expand_ratios _UpperCAmelCase = squeeze_expansion_ratio _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dim _UpperCAmelCase = pooling_type _UpperCAmelCase = initializer_range _UpperCAmelCase = batch_norm_eps _UpperCAmelCase = batch_norm_momentum _UpperCAmelCase = dropout_rate _UpperCAmelCase = drop_connect_rate _UpperCAmelCase = sum(__lowerCAmelCase ) * 4 class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5
277
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case :List[str] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __snake_case :Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = state_dict.pop(_UpperCAmelCase ) __a = val def __snake_case ( _UpperCAmelCase ): __a = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __a = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __a = value else: __a = value return new_state_dict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=False ): __a = '''''' if is_panoptic: __a = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __a = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __a = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[:256, :] __a = in_proj_bias[:256] __a = in_proj_weight[256:512, :] __a = in_proj_bias[256:512] __a = in_proj_weight[-256:, :] __a = in_proj_bias[-256:] def __snake_case ( ): __a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __a = '''resnet101''' if "dc5" in model_name: __a = True __a = '''panoptic''' in model_name if is_panoptic: __a = 250 else: __a = 91 __a = '''huggingface/label-files''' __a = '''coco-detection-id2label.json''' __a = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} # load image processor __a = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __a = ConditionalDetrImageProcessor(format=_UpperCAmelCase ) # prepare image __a = prepare_img() __a = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) __a = encoding['''pixel_values'''] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub __a = torch.hub.load('''DeppMeng/ConditionalDETR''' , _UpperCAmelCase , pretrained=_UpperCAmelCase ).eval() __a = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __a = '''conditional_detr.''' + src rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __a = rename_backbone_keys(_UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCAmelCase , is_panoptic=_UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __a = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __a = state_dict.pop(_UpperCAmelCase ) __a = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __a = state_dict.pop(_UpperCAmelCase ) __a = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __a = state_dict.pop(_UpperCAmelCase ) __a = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __a = state_dict.pop(_UpperCAmelCase ) __a = val # finally, create HuggingFace model and load state dict __a = ConditionalDetrForSegmentation(_UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=_UpperCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __a = conditional_detr(_UpperCAmelCase ) __a = model(_UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __snake_case :List[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
60
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case :int = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _A ( tr.AbstractTransform ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str = " "): '''simple docstring''' __a = sentence_delimiter def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return list(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = [] for sent_idx, sentence in enumerate(__SCREAMING_SNAKE_CASE): chars.extend(self.process_string(__SCREAMING_SNAKE_CASE)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__SCREAMING_SNAKE_CASE) - 1: chars.append(self.sentence_delimiter) return chars __snake_case :Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case :Optional[int] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case :Optional[int] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __snake_case :Tuple = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __snake_case :Tuple = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=False): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , )["wer"] __a = 0 __a = 0 for prediction, reference in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
60
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCAmelCase = random.Random() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=1.0 , lowercase_=None , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: __UpperCAmelCase : str = global_rng __UpperCAmelCase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=4_0_0 , lowercase__=2_0_0_0 , lowercase__=2_0_4_8 , lowercase__=1_2_8 , lowercase__=1 , lowercase__=5_1_2 , lowercase__=3_0 , lowercase__=4_4_1_0_0 , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : int = min_seq_length __UpperCAmelCase : List[str] = max_seq_length __UpperCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : Any = spectrogram_length __UpperCAmelCase : List[Any] = feature_size __UpperCAmelCase : Union[str, Any] = num_audio_channels __UpperCAmelCase : Optional[int] = hop_length __UpperCAmelCase : Tuple = chunk_length __UpperCAmelCase : Any = sampling_rate def A( self): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def A( self , lowercase__=False , lowercase__=False): def _flatten(lowercase__): return list(itertools.chain(*lowercase__)) if equal_length: __UpperCAmelCase : str = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __UpperCAmelCase : List[str] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __UpperCAmelCase : List[str] = [np.asarray(lowercase__) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = TvltFeatureExtractor def A( self): __UpperCAmelCase : Dict = TvltFeatureExtractionTester(self) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowercase__ , '''spectrogram_length''')) self.assertTrue(hasattr(lowercase__ , '''feature_size''')) self.assertTrue(hasattr(lowercase__ , '''num_audio_channels''')) self.assertTrue(hasattr(lowercase__ , '''hop_length''')) self.assertTrue(hasattr(lowercase__ , '''chunk_length''')) self.assertTrue(hasattr(lowercase__ , '''sampling_rate''')) def A( self): __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = feat_extract_first.save_pretrained(lowercase__)[0] check_json_file_has_correct_format(lowercase__) __UpperCAmelCase : Optional[int] = self.feature_extraction_class.from_pretrained(lowercase__) __UpperCAmelCase : List[Any] = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Union[str, Any] = dict_first.pop('''mel_filters''') __UpperCAmelCase : Union[str, Any] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(lowercase__ , '''feat_extract.json''') feat_extract_first.to_json_file(lowercase__) __UpperCAmelCase : str = self.feature_extraction_class.from_json_file(lowercase__) __UpperCAmelCase : Any = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Tuple = dict_first.pop('''mel_filters''') __UpperCAmelCase : List[str] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): # Initialize feature_extractor __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : Optional[int] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __UpperCAmelCase : int = [np.asarray(lowercase__) for speech_input in speech_inputs] # Test not batched input __UpperCAmelCase : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test batched __UpperCAmelCase : List[str] = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test audio masking __UpperCAmelCase : Tuple = feature_extractor( lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=lowercase__).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test 2-D numpy arrays are batched. __UpperCAmelCase : Any = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] __UpperCAmelCase : Optional[Any] = np.asarray(lowercase__) __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) def A( self , lowercase__): __UpperCAmelCase : Optional[int] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech __UpperCAmelCase : int = ds.sort('''id''').select(range(lowercase__))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def A( self): __UpperCAmelCase : Optional[Any] = self._load_datasamples(1) __UpperCAmelCase : Tuple = TvltFeatureExtractor() __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''pt''').audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8)) __UpperCAmelCase : int = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]]) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowercase__ , atol=1e-4))
462
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase = datasets.logging.get_logger(__name__) lowerCAmelCase = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ lowerCAmelCase = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ lowerCAmelCase = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=False , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_="dummy_doc" ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = {doc: key_lines} __UpperCAmelCase : Tuple = {doc: sys_lines} __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : str = 0 __UpperCAmelCase : int = 0 __UpperCAmelCase : int = 0 __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Any = 0 __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = reader.get_doc_mentions(lowercase_ , key_doc_lines[doc] , lowercase_ ) key_singletons_num += singletons_num if NP_only or min_span: __UpperCAmelCase : List[Any] = reader.set_annotated_parse_trees(lowercase_ , key_doc_lines[doc] , lowercase_ , lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = reader.get_doc_mentions(lowercase_ , sys_doc_lines[doc] , lowercase_ ) sys_singletons_num += singletons_num if NP_only or min_span: __UpperCAmelCase : Union[str, Any] = reader.set_annotated_parse_trees(lowercase_ , key_doc_lines[doc] , lowercase_ , lowercase_ ) if remove_nested: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = reader.remove_nested_coref_mentions(lowercase_ , lowercase_ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __UpperCAmelCase , __UpperCAmelCase : str = reader.remove_nested_coref_mentions(lowercase_ , lowercase_ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __UpperCAmelCase : List[Any] = reader.get_mention_assignments(lowercase_ , lowercase_ ) __UpperCAmelCase : Optional[Any] = reader.get_mention_assignments(lowercase_ , lowercase_ ) __UpperCAmelCase : Dict = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = get_coref_infos(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : str = 0 for name, metric in metrics: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = evaluator.evaluate_documents(lowercase_ , lowercase_ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) , f"Recall: {recall * 100:.2f}" , f" Precision: {precision * 100:.2f}" , f" F1: {fa * 100:.2f}" , ) if conll_subparts_num == 3: __UpperCAmelCase : Optional[int] = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: __UpperCAmelCase : List[Any] = line.split()[5] if not parse_col == "-": __UpperCAmelCase : Optional[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''')), '''references''': datasets.Sequence(datasets.Value('''string''')), }) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def A( self , lowercase__ , lowercase__ , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False): __UpperCAmelCase : List[Any] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: __UpperCAmelCase : Optional[Any] = util.check_gold_parse_annotation(lowercase__) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''') # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __UpperCAmelCase : Tuple = evaluate( key_lines=lowercase__ , sys_lines=lowercase__ , metrics=lowercase__ , NP_only=lowercase__ , remove_nested=lowercase__ , keep_singletons=lowercase__ , min_span=lowercase__ , ) return score
462
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _lowerCamelCase : Tuple = 6_3_7_8_1_3_7.0 _lowerCamelCase : Dict = 6_3_5_6_7_5_2.3_1_4_2_4_5 _lowerCamelCase : int = 6_3_7_8_1_3_7 def _UpperCAmelCase (UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase : List[str] = atan((1 - flattening) * tan(radians(UpperCamelCase_ ) ) ) _lowerCAmelCase : int = atan((1 - flattening) * tan(radians(UpperCamelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase : str = haversine_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase : Union[str, Any] = (b_lata + b_lata) / 2 _lowerCAmelCase : List[Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase : Optional[Any] = (sin(UpperCamelCase_ ) ** 2) * (cos(UpperCamelCase_ ) ** 2) _lowerCAmelCase : Optional[Any] = cos(sigma / 2 ) ** 2 _lowerCAmelCase : Optional[int] = (sigma - sin(UpperCamelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase : Optional[int] = (cos(UpperCamelCase_ ) ** 2) * (sin(UpperCamelCase_ ) ** 2) _lowerCAmelCase : Optional[int] = sin(sigma / 2 ) ** 2 _lowerCAmelCase : Dict = (sigma + sin(UpperCamelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
196
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCamelCase : Dict = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) _lowerCamelCase : Union[str, Any] = dataset.iloc[:, 1:2].values _lowerCamelCase : Any = dataset.iloc[:, 2].values _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCamelCase : Optional[Any] = PolynomialFeatures(degree=4) _lowerCamelCase : Optional[Any] = poly_reg.fit_transform(X) _lowerCamelCase : Dict = LinearRegression() pol_reg.fit(X_poly, y) def _UpperCAmelCase (): '''simple docstring''' plt.scatter(UpperCamelCase_ , UpperCamelCase_ , color="""red""" ) plt.plot(UpperCamelCase_ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase_ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
196
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase( __lowerCamelCase ): def wrapper(*__lowerCamelCase , **__lowerCamelCase ): __a = timeit.default_timer() __a = func(*__lowerCamelCase , **__lowerCamelCase ) __a = timeit.default_timer() - starttime return delta __a = func.__name__ return wrapper def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=100 , __lowerCamelCase=None ): __a = [] __a = seq_shapes or {} for i in range(__lowerCamelCase ): __a = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCamelCase , _ArrayXD ): __a = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCamelCase , datasets.Value ): if v.dtype == "string": __a = 'The small grey turtle was surprisingly fast when challenged.' else: __a = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCamelCase , datasets.Sequence ): while isinstance(__lowerCamelCase , datasets.Sequence ): __a = v.feature __a = seq_shapes[k] __a = np.random.rand(*__lowerCamelCase ).astype(v.dtype ) __a = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=100 , __lowerCamelCase=None ): __a = generate_examples(__lowerCamelCase , num_examples=__lowerCamelCase , seq_shapes=__lowerCamelCase ) with ArrowWriter(features=__lowerCamelCase , path=__lowerCamelCase ) as writer: for key, record in dummy_data: __a = features.encode_example(__lowerCamelCase ) writer.write(__lowerCamelCase ) __a , __a = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) __a = datasets.Dataset.from_file(filename=__lowerCamelCase , info=datasets.DatasetInfo(features=__lowerCamelCase ) ) return dataset
559
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCAmelCase( __lowerCamelCase ): __a = [] for line in lines: __a = re.sub(r'#.*' , '' , __lowerCamelCase ) # remove comments if line: filtered_lines.append(__lowerCamelCase ) __a = '\n'.join(__lowerCamelCase ) # Make a hash from all this code __a = full_str.encode('utf-8' ) return shaaaa(__lowerCamelCase ).hexdigest() # get importable module names and hash for caching lowerCamelCase_ : int = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase_ : List[Any] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase_ : int = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name lowerCamelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
559
1
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : set ): __a , __a = len(_lowerCAmelCase ), len(grid[0] ) if ( min(_lowerCAmelCase , _lowerCAmelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __a = 0 count += depth_first_search(_lowerCAmelCase , row + 1 , _lowerCAmelCase , _lowerCAmelCase ) count += depth_first_search(_lowerCAmelCase , row - 1 , _lowerCAmelCase , _lowerCAmelCase ) count += depth_first_search(_lowerCAmelCase , _lowerCAmelCase , col + 1 , _lowerCAmelCase ) count += depth_first_search(_lowerCAmelCase , _lowerCAmelCase , col - 1 , _lowerCAmelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
173
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __A = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ __A = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ __A = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowerCAmelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple=None ) -> Dict: return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ , sample_weight=lowerCamelCase_ ) ), }
173
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore A_ = "\nHuman: <<task>>\n\nAssistant: " A_ = "huggingface-tools/default-prompts" A_ = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def A_ ( snake_case , snake_case , snake_case="run" ): if prompt_or_repo_id is None: SCREAMING_SNAKE_CASE:str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , snake_case ) is not None: return prompt_or_repo_id SCREAMING_SNAKE_CASE:str = cached_file( snake_case , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(snake_case , "r" , encoding="utf-8" ) as f: return f.read()
143
'''simple docstring''' def A_ ( snake_case , snake_case ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) SCREAMING_SNAKE_CASE:int = str(bin(snake_case ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE:Dict = str(bin(snake_case ) )[2:] SCREAMING_SNAKE_CASE:List[Any] = max(len(snake_case ) , len(snake_case ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case ) , b_binary.zfill(snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
143
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __a : Optional[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _SCREAMING_SNAKE_CASE ( __lowercase : List[str] , __lowercase : tuple , __lowercase : Path , __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : str=False , ) -> List[Any]: """simple docstring""" output_path.parent.mkdir(parents=__lowercase , exist_ok=__lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowercase , __lowercase , f=output_path.as_posix() , input_names=__lowercase , output_names=__lowercase , dynamic_axes=__lowercase , do_constant_folding=__lowercase , use_external_data_format=__lowercase , enable_onnx_checker=__lowercase , opset_version=__lowercase , ) else: export( __lowercase , __lowercase , f=output_path.as_posix() , input_names=__lowercase , output_names=__lowercase , dynamic_axes=__lowercase , do_constant_folding=__lowercase , opset_version=__lowercase , ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : str , __lowercase : int , __lowercase : bool = False ) -> str: """simple docstring""" __A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __A = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __A = """cpu""" __A = Path(__lowercase ) # VAE DECODER __A = AutoencoderKL.from_pretrained(model_path + """/vae""" ) __A = vae_decoder.config.latent_channels # forward only through the decoder part __A = vae_decoder.decode onnx_export( __lowercase , model_args=( torch.randn(1 , __lowercase , 2_5 , 2_5 ).to(device=__lowercase , dtype=__lowercase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__lowercase , ) del vae_decoder if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __a : Tuple = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
700
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : float | Decimal , __lowercase : float = 1_0**-1_0 ) -> float: """simple docstring""" __A = a while True: __A = Decimal(__lowercase ) - ( Decimal(eval(__lowercase ) ) / Decimal(eval(str(diff(__lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowercase ) ) < precision: # noqa: S307 return float(__lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
199
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {"vocab_file": "spm_char.model"} __A = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __A = { "microsoft/speecht5_asr": 1_024, "microsoft/speecht5_tts": 1_024, "microsoft/speecht5_vc": 1_024, } class A ( __UpperCAmelCase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) @property def A__ ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.sp_model.piece_to_id(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' lowercase__ = self.sp_model.IdToPiece(lowerCamelCase__ ) return token def A__ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' lowercase__ = [] lowercase__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase__ ) + token lowercase__ = [] else: current_sub_tokens.append(lowerCamelCase__ ) out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) lowercase__ = [1] if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + suffix_ones return ([0] * len(lowerCamelCase__ )) + ([0] * len(lowerCamelCase__ )) + suffix_ones def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , """wb""" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
325
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = DebertaTokenizer lowerCamelCase : Any = True lowerCamelCase : Dict = DebertaTokenizerFast def A__ ( self ) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] lowercase__ = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) lowercase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase__ = {"""unk_token""": """[UNK]"""} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase__ ) ) def A__ ( self , **lowerCamelCase__ ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' lowercase__ = """lower newer""" lowercase__ = """lower newer""" return input_text, output_text def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = """lower newer""" lowercase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase__ = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = tokenizer("""Hello""" , """World""" ) lowercase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , lowerCamelCase__ ) @slow def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) lowercase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCamelCase__ ) lowercase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCamelCase__ ) lowercase__ = tokenizer.encode( """sequence builders""" , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) lowercase__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowercase__ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) lowercase__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] lowercase__ = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ ) lowercase__ = [tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) for seq in encoding["""input_ids"""]] # fmt: off lowercase__ = { """input_ids""": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowercase__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , lowerCamelCase__ ) for expected, decoded in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
325
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : str = projection_dim SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : int = dropout SCREAMING_SNAKE_CASE_ : List[str] = attention_dropout SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = scope SCREAMING_SNAKE_CASE_ : Union[str, Any] = bos_token_id def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : int = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: SCREAMING_SNAKE_CASE_ : int = input_mask.numpy() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_mask.shape SCREAMING_SNAKE_CASE_ : Optional[int] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Dict = self.get_config() return config, input_ids, tf.convert_to_tensor(A_ ) def UpperCAmelCase ( self ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = TFBlipTextModel(config=A_ ) SCREAMING_SNAKE_CASE_ : int = model(A_ , attention_mask=A_ , training=A_ ) SCREAMING_SNAKE_CASE_ : List[str] = model(A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = config_and_inputs SCREAMING_SNAKE_CASE_ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _A ( _lowercase , unittest.TestCase): SCREAMING_SNAKE_CASE : Tuple = (TFBlipTextModel,) if is_tf_available() else () SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[str] = False def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = BlipTextModelTester(self ) SCREAMING_SNAKE_CASE_ : str = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def UpperCAmelCase ( self ): """simple docstring""" pass @slow def UpperCAmelCase ( self ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : List[Any] = TFBlipTextModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=A_ )
700
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _A ( unittest.TestCase): @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) SCREAMING_SNAKE_CASE_ : Any = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset SCREAMING_SNAKE_CASE_ : str = load_dataset('nielsr/rvlcdip-demo' ) SCREAMING_SNAKE_CASE_ : List[Any] = dataset['train'][0]['image'].convert('RGB' ) SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = outputs.logits SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Size((1, 16) ) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=_SCREAMING_SNAKE_CASE , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
353
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[List[ImageInput]]: if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCamelCase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Any = ["pixel_values"] def __init__( self : int , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 2_55 , _snake_case : bool = True , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , **_snake_case : Tuple , ): """simple docstring""" super().__init__(**_snake_case ) A__ = size if size is not None else {'shortest_edge': 2_56} A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} A__ = get_size_dict(_snake_case , param_name='crop_size' ) A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = offset A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self : Dict , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : int , ): """simple docstring""" A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" in size: A__ = get_resize_output_image_size(_snake_case , size['shortest_edge'] , default_to_square=_snake_case ) elif "height" in size and "width" in size: A__ = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Any , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" A__ = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def _a ( self : Optional[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : bool = True , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" A__ = image.astype(np.floataa ) if offset: A__ = image - (scale / 2) return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Optional[int] , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Tuple , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : List[Any] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A__ = to_numpy_array(_snake_case ) if do_resize: A__ = self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) if do_center_crop: A__ = self.center_crop(_snake_case , size=_snake_case ) if do_rescale: A__ = self.rescale(image=_snake_case , scale=_snake_case , offset=_snake_case ) if do_normalize: A__ = self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) A__ = to_channel_dimension_format(_snake_case , _snake_case ) return image def _a ( self : Union[str, Any] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : str , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = offset if offset is not None else self.offset A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(_snake_case , param_name='crop_size' ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A__ = make_batched(_snake_case ) A__ = [ [ self._preprocess_image( image=_snake_case , do_resize=_snake_case , size=_snake_case , resample=_snake_case , do_center_crop=_snake_case , crop_size=_snake_case , do_rescale=_snake_case , rescale_factor=_snake_case , offset=_snake_case , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , data_format=_snake_case , ) for img in video ] for video in videos ] A__ = {'pixel_values': videos} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
9
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
207
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCamelCase__ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] lowerCamelCase__ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] lowerCamelCase__ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) lowerCamelCase__ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) lowerCamelCase__ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" for tf_name, hf_name in patterns: snake_case__ : List[str] =k.replace(_UpperCAmelCase , _UpperCAmelCase ) return k def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" snake_case__ : Union[str, Any] =BigBirdPegasusConfig(**_UpperCAmelCase ) snake_case__ : Optional[Any] =BigBirdPegasusForConditionalGeneration(_UpperCAmelCase ) snake_case__ : Union[str, Any] =torch_model.state_dict() snake_case__ : Tuple ={} # separating decoder weights snake_case__ : Dict ={k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} snake_case__ : Optional[Any] ={k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): snake_case__ : Union[str, Any] =[k.endswith(_UpperCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCAmelCase ): continue snake_case__ : Any =DECODER_PATTERNS snake_case__ : Union[str, Any] =rename_state_dict_key(_UpperCAmelCase , _UpperCAmelCase ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case__ : List[Any] =v.T snake_case__ : str =torch.from_numpy(_UpperCAmelCase ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): snake_case__ : Union[str, Any] =[k.endswith(_UpperCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCAmelCase ): continue snake_case__ : Dict =REMAINING_PATTERNS snake_case__ : int =rename_state_dict_key(_UpperCAmelCase , _UpperCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case__ : Any =v.T snake_case__ : Optional[Any] =torch.from_numpy(_UpperCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' snake_case__ : Optional[int] =mapping['''model.embed_positions.weight'''] snake_case__ : int =mapping.pop('''model.embed_positions.weight''' ) snake_case__, snake_case__ : Union[str, Any] =torch_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) snake_case__ : List[Any] =[ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def lowercase_ ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" snake_case__ : Optional[int] =tf.train.list_variables(_UpperCAmelCase ) snake_case__ : Optional[Any] ={} snake_case__ : str =['''global_step'''] for name, shape in tqdm(_UpperCAmelCase , desc='''converting tf checkpoint to dict''' ): snake_case__ : Optional[int] =any(pat in name for pat in ignore_name ) if skip_key: continue snake_case__ : str =tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) snake_case__ : str =array return tf_weights def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" snake_case__ : Optional[Any] =get_tf_weights_as_numpy(_UpperCAmelCase ) snake_case__ : Optional[int] =convert_bigbird_pegasus(_UpperCAmelCase , _UpperCAmelCase ) torch_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
716
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowercase_ ( SCREAMING_SNAKE_CASE : str = "laptop" ): """simple docstring""" snake_case__ : Dict =F'''https://www.amazon.in/laptop/s?k={product}''' snake_case__ : List[str] ={ '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } snake_case__ : Optional[Any] =BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).text ) # Initialize a Pandas dataframe with the column titles snake_case__ : int =DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: snake_case__ : str =item.ha.text snake_case__ : str ='''https://www.amazon.in/''' + item.ha.a['''href'''] snake_case__ : Tuple =item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: snake_case__ : Dict =item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: snake_case__ : Any ='''Not available''' try: snake_case__ : int =( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: snake_case__ : Optional[int] ='''''' try: snake_case__ : Dict =float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: snake_case__ : Tuple =float('''nan''' ) except AttributeError: pass snake_case__ : List[Any] =[ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : Tuple =''' ''' snake_case__ : Any =''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase__ = '''headphones''' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
408
0
from __future__ import annotations class a : '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : list[list[int]] ): UpperCAmelCase_ = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(_lowerCAmelCase ) != 0: UpperCAmelCase_ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_lowerCAmelCase ) != cols: raise error for value in row: if not isinstance(_lowerCAmelCase , (int, float) ): raise error UpperCAmelCase_ = rows else: UpperCAmelCase_ = [] def lowerCamelCase_ ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowerCamelCase_ ( self : Any ): return len(self.rows ) @property def lowerCamelCase_ ( self : Dict ): return len(self.rows[0] ) @property def lowerCamelCase_ ( self : int ): return (self.num_rows, self.num_columns) @property def lowerCamelCase_ ( self : str ): return self.order[0] == self.order[1] def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_lowerCAmelCase ) def lowerCamelCase_ ( self : int ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowerCamelCase_ ( self : Union[str, Any] ): return bool(self.determinant() ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : int , __snake_case : int ): UpperCAmelCase_ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_lowerCAmelCase ).determinant() def lowerCamelCase_ ( self : int , __snake_case : int , __snake_case : int ): if (row + column) % 2 == 0: return self.get_minor(_lowerCAmelCase , _lowerCAmelCase ) return -1 * self.get_minor(_lowerCAmelCase , _lowerCAmelCase ) def lowerCamelCase_ ( self : Optional[int] ): return Matrix( [ [self.get_minor(_lowerCAmelCase , _lowerCAmelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowerCamelCase_ ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_lowerCAmelCase ) def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[int] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(_lowerCAmelCase ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : list[int] , __snake_case : int | None = None ): UpperCAmelCase_ = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise type_error for value in row: if not isinstance(_lowerCAmelCase , (int, float) ): raise type_error if len(_lowerCAmelCase ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(_lowerCAmelCase ) else: UpperCAmelCase_ = self.rows[0:position] + [row] + self.rows[position:] def lowerCamelCase_ ( self : str , __snake_case : list[int] , __snake_case : int | None = None ): UpperCAmelCase_ = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise type_error for value in column: if not isinstance(_lowerCAmelCase , (int, float) ): raise type_error if len(_lowerCAmelCase ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: UpperCAmelCase_ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCAmelCase_ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Union[str, Any] , __snake_case : object ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return NotImplemented return self.rows == other.rows def __ne__( self : List[str] , __snake_case : object ): return not self == other def __neg__( self : Union[str, Any] ): return self * -1 def __add__( self : Tuple , __snake_case : Matrix ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Any , __snake_case : Matrix ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __snake_case : Matrix | int | float ): if isinstance(_lowerCAmelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(_lowerCAmelCase , _lowerCAmelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self : Optional[int] , __snake_case : int ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) UpperCAmelCase_ = self for _ in range(other - 1 ): result *= self return result @classmethod def lowerCamelCase_ ( cls : List[Any] , __snake_case : list[int] , __snake_case : list[int] ): return sum(row[i] * column[i] for i in range(len(_lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
144
def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :int )->Optional[int]: '''simple docstring''' snake_case_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Dict )->Dict: '''simple docstring''' snake_case_ = 0 while b > 0: if b & 1: snake_case_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
283
0
def a__ (__lowercase :int = 1000 ) -> int: _A : Optional[Any] = 1, 1 _A : Optional[int] = 2 while True: _A : Optional[int] = 0 _A : str = fa + fa _A : Optional[int] = fa, f index += 1 for _ in str(__lowercase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
713
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Dict =logging.get_logger(__name__) _UpperCamelCase : Optional[Any] ={ 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class UpperCAmelCase__ ( __snake_case ): __snake_case : Any = "xmod" def __init__( self ,A__=30522 ,A__=768 ,A__=12 ,A__=12 ,A__=3072 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=512 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=1 ,A__=0 ,A__=2 ,A__="absolute" ,A__=True ,A__=None ,A__=False ,A__=2 ,A__=False ,A__=True ,A__=True ,A__=("en_XX",) ,A__=None ,**A__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__ ) _A : Union[str, Any] = vocab_size _A : List[str] = hidden_size _A : Union[str, Any] = num_hidden_layers _A : str = num_attention_heads _A : Tuple = hidden_act _A : Optional[int] = intermediate_size _A : List[str] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Optional[int] = type_vocab_size _A : List[str] = initializer_range _A : Tuple = layer_norm_eps _A : int = position_embedding_type _A : str = use_cache _A : int = classifier_dropout _A : Optional[Any] = pre_norm _A : Dict = adapter_reduction_factor _A : List[Any] = adapter_layer_norm _A : Optional[Any] = adapter_reuse_layer_norm _A : Optional[Any] = ln_before_adapter _A : int = list(A__ ) _A : str = default_language class UpperCAmelCase__ ( __snake_case ): @property def A__ ( self ): if self.task == "multiple-choice": _A : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _A : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
332
0
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> None: lowercase : Dict = generate_pascal_triangle(SCREAMING_SNAKE_CASE__ ) for row_idx in range(SCREAMING_SNAKE_CASE__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[list[int]]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) lowercase : list[list[int]] = [] for current_row_idx in range(SCREAMING_SNAKE_CASE__ ): lowercase : int = populate_current_row(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) triangle.append(SCREAMING_SNAKE_CASE__ ) return triangle def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> list[int]: lowercase : Any = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase , lowercase : Union[str, Any] = 1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE__ ): calculate_current_element( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return current_row def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> None: lowercase : List[str] = triangle[current_row_idx - 1][current_col_idx - 1] lowercase : List[Any] = triangle[current_row_idx - 1][current_col_idx] lowercase : List[Any] = above_to_left_elt + above_to_right_elt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[list[int]]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) lowercase : list[list[int]] = [[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE__ ): lowercase : str = [0] + result[-1] + [0] lowercase : Optional[int] = row_index + 1 # Calculate the number of distinct elements in a row lowercase : str = sum(divmod(SCREAMING_SNAKE_CASE__ , 2 ) ) lowercase : Any = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowercase : Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase : List[str] = row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE__ ) return result def _snake_case( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: lowercase : Optional[Any] = f"{func.__name__}({value})" lowercase : Dict = timeit(f"__main__.{call}" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
import os import re import shutil import sys import tempfile import unittest import black lowercase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase : List[str] = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"""schedulers/""" ) ) lowercase : Any = self.diffusers_dir shutil.copy( os.path.join(snake_case ,"""src/diffusers/schedulers/scheduling_ddpm.py""" ) ,os.path.join(self.diffusers_dir ,"""schedulers/scheduling_ddpm.py""" ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Optional[int] = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowercase : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result lowercase : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) lowercase : int = black.format_str(snake_case ,mode=snake_case ) lowercase : int = os.path.join(self.diffusers_dir ,"""new_code.py""" ) with open(snake_case ,"""w""" ,newline="""\n""" ) as f: f.write(snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=snake_case ) with open(snake_case ,"""r""" ) as f: self.assertTrue(f.read() ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,snake_case ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,re.sub("""DDPM""" ,"""Test""" ,snake_case ) ,) # Copy consistency with a really long name lowercase : Dict = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" ,f"{long_class_name}SchedulerOutput" ,re.sub("""Bert""" ,snake_case ,snake_case ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,snake_case ,overwrite_result=re.sub("""DDPM""" ,"""Test""" ,snake_case ) ,)
336
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : Dict = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : Optional[Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int snake_case__ : Node | None class _SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowerCamelCase : Iterable[int] ): UpperCamelCase :Node | None = None for i in sorted(__lowerCamelCase , reverse=__lowerCamelCase ): UpperCamelCase :List[Any] = Node(__lowerCamelCase , self.head ) def __iter__( self : int ): UpperCamelCase :List[str] = self.head while node: yield node.data UpperCamelCase :Tuple = node.next_node def __len__( self : Tuple ): return sum(1 for _ in self ) def __str__( self : List[Any] ): return " -> ".join([str(__lowerCamelCase ) for node in self] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : SortedLinkedList , __magic_name__ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__magic_name__ ) + list(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
590
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase_ : Any = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str=None , __magic_name__ : Any=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=__magic_name__ ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int snake_case__ : float snake_case__ : str snake_case__ : bool @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int = 4_2 snake_case__ : str = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : bool = False snake_case__ : bool = True snake_case__ : Optional[bool] = None class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = """titi""" snake_case__ : Optional[Any] = """toto""" class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str = """titi""" snake_case__ : Tuple = """toto""" snake_case__ : Tuple = 4_2 @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : BasicEnum = "toto" def _A ( self : str ): UpperCamelCase :List[Any] = BasicEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : MixedTypeEnum = "toto" def _A ( self : str ): UpperCamelCase :List[str] = MixedTypeEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : Optional[int] = None snake_case__ : Optional[float] = field(default=_a , metadata={"""help""": """help message"""} ) snake_case__ : Optional[str] = None snake_case__ : Optional[List[str]] = list_field(default=[] ) snake_case__ : Optional[List[int]] = list_field(default=[] ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : List[int] = list_field(default=[] ) snake_case__ : List[int] = list_field(default=[1, 2, 3] ) snake_case__ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) snake_case__ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : List[int] = field() snake_case__ : str = field() snake_case__ : BasicEnum = field() def _A ( self : Dict ): UpperCamelCase :List[str] = BasicEnum(self.required_enum ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int snake_case__ : "BasicEnum" = field() snake_case__ : "Optional[bool]" = None snake_case__ : "str" = field(default="""toto""" , metadata={"""help""": """help message"""} ) snake_case__ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : bool = False snake_case__ : bool = True snake_case__ : bool | None = None @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int | None = None snake_case__ : float | None = field(default=_a , metadata={"""help""": """help message"""} ) snake_case__ : str | None = None snake_case__ : list[str] | None = list_field(default=[] ) snake_case__ : list[int] | None = list_field(default=[] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Dict , __lowerCamelCase : argparse.ArgumentParser , __lowerCamelCase : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase :List[Any] = {k: v for k, v in vars(__lowerCamelCase ).items() if k != """container"""} UpperCamelCase :Union[str, Any] = {k: v for k, v in vars(__lowerCamelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , __lowerCamelCase ) and yy.get("""choices""" , __lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](__lowerCamelCase ) , yy["""type"""](__lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[Any] ): UpperCamelCase :List[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--bar""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--baz""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--flag""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :str = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((UpperCamelCase) , ) :List[Any] = parser.parse_args_into_dataclasses(__lowerCamelCase , look_for_args_file=__lowerCamelCase ) self.assertFalse(example.flag ) def _A ( self : str ): UpperCamelCase :Union[str, Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=__lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__lowerCamelCase , help="""help message""" ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=__lowerCamelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=__lowerCamelCase , default=__lowerCamelCase ) UpperCamelCase :Tuple = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCamelCase ) for dataclass_type in dataclass_types: UpperCamelCase :Union[str, Any] = HfArgumentParser(__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Any = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :List[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) def _A ( self : Any ): UpperCamelCase :Optional[int] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCamelCase :str = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase :str = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCamelCase :Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) UpperCamelCase :List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _A ( self : List[str] ): @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : Literal["titi", "toto", 4_2] = "toto" UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCamelCase :int = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCamelCase :List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _A ( self : Tuple ): UpperCamelCase :Any = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :int = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__lowerCamelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__lowerCamelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = parser.parse_args([] ) self.assertEqual( __lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase :Tuple = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(__lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _A ( self : Optional[Any] ): UpperCamelCase :Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=__lowerCamelCase , type=__lowerCamelCase ) expected.add_argument("""--bar""" , default=__lowerCamelCase , type=__lowerCamelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=__lowerCamelCase , type=__lowerCamelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) UpperCamelCase :List[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCamelCase ) for dataclass_type in dataclass_types: UpperCamelCase :List[Any] = HfArgumentParser(__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , bar=__lowerCamelCase , baz=__lowerCamelCase , ces=[] , des=[] ) ) UpperCamelCase :List[str] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(__lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _A ( self : Any ): UpperCamelCase :Any = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Dict = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--required_str""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__lowerCamelCase , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase :Dict = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__lowerCamelCase , ) expected.add_argument("""--opt""" , type=__lowerCamelCase , default=__lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__lowerCamelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Any ): UpperCamelCase :Optional[int] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Optional[int] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } UpperCamelCase :List[str] = parser.parse_dict(__lowerCamelCase )[0] UpperCamelCase :Union[str, Any] = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(__lowerCamelCase , parser.parse_dict , __lowerCamelCase , allow_extra_keys=__lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :Tuple = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Dict = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :int = os.path.join(__lowerCamelCase , """temp_json""" ) os.mkdir(__lowerCamelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] UpperCamelCase :Dict = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Tuple = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :Any = os.path.join(__lowerCamelCase , """temp_yaml""" ) os.mkdir(__lowerCamelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] UpperCamelCase :List[str] = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase )
590
1
from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[list[str]] , UpperCamelCase__ : int , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE: Any = len(UpperCamelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCamelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase__ , UpperCamelCase__ , ) def lowerCAmelCase ( UpperCamelCase__ : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE: list[list[str]] = [] depth_first_search([] , [] , [] , UpperCamelCase__ , UpperCamelCase__ ) # Print all the boards for board in boards: for column in board: print(UpperCamelCase__ ) print('''''' ) print(len(UpperCamelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
202
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class a : def __init__( self , _lowerCAmelCase ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __SCREAMING_SNAKE_CASE: Optional[int] = deepcopy(_lowerCAmelCase ) elif os.path.exists(_lowerCAmelCase ): with io.open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE: int = json.load(_lowerCAmelCase ) else: try: __SCREAMING_SNAKE_CASE: Union[str, Any] = baseaa.urlsafe_baadecode(_lowerCAmelCase ).decode('''utf-8''' ) __SCREAMING_SNAKE_CASE: List[Any] = json.loads(_lowerCAmelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) __SCREAMING_SNAKE_CASE: str = config self.set_stage_and_offload() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = self.get_value('''zero_optimization.stage''' , -1 ) # offload __SCREAMING_SNAKE_CASE: Dict = False if self.is_zeroa() or self.is_zeroa(): __SCREAMING_SNAKE_CASE: str = set(['''cpu''', '''nvme'''] ) __SCREAMING_SNAKE_CASE: Tuple = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __SCREAMING_SNAKE_CASE: Dict = True def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.config # find the config node of interest if it exists __SCREAMING_SNAKE_CASE: Optional[Any] = ds_key_long.split('''.''' ) __SCREAMING_SNAKE_CASE: Union[str, Any] = nodes.pop() for node in nodes: __SCREAMING_SNAKE_CASE: int = config.get(_lowerCAmelCase ) if config is None: return None, ds_key return config, ds_key def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[Any] = self.find_config_node(_lowerCAmelCase ) if config is None: return default return config.get(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = self.config # find the config node of interest if it exists __SCREAMING_SNAKE_CASE: str = ds_key_long.split('''.''' ) for node in nodes: __SCREAMING_SNAKE_CASE: Tuple = config __SCREAMING_SNAKE_CASE: List[str] = config.get(_lowerCAmelCase ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = self.get_value(_lowerCAmelCase ) return False if value is None else bool(_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = self.get_value(_lowerCAmelCase ) return False if value is None else not bool(_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" return self._stage == 2 def snake_case_ ( self ): """simple docstring""" return self._stage == 3 def snake_case_ ( self ): """simple docstring""" return self._offload class a : def __init__( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = engine def snake_case_ ( self , _lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" self.engine.backward(_lowerCAmelCase , **_lowerCAmelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class a ( __lowercase ): def __init__( self , _lowerCAmelCase ): """simple docstring""" super().__init__(_lowerCAmelCase , device_placement=_lowerCAmelCase , scaler=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = hasattr(self.optimizer , '''overflow''' ) def snake_case_ ( self , _lowerCAmelCase=None ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def snake_case_ ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def snake_case_ ( self ): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class a ( __lowercase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=0.001 , _lowerCAmelCase=0 , **_lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = params __SCREAMING_SNAKE_CASE: int = lr __SCREAMING_SNAKE_CASE: List[str] = weight_decay __SCREAMING_SNAKE_CASE: List[Any] = kwargs class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=0 , **_lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = optimizer __SCREAMING_SNAKE_CASE: int = total_num_steps __SCREAMING_SNAKE_CASE: Optional[int] = warmup_num_steps __SCREAMING_SNAKE_CASE: str = kwargs
202
1
def _lowercase ( lowercase__ ): __lowerCAmelCase : Any = generate_pascal_triangle(lowercase__ ) for row_idx in range(lowercase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def _lowercase ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __lowerCAmelCase : list[list[int]] = [] for current_row_idx in range(lowercase__ ): __lowerCAmelCase : int = populate_current_row(lowercase__ , lowercase__ ) triangle.append(lowercase__ ) return triangle def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : str = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __lowerCAmelCase : Optional[Any] = 1, 1 for current_col_idx in range(1 , lowercase__ ): calculate_current_element( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return current_row def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __lowerCAmelCase : str = triangle[current_row_idx - 1][current_col_idx - 1] __lowerCAmelCase : str = triangle[current_row_idx - 1][current_col_idx] __lowerCAmelCase : Union[str, Any] = above_to_left_elt + above_to_right_elt def _lowercase ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __lowerCAmelCase : list[list[int]] = [[1]] for row_index in range(1 , lowercase__ ): __lowerCAmelCase : Union[str, Any] = [0] + result[-1] + [0] __lowerCAmelCase : str = row_index + 1 # Calculate the number of distinct elements in a row __lowerCAmelCase : Any = sum(divmod(lowercase__ , 2 ) ) __lowerCAmelCase : int = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __lowerCAmelCase : int = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __lowerCAmelCase : Tuple = row_first_half + row_second_half result.append(lowercase__ ) return result def _lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase__ , lowercase__ ) -> None: __lowerCAmelCase : Any = f"""{func.__name__}({value})""" __lowerCAmelCase : Any = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowercase__ , lowercase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
0
'''simple docstring''' def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Any = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE:Tuple = [] SCREAMING_SNAKE_CASE:Optional[int] = list(range(snake_case ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE:List[str] = factorials.pop() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[int] = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
143
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _snake_case ( _a ): _A : List[str] = '''camembert''' def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_522 ,SCREAMING_SNAKE_CASE__ : int=768 ,SCREAMING_SNAKE_CASE__ : List[Any]=12 ,SCREAMING_SNAKE_CASE__ : Any=12 ,SCREAMING_SNAKE_CASE__ : Tuple=3_072 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Dict=512 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Tuple=0.02 ,SCREAMING_SNAKE_CASE__ : Any=1e-12 ,SCREAMING_SNAKE_CASE__ : str=1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Any="absolute" ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE:str = hidden_size SCREAMING_SNAKE_CASE:str = num_hidden_layers SCREAMING_SNAKE_CASE:List[str] = num_attention_heads SCREAMING_SNAKE_CASE:Optional[int] = hidden_act SCREAMING_SNAKE_CASE:int = intermediate_size SCREAMING_SNAKE_CASE:List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:str = max_position_embeddings SCREAMING_SNAKE_CASE:Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE:Optional[int] = initializer_range SCREAMING_SNAKE_CASE:Tuple = layer_norm_eps SCREAMING_SNAKE_CASE:Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE:Optional[int] = use_cache SCREAMING_SNAKE_CASE:List[Any] = classifier_dropout class _snake_case ( _a ): @property def __UpperCamelCase ( self : List[str] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE:Any = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE:str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
143
1
import numpy as np from PIL import Image def snake_case ( snake_case__ , snake_case__ , snake_case__) -> Dict: _A = np.array(snake_case__) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""") _A = 0 _A = 0 _A = 0 _A = 0 # compute the shape of the output matrix _A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _A = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _A = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _A = 0 _A = 0 return updated_arr def snake_case ( snake_case__ , snake_case__ , snake_case__) -> Dict: _A = np.array(snake_case__) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""") _A = 0 _A = 0 _A = 0 _A = 0 # compute the shape of the output matrix _A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _A = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _A = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _A = 0 _A = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
721
_SCREAMING_SNAKE_CASE = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on _SCREAMING_SNAKE_CASE = {value: key for key, value in MORSE_CODE_DICT.items()} def snake_case ( snake_case__ :str) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper()) def snake_case ( snake_case__ :str) -> str: return "".join(REVERSE_DICT[char] for char in message.split()) def snake_case ( ) -> None: _A = """Morse code here!""" print(snake_case__) _A = encrypt(snake_case__) print(snake_case__) _A = decrypt(snake_case__) print(snake_case__) if __name__ == "__main__": main()
83
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __magic_name__ ( lowercase , lowercase , lowercase ) -> Optional[int]: """simple docstring""" lowercase_ : Dict = AutoConfig.from_pretrained(lowercase ) lowercase_ : Tuple = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase ) lowercase_ : Any = checkpoints.load_tax_checkpoint(lowercase ) lowercase_ : Tuple = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": lowercase_ : List[str] = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase_ : Tuple = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : List[Any] = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): lowercase_ : Tuple = f"""layers_{str(lowercase )}""" # Self-Attention lowercase_ : Optional[int] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] lowercase_ : Optional[int] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] lowercase_ : List[str] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] lowercase_ : Union[str, Any] = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : Tuple = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization lowercase_ : Any = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: lowercase_ : str = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] lowercase_ : Union[str, Any] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: lowercase_ : int = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] lowercase_ : Optional[Any] = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization lowercase_ : List[Any] = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning lowercase_ : List[Any] = flax_model.params["""encoder"""]["""block"""][str(lowercase )]["""layer"""] lowercase_ : List[str] = tax_attention_key lowercase_ : Optional[int] = tax_attention_out lowercase_ : Union[str, Any] = tax_attention_query lowercase_ : str = tax_attention_value lowercase_ : Optional[int] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: lowercase_ : Tuple = tax_mlp_wi_a lowercase_ : Union[str, Any] = tax_mlp_wi_a else: lowercase_ : Tuple = tax_mlp_wi lowercase_ : List[str] = tax_mlp_wo lowercase_ : List[str] = tax_mlp_layer_norm lowercase_ : Dict = flax_model_encoder_layer_block # Only for layer 0: lowercase_ : Tuple = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T lowercase_ : int = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : Dict = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T lowercase_ : Any = tax_encoder_global_rel_embedding # Assigning lowercase_ : Optional[Any] = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] lowercase_ : Optional[int] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase_ : Tuple = f"""layers_{str(lowercase )}""" # Self-Attention lowercase_ : Tuple = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] lowercase_ : Dict = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] lowercase_ : List[Any] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] lowercase_ : Union[str, Any] = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization lowercase_ : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention lowercase_ : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] lowercase_ : Any = tax_enc_dec_attention_module["""key"""]["""kernel"""] lowercase_ : Optional[int] = tax_enc_dec_attention_module["""out"""]["""kernel"""] lowercase_ : str = tax_enc_dec_attention_module["""query"""]["""kernel"""] lowercase_ : Union[str, Any] = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization lowercase_ : Union[str, Any] = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: lowercase_ : Any = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] lowercase_ : Optional[int] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: lowercase_ : int = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] lowercase_ : List[str] = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization lowercase_ : Tuple = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning lowercase_ : Optional[Any] = flax_model.params["""decoder"""]["""block"""][str(lowercase )]["""layer"""] lowercase_ : Dict = tax_attention_key lowercase_ : List[str] = tax_attention_out lowercase_ : Tuple = tax_attention_query lowercase_ : Dict = tax_attention_value lowercase_ : Optional[int] = tax_pre_attention_layer_norm lowercase_ : Dict = tax_enc_dec_attention_key lowercase_ : Dict = tax_enc_dec_attention_out lowercase_ : Any = tax_enc_dec_attention_query lowercase_ : str = tax_enc_dec_attention_value lowercase_ : Any = tax_cross_layer_norm if split_mlp_wi: lowercase_ : Union[str, Any] = tax_mlp_wi_a lowercase_ : Union[str, Any] = tax_mlp_wi_a else: lowercase_ : Tuple = tax_mlp_wi lowercase_ : Optional[int] = tax_mlp_wo lowercase_ : Any = txa_mlp_layer_norm lowercase_ : Dict = flax_model_decoder_layer_block # Decoder Normalization lowercase_ : Optional[Any] = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] lowercase_ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase_ : Union[str, Any] = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T lowercase_ : List[Any] = tax_decoder_rel_embedding # Token Embeddings lowercase_ : Optional[int] = tax_model["""target"""]["""token_embedder"""]["""embedding"""] lowercase_ : Tuple = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase_ : Tuple = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(lowercase ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) UpperCAmelCase_ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
458
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __magic_name__ ( ) -> str: """simple docstring""" lowercase_ : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowercase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowercase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowercase ) return parser.parse_args() def __magic_name__ ( ) -> List[Any]: """simple docstring""" lowercase_ : Union[str, Any] = parse_args() # Import training_script as a module. lowercase_ : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase_ : Tuple = script_fpath.stem lowercase_ : List[str] = importlib.import_module(lowercase ) # Patch sys.argv lowercase_ : Optional[int] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
458
1
from __future__ import annotations from dataclasses import dataclass @dataclass class lowerCamelCase_ : _lowerCamelCase : Optional[int] = 42 _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None def __SCREAMING_SNAKE_CASE ( UpperCamelCase : TreeNode | None ) -> Dict: """simple docstring""" def is_valid_tree(UpperCamelCase : TreeNode | None ) -> bool: if node is None: return True if not isinstance(UpperCamelCase , UpperCamelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(UpperCamelCase ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( UpperCamelCase : TreeNode | None , UpperCamelCase : float , UpperCamelCase : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , UpperCamelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , UpperCamelCase ) ) return is_binary_search_tree_recursive_check(UpperCamelCase , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
705
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _A = logging.getLogger() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" a_ = argparse.ArgumentParser() parser.add_argument("""-f""" ) a_ = parser.parse_args() return args.f def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" a_ = {} a_ = os.path.join(UpperCamelCase , """all_results.json""" ) if os.path.exists(UpperCamelCase ): with open(UpperCamelCase , """r""" ) as f: a_ = json.load(UpperCamelCase ) else: raise ValueError(F"""can't find {path}""" ) return results def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" a_ = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() _A = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): @classmethod def __magic_name__ ( cls ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU a_ = tempfile.mkdtemp() a_ = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) a_ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __magic_name__ ( cls ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu a_ = 7 if get_gpu_count() > 1 else 2 a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """translation_no_trainer""" ) ) ) @slow def __magic_name__ ( self ): a_ = logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.1_0 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """image_classification_no_trainer""" ) ) )
403
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 1000 ): lowerCAmelCase = -1 lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCAmelCase = n - a - b if c * c == (a * a + b * b): lowerCAmelCase = a * b * c if candidate >= product: lowerCAmelCase = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
4
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 48 lowerCAmelCase = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 60 lowerCAmelCase = [6, 6, 6, 6] lowerCAmelCase = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = 4 lowerCAmelCase = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = 126 lowerCAmelCase = 7 lowerCAmelCase = 255.0 lowerCAmelCase = '' return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCAmelCase = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCAmelCase = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCAmelCase = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict ): for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase = key.split('.' ) lowerCAmelCase = int(key_split[1] ) lowerCAmelCase = int(key_split[4] ) lowerCAmelCase = config.embed_dim if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] else: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] pass else: lowerCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): lowerCAmelCase = get_config(_UpperCAmelCase ) lowerCAmelCase = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 512, 512] ) lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __UpperCamelCase : Optional[int] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __lowercase , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" def get_masked_lm_array(__lowercase ): A__ : int = F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' A__ : Dict = tf.train.load_variable(__lowercase , __lowercase ) if "kernel" in name: A__ : Any = array.transpose() return torch.from_numpy(__lowercase ) def get_encoder_array(__lowercase ): A__ : Dict = F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' A__ : Tuple = tf.train.load_variable(__lowercase , __lowercase ) if "kernel" in name: A__ : str = array.transpose() return torch.from_numpy(__lowercase ) def get_encoder_layer_array(__lowercase , __lowercase ): A__ : int = F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' A__ : Dict = tf.train.load_variable(__lowercase , __lowercase ) if "kernel" in name: A__ : Any = array.transpose() return torch.from_numpy(__lowercase ) def get_encoder_attention_layer_array(__lowercase , __lowercase , __lowercase ): A__ : List[str] = F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' A__ : List[Any] = tf.train.load_variable(__lowercase , __lowercase ) A__ : int = array.reshape(__lowercase ) if "kernel" in name: A__ : Union[str, Any] = array.transpose() return torch.from_numpy(__lowercase ) print(F'Loading model based on config from {config_path}...' ) A__ : Tuple = BertConfig.from_json_file(__lowercase ) A__ : List[str] = BertForMaskedLM(__lowercase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): A__ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention A__ : BertSelfAttention = layer.attention.self A__ : Optional[Any] = get_encoder_attention_layer_array( __lowercase , "_query_dense/kernel" , self_attn.query.weight.data.shape ) A__ : List[Any] = get_encoder_attention_layer_array( __lowercase , "_query_dense/bias" , self_attn.query.bias.data.shape ) A__ : int = get_encoder_attention_layer_array( __lowercase , "_key_dense/kernel" , self_attn.key.weight.data.shape ) A__ : Tuple = get_encoder_attention_layer_array( __lowercase , "_key_dense/bias" , self_attn.key.bias.data.shape ) A__ : List[Any] = get_encoder_attention_layer_array( __lowercase , "_value_dense/kernel" , self_attn.value.weight.data.shape ) A__ : Optional[Any] = get_encoder_attention_layer_array( __lowercase , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output A__ : BertSelfOutput = layer.attention.output A__ : Tuple = get_encoder_attention_layer_array( __lowercase , "_output_dense/kernel" , self_output.dense.weight.data.shape ) A__ : Any = get_encoder_attention_layer_array( __lowercase , "_output_dense/bias" , self_output.dense.bias.data.shape ) A__ : Dict = get_encoder_layer_array(__lowercase , "_attention_layer_norm/gamma" ) A__ : Optional[int] = get_encoder_layer_array(__lowercase , "_attention_layer_norm/beta" ) # Intermediate A__ : BertIntermediate = layer.intermediate A__ : Optional[Any] = get_encoder_layer_array(__lowercase , "_intermediate_dense/kernel" ) A__ : Any = get_encoder_layer_array(__lowercase , "_intermediate_dense/bias" ) # Output A__ : BertOutput = layer.output A__ : Dict = get_encoder_layer_array(__lowercase , "_output_dense/kernel" ) A__ : List[Any] = get_encoder_layer_array(__lowercase , "_output_dense/bias" ) A__ : Optional[Any] = get_encoder_layer_array(__lowercase , "_output_layer_norm/gamma" ) A__ : Dict = get_encoder_layer_array(__lowercase , "_output_layer_norm/beta" ) # Embeddings A__ : str = get_encoder_array("_position_embedding_layer/embeddings" ) A__ : List[str] = get_encoder_array("_type_embedding_layer/embeddings" ) A__ : List[Any] = get_encoder_array("_embedding_norm_layer/gamma" ) A__ : Optional[int] = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head A__ : Optional[Any] = model.cls.predictions.transform A__ : int = get_masked_lm_array("dense/kernel" ) A__ : Tuple = get_masked_lm_array("dense/bias" ) A__ : Optional[Any] = get_masked_lm_array("layer_norm/gamma" ) A__ : Tuple = get_masked_lm_array("layer_norm/beta" ) A__ : Any = get_masked_lm_array("embedding_table" ) # Pooling A__ : Optional[Any] = BertPooler(config=__lowercase ) A__ : BertPooler = get_encoder_array("_pooler_layer/kernel" ) A__ : BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__lowercase ) # Integration test - should load without any errors ;) A__ : Union[str, Any] = BertForMaskedLM.from_pretrained(__lowercase ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": snake_case : str = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) snake_case : Dict = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
182
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Union[str, Any] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCamelCase ): __A : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , _A : List[str]=3_0522 , _A : Optional[int]=768 , _A : Union[str, Any]=12 , _A : str=12 , _A : Optional[int]=3072 , _A : Dict="gelu" , _A : List[str]=0.1 , _A : Any=0.1 , _A : str=512 , _A : Any=2 , _A : str=0.02 , _A : List[str]=1e-12 , _A : Optional[int]=1 , _A : Any=0 , _A : Any=2 , _A : List[Any]="absolute" , _A : Tuple=True , _A : str=None , **_A : List[Any] , ): super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A) A__ : Optional[int] = vocab_size A__ : Tuple = hidden_size A__ : str = num_hidden_layers A__ : Union[str, Any] = num_attention_heads A__ : Dict = hidden_act A__ : List[Any] = intermediate_size A__ : int = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Union[str, Any] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = initializer_range A__ : str = layer_norm_eps A__ : int = position_embedding_type A__ : str = use_cache A__ : int = classifier_dropout class lowerCAmelCase__ ( UpperCamelCase ): @property def _lowercase ( self : Tuple): if self.task == "multiple-choice": A__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: A__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
182
1
import os import sys import unittest A__ : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A__ : Tuple = os.path.join(git_repo_path, 'src', 'diffusers') class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = find_backend(''' if not is_torch_available():''' ) self.assertEqual(lowerCamelCase, '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") lowercase__ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(lowerCamelCase, '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") lowercase__ = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(lowerCamelCase, '''torch_and_transformers_and_onnx''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''', lowerCamelCase ) self.assertIn('''torch_and_transformers''', lowerCamelCase ) self.assertIn('''flax_and_transformers''', lowerCamelCase ) self.assertIn('''torch_and_transformers_and_onnx''', lowerCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''', objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''', objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''', objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''', objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''', objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''', objects['''torch_and_transformers_and_onnx'''] ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = create_dummy_object('''CONSTANT''', '''\'torch\'''' ) self.assertEqual(lowerCamelCase, '''\nCONSTANT = None\n''' ) lowercase__ = create_dummy_object('''function''', '''\'torch\'''' ) self.assertEqual( lowerCamelCase, '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowercase__ = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' lowercase__ = create_dummy_object('''FakeClass''', '''\'torch\'''' ) self.assertEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' lowercase__ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''], lowerCamelCase )
183
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Dict, lowerCamelCase : Dict=13, lowerCamelCase : Optional[int]=7, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : List[Any]=99, lowerCamelCase : Any=32, lowerCamelCase : List[str]=5, lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Union[str, Any]=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[Any]=512, lowerCamelCase : int=16, lowerCamelCase : str=2, lowerCamelCase : int=0.02, lowerCamelCase : int=4, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = True lowercase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]], dtype=jnp.intaa ) lowercase__ = model(lowerCamelCase )[0] lowercase__ = [1, 11, 50_265] self.assertEqual(list(output.shape ), lowerCamelCase ) # compare the actual values for a slice. lowercase__ = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]], dtype=jnp.intaa ) lowercase__ = model(lowerCamelCase )[0] # compare the actual values for a slice. lowercase__ = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) )
183
1
a_ = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
702
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionXLImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCamelCase = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) __lowerCamelCase = CLIPTextModel(__UpperCAmelCase ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__UpperCAmelCase ) __lowerCamelCase = CLIPTextModelWithProjection(__UpperCAmelCase ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__UpperCAmelCase ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __lowerCamelCase = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __lowerCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) __lowerCamelCase = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __lowerCamelCase = sd_pipe(**__UpperCAmelCase ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) __lowerCamelCase = sd_pipe.to(__UpperCAmelCase ) __lowerCamelCase = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # forward without prompt embeds __lowerCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __lowerCamelCase = 3 * ['''this is a negative prompt'''] __lowerCamelCase = negative_prompt __lowerCamelCase = 3 * [inputs['''prompt''']] __lowerCamelCase = sd_pipe(**__UpperCAmelCase ) __lowerCamelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __lowerCamelCase = 3 * ['''this is a negative prompt'''] __lowerCamelCase = 3 * [inputs.pop('''prompt''' )] ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = sd_pipe.encode_prompt(__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) __lowerCamelCase = sd_pipe( **__UpperCAmelCase , prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , pooled_prompt_embeds=__UpperCAmelCase , negative_pooled_prompt_embeds=__UpperCAmelCase , ) __lowerCamelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' __lowerCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __lowerCamelCase = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) __lowerCamelCase = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __lowerCamelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = self.get_inputs(__UpperCAmelCase ) __lowerCamelCase = pipe(**__UpperCAmelCase ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
622
0
'''simple docstring''' from __future__ import annotations from collections import deque class __UpperCamelCase : def __init__( self , __a ): '''simple docstring''' __a : Optional[Any] = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(snake_case__ ) self.set_fail_transitions() def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Optional[int] = 0 for character in keyword: __a : Optional[Any] = self.find_next_state(snake_case__ , snake_case__ ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __a : List[Any] = len(self.adlist ) - 1 else: __a : Dict = next_state self.adlist[current_state]["output"].append(snake_case__ ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = deque() for node in self.adlist[0]["next_states"]: q.append(snake_case__ ) __a : Any = 0 while q: __a : Optional[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(snake_case__ ) __a : Optional[Any] = self.adlist[r]['fail_state'] while ( self.find_next_state(snake_case__ , self.adlist[child]['value'] ) is None and state != 0 ): __a : List[str] = self.adlist[state]['fail_state'] __a : Union[str, Any] = self.find_next_state( snake_case__ , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: __a : Optional[Any] = 0 __a : Tuple = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : int = {} # returns a dict with keywords and list of its occurrences __a : Tuple = 0 for i in range(len(snake_case__ ) ): while ( self.find_next_state(snake_case__ , string[i] ) is None and current_state != 0 ): __a : Dict = self.adlist[current_state]['fail_state'] __a : str = self.find_next_state(snake_case__ , string[i] ) if next_state is None: __a : str = 0 else: __a : Optional[int] = next_state for key in self.adlist[current_state]["output"]: if key not in result: __a : Any = [] result[key].append(i - len(snake_case__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
476
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase_ ( a_ , unittest.TestCase ): _A : str = VideoToVideoSDPipeline _A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} _A : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} _A : int = PipelineTesterMixin.required_optional_params - {'latents'} _A : List[str] = False # No `output_type`. _A : Any = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) UpperCAmelCase = CLIPTextModel(snake_case__ ) UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase_ ( self , snake_case__ , snake_case__=0 ) -> List[str]: """simple docstring""" UpperCAmelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("""mps""" ): UpperCAmelCase = torch.manual_seed(snake_case__ ) else: UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = VideoToVideoSDPipeline(**snake_case__ ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = """np""" UpperCAmelCase = sd_pipe(**snake_case__ ).frames UpperCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=snake_case__ ) UpperCAmelCase = video.to("""cuda""" ) UpperCAmelCase = """Spiderman is surfing""" UpperCAmelCase = pipe(snake_case__ , video=snake_case__ , generator=snake_case__ , num_inference_steps=3 , output_type="""pt""" ).frames UpperCAmelCase = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
673
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class a_ ( unittest.TestCase ): def __init__( self : List[str] , snake_case__ : str , snake_case__ : List[Any]=7 , snake_case__ : Dict=3 , snake_case__ : Optional[Any]=18 , snake_case__ : List[Any]=30 , snake_case__ : Union[str, Any]=400 , snake_case__ : Tuple=True , snake_case__ : Optional[int]=32 , snake_case__ : Dict=True , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size_divisor lowerCAmelCase__ = do_rescale def _SCREAMING_SNAKE_CASE ( self : Dict ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Dict = GLPNImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = GLPNImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case__ , """size_divisor""" ) ) self.assertTrue(hasattr(snake_case__ , """resample""" ) ) self.assertTrue(hasattr(snake_case__ , """do_rescale""" ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any=13 , snake_case__ : int=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=32 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : Any=0.1 , snake_case__ : int=10 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : str=None , snake_case__ : List[Any]=2 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCAmelCase__ = TFDeiTModel(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict ): lowerCAmelCase__ = TFDeiTForMaskedImageModeling(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForMaskedImageModeling(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ): lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFDeiTForImageClassification(snake_case__ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = TFDeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(snake_case__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any]=False ): lowerCAmelCase__ = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**snake_case__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase__ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
674
0
"""simple docstring""" def A_ (__a , __a ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) A_ = str(bin(__a ) ) binary_number += "0" * shift_amount return binary_number def A_ (__a , __a ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) A_ = str(bin(__a ) )[2:] if shift_amount >= len(__a ): return "0b0" A_ = binary_number[: len(__a ) - shift_amount] return "0b" + shifted_binary_number def A_ (__a , __a ): '''simple docstring''' if number >= 0: # Get binary representation of positive number A_ = "0" + str(bin(__a ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number A_ = len(bin(__a )[3:] ) # Find 2's complement of number A_ = bin(abs(__a ) - (1 << binary_number_length) )[3:] A_ = ( "1" + "0" * (binary_number_length - len(__a )) + binary_number ) if shift_amount >= len(__a ): return "0b" + binary_number[0] * len(__a ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__a ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
115
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __lowerCAmelCase ( _lowercase ): """simple docstring""" def __init__( self : Optional[int] ) -> str: """simple docstring""" A_ = [] def lowerCamelCase__ ( self : Tuple , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Optional[int] , **_snake_case : str ) -> int: """simple docstring""" self.events.append("on_init_end" ) def lowerCamelCase__ ( self : Dict , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Tuple , **_snake_case : Tuple ) -> List[str]: """simple docstring""" self.events.append("on_train_begin" ) def lowerCamelCase__ ( self : List[Any] , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Tuple , **_snake_case : Optional[int] ) -> str: """simple docstring""" self.events.append("on_train_end" ) def lowerCamelCase__ ( self : Dict , _snake_case : str , _snake_case : List[Any] , _snake_case : str , **_snake_case : Optional[int] ) -> Dict: """simple docstring""" self.events.append("on_epoch_begin" ) def lowerCamelCase__ ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[Any] , **_snake_case : Optional[Any] ) -> str: """simple docstring""" self.events.append("on_epoch_end" ) def lowerCamelCase__ ( self : List[Any] , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[Any] , **_snake_case : Optional[int] ) -> List[str]: """simple docstring""" self.events.append("on_step_begin" ) def lowerCamelCase__ ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Any , **_snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" self.events.append("on_step_end" ) def lowerCamelCase__ ( self : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Union[str, Any] , **_snake_case : List[str] ) -> Optional[int]: """simple docstring""" self.events.append("on_evaluate" ) def lowerCamelCase__ ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : int , _snake_case : int , **_snake_case : List[Any] ) -> List[str]: """simple docstring""" self.events.append("on_predict" ) def lowerCamelCase__ ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[Any] , **_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" self.events.append("on_save" ) def lowerCamelCase__ ( self : Dict , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Optional[int] , **_snake_case : Dict ) -> str: """simple docstring""" self.events.append("on_log" ) def lowerCamelCase__ ( self : Tuple , _snake_case : Optional[Any] , _snake_case : str , _snake_case : int , **_snake_case : List[Any] ) -> int: """simple docstring""" self.events.append("on_prediction_step" ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A_ = tempfile.mkdtemp() def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" shutil.rmtree(self.output_dir ) def lowerCamelCase__ ( self : List[str] , _snake_case : Any=0 , _snake_case : Optional[int]=0 , _snake_case : int=64 , _snake_case : Optional[int]=64 , _snake_case : List[Any]=None , _snake_case : List[Any]=False , **_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. A_ = RegressionDataset(length=_snake_case ) A_ = RegressionDataset(length=_snake_case ) A_ = RegressionModelConfig(a=_snake_case , b=_snake_case ) A_ = RegressionPreTrainedModel(_snake_case ) A_ = TrainingArguments(self.output_dir , disable_tqdm=_snake_case , report_to=[] , **_snake_case ) return Trainer( _snake_case , _snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , callbacks=_snake_case , ) def lowerCamelCase__ ( self : List[Any] , _snake_case : Optional[Any] , _snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" self.assertEqual(len(_snake_case ) , len(_snake_case ) ) # Order doesn't matter A_ = sorted(_snake_case , key=lambda _snake_case : cb.__name__ if isinstance(_snake_case , _snake_case ) else cb.__class__.__name__ ) A_ = sorted(_snake_case , key=lambda _snake_case : cb.__name__ if isinstance(_snake_case , _snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(_snake_case , _snake_case ): if isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ): self.assertEqual(_snake_case , _snake_case ) elif isinstance(_snake_case , _snake_case ) and not isinstance(_snake_case , _snake_case ): self.assertEqual(_snake_case , cba.__class__ ) elif not isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ): self.assertEqual(cba.__class__ , _snake_case ) else: self.assertEqual(_snake_case , _snake_case ) def lowerCamelCase__ ( self : List[Any] , _snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" A_ = ["on_init_end", "on_train_begin"] A_ = 0 A_ = len(trainer.get_eval_dataloader() ) A_ = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(_snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCamelCase__ ( self : List[Any] ) -> int: """simple docstring""" A_ = self.get_trainer() A_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) # Callbacks passed at init are added to the default callbacks A_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(_snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback A_ = self.get_trainer(disable_tqdm=_snake_case ) A_ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" A_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] A_ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_snake_case ) expected_callbacks.remove(_snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) A_ = self.get_trainer() A_ = trainer.pop_callback(_snake_case ) self.assertEqual(cb.__class__ , _snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) trainer.add_callback(_snake_case ) expected_callbacks.insert(0 , _snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) # We can also add, pop, or remove by instance A_ = self.get_trainer() A_ = trainer.callback_handler.callbacks[0] trainer.remove_callback(_snake_case ) expected_callbacks.remove(_snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) A_ = self.get_trainer() A_ = trainer.callback_handler.callbacks[0] A_ = trainer.pop_callback(_snake_case ) self.assertEqual(_snake_case , _snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) trainer.add_callback(_snake_case ) expected_callbacks.insert(0 , _snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=_snake_case ) A_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() A_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_snake_case , self.get_expected_events(_snake_case ) ) # Independent log/save/eval A_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() A_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_snake_case , self.get_expected_events(_snake_case ) ) A_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() A_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_snake_case , self.get_expected_events(_snake_case ) ) A_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() A_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_snake_case , self.get_expected_events(_snake_case ) ) A_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() A_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_snake_case , self.get_expected_events(_snake_case ) ) # A bit of everything A_ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() A_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(_snake_case , self.get_expected_events(_snake_case ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: A_ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(_snake_case ) in warn_mock.call_args[0][0]
115
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __magic_name__ : List[str] = logging.get_logger(__name__) class A__ ( __snake_case ): '''simple docstring''' snake_case__ = ["""pixel_values"""] def __init__( self : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **_SCREAMING_SNAKE_CASE : Optional[Any] , ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = size if size is not None else {'shortest_edge': 256} UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Tuple , ): """simple docstring""" UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCamelCase = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['shortest_edge'] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Tuple , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Any , ): """simple docstring""" UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Union[str, Any] , ): """simple docstring""" return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : ImageInput , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = None , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[float] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE : Dict , ): """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase = {'pixel_values': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
707
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = 1 snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] for i in range(self.num_layers ): UpperCamelCase = self.in_channels if i == 0 else self.out_channels UpperCamelCase = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets UpperCamelCase = attentions if self.add_downsample: UpperCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=True ): """simple docstring""" UpperCamelCase = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) UpperCamelCase = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCamelCase = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = True snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = [] for i in range(self.num_layers ): UpperCamelCase = self.in_channels if i == 0 else self.out_channels UpperCamelCase = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets if self.add_downsample: UpperCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any]=True ): """simple docstring""" UpperCamelCase = () for resnet in self.resnets: UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCamelCase = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = 1 snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] for i in range(self.num_layers ): UpperCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCamelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets UpperCamelCase = attentions if self.add_upsample: UpperCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any]=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCamelCase = res_hidden_states_tuple[-1] UpperCamelCase = res_hidden_states_tuple[:-1] UpperCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) UpperCamelCase = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCamelCase = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = True snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" UpperCamelCase = [] for i in range(self.num_layers ): UpperCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCamelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets if self.add_upsample: UpperCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states UpperCamelCase = res_hidden_states_tuple[-1] UpperCamelCase = res_hidden_states_tuple[:-1] UpperCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCamelCase = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = 1 snake_case__ = False snake_case__ = False snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" UpperCamelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCamelCase = [] for _ in range(self.num_layers ): UpperCamelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets UpperCamelCase = attentions def __call__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str=True ): """simple docstring""" UpperCamelCase = self.resnets[0](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCamelCase = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) return hidden_states
410
0
'''simple docstring''' def __UpperCAmelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(1000 - i, -1000 - i, -1 ) ) for i in range(1000 )] __UpperCamelCase : List[Any] = generate_large_matrix() __UpperCamelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: list[list[int]] ) -> None: """simple docstring""" assert all(row == sorted(SCREAMING_SNAKE_CASE__, reverse=SCREAMING_SNAKE_CASE__ ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE__ ) == sorted(SCREAMING_SNAKE_CASE__, reverse=SCREAMING_SNAKE_CASE__ ) for col in zip(*SCREAMING_SNAKE_CASE__ ) ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: list[int] ) -> int: """simple docstring""" __a = 0 __a = len(SCREAMING_SNAKE_CASE__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __a = (left + right) // 2 __a = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __a = mid + 1 else: __a = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE__ ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: list[list[int]] ) -> int: """simple docstring""" __a = 0 __a = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __a = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE__ ) * len(grid[0] )) - total def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: list[list[int]] ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: list[list[int]] ) -> int: """simple docstring""" __a = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE__ ): if number < 0: total += len(SCREAMING_SNAKE_CASE__ ) - i break return total def __UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print('Running benchmarks' ) __a = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __a = timeit(f"""{func}(grid=grid)""", setup=SCREAMING_SNAKE_CASE__, number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
448
'''simple docstring''' import os def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__ ) ) as in_file: __a = in_file.read() __a = [[int(SCREAMING_SNAKE_CASE__ ) for cell in row.split(',' )] for row in data.strip().splitlines()] __a = [[0 for cell in row] for row in grid] __a = len(grid[0] ) __a = [[0 for i in range(SCREAMING_SNAKE_CASE__ )] for j in range(SCREAMING_SNAKE_CASE__ )] __a = grid[0][0] for i in range(1, SCREAMING_SNAKE_CASE__ ): __a = grid[0][i] + dp[0][i - 1] for i in range(1, SCREAMING_SNAKE_CASE__ ): __a = grid[i][0] + dp[i - 1][0] for i in range(1, SCREAMING_SNAKE_CASE__ ): for j in range(1, SCREAMING_SNAKE_CASE__ ): __a = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
448
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE__:Union[str, Any] = parse(importlib.metadata.version("""torch""")) def _lowerCamelCase( a , a , a ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) __a = STR_OPERATION_TO_FUNC[operation] if isinstance(a , a ): __a = parse(importlib.metadata.version(a ) ) return operation(a , parse(a ) ) def _lowerCamelCase( a , a ): return compare_versions(a , a , a )
67
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=True , lowerCamelCase=1 / 255 , lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __a = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} __a = parent __a = batch_size __a = num_channels __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std __a = do_rescale __a = rescale_factor __a = do_pad def a__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def a__ ( self , lowerCamelCase , lowerCamelCase=False ): if not batched: __a = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): __a , __a = image.size else: __a , __a = image.shape[1], image.shape[2] if w < h: __a = int(self.size["shortest_edge"] * h / w ) __a = self.size["shortest_edge"] elif w > h: __a = self.size["shortest_edge"] __a = int(self.size["shortest_edge"] * w / h ) else: __a = self.size["shortest_edge"] __a = self.size["shortest_edge"] else: __a = [] for image in image_inputs: __a , __a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] __a = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : List[Any] = DetaImageProcessor if is_vision_available() else None def a__ ( self ): __a = DetaImageProcessingTester(self ) @property def a__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ): __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def a__ ( self ): __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def a__ ( self ): pass def a__ ( self ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) __a = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a__ ( self ): # prepare image and target __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __a = json.loads(f.read() ) __a = {"image_id": 39769, "annotations": target} # encode them __a = DetaImageProcessor() __a = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values __a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __a = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __a = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __a = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size __a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def a__ ( self ): # prepare image, target and masks_path __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __a = json.loads(f.read() ) __a = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} __a = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __a = DetaImageProcessor(format="coco_panoptic" ) __a = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values __a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __a = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __a = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __a = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks __a = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size __a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
67
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = CTRLTokenizer __UpperCAmelCase : Any = False __UpperCAmelCase : str = False def lowerCamelCase ( self ) -> int: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : Optional[int] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] snake_case : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Dict = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] snake_case : Dict = {"unk_token": "<unk>"} snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase__ ) ) def lowerCamelCase ( self , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : List[str] = "adapt react readapt apt" snake_case : int = "adapt react readapt apt" return input_text, output_text def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case : str = "adapt react readapt apt" snake_case : Dict = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() snake_case : List[Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[int] = tokens + [tokenizer.unk_token] snake_case : str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
117
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Union[str, Any] = '''xmod''' def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=("en_XX",) , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) snake_case : Optional[int] = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : int = num_attention_heads snake_case : Dict = hidden_act snake_case : Union[str, Any] = intermediate_size snake_case : str = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : Union[str, Any] = initializer_range snake_case : str = layer_norm_eps snake_case : Dict = position_embedding_type snake_case : Any = use_cache snake_case : str = classifier_dropout snake_case : Any = pre_norm snake_case : Union[str, Any] = adapter_reduction_factor snake_case : Optional[int] = adapter_layer_norm snake_case : int = adapter_reuse_layer_norm snake_case : List[Any] = ln_before_adapter snake_case : Tuple = list(UpperCamelCase__ ) snake_case : Tuple = default_language class _lowerCAmelCase ( snake_case_ ): @property def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : str = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
117
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: snake_case : List[Any] = None snake_case : str = logging.get_logger(__name__) snake_case : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} snake_case : Dict = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } snake_case : Optional[int] = { "camembert-base": 512, } snake_case : List[Any] = "▁" class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['input_ids', 'attention_mask'] UpperCamelCase__ = CamembertTokenizer def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=["<s>NOTUSED", "</s>NOTUSED"] , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( _a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , ) __magic_name__ : str = vocab_file __magic_name__ : Any = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : int = [self.cls_token_id] __magic_name__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Union[str, Any] = [self.sep_token_id] __magic_name__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : Dict = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
124
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class _snake_case : def __init__( self , _a , _a=13 , _a=7 , _a=False , _a=True , _a=False , _a=True , _a=33 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): __magic_name__ : Dict = parent __magic_name__ : List[str] = batch_size __magic_name__ : Tuple = seq_length __magic_name__ : int = is_training __magic_name__ : Union[str, Any] = use_input_mask __magic_name__ : str = use_token_type_ids __magic_name__ : Dict = use_labels __magic_name__ : List[Any] = vocab_size __magic_name__ : Tuple = hidden_size __magic_name__ : Union[str, Any] = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : str = intermediate_size __magic_name__ : Tuple = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : int = attention_probs_dropout_prob __magic_name__ : Tuple = max_position_embeddings __magic_name__ : Optional[int] = type_vocab_size __magic_name__ : Optional[int] = type_sequence_label_size __magic_name__ : Dict = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Optional[Any] = scope def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Union[str, Any] = None if self.use_input_mask: __magic_name__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None __magic_name__ : List[Any] = None __magic_name__ : List[str] = None if self.use_labels: __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a ): __magic_name__ : Dict = EsmModel(config=_a ) model.to(_a ) model.eval() __magic_name__ : str = model(_a , attention_mask=_a ) __magic_name__ : List[str] = model(_a ) __magic_name__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a ): __magic_name__ : int = EsmForMaskedLM(config=_a ) model.to(_a ) model.eval() __magic_name__ : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a ): __magic_name__ : int = self.num_labels __magic_name__ : int = EsmForTokenClassification(config=_a ) model.to(_a ) model.eval() __magic_name__ : Tuple = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Optional[int] = config_and_inputs __magic_name__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = False UpperCamelCase__ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ = () UpperCamelCase__ = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = EsmModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ : str = type self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[Any] = EsmModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()[0] __magic_name__ : List[str] = EsmEmbeddings(config=_a ) __magic_name__ : Dict = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __magic_name__ : Tuple = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __magic_name__ : Dict = create_position_ids_from_input_ids(_a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_a , _a ) ) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs()[0] __magic_name__ : str = EsmEmbeddings(config=_a ) __magic_name__ : Optional[Any] = torch.empty(2 , 4 , 30 ) __magic_name__ : str = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __magic_name__ : Tuple = torch.as_tensor([expected_single_positions, expected_single_positions] ) __magic_name__ : List[str] = embeddings.create_position_ids_from_inputs_embeds(_a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_a , _a ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip("Esm does not support embedding resizing" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self ): pass @require_torch class _snake_case ( snake_case ): @slow def SCREAMING_SNAKE_CASE ( self ): with torch.no_grad(): __magic_name__ : Dict = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() __magic_name__ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Dict = model(_a )[0] __magic_name__ : Optional[Any] = 33 __magic_name__ : Optional[int] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , _a ) __magic_name__ : List[Any] = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): with torch.no_grad(): __magic_name__ : Optional[int] = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() __magic_name__ : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __magic_name__ : Tuple = model(_a )[0] # compare the actual values for a slice. __magic_name__ : Optional[Any] = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
124
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) A : Optional[int] = logging.getLogger() A : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase( lowercase__ ): def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple ) -> Any: '''simple docstring''' os.makedirs(__lowercase , exist_ok=__lowercase ) __snake_case = {"source": "What is love ?", "target": "life"} __snake_case = {"train": 1_2, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __snake_case = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__lowercase , f'''{split}.{field}''' ) , "w" ) as f: f.write(__lowercase ) def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str = "pytorch" ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.get_auto_remove_tmp_dir() __snake_case = os.path.join(__lowercase , "output" ) __snake_case = os.path.join(__lowercase , "data" ) self._create_dummy_data(data_dir=__lowercase ) __snake_case = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) __snake_case = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__lowercase , env=self.get_env() ) __snake_case = os.path.join(__lowercase , "metrics.json" ) with open(__lowercase ) as f: __snake_case = json.load(__lowercase ) return result @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: '''simple docstring''' __snake_case = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int: '''simple docstring''' __snake_case = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
715
class UpperCamelCase: def __init__( self : Any ) -> Any: '''simple docstring''' __snake_case = 0 __snake_case = 0 __snake_case = {} def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: '''simple docstring''' if vertex not in self.adjacency: __snake_case = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: '''simple docstring''' self.add_vertex(SCREAMING_SNAKE_CASE ) self.add_vertex(SCREAMING_SNAKE_CASE ) if head == tail: return __snake_case = weight __snake_case = weight def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' __snake_case = self.get_edges() for edge in edges: __snake_case , __snake_case , __snake_case = edge edges.remove((tail, head, weight) ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __snake_case = list(edges[i] ) edges.sort(key=lambda SCREAMING_SNAKE_CASE : e[2] ) for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __snake_case = edges[i][2] + 1 for edge in edges: __snake_case , __snake_case , __snake_case = edge __snake_case = weight __snake_case = weight def __str__( self : Tuple ) -> List[Any]: '''simple docstring''' __snake_case = "" for tail in self.adjacency: for head in self.adjacency[tail]: __snake_case = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: '''simple docstring''' __snake_case = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]: '''simple docstring''' return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : List[Any]=None ) -> int: '''simple docstring''' __snake_case = Graph() if vertices is None: __snake_case = [] if edges is None: __snake_case = [] for vertex in vertices: g.add_vertex(SCREAMING_SNAKE_CASE ) for edge in edges: g.add_edge(*SCREAMING_SNAKE_CASE ) return g class UpperCamelCase: def __init__( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case = {} __snake_case = {} def __len__( self : List[str] ) -> Dict: '''simple docstring''' return len(self.parent ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : int ) -> List[str]: '''simple docstring''' if item in self.parent: return self.find(SCREAMING_SNAKE_CASE ) __snake_case = item __snake_case = 0 return item def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> Any: '''simple docstring''' if item not in self.parent: return self.make_set(SCREAMING_SNAKE_CASE ) if item != self.parent[item]: __snake_case = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case = self.find(SCREAMING_SNAKE_CASE ) __snake_case = self.find(SCREAMING_SNAKE_CASE ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __snake_case = roota return roota if self.rank[roota] < self.rank[roota]: __snake_case = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __snake_case = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE : str ) -> Any: '''simple docstring''' __snake_case = graph.num_vertices __snake_case = Graph.UnionFind() __snake_case = [] while num_components > 1: __snake_case = {} for vertex in graph.get_vertices(): __snake_case = -1 __snake_case = graph.get_edges() for edge in edges: __snake_case , __snake_case , __snake_case = edge edges.remove((tail, head, weight) ) for edge in edges: __snake_case , __snake_case , __snake_case = edge __snake_case = union_find.find(SCREAMING_SNAKE_CASE ) __snake_case = union_find.find(SCREAMING_SNAKE_CASE ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __snake_case = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __snake_case = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __snake_case , __snake_case , __snake_case = cheap_edge[vertex] if union_find.find(SCREAMING_SNAKE_CASE ) != union_find.find(SCREAMING_SNAKE_CASE ): union_find.union(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) mst_edges.append(cheap_edge[vertex] ) __snake_case = num_components - 1 __snake_case = Graph.build(edges=SCREAMING_SNAKE_CASE ) return mst
473
0
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase__(A ) ->List[str]: """simple docstring""" warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , A_ , ) if isinstance(A_ , torch.Tensor ): return image elif isinstance(A_ , PIL.Image.Image ): lowercase__ : str= [image] if isinstance(image[0] , PIL.Image.Image ): lowercase__ : Optional[int]= image[0].size lowercase__ : str= (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowercase__ : str= [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] lowercase__ : int= np.concatenate(A_ , axis=0 ) lowercase__ : int= np.array(A_ ).astype(np.floataa ) / 255.0 lowercase__ : Dict= image.transpose(0 , 3 , 1 , 2 ) lowercase__ : Tuple= 2.0 * image - 1.0 lowercase__ : Any= torch.from_numpy(A_ ) elif isinstance(image[0] , torch.Tensor ): lowercase__ : Dict= torch.cat(A_ , dim=0 ) return image def lowercase__(A ) ->str: """simple docstring""" if isinstance(A_ , torch.Tensor ): return mask elif isinstance(A_ , PIL.Image.Image ): lowercase__ : str= [mask] if isinstance(mask[0] , PIL.Image.Image ): lowercase__ : Optional[Any]= mask[0].size lowercase__ : Tuple= (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ : List[str]= [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] lowercase__ : Tuple= np.concatenate(A_ , axis=0 ) lowercase__ : List[str]= mask.astype(np.floataa ) / 255.0 lowercase__ : List[str]= 0 lowercase__ : Optional[Any]= 1 lowercase__ : List[Any]= torch.from_numpy(A_ ) elif isinstance(mask[0] , torch.Tensor ): lowercase__ : List[Any]= torch.cat(A_ , dim=0 ) return mask class __UpperCAmelCase( UpperCamelCase__ ): """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = 42 def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__ , snake_case__ = 250 , snake_case__ = 0.0 , snake_case__ = 10 , snake_case__ = 10 , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): '''simple docstring''' lowercase__ : Optional[int]= image lowercase__ : Tuple= _preprocess_image(__lowerCamelCase ) lowercase__ : Tuple= original_image.to(device=self.device , dtype=self.unet.dtype ) lowercase__ : Dict= _preprocess_mask(__lowerCamelCase ) lowercase__ : List[Any]= mask_image.to(device=self.device , dtype=self.unet.dtype ) lowercase__ : Tuple= original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase__ : str= original_image.shape lowercase__ : str= randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.device ) lowercase__ : List[Any]= eta lowercase__ : List[str]= self.scheduler.timesteps[0] + 1 lowercase__ : List[str]= generator[0] if isinstance(__lowerCamelCase , __lowerCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowercase__ : Dict= self.unet(__lowerCamelCase , __lowerCamelCase ).sample # compute previous image: x_t -> x_t-1 lowercase__ : List[Any]= self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowercase__ : List[str]= self.scheduler.undo_step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Union[str, Any]= t lowercase__ : Dict= (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Union[str, Any]= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : Tuple= self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
218
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = None @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: List[str] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__lowerCamelCase , "feature_size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "sampling_rate" ) ) self.assertTrue(hasattr(__lowerCamelCase , "padding_value" ) ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase__: List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__: str = feat_extract.model_input_names[0] UpperCamelCase__: Optional[int] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__lowerCamelCase ) == len(__lowerCamelCase ) for x, y in zip(__lowerCamelCase , processed_features[input_name] ) ) ) UpperCamelCase__: Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowerCamelCase ) UpperCamelCase__: Any = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) UpperCamelCase__: List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCamelCase__: str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__: List[Any] = feat_extract.model_input_names[0] UpperCamelCase__: Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) UpperCamelCase__: Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCamelCase__: Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowerCamelCase ) UpperCamelCase__: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__: List[str] = feat_extract.model_input_names[0] UpperCamelCase__: Dict = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) UpperCamelCase__: int = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCamelCase__: int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: int=False ): '''simple docstring''' def _inputs_have_equal_length(__lowerCamelCase: Optional[int] ): UpperCamelCase__: Optional[int] = len(input[0] ) for input_slice in input[1:]: if len(__lowerCamelCase ) != length: return False return True def _inputs_are_equal(__lowerCamelCase: List[str] , __lowerCamelCase: str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(__lowerCamelCase , __lowerCamelCase ): if not np.allclose(np.asarray(__lowerCamelCase ) , np.asarray(__lowerCamelCase ) , atol=1e-3 ): return False return True UpperCamelCase__: List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__: Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__lowerCamelCase ) UpperCamelCase__: Optional[int] = feat_extract.model_input_names[0] UpperCamelCase__: Dict = BatchFeature({input_name: speech_inputs} ) UpperCamelCase__: Dict = self.feat_extract_tester.seq_length_diff UpperCamelCase__: List[Any] = self.feat_extract_tester.max_seq_length + pad_diff UpperCamelCase__: List[str] = self.feat_extract_tester.min_seq_length UpperCamelCase__: str = self.feat_extract_tester.batch_size UpperCamelCase__: Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCamelCase__: int = feat_extract.pad(__lowerCamelCase , padding=__lowerCamelCase ) UpperCamelCase__: List[str] = input_a[input_name] UpperCamelCase__: Dict = feat_extract.pad(__lowerCamelCase , padding="longest" ) UpperCamelCase__: int = input_a[input_name] UpperCamelCase__: int = feat_extract.pad(__lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[-1] ) ) UpperCamelCase__: Union[str, Any] = input_a[input_name] UpperCamelCase__: Any = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="np" ) UpperCamelCase__: Dict = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__lowerCamelCase ): feat_extract.pad(__lowerCamelCase , padding="max_length" )[input_name] UpperCamelCase__: Optional[Any] = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=__lowerCamelCase , return_tensors="np" ) UpperCamelCase__: Tuple = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(__lowerCamelCase , __lowerCamelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCamelCase__: int = feat_extract.pad(__lowerCamelCase , pad_to_multiple_of=10 ) UpperCamelCase__: List[str] = input_a[input_name] UpperCamelCase__: Optional[int] = feat_extract.pad(__lowerCamelCase , padding="longest" , pad_to_multiple_of=10 ) UpperCamelCase__: int = input_a[input_name] UpperCamelCase__: Tuple = feat_extract.pad( __lowerCamelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=__lowerCamelCase ) UpperCamelCase__: Tuple = input_a[input_name] UpperCamelCase__: Optional[int] = feat_extract.pad( __lowerCamelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=__lowerCamelCase , return_tensors="np" , ) UpperCamelCase__: Any = input_a[input_name] self.assertTrue(all(len(__lowerCamelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase__: Dict = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__lowerCamelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCamelCase__: List[str] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: Dict=False ): '''simple docstring''' def _inputs_have_equal_length(__lowerCamelCase: Dict ): UpperCamelCase__: Optional[int] = len(input[0] ) for input_slice in input[1:]: if len(__lowerCamelCase ) != length: return False return True def _inputs_are_equal(__lowerCamelCase: Tuple , __lowerCamelCase: str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(__lowerCamelCase , __lowerCamelCase ): if not np.allclose(np.asarray(__lowerCamelCase ) , np.asarray(__lowerCamelCase ) , atol=1e-3 ): return False return True UpperCamelCase__: Any = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__lowerCamelCase ) UpperCamelCase__: Optional[Any] = feat_extract.model_input_names[0] UpperCamelCase__: List[str] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCamelCase__: List[str] = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=__lowerCamelCase ) UpperCamelCase__: Dict = input_a[input_name] UpperCamelCase__: Optional[Any] = feat_extract.pad(__lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) ) UpperCamelCase__: str = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(__lowerCamelCase ) ) # truncate to smallest with np UpperCamelCase__: Optional[Any] = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=__lowerCamelCase , ) UpperCamelCase__: Dict = input_a[input_name] UpperCamelCase__: Optional[int] = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) UpperCamelCase__: Union[str, Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__lowerCamelCase ) ) # truncate to middle UpperCamelCase__: List[Any] = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=__lowerCamelCase , return_tensors="np" , ) UpperCamelCase__: str = input_a[input_name] UpperCamelCase__: Union[str, Any] = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=__lowerCamelCase ) UpperCamelCase__: Tuple = input_a[input_name] UpperCamelCase__: Optional[int] = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) UpperCamelCase__: Union[str, Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(__lowerCamelCase , __lowerCamelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowerCamelCase ): feat_extract.pad(__lowerCamelCase , truncation=__lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowerCamelCase ): feat_extract.pad(__lowerCamelCase , padding="longest" , truncation=__lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowerCamelCase ): feat_extract.pad(__lowerCamelCase , padding="longest" , truncation=__lowerCamelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__lowerCamelCase ): feat_extract.pad(__lowerCamelCase , padding="max_length" , truncation=__lowerCamelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCamelCase__: Tuple = 12 UpperCamelCase__: Optional[int] = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__lowerCamelCase , truncation=__lowerCamelCase , ) UpperCamelCase__: str = input_a[input_name] UpperCamelCase__: str = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__lowerCamelCase , ) UpperCamelCase__: List[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCamelCase__: Optional[int] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCamelCase__: int = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(__lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' self._check_padding(numpify=__lowerCamelCase ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' self._check_padding(numpify=__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' self._check_truncation(numpify=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' self._check_truncation(numpify=__lowerCamelCase ) @require_torch def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: List[str] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__: Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase__: Union[str, Any] = feat_extract.model_input_names[0] UpperCamelCase__: Tuple = BatchFeature({input_name: speech_inputs} ) UpperCamelCase__: Tuple = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] UpperCamelCase__: int = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Any = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__: Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase__: str = feat_extract.model_input_names[0] UpperCamelCase__: List[Any] = BatchFeature({input_name: speech_inputs} ) UpperCamelCase__: Union[str, Any] = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] UpperCamelCase__: List[Any] = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Dict = self.feat_extract_dict UpperCamelCase__: List[str] = True UpperCamelCase__: Optional[Any] = self.feature_extraction_class(**__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase__: int = [len(__lowerCamelCase ) for x in speech_inputs] UpperCamelCase__: List[Any] = feat_extract.model_input_names[0] UpperCamelCase__: Dict = BatchFeature({input_name: speech_inputs} ) UpperCamelCase__: List[Any] = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.feat_extract_dict UpperCamelCase__: List[Any] = True UpperCamelCase__: Optional[int] = self.feature_extraction_class(**__lowerCamelCase ) UpperCamelCase__: Any = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase__: List[Any] = [len(__lowerCamelCase ) for x in speech_inputs] UpperCamelCase__: str = feat_extract.model_input_names[0] UpperCamelCase__: Dict = BatchFeature({input_name: speech_inputs} ) UpperCamelCase__: Optional[int] = min(__lowerCamelCase ) UpperCamelCase__: Tuple = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
380
0
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case ) -> Any: # Initialise PyTorch model _UpperCAmelCase = BigBirdConfig.from_json_file(__snake_case ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: _UpperCAmelCase = BigBirdForQuestionAnswering(__snake_case ) else: _UpperCAmelCase = BigBirdForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__snake_case , __snake_case , is_trivia_qa=__snake_case ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__snake_case ) if __name__ == "__main__": __a: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) __a: Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
713
import fire from utils import calculate_rouge, save_json def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case=None , **__snake_case ) -> List[str]: _UpperCAmelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCAmelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCAmelCase = calculate_rouge(__snake_case , __snake_case , **__snake_case ) if save_path is not None: save_json(__snake_case , __snake_case , indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
402
0
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> Dict: a : int = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) a : str = AutoTokenizer.from_pretrained("google/mt5-small" ) a : Any = tokenizer("Hello there" , return_tensors="np" ).input_ids a : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids a : Any = shift_tokens_right(lowerCAmelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) a : Optional[Any] = model(lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits a : int = optax.softmax_cross_entropy(lowerCAmelCase__ , onehot(lowerCAmelCase__ , logits.shape[-1] ) ).mean() a : Union[str, Any] = -(labels.shape[-1] * loss.item()) a : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
633
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=4 , ) -> List[str]: a : Any = parent a : str = batch_size a : str = seq_length a : List[str] = is_training a : Optional[int] = use_attention_mask a : Optional[int] = use_token_type_ids a : Union[str, Any] = use_labels a : Optional[int] = vocab_size a : Optional[Any] = hidden_size a : List[Any] = num_hidden_layers a : Optional[int] = num_attention_heads a : Optional[int] = intermediate_size a : Tuple = hidden_act a : List[str] = hidden_dropout_prob a : Optional[Any] = attention_probs_dropout_prob a : List[Any] = max_position_embeddings a : Optional[int] = type_vocab_size a : Dict = type_sequence_label_size a : int = initializer_range a : Tuple = num_choices def __a ( self ) -> List[Any]: a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : List[str] = None if self.use_attention_mask: a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : List[str] = None if self.use_token_type_ids: a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __a ( self ) -> List[str]: a : Dict = self.prepare_config_and_inputs() a, a, a, a : int = config_and_inputs a : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Union[str, Any] =True lowerCamelCase : Union[str, Any] =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __a ( self ) -> List[Any]: a : Dict = FlaxRoFormerModelTester(self ) @slow def __a ( self ) -> List[str]: for model_class_name in self.all_model_classes: a : Any = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowerCAmelCase__ ) a : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> List[str]: a : str = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) a : List[Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) a : Any = model(lowerCAmelCase__ )[0] a : int = 5_0000 a : Any = (1, 6, vocab_size) self.assertEqual(output.shape , lowerCAmelCase__ ) a : List[Any] = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
633
1
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ): '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = True _snake_case = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = FlaxBertModelTester(self ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = FlaxBertModel.from_pretrained('''bert-base-cased''' ) UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
716
'''simple docstring''' from __future__ import annotations def __snake_case ( _UpperCAmelCase : list[int]): UpperCamelCase = len(_UpperCAmelCase) // 2 # choose the middle 3 elements UpperCamelCase = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m]) == 2: m -= 1 return peak(lst[m:]) # decreasing else: if len(lst[:m]) == 2: m += 1 return peak(lst[:m]) if __name__ == "__main__": import doctest doctest.testmod()
350
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a_ = logging.get_logger(__name__) class __lowerCAmelCase ( __UpperCamelCase ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
175
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> float: '''simple docstring''' lowerCAmelCase_ : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __UpperCamelCase ( ) -> str: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
600
0
'''simple docstring''' def _a ( ): snake_case : List[str] =[] snake_case : int =1 while len(lowerCamelCase_ ) < 1e6: constant.append(str(lowerCamelCase_ ) ) i += 1 snake_case : Tuple =''''''.join(lowerCamelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
716
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip A : Optional[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _a ( lowerCamelCase_ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): return max(metric_fn(lowerCamelCase_ , lowerCamelCase_ ) for gt in ground_truths ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Tuple =[line.strip() for line in open(lowerCamelCase_ , '''r''' ).readlines()] snake_case : Optional[Any] =[] if args.gold_data_mode == "qa": snake_case : int =pd.read_csv(lowerCamelCase_ , sep='''\t''' , header=lowerCamelCase_ ) for answer_list in data[1]: snake_case : int =ast.literal_eval(lowerCamelCase_ ) answers.append(lowerCamelCase_ ) else: snake_case : Tuple =[line.strip() for line in open(lowerCamelCase_ , '''r''' ).readlines()] snake_case : Union[str, Any] =[[reference] for reference in references] snake_case : str =0 for prediction, ground_truths in zip(lowerCamelCase_ , lowerCamelCase_ ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) fa += metric_max_over_ground_truths(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case : List[str] =1_00.0 * em / total snake_case : Union[str, Any] =1_00.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Optional[int] =args.k snake_case : List[Any] =[line.strip() for line in open(lowerCamelCase_ , '''r''' ).readlines()] snake_case : Tuple =[line.strip() for line in open(lowerCamelCase_ , '''r''' ).readlines()] snake_case : int =0 for hypo, reference in zip(lowerCamelCase_ , lowerCamelCase_ ): snake_case : int =set(hypo.split('''\t''' )[:k] ) snake_case : Union[str, Any] =set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case : List[str] =1_00.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): def strip_title(lowerCamelCase_ ): if title.startswith('''"''' ): snake_case : Optional[int] =title[1:] if title.endswith('''"''' ): snake_case : List[Any] =title[:-1] return title snake_case : Optional[Any] =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , )['''input_ids'''].to(args.device ) snake_case : str =rag_model.rag.question_encoder(lowerCamelCase_ ) snake_case : Union[str, Any] =question_enc_outputs[0] snake_case : str =rag_model.retriever( lowerCamelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) snake_case : Union[str, Any] =rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case : Tuple =[] for docs in all_docs: snake_case : Union[str, Any] =[strip_title(lowerCamelCase_ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(lowerCamelCase_ ) ) return provenance_strings def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): with torch.no_grad(): snake_case : Any =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) snake_case : Optional[Any] =inputs_dict.input_ids.to(args.device ) snake_case : Any =inputs_dict.attention_mask.to(args.device ) snake_case : Any =rag_model.generate( # rag_model overwrites generate lowerCamelCase_ , attention_mask=lowerCamelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case : str =rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) if args.print_predictions: for q, a in zip(lowerCamelCase_ , lowerCamelCase_ ): logger.info('''Q: {} - A: {}'''.format(lowerCamelCase_ , lowerCamelCase_ ) ) return answers def _a ( ): snake_case : str =argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=lowerCamelCase_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=lowerCamelCase_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=lowerCamelCase_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=lowerCamelCase_ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=lowerCamelCase_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=lowerCamelCase_ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=lowerCamelCase_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=lowerCamelCase_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=lowerCamelCase_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=lowerCamelCase_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=lowerCamelCase_ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=lowerCamelCase_ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) snake_case : int =parser.parse_args() snake_case : Any =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def _a ( lowerCamelCase_ ): snake_case : Optional[int] ={} if args.model_type is None: snake_case : str =infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): snake_case : Optional[int] =RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration snake_case : List[Any] =args.n_docs if args.index_name is not None: snake_case : Dict =args.index_name if args.index_path is not None: snake_case : Any =args.index_path else: snake_case : str =BartForConditionalGeneration snake_case : Dict =( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , lowerCamelCase_ ) snake_case : Dict =get_scores if args.eval_mode == '''e2e''' else get_precision_at_k snake_case : Any =evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(lowerCamelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(lowerCamelCase_ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): snake_case : List[str] =RagRetriever.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) snake_case : List[str] =model_class.from_pretrained(lowerCamelCase_ , retriever=lowerCamelCase_ , **lowerCamelCase_ ) model.retriever.init_retrieval() else: snake_case : Optional[int] =model_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: snake_case : Optional[int] =[] for line in tqdm(lowerCamelCase_ ): questions.append(line.strip() ) if len(lowerCamelCase_ ) == args.eval_batch_size: snake_case : List[str] =evaluate_batch_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) preds_file.write('''\n'''.join(lowerCamelCase_ ) + '''\n''' ) preds_file.flush() snake_case : Tuple =[] if len(lowerCamelCase_ ) > 0: snake_case : str =evaluate_batch_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) preds_file.write('''\n'''.join(lowerCamelCase_ ) ) preds_file.flush() score_fn(lowerCamelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": A : Union[str, Any] = get_args() main(args)
136
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : List[Any] = "▁" _lowercase : List[Any] = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} _lowercase : str = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } _lowercase : Optional[int] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } _lowercase : Optional[int] = { "ernie-m-base": 514, "ernie-m-large": 514, } _lowercase : str = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = ["input_ids"] lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = RESOURCE_FILES_NAMES def __init__( self , a__ , a__=None , a__=False , a__="utf8" , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__ = None , **a__ , ) -> str: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , vocab_file=a__ , encoding=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) A = do_lower_case A = sentencepiece_model_ckpt A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: A = self.load_vocab(filepath=a__ ) else: A = {self.sp_model.id_to_piece(a__ ): id for id in range(self.sp_model.get_piece_size() )} A = {v: k for k, v in self.vocab.items()} def _UpperCAmelCase ( self , a__ ) -> List[Any]: if text is None: return None A = self.tokenize(a__ ) A , A = """""", [] for i, ch in enumerate(a__ ): if ch in self.SP_CHAR_MAPPING: A = self.SP_CHAR_MAPPING.get(a__ ) else: A = unicodedata.normalize("""NFKC""" , a__ ) if self.is_whitespace(a__ ): continue normalized_text += ch char_mapping.extend([i] * len(a__ ) ) A , A , A = normalized_text, [], 0 if self.do_lower_case: A = text.lower() for token in split_tokens: if token[:1] == "▁": A = token[1:] A = text[offset:].index(a__ ) + offset A = start + len(a__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) A = end return token_mapping @property def _UpperCAmelCase ( self ) -> Any: return len(self.vocab ) def _UpperCAmelCase ( self ) -> Any: return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ) -> Optional[int]: A = self.__dict__.copy() A = None return state def __setstate__( self , a__ ) -> Optional[int]: A = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _UpperCAmelCase ( self , a__ ) -> Optional[Any]: return "".join((self.SP_CHAR_MAPPING.get(a__ , a__ ) for c in text) ) def _UpperCAmelCase ( self , a__ , a__=False , a__=64 , a__=0.1 ) -> Union[str, Any]: if self.sp_model_kwargs.get("""enable_sampling""" ) is True: A = True if self.sp_model_kwargs.get("""alpha""" ) is not None: A = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: A = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: A = self.sp_model.EncodeAsPieces(a__ ) else: A = self.sp_model.SampleEncodeAsPieces(a__ , a__ , a__ ) A = [] for pi, piece in enumerate(a__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(a__ ) and pi != 0: new_pieces.append(a__ ) continue else: continue A = 0 for i, chunk in enumerate(a__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(a__ ) or self.is_punct(a__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(a__ ) A = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A = i if len(a__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _UpperCAmelCase ( self , a__ ) -> str: A = """""".join(a__ ).replace(a__ , """ """ ).strip() return out_string def _UpperCAmelCase ( self , a__ ) -> str: A = self.convert_ids_to_tokens(a__ ) A = """""".join(a__ ).replace(a__ , """ """ ).strip() return out_string def _UpperCAmelCase ( self , a__ ) -> Any: return self.vocab.get(a__ , self.vocab.get(self.unk_token ) ) def _UpperCAmelCase ( self , a__ ) -> Any: return self.reverse_vocab.get(a__ , self.unk_token ) def _UpperCAmelCase ( self , a__ , a__=None ) -> Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _UpperCAmelCase ( self , a__ , a__=None ) -> List[str]: if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _UpperCAmelCase ( self , a__ , a__=None , a__=False ) -> Any: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] def _UpperCAmelCase ( self , a__ , a__ = None ) -> List[str]: # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(a__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(a__ ) + 1) + [1] * (len(a__ ) + 3) def _UpperCAmelCase ( self , a__ ) -> List[Any]: if "\u4e00" <= char <= "\u9fff": return True return False def _UpperCAmelCase ( self , a__ ) -> Optional[int]: if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _UpperCAmelCase ( self , a__ ) -> Any: if char in ",;:.?!~,;:。?!《》【】": return True return False def _UpperCAmelCase ( self , a__ ) -> Optional[int]: if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(a__ ) == 1: A = unicodedata.category(a__ ) if cat == "Zs": return True return False def _UpperCAmelCase ( self , a__ ) -> Optional[Any]: A = {} with io.open(a__ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(a__ ): A = line.rstrip("""\n""" ) A = int(a__ ) return token_to_idx def _UpperCAmelCase ( self , a__ , a__ = None ) -> List[str]: A = 0 if os.path.isdir(a__ ): A = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: A = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(a__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) A = token_index writer.write(token + """\n""" ) index += 1 A = os.path.join(a__ , """sentencepiece.bpe.model""" ) with open(a__ , """wb""" ) as fi: A = self.sp_model.serialized_model_proto() fi.write(a__ ) return (vocab_file,)
641
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """spiece.model"""} __snake_case = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } __snake_case = { """albert-base-v1""": 5_12, """albert-large-v1""": 5_12, """albert-xlarge-v1""": 5_12, """albert-xxlarge-v1""": 5_12, """albert-base-v2""": 5_12, """albert-large-v2""": 5_12, """albert-xlarge-v2""": 5_12, """albert-xxlarge-v2""": 5_12, } __snake_case = """▁""" class lowercase__ ( _UpperCAmelCase ): A__ : Any =VOCAB_FILES_NAMES A__ : List[str] =PRETRAINED_VOCAB_FILES_MAP A__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : int="[SEP]" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : str="<pad>" , UpperCAmelCase_ : int="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE__ = ( AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token ) SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = remove_space SCREAMING_SNAKE_CASE__ = keep_accents SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def A_ ( self : List[Any] ): return len(self.sp_model ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : Tuple , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : List[Any] , UpperCAmelCase_ : Tuple ): if self.remove_space: SCREAMING_SNAKE_CASE__ = ' '.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE__ = inputs SCREAMING_SNAKE_CASE__ = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: SCREAMING_SNAKE_CASE__ = unicodedata.normalize('NFKD' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = ''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE__ = outputs.lower() return outputs def A_ ( self : str , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = self.preprocess_text(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE__ = cur_pieces[1:] else: SCREAMING_SNAKE_CASE__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def A_ ( self : Optional[int] , UpperCAmelCase_ : Dict ): return self.sp_model.PieceToId(UpperCAmelCase_ ) def A_ ( self : Any , UpperCAmelCase_ : List[Any] ): return self.sp_model.IdToPiece(UpperCAmelCase_ ) def A_ ( self : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def A_ ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A_ ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1] def A_ ( self : int , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE__ = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , 'wb' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""DeiTFeatureExtractor"""] __snake_case = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
0
import argparse import os import re import packaging.version lowercase_ = '''examples/''' lowercase_ = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowercase_ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } lowercase_ = '''README.md''' def __lowerCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Optional[int]: with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCAmelCase =f.read() __lowerCAmelCase , __lowerCAmelCase =REPLACE_PATTERNS[pattern] __lowerCAmelCase =replace.replace("""VERSION""" , __lowerCamelCase ) __lowerCAmelCase =re_pattern.sub(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] ) -> str: for folder, directories, fnames in os.walk(__lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , pattern="""examples""" ) def __lowerCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=False ) -> int: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not patch: update_version_in_examples(__lowerCamelCase ) def __lowerCAmelCase ( ) -> Dict: __lowerCAmelCase ="""🤗 Transformers currently provides the following architectures""" __lowerCAmelCase ="""1. Want to contribute a new model?""" with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCAmelCase =f.readlines() # Find the start of the list. __lowerCAmelCase =0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase =start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __lowerCAmelCase =lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) def __lowerCAmelCase ( ) -> Union[str, Any]: with open(REPLACE_FILES["""init"""] , """r""" ) as f: __lowerCAmelCase =f.read() __lowerCAmelCase =REPLACE_PATTERNS["""init"""][0].search(__lowerCamelCase ).groups()[0] return packaging.version.parse(__lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : Any=False ) -> Any: __lowerCAmelCase =get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __lowerCAmelCase =default_version.base_version elif patch: __lowerCAmelCase =f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __lowerCAmelCase =f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __lowerCAmelCase =input(f"""Which version are you releasing? [{default_version}]""" ) if len(__lowerCamelCase ) == 0: __lowerCAmelCase =default_version print(f"""Updating version to {version}.""" ) global_version_update(__lowerCamelCase , patch=__lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def __lowerCAmelCase ( ) -> Dict: __lowerCAmelCase =get_version() __lowerCAmelCase =f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __lowerCAmelCase =current_version.base_version # Check with the user we got that right. __lowerCAmelCase =input(f"""Which version are we developing now? [{dev_version}]""" ) if len(__lowerCamelCase ) == 0: __lowerCAmelCase =dev_version print(f"""Updating version to {version}.""" ) global_version_update(__lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowercase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
354
from __future__ import annotations class __a : def __init__( self : Optional[int] , snake_case_ : int = 0)-> List[str]: __lowerCAmelCase =key def UpperCamelCase ( self : Any , snake_case_ : str , snake_case_ : int)-> list[str]: assert isinstance(snake_case_ , snake_case_) and isinstance(snake_case_ , snake_case_) __lowerCAmelCase =key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(snake_case_) ^ key) for ch in content] def UpperCamelCase ( self : Tuple , snake_case_ : str , snake_case_ : int)-> list[str]: assert isinstance(snake_case_ , snake_case_) and isinstance(snake_case_ , snake_case_) __lowerCAmelCase =key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(snake_case_) ^ key) for ch in content] def UpperCamelCase ( self : str , snake_case_ : str , snake_case_ : int = 0)-> str: assert isinstance(snake_case_ , snake_case_) and isinstance(snake_case_ , snake_case_) __lowerCAmelCase =key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __lowerCAmelCase ="""""" for ch in content: ans += chr(ord(snake_case_) ^ key) return ans def UpperCamelCase ( self : Tuple , snake_case_ : str , snake_case_ : int = 0)-> str: assert isinstance(snake_case_ , snake_case_) and isinstance(snake_case_ , snake_case_) __lowerCAmelCase =key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __lowerCAmelCase ="""""" for ch in content: ans += chr(ord(snake_case_) ^ key) return ans def UpperCamelCase ( self : int , snake_case_ : str , snake_case_ : int = 0)-> bool: assert isinstance(snake_case_ , snake_case_) and isinstance(snake_case_ , snake_case_) try: with open(snake_case_) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(snake_case_ , snake_case_)) except OSError: return False return True def UpperCamelCase ( self : Tuple , snake_case_ : str , snake_case_ : int)-> bool: assert isinstance(snake_case_ , snake_case_) and isinstance(snake_case_ , snake_case_) try: with open(snake_case_) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(snake_case_ , snake_case_)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
354
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCamelCase__ = 'true' def _SCREAMING_SNAKE_CASE( snake_case_ : Tuple , snake_case_ : Union[str, Any]=82 , snake_case_ : Any=16 ) ->Dict: '''simple docstring''' set_seed(42 ) _lowercase : str = RegressionModel() _lowercase : Optional[Any] = deepcopy(snake_case_ ) _lowercase : List[str] = RegressionDataset(length=snake_case_ ) _lowercase : Union[str, Any] = DataLoader(snake_case_ , batch_size=snake_case_ ) model.to(accelerator.device ) _lowercase , _lowercase : List[Any] = accelerator.prepare(snake_case_ , snake_case_ ) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE( snake_case_ : Accelerator , snake_case_ : int=False ) ->List[str]: '''simple docstring''' _lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) _lowercase : Optional[int] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(snake_case_ : int ): _lowercase : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs with accelerator.main_process_first(): _lowercase : int = dataset.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) _lowercase : str = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : List[str] ): if use_longest: return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(snake_case_ , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=16 ) def _SCREAMING_SNAKE_CASE( snake_case_ : Tuple , snake_case_ : List[Any] ) ->int: '''simple docstring''' _lowercase : Optional[int] = Accelerator(dispatch_batches=snake_case_ , split_batches=snake_case_ ) _lowercase : List[str] = get_dataloader(snake_case_ , not dispatch_batches ) _lowercase : List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=snake_case_ ) _lowercase , _lowercase : Union[str, Any] = accelerator.prepare(snake_case_ , snake_case_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _SCREAMING_SNAKE_CASE( snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : int ) ->List[Any]: '''simple docstring''' _lowercase : Optional[Any] = [] for batch in dataloader: _lowercase , _lowercase : int = batch.values() with torch.no_grad(): _lowercase : Dict = model(snake_case_ ) _lowercase , _lowercase : Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowercase , _lowercase : Any = [], [] for logit, targ in logits_and_targets: logits.append(snake_case_ ) targs.append(snake_case_ ) _lowercase , _lowercase : Optional[int] = torch.cat(snake_case_ ), torch.cat(snake_case_ ) return logits, targs def _SCREAMING_SNAKE_CASE( snake_case_ : Accelerator , snake_case_ : List[Any]=82 , snake_case_ : Any=False , snake_case_ : Optional[int]=False , snake_case_ : List[str]=16 ) ->List[str]: '''simple docstring''' _lowercase , _lowercase , _lowercase : Tuple = get_basic_setup(snake_case_ , snake_case_ , snake_case_ ) _lowercase , _lowercase : Dict = generate_predictions(snake_case_ , snake_case_ , snake_case_ ) assert ( len(snake_case_ ) == num_samples ), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case_ )}" def _SCREAMING_SNAKE_CASE( snake_case_ : bool = False , snake_case_ : bool = False ) ->Optional[Any]: '''simple docstring''' _lowercase : Dict = evaluate.load('''glue''' , '''mrpc''' ) _lowercase , _lowercase : Union[str, Any] = get_mrpc_setup(snake_case_ , snake_case_ ) # First do baseline _lowercase , _lowercase , _lowercase : int = setup['''no'''] model.to(snake_case_ ) model.eval() for batch in dataloader: batch.to(snake_case_ ) with torch.inference_mode(): _lowercase : Tuple = model(**snake_case_ ) _lowercase : Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case_ , references=batch['''labels'''] ) _lowercase : Tuple = metric.compute() # Then do distributed _lowercase , _lowercase , _lowercase : int = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): _lowercase : Optional[Any] = model(**snake_case_ ) _lowercase : List[Any] = outputs.logits.argmax(dim=-1 ) _lowercase : int = batch['''labels'''] _lowercase , _lowercase : int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case_ , references=snake_case_ ) _lowercase : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def _SCREAMING_SNAKE_CASE( ) ->Union[str, Any]: '''simple docstring''' _lowercase : Union[str, Any] = Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(snake_case_ , snake_case_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowercase : Tuple = Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(snake_case_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) _lowercase : Optional[Any] = Accelerator() test_torch_metrics(snake_case_ , 5_12 ) accelerator.state._reset_state() def _SCREAMING_SNAKE_CASE( snake_case_ : List[Any] ) ->Dict: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
411
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _SCREAMING_SNAKE_CASE( snake_case_ : Optional[Any]=32 , snake_case_ : List[str]=10 , snake_case_ : Any=1_00 , snake_case_ : List[str]=10_26 , snake_case_ : Dict=True , snake_case_ : Any="data/tokenized_stories_train_wikitext103.jbl" , snake_case_ : Any="igf_context_pairs.jbl" , ) ->List[Any]: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set _lowercase , _lowercase : List[Any] = generate_datasets( snake_case_ , snake_case_ , number=snake_case_ , min_len=10_26 , trim=snake_case_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _lowercase : int = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model _lowercase : Dict = load_gpta('''gpt2''' ).to(snake_case_ ) print('''computing perplexity on objective set''' ) _lowercase : Any = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ).item() print('''perplexity on objective set:''' , snake_case_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE( snake_case_ : str , snake_case_ : Optional[Any]=15 , snake_case_ : Dict=1_28 , snake_case_ : Tuple=1_00 , snake_case_ : Union[str, Any]="igf_model.pt" , ) ->List[Any]: '''simple docstring''' set_seed(42 ) # Load pre-trained model _lowercase : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model _lowercase : List[Any] = SecondaryLearner(snake_case_ ) # Train secondary learner _lowercase : Any = train_secondary_learner( snake_case_ , snake_case_ , max_epochs=snake_case_ , batch_size=snake_case_ , eval_freq=1_00 , igf_model_path=snake_case_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : List[Any]=32 , snake_case_ : List[Any]=10_00 , snake_case_ : List[str]=16 , snake_case_ : List[Any]=1.0 , snake_case_ : Optional[Any]=recopy_gpta , snake_case_ : Optional[int]=None , snake_case_ : List[Any]=10 , snake_case_ : Optional[Any]="gpt2_finetuned.pt" , ) ->List[Any]: '''simple docstring''' _lowercase : Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) _lowercase : Optional[int] = RandomSampler(snake_case_ ) _lowercase : Union[str, Any] = DataLoader(snake_case_ , sampler=snake_case_ ) _lowercase : str = max_steps // (len(snake_case_ )) + 1 _lowercase : Optional[int] = 0 _lowercase : Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case_ ) _lowercase , _lowercase , _lowercase : int = recopy_model(snake_case_ , snake_case_ , snake_case_ ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case_ ) secondary_learner.eval() _lowercase : List[Any] = [] _lowercase : Optional[int] = 0 _lowercase : List[Any] = [] _lowercase : Any = [] # Compute the performance of the transformer model at the beginning _lowercase : Tuple = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ) test_perps.append(snake_case_ ) print('''Test perplexity, step''' , snake_case_ , ''':''' , snake_case_ ) for epoch in range(int(snake_case_ ) ): for step, example in enumerate(snake_case_ ): torch.cuda.empty_cache() _lowercase : int = random.randint(0 , example.size(2 ) - context_len - 1 ) _lowercase : Tuple = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _lowercase : Any = model(snake_case_ , labels=snake_case_ ) _lowercase : int = True if secondary_learner is not None: _lowercase : List[Any] = secondary_learner.forward( torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _lowercase : Any = -1 if predicted_q < threshold: _lowercase : List[str] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _lowercase : Dict = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _lowercase : Optional[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _lowercase : Union[str, Any] = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ) test_perps.append(snake_case_ ) print('''Test perplexity, step''' , snake_case_ , ''':''' , snake_case_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _SCREAMING_SNAKE_CASE( ) ->List[Any]: '''simple docstring''' _lowercase : Tuple = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=snake_case_ , default=snake_case_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=snake_case_ , default=snake_case_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=snake_case_ , type=snake_case_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=snake_case_ , default=snake_case_ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=snake_case_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=snake_case_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=snake_case_ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=10_00 , type=snake_case_ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=snake_case_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=snake_case_ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=snake_case_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=snake_case_ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=10_26 , type=snake_case_ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=snake_case_ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=snake_case_ , type=snake_case_ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=snake_case_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=snake_case_ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=snake_case_ , type=snake_case_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=snake_case_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner _lowercase : List[str] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner _lowercase : Optional[int] = training_secondary_learner( snake_case_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model _lowercase : Dict = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _lowercase , _lowercase : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=snake_case_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case_ , snake_case_ , snake_case_ , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=snake_case_ , secondary_learner=snake_case_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
411
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance SCREAMING_SNAKE_CASE : Optional[Any] = 6_37_81_37.0 SCREAMING_SNAKE_CASE : Optional[int] = 6_35_67_52.31_42_45 SCREAMING_SNAKE_CASE : Tuple = 6_378_137 def UpperCamelCase ( _a , _a , _a , _a ) -> float: '''simple docstring''' lowercase_ :Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowercase_ :List[Any] = atan((1 - flattening) * tan(radians(__UpperCamelCase ) ) ) lowercase_ :List[str] = atan((1 - flattening) * tan(radians(__UpperCamelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowercase_ :str = haversine_distance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowercase_ :Union[str, Any] = (b_lata + b_lata) / 2 lowercase_ :Union[str, Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowercase_ :Optional[int] = (sin(__UpperCamelCase ) ** 2) * (cos(__UpperCamelCase ) ** 2) lowercase_ :Tuple = cos(sigma / 2 ) ** 2 lowercase_ :int = (sigma - sin(__UpperCamelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowercase_ :Dict = (cos(__UpperCamelCase ) ** 2) * (sin(__UpperCamelCase ) ** 2) lowercase_ :str = sin(sigma / 2 ) ** 2 lowercase_ :List[Any] = (sigma + sin(__UpperCamelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
257
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = DistilBertTokenizer _lowerCamelCase = DistilBertTokenizerFast _lowerCamelCase = True @slow def lowerCAmelCase__ ( self ): __magic_name__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __magic_name__ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ ) __magic_name__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ ) __magic_name__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __magic_name__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
490
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def A ( UpperCAmelCase , UpperCAmelCase ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ) ) ) def A ( UpperCAmelCase , UpperCAmelCase ): if dataset.ndim != value_array.ndim: _snake_case : List[str] = ( "Wrong input data's dimensions... " F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: _snake_case : List[Any] = ( "Wrong input data's shape... " F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: _snake_case : Optional[int] = ( "Input data have different datatype... " F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(UpperCAmelCase ) _snake_case : Optional[Any] = [] for value in value_array: _snake_case : Tuple = euclidean(UpperCAmelCase , dataset[0] ) _snake_case : Optional[int] = dataset[0].tolist() for dataset_value in dataset[1:]: _snake_case : str = euclidean(UpperCAmelCase , UpperCAmelCase ) if dist > temp_dist: _snake_case : int = temp_dist _snake_case : Optional[Any] = dataset_value.tolist() answer.append([vector, dist] ) return answer def A ( UpperCAmelCase , UpperCAmelCase ): return np.dot(UpperCAmelCase , UpperCAmelCase ) / (norm(UpperCAmelCase ) * norm(UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
708
def A ( UpperCAmelCase ): return str(UpperCAmelCase ) == str(UpperCAmelCase )[::-1] def A ( UpperCAmelCase ): return int(UpperCAmelCase ) + int(str(UpperCAmelCase )[::-1] ) def A ( UpperCAmelCase = 10_000 ): _snake_case : Optional[int] = [] for num in range(1 , UpperCAmelCase ): _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = num while iterations < 50: _snake_case : Optional[Any] = sum_reverse(UpperCAmelCase ) iterations += 1 if is_palindrome(UpperCAmelCase ): break else: lychrel_nums.append(UpperCAmelCase ) return len(UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
278
0
from __future__ import annotations A = [] def __UpperCAmelCase ( __A , __A , __A ) -> bool: '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def __UpperCAmelCase ( __A , __A ) -> bool: '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): UpperCAmelCase__ = 1 solve(__A , row + 1 ) UpperCAmelCase__ = 0 return False def __UpperCAmelCase ( __A ) -> None: '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) A = 8 A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
475
import argparse import datetime def __UpperCAmelCase ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } UpperCAmelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__A ) < 1_1: raise ValueError("Must be 10 characters long" ) # Get month UpperCAmelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError("Month must be between 1 - 12" ) UpperCAmelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day UpperCAmelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError("Date must be between 1 - 31" ) # Get second separator UpperCAmelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year UpperCAmelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation UpperCAmelCase__ = datetime.date(int(__A ) , int(__A ) , int(__A ) ) # Start math if m <= 2: UpperCAmelCase__ = y - 1 UpperCAmelCase__ = m + 1_2 # maths var UpperCAmelCase__ = int(str(__A )[:2] ) UpperCAmelCase__ = int(str(__A )[2:] ) UpperCAmelCase__ = int(2.6 * m - 5.39 ) UpperCAmelCase__ = int(c / 4 ) UpperCAmelCase__ = int(k / 4 ) UpperCAmelCase__ = int(d + k ) UpperCAmelCase__ = int(t + u + v + x ) UpperCAmelCase__ = int(z - (2 * c) ) UpperCAmelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response UpperCAmelCase__ = F"""Your date {date_input}, is a {days[str(__A )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() A = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) A = parser.parse_args() zeller(args.date_input)
475
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Dict =KandinskyInpaintPipeline UpperCamelCase__ : List[str] =["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCamelCase__ : str =[ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCamelCase__ : str =[ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCamelCase__ : Optional[int] =False @property def __a ( self :Any) -> List[Any]: return 32 @property def __a ( self :Dict) -> Optional[Any]: return 32 @property def __a ( self :Any) -> Any: return self.time_input_dim @property def __a ( self :Optional[Any]) -> Optional[Any]: return self.time_input_dim * 4 @property def __a ( self :Optional[int]) -> str: return 100 @property def __a ( self :Optional[Any]) -> Dict: UpperCAmelCase_ = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''') return tokenizer @property def __a ( self :Any) -> List[Any]: torch.manual_seed(0) UpperCAmelCase_ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCAmelCase_ = MultilingualCLIP(_lowercase) UpperCAmelCase_ = text_encoder.eval() return text_encoder @property def __a ( self :Union[str, Any]) -> Optional[int]: torch.manual_seed(0) UpperCAmelCase_ = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase_ = UNetaDConditionModel(**_lowercase) return model @property def __a ( self :Dict) -> str: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self :Optional[int]) -> List[str]: torch.manual_seed(0) UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs) return model def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = self.dummy_tokenizer UpperCAmelCase_ = self.dummy_unet UpperCAmelCase_ = self.dummy_movq UpperCAmelCase_ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_lowercase , ) UpperCAmelCase_ = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __a ( self :int , _lowercase :str , _lowercase :Any=0) -> Optional[Any]: UpperCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(_lowercase) # create init_image UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_lowercase)).convert('''RGB''').resize((256, 256)) # create mask UpperCAmelCase_ = np.ones((64, 64) , dtype=np.floataa) UpperCAmelCase_ = 0 if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __a ( self :Dict) -> List[str]: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_lowercase) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(_lowercase)) UpperCAmelCase_ = output.images UpperCAmelCase_ = pipe( **self.get_dummy_inputs(_lowercase) , return_dict=_lowercase , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}") assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def __a ( self :int) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def __a ( self :Dict) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Any) -> str: UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''') UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') UpperCAmelCase_ = np.ones((768, 768) , dtype=np.floataa) UpperCAmelCase_ = 0 UpperCAmelCase_ = '''a hat''' UpperCAmelCase_ = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa) pipe_prior.to(_lowercase) UpperCAmelCase_ = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa) UpperCAmelCase_ = pipeline.to(_lowercase) pipeline.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ , UpperCAmelCase_ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase_ = pipeline( _lowercase , image=_lowercase , mask_image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase)
561
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class a_ ( _snake_case ): UpperCamelCase__ : torch.FloatTensor class a_ ( nn.Module ): def __init__( self :Union[str, Any] , _lowercase :str=3 , _lowercase :List[str]=3 , _lowercase :Dict=("DownEncoderBlock2D",) , _lowercase :Optional[Any]=(64,) , _lowercase :Optional[Any]=2 , _lowercase :Tuple=32 , _lowercase :int="silu" , _lowercase :Union[str, Any]=True , ) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = layers_per_block UpperCAmelCase_ = torch.nn.Convad( _lowercase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase_ = None UpperCAmelCase_ = nn.ModuleList([]) # down UpperCAmelCase_ = block_out_channels[0] for i, down_block_type in enumerate(_lowercase): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(_lowercase) - 1 UpperCAmelCase_ = get_down_block( _lowercase , num_layers=self.layers_per_block , in_channels=_lowercase , out_channels=_lowercase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=_lowercase , resnet_groups=_lowercase , attention_head_dim=_lowercase , temb_channels=_lowercase , ) self.down_blocks.append(_lowercase) # mid UpperCAmelCase_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowercase , temb_channels=_lowercase , ) # out UpperCAmelCase_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_lowercase , eps=1E-6) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = 2 * out_channels if double_z else out_channels UpperCAmelCase_ = nn.Convad(block_out_channels[-1] , _lowercase , 3 , padding=1) UpperCAmelCase_ = False def __a ( self :Any , _lowercase :int) -> Optional[Any]: UpperCAmelCase_ = x UpperCAmelCase_ = self.conv_in(_lowercase) if self.training and self.gradient_checkpointing: def create_custom_forward(_lowercase :Dict): def custom_forward(*_lowercase :Any): return module(*_lowercase) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0'''): for down_block in self.down_blocks: UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowercase) , _lowercase , use_reentrant=_lowercase) # middle UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _lowercase , use_reentrant=_lowercase) else: for down_block in self.down_blocks: UpperCAmelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowercase) , _lowercase) # middle UpperCAmelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , _lowercase) else: # down for down_block in self.down_blocks: UpperCAmelCase_ = down_block(_lowercase) # middle UpperCAmelCase_ = self.mid_block(_lowercase) # post-process UpperCAmelCase_ = self.conv_norm_out(_lowercase) UpperCAmelCase_ = self.conv_act(_lowercase) UpperCAmelCase_ = self.conv_out(_lowercase) return sample class a_ ( nn.Module ): def __init__( self :Union[str, Any] , _lowercase :Optional[Any]=3 , _lowercase :List[str]=3 , _lowercase :List[str]=("UpDecoderBlock2D",) , _lowercase :int=(64,) , _lowercase :Optional[Any]=2 , _lowercase :List[Any]=32 , _lowercase :Union[str, Any]="silu" , _lowercase :Optional[int]="group" , ) -> Any: super().__init__() UpperCAmelCase_ = layers_per_block UpperCAmelCase_ = nn.Convad( _lowercase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase_ = None UpperCAmelCase_ = nn.ModuleList([]) UpperCAmelCase_ = in_channels if norm_type == '''spatial''' else None # mid UpperCAmelCase_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowercase , temb_channels=_lowercase , ) # up UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(_lowercase): UpperCAmelCase_ = output_channel UpperCAmelCase_ = reversed_block_out_channels[i] UpperCAmelCase_ = i == len(_lowercase) - 1 UpperCAmelCase_ = get_up_block( _lowercase , num_layers=self.layers_per_block + 1 , in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=_lowercase , resnet_groups=_lowercase , attention_head_dim=_lowercase , temb_channels=_lowercase , resnet_time_scale_shift=_lowercase , ) self.up_blocks.append(_lowercase) UpperCAmelCase_ = output_channel # out if norm_type == "spatial": UpperCAmelCase_ = SpatialNorm(block_out_channels[0] , _lowercase) else: UpperCAmelCase_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_lowercase , eps=1E-6) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = nn.Convad(block_out_channels[0] , _lowercase , 3 , padding=1) UpperCAmelCase_ = False def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :List[Any]=None) -> Any: UpperCAmelCase_ = z UpperCAmelCase_ = self.conv_in(_lowercase) UpperCAmelCase_ = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_lowercase :str): def custom_forward(*_lowercase :Any): return module(*_lowercase) return custom_forward if is_torch_version('''>=''' , '''1.11.0'''): # middle UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _lowercase , _lowercase , use_reentrant=_lowercase) UpperCAmelCase_ = sample.to(_lowercase) # up for up_block in self.up_blocks: UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowercase) , _lowercase , _lowercase , use_reentrant=_lowercase) else: # middle UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _lowercase , _lowercase) UpperCAmelCase_ = sample.to(_lowercase) # up for up_block in self.up_blocks: UpperCAmelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowercase) , _lowercase , _lowercase) else: # middle UpperCAmelCase_ = self.mid_block(_lowercase , _lowercase) UpperCAmelCase_ = sample.to(_lowercase) # up for up_block in self.up_blocks: UpperCAmelCase_ = up_block(_lowercase , _lowercase) # post-process if latent_embeds is None: UpperCAmelCase_ = self.conv_norm_out(_lowercase) else: UpperCAmelCase_ = self.conv_norm_out(_lowercase , _lowercase) UpperCAmelCase_ = self.conv_act(_lowercase) UpperCAmelCase_ = self.conv_out(_lowercase) return sample class a_ ( nn.Module ): def __init__( self :Union[str, Any] , _lowercase :Optional[int] , _lowercase :Dict , _lowercase :str , _lowercase :str=None , _lowercase :int="random" , _lowercase :Tuple=False , _lowercase :Tuple=True) -> Any: super().__init__() UpperCAmelCase_ = n_e UpperCAmelCase_ = vq_embed_dim UpperCAmelCase_ = beta UpperCAmelCase_ = legacy UpperCAmelCase_ = nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) UpperCAmelCase_ = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap))) UpperCAmelCase_ = self.used.shape[0] UpperCAmelCase_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase_ = self.re_embed UpperCAmelCase_ = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices.") else: UpperCAmelCase_ = n_e UpperCAmelCase_ = sane_index_shape def __a ( self :Dict , _lowercase :Union[str, Any]) -> Tuple: UpperCAmelCase_ = inds.shape assert len(_lowercase) > 1 UpperCAmelCase_ = inds.reshape(ishape[0] , -1) UpperCAmelCase_ = self.used.to(_lowercase) UpperCAmelCase_ = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase_ = match.argmax(-1) UpperCAmelCase_ = match.sum(2) < 1 if self.unknown_index == "random": UpperCAmelCase_ = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: UpperCAmelCase_ = self.unknown_index return new.reshape(_lowercase) def __a ( self :str , _lowercase :int) -> Optional[Any]: UpperCAmelCase_ = inds.shape assert len(_lowercase) > 1 UpperCAmelCase_ = inds.reshape(ishape[0] , -1) UpperCAmelCase_ = self.used.to(_lowercase) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase_ = 0 # simply set to zero UpperCAmelCase_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _lowercase) return back.reshape(_lowercase) def __a ( self :Optional[int] , _lowercase :Union[str, Any]) -> Any: # reshape z -> (batch, height, width, channel) and flatten UpperCAmelCase_ = z.permute(0 , 2 , 3 , 1).contiguous() UpperCAmelCase_ = z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase_ = torch.argmin(torch.cdist(_lowercase , self.embedding.weight) , dim=1) UpperCAmelCase_ = self.embedding(_lowercase).view(z.shape) UpperCAmelCase_ = None UpperCAmelCase_ = None # compute loss for embedding if not self.legacy: UpperCAmelCase_ = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: UpperCAmelCase_ = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients UpperCAmelCase_ = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase_ = z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: UpperCAmelCase_ = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis UpperCAmelCase_ = self.remap_to_used(_lowercase) UpperCAmelCase_ = min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: UpperCAmelCase_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __a ( self :Any , _lowercase :Tuple , _lowercase :Optional[Any]) -> int: # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCAmelCase_ = indices.reshape(shape[0] , -1) # add batch axis UpperCAmelCase_ = self.unmap_to_all(_lowercase) UpperCAmelCase_ = indices.reshape(-1) # flatten again # get quantized latent vectors UpperCAmelCase_ = self.embedding(_lowercase) if shape is not None: UpperCAmelCase_ = z_q.view(_lowercase) # reshape back to match original input shape UpperCAmelCase_ = z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class a_ ( _snake_case ): def __init__( self :Tuple , _lowercase :List[str] , _lowercase :Union[str, Any]=False) -> List[Any]: UpperCAmelCase_ = parameters UpperCAmelCase_ , UpperCAmelCase_ = torch.chunk(_lowercase , 2 , dim=1) UpperCAmelCase_ = torch.clamp(self.logvar , -30.0 , 20.0) UpperCAmelCase_ = deterministic UpperCAmelCase_ = torch.exp(0.5 * self.logvar) UpperCAmelCase_ = torch.exp(self.logvar) if self.deterministic: UpperCAmelCase_ = UpperCAmelCase_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def __a ( self :Optional[Any] , _lowercase :Optional[torch.Generator] = None) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype UpperCAmelCase_ = randn_tensor( self.mean.shape , generator=_lowercase , device=self.parameters.device , dtype=self.parameters.dtype) UpperCAmelCase_ = self.mean + self.std * sample return x def __a ( self :Tuple , _lowercase :int=None) -> List[Any]: if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __a ( self :Optional[int] , _lowercase :str , _lowercase :Dict=[1, 2, 3]) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0]) UpperCAmelCase_ = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=_lowercase) def __a ( self :Optional[Any]) -> Optional[int]: return self.mean
561
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Any ,a__ : str ,a__ : Dict ) -> int: # noqa: E741 while r - l > 1: __A : Tuple = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : Optional[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : Any ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[Any] = 1 __A : List[str] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : Tuple = v[i] elif v[i] > tail[length - 1]: __A : List[str] = v[i] length += 1 else: __A : int = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DebertaTokenizer UpperCAmelCase__ = True UpperCAmelCase__ = DebertaTokenizerFast def snake_case__ ( self : List[str] ) ->List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] _UpperCamelCase : str = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) _UpperCamelCase : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : Union[str, Any] = {"unk_token": "[UNK]"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase__ ) ) def snake_case__ ( self : Dict , **lowercase__ : str ) ->List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def snake_case__ ( self : Tuple , lowercase__ : Tuple ) ->Any: '''simple docstring''' _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Optional[Any] = "lower newer" return input_text, output_text def snake_case__ ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCamelCase : Dict = self.get_tokenizer() _UpperCamelCase : List[str] = "lower newer" _UpperCamelCase : List[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Dict = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) _UpperCamelCase : Optional[Any] = tokens + [tokenizer.unk_token] _UpperCamelCase : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def snake_case__ ( self : Dict ) ->Tuple: '''simple docstring''' _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : Optional[int] = tokenizer("Hello" , "World" ) _UpperCamelCase : Optional[int] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , lowercase__ ) @slow def snake_case__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) _UpperCamelCase : int = tokenizer.encode("sequence builders" , add_special_tokens=lowercase__ ) _UpperCamelCase : Any = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase__ ) _UpperCamelCase : Any = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) _UpperCamelCase : Dict = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) _UpperCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowercase__ ) _UpperCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _UpperCamelCase : int = tokenizer_class.from_pretrained("microsoft/deberta-base" ) _UpperCamelCase : List[str] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] _UpperCamelCase : Optional[int] = tokenizer(lowercase__ , padding=lowercase__ ) _UpperCamelCase : Union[str, Any] = [tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) for seq in encoding["input_ids"]] # fmt: off _UpperCamelCase : List[Any] = { "input_ids": [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _UpperCamelCase : Any = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , lowercase__ ) for expected, decoded in zip(lowercase__ , lowercase__ ): self.assertEqual(lowercase__ , lowercase__ )
435
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = "mobilenet_v2" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1.0 , SCREAMING_SNAKE_CASE_ : List[Any]=8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE_ : Tuple=6 , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Any="relu6" , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Any=0.8 , SCREAMING_SNAKE_CASE_ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_0_1 , SCREAMING_SNAKE_CASE_ : int=255 , **SCREAMING_SNAKE_CASE_ : Any , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = depth_multiplier lowerCamelCase__ = depth_divisible_by lowerCamelCase__ = min_depth lowerCamelCase__ = expand_ratio lowerCamelCase__ = output_stride lowerCamelCase__ = first_layer_is_expansion lowerCamelCase__ = finegrained_output lowerCamelCase__ = hidden_act lowerCamelCase__ = tf_padding lowerCamelCase__ = classifier_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = version.parse("1.11" ) @property def __UpperCAmelCase ( self : Dict ): return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def __UpperCAmelCase ( self : int ): if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def __UpperCAmelCase ( self : List[str] ): return 1e-4
258
"""simple docstring""" from itertools import count def _A ( __lowercase = 50 ): """simple docstring""" lowerCamelCase__ = [1] * min_block_length for n in count(__lowercase ): fill_count_functions.append(1 ) for block_length in range(__lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F'{solution() = }')
258
1
from __future__ import annotations from typing import Any class UpperCAmelCase__ : """simple docstring""" def __init__( self : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float = 0 ) -> None: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = row, column SCREAMING_SNAKE_CASE__ = [[default_value for c in range(__lowerCamelCase )] for r in range(__lowerCamelCase )] def __str__( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier SCREAMING_SNAKE_CASE__ = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , len(str(__lowerCamelCase ) ) ) SCREAMING_SNAKE_CASE__ = f'''%{max_element_length}s''' # Make string and return def single_line(__lowerCamelCase : list[float] ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE__ = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__lowerCamelCase ) for row_vector in self.array ) return s def __repr__( self : Optional[Any] ) -> str: return str(self ) def lowercase_ ( self : int , __lowerCamelCase : tuple[int, int] ) -> bool: if not (isinstance(__lowerCamelCase , (list, tuple) ) and len(__lowerCamelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Tuple , __lowerCamelCase : tuple[int, int] ) -> Any: assert self.validate_indicies(__lowerCamelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : float ) -> None: assert self.validate_indicies(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = value def __add__( self : int , __lowerCamelCase : Matrix ) -> Matrix: assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ = -self[r, c] return result def __sub__( self : Dict , __lowerCamelCase : Matrix ) -> Matrix: return self + (-another) def __mul__( self : List[str] , __lowerCamelCase : int | float | Matrix ) -> Matrix: if isinstance(__lowerCamelCase , (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ = self[r, c] * another return result elif isinstance(__lowerCamelCase , __lowerCamelCase ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE__ = f'''Unsupported type given for another ({type(__lowerCamelCase )})''' raise TypeError(__lowerCamelCase ) def lowercase_ ( self : Any ) -> Matrix: SCREAMING_SNAKE_CASE__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE__ = self[r, c] return result def lowercase_ ( self : Optional[int] , __lowerCamelCase : Matrix , __lowerCamelCase : Matrix ) -> Any: assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE__ = v.transpose() SCREAMING_SNAKE_CASE__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE__ = 1 print(F'''a^(-1) is {ainv}''' ) # u, v SCREAMING_SNAKE_CASE__ = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = 1, 2, -3 SCREAMING_SNAKE_CASE__ = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_A , _A )}''' ) def UpperCAmelCase_ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
493
def UpperCAmelCase_ ( _A ): '''simple docstring''' if len(_A ) <= 1: return [tuple(_A )] SCREAMING_SNAKE_CASE__ = [] def generate(_A , _A ): SCREAMING_SNAKE_CASE__ = [0] * n res.append(tuple(_A ) ) SCREAMING_SNAKE_CASE__ = 0 while i < n: if c[i] < i: if i % 2 == 0: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = arr[i], arr[0] else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = arr[i], arr[c[i]] res.append(tuple(_A ) ) c[i] += 1 SCREAMING_SNAKE_CASE__ = 0 else: SCREAMING_SNAKE_CASE__ = 0 i += 1 generate(len(_A ) , _A ) return res if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() _SCREAMING_SNAKE_CASE : Optional[int] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
493
1
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
47
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
1
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
164
snake_case_ = [ (1_000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : int = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} lowercase__ : List[str] = 0 lowercase__ : int = 0 while place < len(SCREAMING_SNAKE_CASE_ ): if (place + 1 < len(SCREAMING_SNAKE_CASE_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : str = [] for arabic, roman in ROMAN: ((lowercase__) , (lowercase__)) : List[str] = divmod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) result.append(roman * factor ) if number == 0: break return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
164
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self ): __lowerCamelCase = 0 def lowerCamelCase_ ( self ): __lowerCamelCase = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = Path(UpperCAmelCase ) / """preprocessor_config.json""" __lowerCamelCase = Path(UpperCAmelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCAmelCase , """w""" ) ) __lowerCamelCase = AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = Path(UpperCAmelCase ) / """preprocessor_config.json""" __lowerCamelCase = Path(UpperCAmelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCAmelCase , """w""" ) ) __lowerCamelCase = AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCamelCase = Path(UpperCAmelCase ) / """preprocessor_config.json""" __lowerCamelCase = Path(UpperCAmelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCAmelCase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCamelCase = AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop("""image_processor_type""" ) __lowerCamelCase = CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) __lowerCamelCase = AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = Path(UpperCAmelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) __lowerCamelCase = AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): with self.assertRaisesRegex( UpperCAmelCase , """clip-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCamelCase_ ( self ): with self.assertRaisesRegex( UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoImageProcessor.from_pretrained(UpperCAmelCase , revision="""aaaaaa""" ) def lowerCamelCase_ ( self ): with self.assertRaisesRegex( UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase ): __lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): __lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCAmelCase ) __lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) __lowerCamelCase = AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCamelCase_ ( self ): try: AutoConfig.register("""custom""" , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = Path(UpperCAmelCase ) / """preprocessor_config.json""" __lowerCamelCase = Path(UpperCAmelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCAmelCase , """w""" ) ) __lowerCamelCase = CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) __lowerCamelCase = AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self ): class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = True try: AutoConfig.register("""custom""" , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(UpperCAmelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
571
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase__ ( _A: str , _A: str , _A: str , _A: PreTrainedTokenizer , _A: int , _A: Optional[int] = None , ): '''simple docstring''' __lowerCamelCase = {} if train_file is not None: __lowerCamelCase = [train_file] if eval_file is not None: __lowerCamelCase = [eval_file] if test_file is not None: __lowerCamelCase = [test_file] __lowerCamelCase = datasets.load_dataset("""csv""" , data_files=_A ) __lowerCamelCase = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCamelCase = features_name.pop(_A ) __lowerCamelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCamelCase = {label: i for i, label in enumerate(_A )} __lowerCamelCase = tokenizer.model_input_names __lowerCamelCase = {} if len(_A ) == 1: for k in files.keys(): __lowerCamelCase = ds[k].map( lambda _A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_A , max_length=_A , padding="""max_length""" ) , batched=_A , ) elif len(_A ) == 2: for k in files.keys(): __lowerCamelCase = ds[k].map( lambda _A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_A , max_length=_A , padding="""max_length""" , ) , batched=_A , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase = labelaid[ex[label_name]] yield (d, label) __lowerCamelCase = ( tf.data.Dataset.from_generator( _A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCamelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCamelCase = ( tf.data.Dataset.from_generator( _A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCamelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCamelCase = ( tf.data.Dataset.from_generator( _A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCamelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _a : str = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" A = field(metadata={'''help''': '''Which column contains the label'''} ) A = field(default=__UpperCamelCase ,metadata={'''help''': '''The path of the training file'''} ) A = field(default=__UpperCamelCase ,metadata={'''help''': '''The path of the development file'''} ) A = field(default=__UpperCamelCase ,metadata={'''help''': '''The path of the test file'''} ) A = field( default=128 ,metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } ,) A = field( default=__UpperCamelCase ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class UpperCamelCase_ : """simple docstring""" A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A = field( default=__UpperCamelCase ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A = field( default=__UpperCamelCase ,metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A = field(default=__UpperCamelCase ,metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A = field( default=__UpperCamelCase ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} ,) def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_A , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_A ) , labelaid=_A , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCamelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , ) def compute_metrics(_A: EvalPrediction ) -> Dict: __lowerCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCamelCase = TFTrainer( model=_A , args=_A , train_dataset=_A , eval_dataset=_A , compute_metrics=_A , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCamelCase = trainer.evaluate() __lowerCamelCase = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_A , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(_A ) return results if __name__ == "__main__": main()
571
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase = 1_6 lowercase = 3_2 def __lowerCAmelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : DatasetDict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int = 1_6 ) -> List[str]: lowerCamelCase_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase_ = DatasetDict( { """train""": dataset["""train"""].select(UpperCAmelCase__ ), """validation""": dataset["""train"""].select(UpperCAmelCase__ ), """test""": dataset["""validation"""], } ) def tokenize_function(UpperCAmelCase__ : str ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_ = 8 else: lowerCamelCase_ = None return tokenizer.pad( UpperCAmelCase__ , padding="""longest""" , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowerCamelCase_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowerCamelCase_ = DataLoader( tokenized_datasets["""test"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: # New Code # lowerCamelCase_ = [] # Download the dataset lowerCamelCase_ = load_dataset("""glue""" , """mrpc""" ) # Create our splits lowerCamelCase_ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCamelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config["""lr"""] lowerCamelCase_ = int(config["""num_epochs"""] ) lowerCamelCase_ = int(config["""seed"""] ) lowerCamelCase_ = int(config["""batch_size"""] ) lowerCamelCase_ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase__ ) # New Code # # Create our folds: lowerCamelCase_ = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) lowerCamelCase_ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = get_fold_dataloaders( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ = AdamW(params=model.parameters() , lr=UpperCAmelCase__ ) # Instantiate scheduler lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ = model(**UpperCAmelCase__ ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) lowerCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end lowerCamelCase_ = [] for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCAmelCase__ ) lowerCamelCase_ = outputs.logits lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCamelCase_ = torch.cat(UpperCAmelCase__ , dim=0 ) lowerCamelCase_ = torch.stack(UpperCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCamelCase_ = metric.compute(predictions=UpperCAmelCase__ , references=UpperCAmelCase__ ) accelerator.print("""Average test metrics from all folds:""" , UpperCAmelCase__ ) def __lowerCAmelCase ( ) -> int: lowerCamelCase_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=UpperCAmelCase__ , default=3 , help="""The number of splits to perform across the dataset""" ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
272
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __A: def __init__( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : Any=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Union[str, Any]=9_9 , __UpperCamelCase : List[str]=3_2 , __UpperCamelCase : int=2 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : Optional[int]=3_7 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Tuple=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[Any]=0.02 , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Dict=True , __UpperCamelCase : Any="None" , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Dict=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = relative_attention lowerCamelCase_ = position_biased_input lowerCamelCase_ = pos_att_type lowerCamelCase_ = scope def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : List[str] ): lowerCamelCase_ = TFDebertaVaModel(config=__UpperCamelCase ) lowerCamelCase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : int ): lowerCamelCase_ = TFDebertaVaForMaskedLM(config=__UpperCamelCase ) lowerCamelCase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFDebertaVaForSequenceClassification(config=__UpperCamelCase ) lowerCamelCase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFDebertaVaForTokenClassification(config=__UpperCamelCase ) lowerCamelCase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int ): lowerCamelCase_ = TFDebertaVaForQuestionAnswering(config=__UpperCamelCase ) lowerCamelCase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Dict ): lowerCamelCase_ = TFDebertaVaModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : int ): lowerCamelCase_ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __A( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def lowercase__ ( self : Optional[int] ): pass @slow def lowercase__ ( self : Any ): lowerCamelCase_ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) lowerCamelCase_ = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCamelCase_ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] lowerCamelCase_ = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 )
272
1
'''simple docstring''' def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Any: if isinstance(lowercase , lowercase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(lowercase , lowercase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _a = False if num < 0: _a = True _a = -num _a = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(lowercase ) for e in binary ) return "0b" + "".join(str(lowercase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Any , *__a : Optional[Any] , **__a : Any ): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
521
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir("fixtures") class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # A mock response for an HTTP head request to emulate server down lowercase_ :str = mock.Mock() lowercase_ :Dict = 500 lowercase_ :List[Any] = {} lowercase_ :str = HTTPError lowercase_ :Optional[int] = {} # Download this model to make sure it's in the cache. lowercase_ :Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase_ ) as mock_head: lowercase_ :Dict = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase ( self ): # This test is for deprecated behavior and can be removed in v5 lowercase_ :Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase ( cls ): lowercase_ :Optional[Any] = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def UpperCamelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def UpperCamelCase ( self ): lowercase_ :int = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) lowercase_ :List[Any] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id='''test-feature-extractor''' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) lowercase_ :Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def UpperCamelCase ( self ): lowercase_ :Tuple = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) lowercase_ :str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) lowercase_ :Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def UpperCamelCase ( self ): CustomFeatureExtractor.register_for_auto_class() lowercase_ :str = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) lowercase_ :str = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
257
from typing import Any import numpy as np def UpperCamelCase ( _a ) -> bool: '''simple docstring''' return np.array_equal(_a , matrix.conjugate().T ) def UpperCamelCase ( _a , _a ) -> Any: '''simple docstring''' lowercase_ :str = v.conjugate().T lowercase_ :int = v_star.dot(_a ) assert isinstance(_a , np.ndarray ) return (v_star_dot.dot(_a )) / (v_star.dot(_a )) def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :str = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase_ :Optional[int] = np.array([[1], [2], [3]] ) assert is_hermitian(_a ), f"{a} is not hermitian." print(rayleigh_quotient(_a , _a ) ) lowercase_ :Any = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_a ), f"{a} is not hermitian." assert rayleigh_quotient(_a , _a ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
257
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class _a ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase_ : List[str] = """luke""" def __init__( self , __UpperCAmelCase=50_267 , __UpperCAmelCase=500_000 , __UpperCAmelCase=768 , __UpperCAmelCase=256 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-12 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ): super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) __A : Optional[Any] = vocab_size __A : Any = entity_vocab_size __A : Optional[Any] = hidden_size __A : Any = entity_emb_size __A : List[str] = num_hidden_layers __A : Dict = num_attention_heads __A : Any = hidden_act __A : List[str] = intermediate_size __A : Optional[int] = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : int = max_position_embeddings __A : Union[str, Any] = type_vocab_size __A : Optional[int] = initializer_range __A : Optional[Any] = layer_norm_eps __A : Union[str, Any] = use_entity_aware_attention __A : List[Any] = classifier_dropout
700
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """gpt_neox""" def __init__( self , __UpperCAmelCase=50_432 , __UpperCAmelCase=6_144 , __UpperCAmelCase=44 , __UpperCAmelCase=64 , __UpperCAmelCase=24_576 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.25 , __UpperCAmelCase=10_000 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=2_048 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) __A : Optional[int] = vocab_size __A : List[Any] = max_position_embeddings __A : Any = hidden_size __A : str = num_hidden_layers __A : List[str] = num_attention_heads __A : Dict = intermediate_size __A : List[Any] = hidden_act __A : Tuple = rotary_pct __A : Optional[int] = rotary_emb_base __A : int = attention_dropout __A : Optional[int] = hidden_dropout __A : List[Any] = classifier_dropout __A : Optional[Any] = initializer_range __A : Optional[int] = layer_norm_eps __A : str = use_cache __A : Optional[int] = tie_word_embeddings __A : Any = use_parallel_residual __A : List[Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def __UpperCAmelCase( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"got {self.rope_scaling}" ) __A : Dict = self.rope_scaling.get("type" , __UpperCAmelCase ) __A : Dict = self.rope_scaling.get("factor" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
387
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = DebertaTokenizer _UpperCamelCase = True _UpperCamelCase = DebertaTokenizerFast def UpperCamelCase_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] lowerCamelCase__ = dict(zip(_lowerCAmelCase ,range(len(_lowerCAmelCase ) ) ) ) lowerCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCamelCase__ = {"""unk_token""": """[UNK]"""} lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """lower newer""" lowerCamelCase__ = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = """lower newer""" lowerCamelCase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowerCamelCase__ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = tokens + [tokenizer.unk_token] lowerCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = tokenizer("""Hello""" ,"""World""" ) lowerCamelCase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) lowerCamelCase__ = tokenizer.encode("""sequence builders""" ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode( """sequence builders""" ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode( """sequence builders""" ,"""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ,_lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase__ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) lowerCamelCase__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] lowerCamelCase__ = tokenizer(_lowerCAmelCase ,padding=_lowerCAmelCase ) lowerCamelCase__ = [tokenizer.decode(_lowerCAmelCase ,skip_special_tokens=_lowerCAmelCase ) for seq in encoding["""input_ids"""]] # fmt: off lowerCamelCase__ = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data ,_lowerCAmelCase ) for expected, decoded in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
50
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , __a ): def A_ (self ) -> Tuple: UpperCamelCase_ : Any = load_tool("""text-to-speech""" ) self.tool.setup() def A_ (self ) -> Dict: # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCamelCase_ : Optional[Any] = self.tool("""hey""" ) UpperCamelCase_ : Optional[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def A_ (self ) -> Dict: # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCamelCase_ : Any = self.tool("""hey""" ) UpperCamelCase_ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
635
0
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> float: return base * power(__lowerCAmelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") __lowerCAmelCase : str = int(input("Enter the base: ").strip()) __lowerCAmelCase : Optional[Any] = int(input("Enter the exponent: ").strip()) __lowerCAmelCase : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __lowerCAmelCase : int = 1 / result print(F'{base} to the power of {exponent} is {result}')
702
from math import factorial __lowerCAmelCase : Dict = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(__lowerCAmelCase ) ) def UpperCAmelCase_ ( ) -> int: __lowercase : int = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , __lowerCAmelCase ) if sum_of_digit_factorial(__lowerCAmelCase ) == i ) if __name__ == "__main__": print(F'{solution() = }')
284
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Union[List[PIL.Image.Image], np.ndarray] SCREAMING_SNAKE_CASE__ : Optional[List[bool]] SCREAMING_SNAKE_CASE__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
202
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : List[str] = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "perceiver" def __init__( self , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=768 , _UpperCAmelCase=1 , _UpperCAmelCase=26 , _UpperCAmelCase=8 , _UpperCAmelCase=8 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="kv" , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=262 , _UpperCAmelCase=2048 , _UpperCAmelCase=56 , _UpperCAmelCase=[368, 496] , _UpperCAmelCase=16 , _UpperCAmelCase=1920 , _UpperCAmelCase=16 , _UpperCAmelCase=[1, 16, 224, 224] , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ : int = num_latents UpperCAmelCase__ : Optional[int] = d_latents UpperCAmelCase__ : Optional[Any] = d_model UpperCAmelCase__ : List[Any] = num_blocks UpperCAmelCase__ : int = num_self_attends_per_block UpperCAmelCase__ : List[str] = num_self_attention_heads UpperCAmelCase__ : Optional[int] = num_cross_attention_heads UpperCAmelCase__ : List[str] = qk_channels UpperCAmelCase__ : Union[str, Any] = v_channels UpperCAmelCase__ : int = cross_attention_shape_for_attention UpperCAmelCase__ : Union[str, Any] = self_attention_widening_factor UpperCAmelCase__ : List[str] = cross_attention_widening_factor UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : List[str] = use_query_residual # masked language modeling attributes UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings # image classification attributes UpperCAmelCase__ : Union[str, Any] = image_size # flow attributes UpperCAmelCase__ : Union[str, Any] = train_size # multimodal autoencoding attributes UpperCAmelCase__ : Union[str, Any] = num_frames UpperCAmelCase__ : Dict = audio_samples_per_frame UpperCAmelCase__ : Optional[int] = samples_per_patch UpperCAmelCase__ : str = output_shape class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' @property def lowerCamelCase ( self ): if self.task == "multiple-choice": UpperCAmelCase__ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def lowerCamelCase ( self ): return 1E-4 def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = 3 , _UpperCAmelCase = 40 , _UpperCAmelCase = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ : Union[str, Any] = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ : str = preprocessor.num_special_tokens_to_add(_UpperCAmelCase ) UpperCAmelCase__ : str = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ : str = [''' '''.join(['''a'''] ) * seq_length] * batch_size UpperCAmelCase__ : List[str] = dict(preprocessor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) UpperCAmelCase__ : str = inputs.pop('''input_ids''' ) return inputs elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ : Union[str, Any] = compute_effective_axis_dimension(_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase__ : Union[str, Any] = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ : Tuple = dict(preprocessor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) UpperCAmelCase__ : Optional[Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
599
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
599
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase = get_tests_dir('fixtures') class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> Tuple: # A mock response for an HTTP head request to emulate server down lowerCAmelCase = mock.Mock() lowerCAmelCase = 500 lowerCAmelCase = {} lowerCAmelCase = HTTPError lowerCAmelCase = {} # Download this model to make sure it's in the cache. lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A_ ) as mock_head: lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def __snake_case ( self ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class __snake_case( unittest.TestCase ): '''simple docstring''' @classmethod def __snake_case ( cls ) -> str: lowerCAmelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def __snake_case ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def __snake_case ( self ) -> Tuple: lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_ , repo_id="""test-feature-extractor""" , push_to_hub=A_ , use_auth_token=self._token ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_ , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=A_ , use_auth_token=self._token ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def __snake_case ( self ) -> Optional[Any]: CustomFeatureExtractor.register_for_auto_class() lowerCAmelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) lowerCAmelCase = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
433
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
433
1
"""simple docstring""" A__ : int = 8.3144598 def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example A__ : Dict = 3_0_0 A__ : int = 2_8 A__ : int = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
272
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A__ : Dict = logging.get_logger(__name__) class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = ['''pixel_values'''] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = True , A_ = 1 / 255 , A_ = None , A_ = True , A_ = None , A_ = None , **A_ , ) -> None: """simple docstring""" super().__init__(**A_ ) _lowercase: List[str] = size if size is not None else {'''height''': 224, '''width''': 224} _lowercase: Dict = get_size_dict(A_ ) _lowercase: Any = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _lowercase: List[str] = get_size_dict(A_ , default_to_square=A_ , param_name='''crop_size''' ) _lowercase: List[Any] = do_resize _lowercase: Tuple = do_rescale _lowercase: Union[str, Any] = do_normalize _lowercase: Optional[int] = do_center_crop _lowercase: List[str] = crop_size _lowercase: int = size _lowercase: List[Any] = resample _lowercase: Optional[Any] = rescale_factor _lowercase: str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowercase: Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase_ ( self , A_ , A_ , A_ = PILImageResampling.BILINEAR , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" _lowercase: Union[str, Any] = get_size_dict(A_ ) if "shortest_edge" in size: _lowercase: Optional[int] = get_resize_output_image_size(A_ , size=size['''shortest_edge'''] , default_to_square=A_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _lowercase: Dict = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def lowercase_ ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" _lowercase: Dict = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A_ , size=(size['''height'''], size['''width''']) , data_format=A_ , **A_ ) def lowercase_ ( self , A_ , A_ , A_ = None , **A_ ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def lowercase_ ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def lowercase_ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> BatchFeature: """simple docstring""" _lowercase: List[Any] = do_resize if do_resize is not None else self.do_resize _lowercase: Tuple = do_rescale if do_rescale is not None else self.do_rescale _lowercase: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _lowercase: Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase: Optional[int] = crop_size if crop_size is not None else self.crop_size _lowercase: List[Any] = get_size_dict(A_ , param_name='''crop_size''' , default_to_square=A_ ) _lowercase: List[str] = resample if resample is not None else self.resample _lowercase: List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase: List[Any] = image_mean if image_mean is not None else self.image_mean _lowercase: List[str] = image_std if image_std is not None else self.image_std _lowercase: List[Any] = size if size is not None else self.size _lowercase: List[str] = get_size_dict(A_ ) if not is_batched(A_ ): _lowercase: Optional[Any] = [images] if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _lowercase: Dict = [to_numpy_array(A_ ) for image in images] if do_resize: _lowercase: int = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: _lowercase: str = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: _lowercase: Optional[Any] = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: _lowercase: List[Any] = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] _lowercase: Optional[Any] = [to_channel_dimension_format(A_ , A_ ) for image in images] _lowercase: Any = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ )
272
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : Union[str, Any] ): __UpperCAmelCase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __UpperCAmelCase = { '''input_ids''': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''] __UpperCAmelCase = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. __UpperCAmelCase = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
49
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str = "isbn/0140328726" ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F"{olid} is not a valid Open Library olid" raise ValueError(SCREAMING_SNAKE_CASE_ ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : dict ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } SCREAMING_SNAKE_CASE_ : int = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} SCREAMING_SNAKE_CASE_ : Optional[int] = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] SCREAMING_SNAKE_CASE_ : List[str] = data["First sentence"]["value"] for key, value in data.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : List[str] = ", ".join(SCREAMING_SNAKE_CASE_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: snake_case_ : int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: snake_case_ : Optional[Any] = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print('\n'.join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_ : Any = DisjunctiveConstraint(lowercase__ ) self.assertTrue(isinstance(dc.token_ids , lowercase__ ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase__ ): DisjunctiveConstraint(lowercase__ ) # fails here def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_ : Optional[Any] = DisjunctiveConstraint(lowercase__ ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = dc.update(2 ) SCREAMING_SNAKE_CASE_ : Tuple = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Any = dc.update(3 ) SCREAMING_SNAKE_CASE_ : Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowercase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_ : Dict = DisjunctiveConstraint(lowercase__ ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowerCamelCase ( UpperCAmelCase_ ) ->List[Tuple[int, ...]]: snake_case__ = [] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCAmelCase_ ) ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCAmelCase_ ) ) elif isinstance(UpperCAmelCase_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple[int, ...]: snake_case__ = [] for d in reversed(UpperCAmelCase_ ): idx.append(flat_idx % d ) snake_case__ = flat_idx // d return tuple(reversed(UpperCAmelCase_ ) ) @torch.jit.ignore def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ) ->List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(UpperCAmelCase_ ) -> None: snake_case__ = True for i in range(len(UpperCAmelCase_ ) ): snake_case__ = -1 * (i + 1) l[reversed_idx] &= tally snake_case__ = l[reversed_idx] if start_edges is None: snake_case__ = [s == 0 for s in start] reduce_edge_list(UpperCAmelCase_ ) if end_edges is None: snake_case__ = [e == (d - 1) for e, d in zip(UpperCAmelCase_ , UpperCAmelCase_ )] reduce_edge_list(UpperCAmelCase_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCAmelCase_ ) == 0: return [()] elif len(UpperCAmelCase_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] snake_case__ = [] snake_case__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if s == e: path_list.append(slice(UpperCAmelCase_ , s + 1 ) ) else: break snake_case__ = tuple(UpperCAmelCase_ ) snake_case__ = len(UpperCAmelCase_ ) # start == end, and we're done if divergence_idx == len(UpperCAmelCase_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case__ = start[divergence_idx] return tuple( path + (slice(UpperCAmelCase_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case__ = end[divergence_idx] return tuple( path + (slice(UpperCAmelCase_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) snake_case__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->torch.Tensor: snake_case__ = t.shape[:no_batch_dims] snake_case__ = list(_flat_idx_to_idx(UpperCAmelCase_ , UpperCAmelCase_ ) ) # _get_minimal_slice_set is inclusive snake_case__ = list(_flat_idx_to_idx(flat_end - 1 , UpperCAmelCase_ ) ) # Get an ordered list of slices to perform snake_case__ = _get_minimal_slice_set( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) snake_case__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = False , ) ->Any: if not (len(UpperCAmelCase_ ) > 0): raise ValueError('Must provide at least one input' ) snake_case__ = [shape[:no_batch_dims] for shape in _fetch_dims(UpperCAmelCase_ )] snake_case__ = tuple([max(UpperCAmelCase_ ) for s in zip(*UpperCAmelCase_ )] ) def _prep_inputs(UpperCAmelCase_ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: snake_case__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) snake_case__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: snake_case__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t snake_case__ = tensor_tree_map(_prep_inputs , UpperCAmelCase_ ) snake_case__ = None if _out is not None: snake_case__ = tensor_tree_map(lambda UpperCAmelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) snake_case__ = 1 for d in orig_batch_dims: flat_batch_dim *= d snake_case__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCAmelCase_ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t snake_case__ = 0 snake_case__ = prepped_outputs for _ in range(UpperCAmelCase_ ): # Chunk the input if not low_mem: snake_case__ = _select_chunk else: snake_case__ = partial( _chunk_slice , flat_start=UpperCAmelCase_ , flat_end=min(UpperCAmelCase_ , i + chunk_size ) , no_batch_dims=len(UpperCAmelCase_ ) , ) snake_case__ = tensor_tree_map(UpperCAmelCase_ , UpperCAmelCase_ ) # Run the layer on the chunk snake_case__ = layer(**UpperCAmelCase_ ) # Allocate space for the output if out is None: snake_case__ = tensor_tree_map(lambda UpperCAmelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , UpperCAmelCase_ ) # Put the chunk in its pre-allocated space if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): def assign(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: for k, v in da.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): assign(UpperCAmelCase_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: snake_case__ = da[k] assign(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for xa, xa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: snake_case__ = xa elif isinstance(UpperCAmelCase_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: snake_case__ = output_chunk else: raise ValueError('Not supported' ) i += chunk_size snake_case__ = tensor_tree_map(lambda UpperCAmelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , UpperCAmelCase_ ) return out class __snake_case : def __init__( self , UpperCamelCase_ = 512 , ) -> Tuple: snake_case__ = max_chunk_size snake_case__ = None snake_case__ = None def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size snake_case__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] snake_case__ = [c for c in candidates if c > min_chunk_size] snake_case__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCamelCase_ ) -> bool: try: with torch.no_grad(): fn(*UpperCamelCase_ , chunk_size=UpperCamelCase_ ) return True except RuntimeError: return False snake_case__ = 0 snake_case__ = len(UpperCamelCase_ ) - 1 while i > min_viable_chunk_size_index: snake_case__ = test_chunk_size(candidates[i] ) if not viable: snake_case__ = (min_viable_chunk_size_index + i) // 2 else: snake_case__ = i snake_case__ = (i + len(UpperCamelCase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ) -> bool: snake_case__ = True for aa, aa in zip(UpperCamelCase_ , UpperCamelCase_ ): assert type(UpperCamelCase_ ) == type(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): snake_case__ = [v for _, v in sorted(aa.items() , key=lambda UpperCamelCase_ : x[0] )] snake_case__ = [v for _, v in sorted(aa.items() , key=lambda UpperCamelCase_ : x[0] )] consistent &= self._compare_arg_caches(UpperCamelCase_ , UpperCamelCase_ ) else: consistent &= aa == aa return consistent def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> int: snake_case__ = True snake_case__ = tree_map(lambda UpperCamelCase_ : a.shape if isinstance(UpperCamelCase_ , torch.Tensor ) else a , UpperCamelCase_ , UpperCamelCase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCamelCase_ ) snake_case__ = self._compare_arg_caches(self.cached_arg_data , UpperCamelCase_ ) else: # Otherwise, we can reuse the precomputed value snake_case__ = False if not consistent: snake_case__ = self._determine_favorable_chunk_size( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) snake_case__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
368
'''simple docstring''' from math import loga def __lowerCamelCase ( UpperCAmelCase_ ) ->int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
368
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ : List[Any] = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
204
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCAmelCase_ : Optional[int] = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0522, type=int) lowerCAmelCase_ : str = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: lowerCAmelCase_ : Tuple = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowerCAmelCase_ : str = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase_ : Any = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase_ : Optional[Any] = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
204
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class A : # setable values __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[jnp.ndarray] = None __UpperCAmelCase : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def __lowerCAmelCase ( cls ) -> int: return cls() @dataclass class A ( a ): __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : KarrasVeSchedulerState class A ( a , a ): @property def __lowerCAmelCase ( self ) -> Dict: return True @register_to_config def __init__( self , snake_case_ = 0.02 , snake_case_ = 1_0_0 , snake_case_ = 1.007 , snake_case_ = 8_0 , snake_case_ = 0.05 , snake_case_ = 5_0 , ) -> List[str]: pass def __lowerCAmelCase ( self ) -> Any: return KarrasVeSchedulerState.create() def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = () ) -> KarrasVeSchedulerState: _a = jnp.arange(0 , snake_case_ )[::-1].copy() _a = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=snake_case_ , schedule=jnp.array(snake_case_ , dtype=jnp.floataa ) , timesteps=snake_case_ , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: _a = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: _a = 0 # sample eps ~ N(0, S_noise^2 * I) _a = random.split(snake_case_ , num=1 ) _a = self.config.s_noise * random.normal(key=snake_case_ , shape=sample.shape ) _a = sigma + gamma * sigma _a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: _a = sample_hat + sigma_hat * model_output _a = (sample_hat - pred_original_sample) / sigma_hat _a = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=snake_case_ , derivative=snake_case_ , state=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: _a = sample_prev + sigma_prev * model_output _a = (sample_prev - pred_original_sample) / sigma_prev _a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=snake_case_ , derivative=snake_case_ , state=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: raise NotImplementedError()
131
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A ( unittest.TestCase ): __UpperCAmelCase : List[str] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __UpperCAmelCase : Optional[Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: _a = AudioClassificationPipeline(model=snake_case_ , feature_extractor=snake_case_ ) # test with a raw waveform _a = np.zeros((3_4_0_0_0,) ) _a = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: _a , _a = examples _a = audio_classifier(snake_case_ ) # by default a model is initialized with num_labels=2 self.assertEqual( snake_case_ , [ {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, ] , ) _a = audio_classifier(snake_case_ , top_k=1 ) self.assertEqual( snake_case_ , [ {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, ] , ) self.run_torchaudio(snake_case_ ) @require_torchaudio def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: import datasets # test with a local file _a = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) _a = dataset[0]["audio"]["array"] _a = audio_classifier(snake_case_ ) self.assertEqual( snake_case_ , [ {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, {"score": ANY(snake_case_ ), "label": ANY(snake_case_ )}, ] , ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = "anton-l/wav2vec2-random-tiny-classifier" _a = pipeline("audio-classification" , model=snake_case_ ) _a = np.ones((8_0_0_0,) ) _a = audio_classifier(snake_case_ , top_k=4 ) _a = [ {"score": 0.0_842, "label": "no"}, {"score": 0.0_838, "label": "up"}, {"score": 0.0_837, "label": "go"}, {"score": 0.0_834, "label": "right"}, ] _a = [ {"score": 0.0_845, "label": "stop"}, {"score": 0.0_844, "label": "on"}, {"score": 0.0_841, "label": "right"}, {"score": 0.0_834, "label": "left"}, ] self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _a = {"array": np.ones((8_0_0_0,) ), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} _a = audio_classifier(snake_case_ , top_k=4 ) self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __lowerCAmelCase ( self ) -> Optional[Any]: import datasets _a = "superb/wav2vec2-base-superb-ks" _a = pipeline("audio-classification" , model=snake_case_ ) _a = datasets.load_dataset("anton-l/superb_dummy" , "ks" , split="test" ) _a = np.array(dataset[3]["speech"] , dtype=np.floataa ) _a = audio_classifier(snake_case_ , top_k=4 ) self.assertEqual( nested_simplify(snake_case_ , decimals=3 ) , [ {"score": 0.981, "label": "go"}, {"score": 0.007, "label": "up"}, {"score": 0.006, "label": "_unknown_"}, {"score": 0.001, "label": "down"}, ] , ) @require_tf @unittest.skip("Audio classification is not implemented for TF" ) def __lowerCAmelCase ( self ) -> Dict: pass
131
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __A = logging.get_logger(__name__) class _snake_case ( a__ ): def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float , **UpperCAmelCase : Optional[Any] ): __lowerCamelCase : Optional[Any] = feature_size __lowerCamelCase : Dict = sampling_rate __lowerCamelCase : List[str] = padding_value __lowerCamelCase : List[Any] = kwargs.pop("padding_side" , "right" ) __lowerCamelCase : List[str] = kwargs.pop("return_attention_mask" , UpperCAmelCase ) super().__init__(**UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCAmelCase : Union[bool, str, PaddingStrategy] = True , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __lowerCamelCase : Tuple = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) __lowerCamelCase : Optional[int] = processed_features[self.model_input_names[0]] __lowerCamelCase : Dict = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase ) == 0: if return_attention_mask: __lowerCamelCase : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __lowerCamelCase : Tuple = required_input[0] if isinstance(UpperCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __lowerCamelCase : str = 0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase ): __lowerCamelCase : Tuple = required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase ): __lowerCamelCase : Dict = "tf" elif is_torch_tensor(UpperCAmelCase ): __lowerCamelCase : List[str] = "pt" elif isinstance(UpperCAmelCase , (int, float, list, tuple, np.ndarray) ): __lowerCamelCase : Optional[int] = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(UpperCAmelCase )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __lowerCamelCase : str = to_numpy(UpperCAmelCase ) else: __lowerCamelCase : str = [to_numpy(UpperCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy __lowerCamelCase : List[str] = self._get_padding_strategies(padding=UpperCAmelCase , max_length=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = processed_features[self.model_input_names[0]] __lowerCamelCase : int = len(UpperCAmelCase ) if not all(len(UpperCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) __lowerCamelCase : str = [] for i in range(UpperCAmelCase ): __lowerCamelCase : int = {k: v[i] for k, v in processed_features.items()} # truncation __lowerCamelCase : Dict = self._truncate( UpperCAmelCase , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , truncation=UpperCAmelCase , ) truncated_inputs.append(UpperCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __lowerCamelCase : int = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __lowerCamelCase : Dict = PaddingStrategy.MAX_LENGTH __lowerCamelCase : str = {} for i in range(UpperCAmelCase ): # padding __lowerCamelCase : int = self._pad( truncated_inputs[i] , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: __lowerCamelCase : str = [] if value.dtype is np.dtype(np.floataa ): __lowerCamelCase : Tuple = value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase ) return BatchFeature(UpperCAmelCase , tensor_type=UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ): __lowerCamelCase : List[str] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __lowerCamelCase : Optional[Any] = len(UpperCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCamelCase : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCamelCase : Optional[int] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __lowerCamelCase : List[str] = np.ones(len(UpperCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: __lowerCamelCase : Optional[Any] = max_length - len(UpperCAmelCase ) if self.padding_side == "right": if return_attention_mask: __lowerCamelCase : int = np.pad( processed_features["attention_mask"] , (0, difference) ) __lowerCamelCase : str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __lowerCamelCase : Optional[Any] = np.pad( UpperCAmelCase , UpperCAmelCase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __lowerCamelCase : int = np.pad( processed_features["attention_mask"] , (difference, 0) ) __lowerCamelCase : List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __lowerCamelCase : Union[str, Any] = np.pad( UpperCAmelCase , UpperCAmelCase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) __lowerCamelCase : Dict = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCamelCase : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCamelCase : Union[str, Any] = len(UpperCAmelCase ) > max_length if needs_to_be_truncated: __lowerCamelCase : Dict = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __lowerCamelCase : List[Any] = processed_features["attention_mask"][:max_length] return processed_features def lowerCamelCase__ ( self : str , UpperCAmelCase : Tuple=False , UpperCAmelCase : List[Any]=None ): # Get padding strategy if padding is not False: if padding is True: __lowerCamelCase : int = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Any = PaddingStrategy(UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Optional[Any] = padding else: __lowerCamelCase : Optional[int] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
701
"""simple docstring""" import os def lowercase_ ( ) -> List[str]: '''simple docstring''' __lowerCamelCase : Union[str, Any] = os.path.dirname(os.path.realpath(_lowerCamelCase ) ) __lowerCamelCase : int = os.path.join(_lowerCamelCase , "triangle.txt" ) with open(_lowerCamelCase ) as f: __lowerCamelCase : List[str] = f.readlines() __lowerCamelCase : List[str] = [] for line in triangle: __lowerCamelCase : Optional[int] = [] for number in line.strip().split(" " ): numbers_from_line.append(int(_lowerCamelCase ) ) a.append(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): for j in range(len(a[i] ) ): __lowerCamelCase : int = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCamelCase : Union[str, Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCamelCase , _lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
366
0
"""simple docstring""" def __A ( a_ :Optional[Any]) -> Optional[int]: __a : Any = [] __a : Union[str, Any] = [] __a : Dict = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __a : Optional[Any] = len(a_) if (len(a_) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8) , '''Stack'''.center(a_) , '''Postfix'''.center(a_) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a_) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a_) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(a_) == 0: stack.append(a_) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a_) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(a_) # push x to stack print( x.center(8) , (''''''.join(a_)).ljust(a_) , (''''''.join(a_)).ljust(a_) , sep=''' | ''' , ) # Output in tabular format while len(a_) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ''' '''.center(8) , (''''''.join(a_)).ljust(a_) , (''''''.join(a_)).ljust(a_) , sep=''' | ''' , ) # Output in tabular format return "".join(a_) # return Postfix as str def __A ( a_ :Optional[int]) -> List[str]: __a : Any = list(infix[::-1]) # reverse the infix equation for i in range(len(a_)): if infix[i] == "(": __a : Optional[int] = ''')''' # change "(" to ")" elif infix[i] == ")": __a : int = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(a_)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A = input('''\nEnter an Infix Equation = ''') # Input an Infix equation A = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
52
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : Any , lowerCamelCase : int = 128 , lowerCamelCase : int = 256 , lowerCamelCase : float = 2000.0 , lowerCamelCase : int = 768 , lowerCamelCase : int = 12 , lowerCamelCase : int = 12 , lowerCamelCase : int = 64 , lowerCamelCase : int = 2048 , lowerCamelCase : float = 0.1 , ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Sequential( nn.Linear(lowerCamelCase , d_model * 4 , bias=lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCamelCase ) , nn.SiLU() , ) _UpperCAmelCase = nn.Embedding(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = False _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(p=lowerCamelCase ) _UpperCAmelCase = nn.ModuleList() for lyr_num in range(lowerCamelCase ): # FiLM conditional T5 decoder _UpperCAmelCase = DecoderLayer(d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase ) self.decoders.append(lowerCamelCase ) _UpperCAmelCase = TaLayerNorm(lowerCamelCase ) _UpperCAmelCase = nn.Dropout(p=lowerCamelCase ) _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : str ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _UpperCAmelCase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _UpperCAmelCase = self.conditioning_emb(lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _UpperCAmelCase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _UpperCAmelCase = torch.broadcast_to( torch.arange(lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _UpperCAmelCase = self.position_encoding(lowerCamelCase ) _UpperCAmelCase = self.continuous_inputs_projection(lowerCamelCase ) inputs += position_encodings _UpperCAmelCase = self.dropout(lowerCamelCase ) # decoder: No padding present. _UpperCAmelCase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _UpperCAmelCase = [(x, self.encoder_decoder_mask(lowerCamelCase , lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _UpperCAmelCase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _UpperCAmelCase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _UpperCAmelCase = lyr( lowerCamelCase , conditioning_emb=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , )[0] _UpperCAmelCase = self.decoder_norm(lowerCamelCase ) _UpperCAmelCase = self.post_dropout(lowerCamelCase ) _UpperCAmelCase = self.spec_out(lowerCamelCase ) return spec_out class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any=1E-6 ) -> int: """simple docstring""" super().__init__() _UpperCAmelCase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , dropout_rate=lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , dropout_rate=lowerCamelCase , layer_norm_epsilon=lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase , layer_norm_epsilon=lowerCamelCase ) ) def lowerCamelCase ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]=None , ) -> str: """simple docstring""" _UpperCAmelCase = self.layer[0]( lowerCamelCase , conditioning_emb=lowerCamelCase , attention_mask=lowerCamelCase , ) if encoder_hidden_states is not None: _UpperCAmelCase = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _UpperCAmelCase = self.layer[1]( lowerCamelCase , key_value_states=lowerCamelCase , attention_mask=lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _UpperCAmelCase = self.layer[-1](lowerCamelCase , lowerCamelCase ) return (hidden_states,) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : int ) -> Union[str, Any]: """simple docstring""" super().__init__() _UpperCAmelCase = TaLayerNorm(lowerCamelCase ) _UpperCAmelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase ) _UpperCAmelCase = Attention(query_dim=lowerCamelCase , heads=lowerCamelCase , dim_head=lowerCamelCase , out_bias=lowerCamelCase , scale_qk=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(lowerCamelCase ) def lowerCamelCase ( self : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , lowerCamelCase : Dict=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.layer_norm(lowerCamelCase ) if conditioning_emb is not None: _UpperCAmelCase = self.FiLMLayer(lowerCamelCase , lowerCamelCase ) # Self-attention block _UpperCAmelCase = self.attention(lowerCamelCase ) _UpperCAmelCase = hidden_states + self.dropout(lowerCamelCase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = Attention(query_dim=lowerCamelCase , heads=lowerCamelCase , dim_head=lowerCamelCase , out_bias=lowerCamelCase , scale_qk=lowerCamelCase ) _UpperCAmelCase = TaLayerNorm(lowerCamelCase , eps=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(lowerCamelCase ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : int=None , lowerCamelCase : Optional[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.layer_norm(lowerCamelCase ) _UpperCAmelCase = self.attention( lowerCamelCase , encoder_hidden_states=lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _UpperCAmelCase = hidden_states + self.dropout(lowerCamelCase ) return layer_output class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : int ) -> Optional[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = TaDenseGatedActDense(d_model=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase ) _UpperCAmelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase ) _UpperCAmelCase = TaLayerNorm(lowerCamelCase , eps=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(lowerCamelCase ) def lowerCamelCase ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : str=None ) -> Dict: """simple docstring""" _UpperCAmelCase = self.layer_norm(lowerCamelCase ) if conditioning_emb is not None: _UpperCAmelCase = self.film(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = self.DenseReluDense(lowerCamelCase ) _UpperCAmelCase = hidden_states + self.dropout(lowerCamelCase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[str] ) -> Any: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(lowerCamelCase ) _UpperCAmelCase = NewGELUActivation() def lowerCamelCase ( self : Tuple , lowerCamelCase : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.act(self.wi_a(lowerCamelCase ) ) _UpperCAmelCase = self.wi_a(lowerCamelCase ) _UpperCAmelCase = hidden_gelu * hidden_linear _UpperCAmelCase = self.dropout(lowerCamelCase ) _UpperCAmelCase = self.wo(lowerCamelCase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : str=1E-6 ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Parameter(torch.ones(lowerCamelCase ) ) _UpperCAmelCase = eps def lowerCamelCase ( self : List[str] , lowerCamelCase : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCamelCase ) _UpperCAmelCase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _UpperCAmelCase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(lowerCamelCase , 3.0 )) )) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Any , lowerCamelCase : Any ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(lowerCamelCase , out_features * 2 , bias=lowerCamelCase ) def lowerCamelCase ( self : int , lowerCamelCase : str , lowerCamelCase : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.scale_bias(lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase = torch.chunk(lowerCamelCase , 2 , -1 ) _UpperCAmelCase = x * (1 + scale) + shift return x
715
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a: Optional[Any] = logging.get_logger(__name__) __a: str = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''bit''' _lowerCamelCase = ['''preactivation''', '''bottleneck'''] _lowerCamelCase = ['''SAME''', '''VALID'''] def __init__( self : List[Any] , lowerCamelCase : Dict=3 , lowerCamelCase : str=64 , lowerCamelCase : Union[str, Any]=[256, 512, 1024, 2048] , lowerCamelCase : Union[str, Any]=[3, 4, 6, 3] , lowerCamelCase : Optional[int]="preactivation" , lowerCamelCase : Optional[int]="relu" , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[Any]=32 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Any=32 , lowerCamelCase : Tuple=1 , lowerCamelCase : Optional[int]=None , lowerCamelCase : str=None , **lowerCamelCase : Any , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _UpperCAmelCase = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = global_padding _UpperCAmelCase = num_groups _UpperCAmelCase = drop_path_rate _UpperCAmelCase = embedding_dynamic_padding _UpperCAmelCase = output_stride _UpperCAmelCase = width_factor _UpperCAmelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
402
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : int = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } __SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_A , _A ) def UpperCAmelCase__ ( self : int , **_A : Any ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Optional[int] , **_A : Optional[Any] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Union[str, Any] , **_A : Optional[int] ): """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[int] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __SCREAMING_SNAKE_CASE : List[str] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : str = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor(do_normalize=_A ) __SCREAMING_SNAKE_CASE : str = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[Any] = image_processor(_A , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : List[str] = processor(images=_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : str = '''Alexandra,T-shirt的价格是15便士。''' __SCREAMING_SNAKE_CASE : List[Any] = processor(text=_A ) __SCREAMING_SNAKE_CASE : str = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : int = '''Alexandra,T-shirt的价格是15便士。''' __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : int = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : str = processor.batch_decode(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : int = '''Alexandra,T-shirt的价格是15便士。''' __SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
74
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = int(number**0.5 ) return number == sq * sq def __snake_case ( SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowerCAmelCase = x_den * y_den * z_den _lowerCAmelCase = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __snake_case ( SCREAMING_SNAKE_CASE: int = 35 ): """simple docstring""" _lowerCAmelCase = set() _lowerCAmelCase = 42 _lowerCAmelCase = Fraction(0 ) _lowerCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowerCAmelCase = x_num * y_den + x_den * y_num _lowerCAmelCase = x_den * y_den _lowerCAmelCase = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 _lowerCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowerCAmelCase = x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = int(sqrt(SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = int(sqrt(SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=-1 _lowerCAmelCase = x_num * y_num _lowerCAmelCase = x_den * y_num + x_num * y_den _lowerCAmelCase = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 _lowerCAmelCase = x_num * x_num * y_num * y_num _lowerCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = int(sqrt(SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = int(sqrt(SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'{solution() = }')
580
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _A ( A__ , A__ , A__ , A__=5 ): """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 __lowercase = torch.tensor(tokenizer.encode(A__ , add_special_tokens=A__ ) ).unsqueeze(0 ) # Batch size 1 __lowercase = model(A__ )[0] # The last hidden-state is the first element of the output tuple __lowercase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __lowercase = logits[0, masked_index, :] __lowercase = logits.softmax(dim=0 ) __lowercase , __lowercase = prob.topk(k=A__ , dim=0 ) __lowercase = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A__ ) )] ) __lowercase = tokenizer.mask_token __lowercase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): __lowercase = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(A__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(A__ ) , A__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A__ , A__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCAmelCase__ = CamembertTokenizer.from_pretrained('''camembert-base''') lowerCAmelCase__ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowerCAmelCase__ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
710
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowerCAmelCase__ = (720, 1280) # Height, Width lowerCAmelCase__ = (0.4, 0.6) # if height or width lower than this scale, drop it. lowerCAmelCase__ = 1 / 100 lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = 250 def _A ( ): """simple docstring""" __lowercase , __lowercase = get_dataset(A__ , A__ ) for index in range(A__ ): __lowercase = random.sample(range(len(A__ ) ) , 4 ) __lowercase , __lowercase , __lowercase = update_image_and_anno( A__ , A__ , A__ , A__ , A__ , filter_scale=A__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowercase = random_chars(32 ) __lowercase = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowercase = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , A__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) __lowercase = [] for anno in new_annos: __lowercase = anno[3] - anno[1] __lowercase = anno[4] - anno[2] __lowercase = anno[1] + width / 2 __lowercase = anno[2] + height / 2 __lowercase = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(A__ ) with open(F"{file_root}.txt" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = [] for label_file in glob.glob(os.path.join(A__ , '''*.txt''' ) ): __lowercase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(A__ ) as in_file: __lowercase = in_file.readlines() __lowercase = os.path.join(A__ , F"{label_name}.jpg" ) __lowercase = [] for obj_list in obj_lists: __lowercase = obj_list.rstrip('''\n''' ).split(''' ''' ) __lowercase = float(obj[1] ) - float(obj[3] ) / 2 __lowercase = float(obj[2] ) - float(obj[4] ) / 2 __lowercase = float(obj[1] ) + float(obj[3] ) / 2 __lowercase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(A__ ) labels.append(A__ ) return img_paths, labels def _A ( A__ , A__ , A__ , A__ , A__ , A__ = 0.0 , ): """simple docstring""" __lowercase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __lowercase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowercase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowercase = int(scale_x * output_size[1] ) __lowercase = int(scale_y * output_size[0] ) __lowercase = [] __lowercase = [] for i, index in enumerate(A__ ): __lowercase = all_img_list[index] path_list.append(A__ ) __lowercase = all_annos[index] __lowercase = cva.imread(A__ ) if i == 0: # top-left __lowercase = cva.resize(A__ , (divid_point_x, divid_point_y) ) __lowercase = img for bbox in img_annos: __lowercase = bbox[1] * scale_x __lowercase = bbox[2] * scale_y __lowercase = bbox[3] * scale_x __lowercase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __lowercase = cva.resize(A__ , (output_size[1] - divid_point_x, divid_point_y) ) __lowercase = img for bbox in img_annos: __lowercase = scale_x + bbox[1] * (1 - scale_x) __lowercase = bbox[2] * scale_y __lowercase = scale_x + bbox[3] * (1 - scale_x) __lowercase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __lowercase = cva.resize(A__ , (divid_point_x, output_size[0] - divid_point_y) ) __lowercase = img for bbox in img_annos: __lowercase = bbox[1] * scale_x __lowercase = scale_y + bbox[2] * (1 - scale_y) __lowercase = bbox[3] * scale_x __lowercase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __lowercase = cva.resize( A__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __lowercase = img for bbox in img_annos: __lowercase = scale_x + bbox[1] * (1 - scale_x) __lowercase = scale_y + bbox[2] * (1 - scale_y) __lowercase = scale_x + bbox[3] * (1 - scale_x) __lowercase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __lowercase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _A ( A__ ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __lowercase = ascii_lowercase + digits return "".join(random.choice(A__ ) for _ in range(A__ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
624
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = None class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 2 @register_to_config def __init__( self : List[Any] , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 100 , _UpperCAmelCase : float = 1.007 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 0.05 , _UpperCAmelCase : float = 50 , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = sigma_max # setable values UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None # sigma(t_i) def lowercase__ ( self : List[Any] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowercase__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, torch.device] = None ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = num_inference_steps UpperCAmelCase_ = np.arange(0 , self.num_inference_steps )[::-1].copy() UpperCAmelCase_ = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCAmelCase_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] UpperCAmelCase_ = torch.tensor(_UpperCAmelCase , dtype=torch.floataa , device=_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : float , _UpperCAmelCase : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase_ = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase_ = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase_ = self.config.s_noise * randn_tensor(sample.shape , generator=_UpperCAmelCase ).to(sample.device ) UpperCAmelCase_ = sigma + gamma * sigma UpperCAmelCase_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowercase__ ( self : Optional[int] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ = sample_hat + sigma_hat * model_output UpperCAmelCase_ = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_UpperCAmelCase , derivative=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ = sample_prev + sigma_prev * model_output UpperCAmelCase_ = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_UpperCAmelCase , derivative=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' raise NotImplementedError()
82
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __A = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class A ( unittest.TestCase ): @classmethod def A__ ( cls ) -> List[Any]: '''simple docstring''' lowercase__ = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def A__ ( cls ) -> Tuple: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase__ = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ , repo_id="""test-model-flax""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=F'''{key} not identical''' ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase__ = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) lowercase__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) lowercase__ = flatten_dict(unfreeze(model.params ) ) lowercase__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=F'''{key} not identical''' ) def _A ( lowercase__ , lowercase__ ): lowercase__ = True lowercase__ = flatten_dict(modela.params ) lowercase__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowercase__ = False return models_are_equal @require_flax class A ( unittest.TestCase ): def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase__ = FlaxBertModel(lowerCamelCase__ ) lowercase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ ) lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowercase__ = FlaxBertModel(lowerCamelCase__ ) lowercase__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , max_shard_size="""10KB""" ) with self.assertRaises(lowerCamelCase__ ): lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ ) lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = """bert""" lowercase__ = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(lowerCamelCase__ ): lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ ) lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = """bert""" lowercase__ = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(lowerCamelCase__ ): lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ ) lowercase__ = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
325
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCamelCase__ = UpperCamelCase__ = sum(array[:k] ) for i in range(len(SCREAMING_SNAKE_CASE ) - k ): UpperCamelCase__ = current_sum - array[i] + array[i + k] UpperCamelCase__ = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() A__ : Optional[Any]= [randint(-10_00, 10_00) for i in range(1_00)] A__ : List[Any]= randint(0, 1_10) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
20
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
1
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _A = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def a__ ( lowerCAmelCase , lowerCAmelCase=None ) -> Union[str, Any]: require_version(deps[pkg] , __snake_case )
182
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __snake_case : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Dict = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } __snake_case : str = { 'unc-nlp/lxmert-base-uncased': 512, } __snake_case : int = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = LxmertTokenizer def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[Any]="[UNK]" , lowerCAmelCase_ : List[Any]="[SEP]" , lowerCAmelCase_ : Dict="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : int="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : List[str] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase_ ) != tokenize_chinese_chars ): A__ : Tuple =getattr(lowerCAmelCase_ , normalizer_state.pop("""type""" ) ) A__ : Optional[int] =do_lower_case A__ : List[str] =strip_accents A__ : str =tokenize_chinese_chars A__ : int =normalizer_class(**lowerCAmelCase_ ) A__ : Dict =do_lower_case def lowercase__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict=None ) -> Optional[int]: '''simple docstring''' A__ : int =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Dict , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' A__ : Union[str, Any] =self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
215
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if nth_term == "": return [""] lowercase__ : Union[str, Any] = int(UpperCAmelCase ) lowercase__ : Union[str, Any] = int(UpperCAmelCase ) lowercase__ : list[str] = [] for temp in range(int(UpperCAmelCase ) ): series.append(F"""1 / {pow(temp + 1 , int(UpperCAmelCase ) )}""" if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() __a: Any = int(input("""Enter the last number (nth term) of the P-Series""")) __a: Tuple = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
428
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Optional[int] = logging.get_logger(__name__) __a: int = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "efficientformer" def __init__( self , __lowerCAmelCase = [3, 2, 6, 4] , __lowerCAmelCase = [48, 96, 224, 448] , __lowerCAmelCase = [True, True, True, True] , __lowerCAmelCase = 448 , __lowerCAmelCase = 32 , __lowerCAmelCase = 4 , __lowerCAmelCase = 7 , __lowerCAmelCase = 5 , __lowerCAmelCase = 8 , __lowerCAmelCase = 4 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 16 , __lowerCAmelCase = 3 , __lowerCAmelCase = 3 , __lowerCAmelCase = 3 , __lowerCAmelCase = 2 , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1 , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = 1E-5 , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1E-12 , __lowerCAmelCase = 224 , __lowerCAmelCase = 1E-05 , **__lowerCAmelCase , ) -> None: super().__init__(**__lowerCAmelCase ) lowercase__ : Dict = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : List[Any] = initializer_range lowercase__ : str = layer_norm_eps lowercase__ : str = patch_size lowercase__ : Tuple = num_channels lowercase__ : Optional[int] = depths lowercase__ : List[Any] = mlp_expansion_ratio lowercase__ : Dict = downsamples lowercase__ : Dict = dim lowercase__ : Optional[Any] = key_dim lowercase__ : List[str] = attention_ratio lowercase__ : Optional[Any] = resolution lowercase__ : Union[str, Any] = pool_size lowercase__ : str = downsample_patch_size lowercase__ : Optional[int] = downsample_stride lowercase__ : Optional[int] = downsample_pad lowercase__ : str = drop_path_rate lowercase__ : List[str] = num_metaad_blocks lowercase__ : str = distillation lowercase__ : List[str] = use_layer_scale lowercase__ : int = layer_scale_init_value lowercase__ : str = image_size lowercase__ : List[Any] = batch_norm_eps
428
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] ={ '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A_ ( UpperCamelCase__ ): _A :Optional[Any] = '''trocr''' _A :int = ['''past_key_values'''] _A :Dict = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : int , snake_case__ : Tuple=5_02_65 , snake_case__ : List[str]=10_24 , snake_case__ : Dict=12 , snake_case__ : Optional[Any]=16 , snake_case__ : Tuple=40_96 , snake_case__ : Tuple="gelu" , snake_case__ : Union[str, Any]=5_12 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=0.0 , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Optional[Any]=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Optional[Any]=0.0 , snake_case__ : Dict=True , snake_case__ : Dict=False , snake_case__ : Dict=True , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=1 , snake_case__ : Union[str, Any]=0 , snake_case__ : Tuple=2 , **snake_case__ : str , ): lowercase = vocab_size lowercase = d_model lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = decoder_ffn_dim lowercase = activation_function lowercase = max_position_embeddings lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = init_std lowercase = decoder_layerdrop lowercase = use_cache lowercase = scale_embedding lowercase = use_learned_position_embeddings lowercase = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
428
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = PNDMScheduler() lowerCAmelCase_ = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=_lowerCamelCase )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''google/ddpm-cifar10-32''' lowerCAmelCase_ = UNetaDModel.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PNDMScheduler() lowerCAmelCase_ = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pndm(generator=_lowerCamelCase , output_type='''numpy''' ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
606
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : str =16 A_ : Any =32 def snake_case_ ( __snake_case : Accelerator , __snake_case : int = 16) -> List[Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''') lowerCAmelCase_ = load_dataset('''glue''' , '''mrpc''') def tokenize_function(__snake_case : Optional[Any]): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ = datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''') def collate_fn(__snake_case : int): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ = 8 else: lowerCAmelCase_ = None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case) lowerCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ : Any =mocked_dataloaders # noqa: F811 def snake_case_ ( __snake_case : int , __snake_case : int) -> int: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case) == "1": lowerCAmelCase_ = 2 # New Code # lowerCAmelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator lowerCAmelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__snake_case) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['''lr'''] lowerCAmelCase_ = int(config['''num_epochs''']) lowerCAmelCase_ = int(config['''seed''']) lowerCAmelCase_ = int(config['''batch_size''']) lowerCAmelCase_ = evaluate.load('''glue''' , '''mrpc''') set_seed(__snake_case) lowerCAmelCase_ ,lowerCAmelCase_ = get_dataloaders(__snake_case , __snake_case) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ = model.to(accelerator.device) # Instantiate optimizer lowerCAmelCase_ = AdamW(params=model.parameters() , lr=__snake_case) # Instantiate scheduler lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) # Now we train the model for epoch in range(__snake_case): model.train() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__snake_case): lowerCAmelCase_ = model(**__snake_case) lowerCAmelCase_ = output.loss accelerator.backward(__snake_case) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): lowerCAmelCase_ = model(**__snake_case) lowerCAmelCase_ = outputs.logits.argmax(dim=-1) lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels'''])) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case) def snake_case_ ( ) -> Optional[Any]: lowerCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__snake_case , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case) if __name__ == "__main__": main()
606
1
'''simple docstring''' from collections.abc import Sequence def lowerCAmelCase_ ( snake_case_ : Sequence[int] | None = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) UpperCAmelCase_ = nums[0] for i in range(1 , len(snake_case_ ) ): UpperCAmelCase_ = nums[i] UpperCAmelCase_ = max(snake_case_ , ans + num , snake_case_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user SCREAMING_SNAKE_CASE_: Any =int(input('Enter number of elements : ').strip()) SCREAMING_SNAKE_CASE_: Union[str, Any] =list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
78
def __snake_case ( _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : int ) -> int: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. A_ : Dict = [p / w for p, w in zip(_lowerCAmelCase , _lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order A_ : Optional[Any] = sorted(_lowerCAmelCase ) # declaring useful variables A_ : List[Any] = len(_lowerCAmelCase ) A_ : List[Any] = 0 A_ : Any = 0 A_ : List[Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight A_ : List[Any] = sorted_profit_by_weight[length - i - 1] A_ : List[Any] = profit_by_weight.index(_lowerCAmelCase ) A_ : List[Any] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) _lowerCAmelCase : int = [int(x) for x in input('''Input profits separated by spaces: ''').split()] _lowerCAmelCase : Dict = [int(x) for x in input('''Input weights separated by spaces: ''').split()] _lowerCAmelCase : Union[str, Any] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
454
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __a: Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ['pixel_values'] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BICUBIC , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = IMAGENET_DEFAULT_MEAN , _lowercase = IMAGENET_DEFAULT_STD , **_lowercase , ) -> None: super().__init__(**_lowercase ) lowercase_ : Any = size if size is not None else {'shortest_edge': 224} lowercase_ : List[str] = get_size_dict(_lowercase , default_to_square=_lowercase ) lowercase_ : int = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase_ : str = get_size_dict(_lowercase , param_name='crop_size' ) lowercase_ : Any = do_resize lowercase_ : List[Any] = size lowercase_ : Tuple = resample lowercase_ : Union[str, Any] = do_center_crop lowercase_ : List[str] = crop_size lowercase_ : Any = do_rescale lowercase_ : Any = rescale_factor lowercase_ : Any = do_normalize lowercase_ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ) -> np.ndarray: lowercase_ : Optional[Any] = get_size_dict(_lowercase , default_to_square=_lowercase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase_ : Any = int((256 / 224) * size['shortest_edge'] ) lowercase_ : Dict = get_resize_output_image_size(_lowercase , size=_lowercase , default_to_square=_lowercase ) lowercase_ : str = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( _lowercase , size=(size_dict['height'], size_dict['width']) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: lowercase_ : Optional[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> BatchFeature: lowercase_ : int = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[int] = resample if resample is not None else self.resample lowercase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Dict = image_mean if image_mean is not None else self.image_mean lowercase_ : str = image_std if image_std is not None else self.image_std lowercase_ : List[str] = size if size is not None else self.size lowercase_ : str = get_size_dict(_lowercase , default_to_square=_lowercase ) lowercase_ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : Optional[Any] = get_size_dict(_lowercase , param_name='crop_size' ) lowercase_ : Union[str, Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase_ : Union[str, Any] = [to_numpy_array(_lowercase ) for image in images] if do_resize: lowercase_ : Dict = [self.resize(_lowercase , _lowercase , _lowercase ) for image in images] if do_center_crop: lowercase_ : Optional[int] = [self.center_crop(_lowercase , _lowercase ) for image in images] if do_rescale: lowercase_ : Optional[Any] = [self.rescale(_lowercase , _lowercase ) for image in images] if do_normalize: lowercase_ : Dict = [self.normalize(_lowercase , _lowercase , _lowercase ) for image in images] lowercase_ : Tuple = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] lowercase_ : Optional[Any] = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowerCamelCase : List[str] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Optional[int] = 4_2 _UpperCAmelCase : Any = 4_2 _UpperCAmelCase : Union[str, Any] = 4_2 @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = 4_2 _UpperCAmelCase : Optional[Any] = 4_2 _UpperCAmelCase : str = None _UpperCAmelCase : List[Any] = None class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "train" _UpperCAmelCase : Tuple = "dev" _UpperCAmelCase : int = "test" class SCREAMING_SNAKE_CASE__ : '''simple docstring''' @staticmethod def A ( lowercase : str , lowercase : Union[Split, str] ): '''simple docstring''' raise NotImplementedError @staticmethod def A ( lowercase : str ): '''simple docstring''' raise NotImplementedError @staticmethod def A ( lowercase : List[InputExample] , lowercase : List[str] , lowercase : int , lowercase : PreTrainedTokenizer , lowercase : Dict=False , lowercase : str="[CLS]" , lowercase : Optional[Any]=1 , lowercase : Optional[Any]="[SEP]" , lowercase : Optional[int]=False , lowercase : Optional[int]=False , lowercase : int=0 , lowercase : str=0 , lowercase : Optional[Any]=-100 , lowercase : str=0 , lowercase : str=True , ): '''simple docstring''' _snake_case = {label: i for i, label in enumerate(lowercase )} _snake_case = [] for ex_index, example in enumerate(lowercase ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' , lowercase , len(lowercase ) ) _snake_case = [] _snake_case = [] for word, label in zip(example.words , example.labels ): _snake_case = tokenizer.tokenize(lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowercase ) > 0: tokens.extend(lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _snake_case = tokenizer.num_special_tokens_to_add() if len(lowercase ) > max_seq_length - special_tokens_count: _snake_case = tokens[: (max_seq_length - special_tokens_count)] _snake_case = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _snake_case = [sequence_a_segment_id] * len(lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _snake_case = [cls_token] + tokens _snake_case = [pad_token_label_id] + label_ids _snake_case = [cls_token_segment_id] + segment_ids _snake_case = tokenizer.convert_tokens_to_ids(lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _snake_case = [1 if mask_padding_with_zero else 0] * len(lowercase ) # Zero-pad up to the sequence length. _snake_case = max_seq_length - len(lowercase ) if pad_on_left: _snake_case = ([pad_token] * padding_length) + input_ids _snake_case = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _snake_case = ([pad_token_segment_id] * padding_length) + segment_ids _snake_case = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(lowercase ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(lowercase ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(lowercase ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(lowercase ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _snake_case = None features.append( InputFeatures( input_ids=lowercase , attention_mask=lowercase , token_type_ids=lowercase , label_ids=lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[str] = 4_2 _UpperCAmelCase : Optional[Any] = nn.CrossEntropyLoss().ignore_index def __init__( self : List[Any] , lowercase : TokenClassificationTask , lowercase : str , lowercase : PreTrainedTokenizer , lowercase : List[str] , lowercase : str , lowercase : Optional[int] = None , lowercase : Optional[Any]=False , lowercase : Split = Split.train , ): '''simple docstring''' _snake_case = os.path.join( lowercase , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _snake_case = cached_features_file + """.lock""" with FileLock(lowercase ): if os.path.exists(lowercase ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) _snake_case = torch.load(lowercase ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) _snake_case = token_classification_task.read_examples_from_file(lowercase , lowercase ) # TODO clean up all this to leverage built-in features of tokenizers _snake_case = token_classification_task.convert_examples_to_features( lowercase , lowercase , lowercase , lowercase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , lowercase ) def __len__( self : Union[str, Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Optional[Any] , lowercase : str ): '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : List[Any] = 4_2 _UpperCAmelCase : List[Any] = -1_0_0 def __init__( self : str , lowercase : TokenClassificationTask , lowercase : str , lowercase : PreTrainedTokenizer , lowercase : List[str] , lowercase : str , lowercase : Optional[int] = None , lowercase : Optional[Any]=False , lowercase : Split = Split.train , ): '''simple docstring''' _snake_case = token_classification_task.read_examples_from_file(lowercase , lowercase ) # TODO clean up all this to leverage built-in features of tokenizers _snake_case = token_classification_task.convert_examples_to_features( lowercase , lowercase , lowercase , lowercase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _snake_case = tf.data.Dataset.from_generator( lowercase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _snake_case = tf.data.Dataset.from_generator( lowercase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , lowercase : Tuple ): '''simple docstring''' return self.features[i]
686
"""simple docstring""" from __future__ import annotations import pandas as pd def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> list[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [0] * no_of_processes __UpperCAmelCase : List[str] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_UpperCamelCase ): __UpperCAmelCase : Union[str, Any] = burst_time[i] __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : str = 0 __UpperCAmelCase : Dict = 9_9_9_9_9_9_9_9_9 __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[str] = False # Process until all processes are completed while complete != no_of_processes: for j in range(_UpperCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __UpperCAmelCase : List[Any] = remaining_time[j] __UpperCAmelCase : Tuple = j __UpperCAmelCase : Any = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __UpperCAmelCase : Dict = remaining_time[short] if minm == 0: __UpperCAmelCase : List[str] = 9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 __UpperCAmelCase : Dict = False # Find finish time of current process __UpperCAmelCase : int = increment_time + 1 # Calculate waiting time __UpperCAmelCase : List[Any] = finish_time - arrival_time[short] __UpperCAmelCase : Tuple = finar - burst_time[short] if waiting_time[short] < 0: __UpperCAmelCase : List[Any] = 0 # Increment time increment_time += 1 return waiting_time def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int , _UpperCamelCase : list[int] ) -> list[int]: '''simple docstring''' __UpperCAmelCase : List[str] = [0] * no_of_processes for i in range(_UpperCamelCase ): __UpperCAmelCase : List[Any] = burst_time[i] + waiting_time[i] return turn_around_time def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> None: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Tuple = 0 for i in range(_UpperCamelCase ): __UpperCAmelCase : Optional[Any] = total_waiting_time + waiting_time[i] __UpperCAmelCase : Dict = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') UpperCAmelCase : Optional[Any] = int(input()) UpperCAmelCase : Any = [0] * no_of_processes UpperCAmelCase : Tuple = [0] * no_of_processes UpperCAmelCase : Tuple = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) UpperCAmelCase , UpperCAmelCase : Tuple = map(int, input().split()) UpperCAmelCase : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase : Dict = burst_time UpperCAmelCase : Any = no_of_processes UpperCAmelCase : int = waiting_time UpperCAmelCase : Union[str, Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase : List[Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
139
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __UpperCamelCase : Dict = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __UpperCamelCase : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __UpperCamelCase : List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def _snake_case ( self : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str=None , _lowerCamelCase : Tuple=True , _lowerCamelCase : int=False ): '''simple docstring''' if rouge_types is None: __lowerCamelCase : int = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] __lowerCamelCase : Tuple = rouge_scorer.RougeScorer(rouge_types=_lowerCamelCase , use_stemmer=_lowerCamelCase ) if use_aggregator: __lowerCamelCase : List[Any] = scoring.BootstrapAggregator() else: __lowerCamelCase : Optional[Any] = [] for ref, pred in zip(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : Optional[int] = scorer.score(_lowerCamelCase , _lowerCamelCase ) if use_aggregator: aggregator.add_scores(_lowerCamelCase ) else: scores.append(_lowerCamelCase ) if use_aggregator: __lowerCamelCase : str = aggregator.aggregate() else: __lowerCamelCase : Tuple = {} for key in scores[0]: __lowerCamelCase : Union[str, Any] = [score[key] for score in scores] return result
458
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : str , _lowerCamelCase : str = "▁" , _lowerCamelCase : bool = True , _lowerCamelCase : Union[str, AddedToken] = "<unk>" , _lowerCamelCase : Union[str, AddedToken] = "</s>" , _lowerCamelCase : Union[str, AddedToken] = "<pad>" , ): '''simple docstring''' __lowerCamelCase : Tuple = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } __lowerCamelCase : Optional[Any] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowerCamelCase : Tuple = token_dict["""token"""] __lowerCamelCase : Optional[int] = Tokenizer(Unigram() ) __lowerCamelCase : str = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) __lowerCamelCase : int = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase , add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowerCamelCase : Tuple = decoders.Metaspace(replacement=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Tuple = TemplateProcessing( single=F"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) __lowerCamelCase : Tuple = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self : Dict , _lowerCamelCase : Union[str, List[str]] , _lowerCamelCase : int = 8_0_0_0 , _lowerCamelCase : bool = True , ): '''simple docstring''' __lowerCamelCase : Optional[Any] = trainers.UnigramTrainer( vocab_size=_lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCamelCase , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : Optional[int] = [files] self._tokenizer.train(_lowerCamelCase , trainer=_lowerCamelCase ) self.add_unk_id() def _snake_case ( self : List[Any] , _lowerCamelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _lowerCamelCase : int = 8_0_0_0 , _lowerCamelCase : bool = True , ): '''simple docstring''' __lowerCamelCase : Any = trainers.UnigramTrainer( vocab_size=_lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCamelCase , ) self._tokenizer.train_from_iterator(_lowerCamelCase , trainer=_lowerCamelCase ) self.add_unk_id() def _snake_case ( self : List[str] ): '''simple docstring''' __lowerCamelCase : List[str] = json.loads(self._tokenizer.to_str() ) __lowerCamelCase : Optional[int] = self.special_tokens["""unk"""]["""id"""] __lowerCamelCase : List[str] = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
458
1