code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Dict = IFInpaintingSuperResolutionPipeline __lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __lowerCAmelCase : str = PipelineTesterMixin.required_optional_params - {"""latents"""} def __UpperCamelCase ( self ) -> Dict: return self._get_superresolution_dummy_components() def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=0 ) -> str: if str(lowerCamelCase_ ).startswith('mps' ): _a : List[str] = torch.manual_seed(lowerCamelCase_ ) else: _a : int = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _a : str = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _a : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _a : List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _a : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ) -> str: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCamelCase ( self ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCamelCase ( self ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
120
'''simple docstring''' import mpmath # for roots of unity import numpy as np class a : '''simple docstring''' def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None ) -> Tuple: # Input as list _a : Optional[int] = list(poly_a or [0] )[:] _a : List[str] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _a : str = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _a : Optional[int] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _a : str = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _a : Optional[int] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _a : Union[str, Any] = self.__multiply() def __UpperCamelCase ( self , lowerCamelCase_ ) -> Dict: _a : Dict = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCamelCase_ ) <= 1: return dft[0] # _a : List[str] = self.c_max_length // 2 while next_ncol > 0: _a : Tuple = [[] for i in range(lowerCamelCase_ )] _a : Tuple = self.root**next_ncol # First half of next step _a : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _a : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _a : Union[str, Any] = new_dft _a : List[Any] = next_ncol // 2 return dft[0] def __UpperCamelCase ( self ) -> List[Any]: _a : Tuple = self.__dft('A' ) _a : Union[str, Any] = self.__dft('B' ) _a : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _a : Optional[Any] = 2 while next_ncol <= self.c_max_length: _a : Optional[int] = [[] for i in range(lowerCamelCase_ )] _a : List[str] = self.root ** (next_ncol // 2) _a : int = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _a : Dict = new_inverse_c next_ncol *= 2 # Unpack _a : Union[str, Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> Dict: _a : Optional[int] = 'A = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _a : Dict = 'B = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _a : Tuple = 'A*B = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
120
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _lowerCamelCase ( __A : bool = True , *__A : List[Any] , **__A : Tuple ) -> Optional[int]: if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) _UpperCAmelCase : str = False if main_process_only: _UpperCAmelCase : Any = PartialState().local_process_index == 0 return _tqdm(*__A , **__A , disable=__A )
186
from __future__ import annotations def _lowerCamelCase ( __A : int ) -> list[int]: _UpperCAmelCase : List[str] = [True] * limit _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Dict = False _UpperCAmelCase : List[str] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): _UpperCAmelCase : List[str] = i * 2 while index < limit: _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : int = index + i _UpperCAmelCase : Optional[int] = [2] for i in range(3 , __A , 2 ): if is_prime[i]: primes.append(__A ) return primes def _lowerCamelCase ( __A : int = 1_000_000 ) -> int: _UpperCAmelCase : Any = prime_sieve(__A ) _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Tuple = 0 for i in range(len(__A ) ): for j in range(i + length , len(__A ) ): _UpperCAmelCase : List[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _UpperCAmelCase : List[str] = j - i _UpperCAmelCase : Optional[Any] = sol return largest if __name__ == "__main__": print(F'{solution() = }')
186
1
from collections import Counter from timeit import timeit def __A ( _lowercase = "" , ): '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def __A ( _lowercase = "" ): '''simple docstring''' if len(_lowercase ) == 0: return True _A = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _A = {} for character in lower_case_input_str: _A = character_freq_dict.get(_lowercase , 0 ) + 1 _A = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __A ( _lowercase = "" ): '''simple docstring''' print('''\nFor string = ''' , _lowercase , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(_lowercase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(_lowercase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": __A = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) __A = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
484
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __A ( _lowercase ): '''simple docstring''' return (data["data"], data["target"]) def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def __A ( ): '''simple docstring''' _A = load_iris() _A ,_A = data_handling(_lowercase ) _A ,_A ,_A ,_A = train_test_split( _lowercase , _lowercase , test_size=0.25 ) _A = iris['''target_names'''] # Create an XGBoost Classifier from the training data _A = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
484
1
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = np.inf def set_batch_size(__SCREAMING_SNAKE_CASE ) -> None: nonlocal batch_size if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = min(__SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = min(__SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": _SCREAMING_SNAKE_CASE : Tuple = min(__SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _snake_case ( __snake_case ): """simple docstring""" def __init__( self : int , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[int] = None , **_A : Any , ): """simple docstring""" super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) _SCREAMING_SNAKE_CASE : Tuple = path_or_paths if isinstance(_A , _A) else {self.split: path_or_paths} _SCREAMING_SNAKE_CASE : List[Any] = _PACKAGED_DATASETS_MODULES["""parquet"""][1] _SCREAMING_SNAKE_CASE : Dict = Parquet( cache_dir=_A , data_files=_A , features=_A , hash=_A , **_A , ) def _lowerCAmelCase ( self : Any): """simple docstring""" if self.streaming: _SCREAMING_SNAKE_CASE : List[str] = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _SCREAMING_SNAKE_CASE : str = None _SCREAMING_SNAKE_CASE : Any = None _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : Any = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) _SCREAMING_SNAKE_CASE : Dict = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory) return dataset class _snake_case : """simple docstring""" def __init__( self : Optional[int] , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , **_A : List[Any] , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = dataset _SCREAMING_SNAKE_CASE : str = path_or_buf _SCREAMING_SNAKE_CASE : Optional[Any] = batch_size or get_writer_batch_size(dataset.features) _SCREAMING_SNAKE_CASE : Optional[int] = parquet_writer_kwargs def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with open(self.path_or_buf , """wb+""") as buffer: _SCREAMING_SNAKE_CASE : Optional[Any] = self._write(file_obj=_A , batch_size=_A , **self.parquet_writer_kwargs) else: _SCREAMING_SNAKE_CASE : Optional[int] = self._write(file_obj=self.path_or_buf , batch_size=_A , **self.parquet_writer_kwargs) return written def _lowerCAmelCase ( self : Optional[Any] , _A : BinaryIO , _A : int , **_A : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = 0 _SCREAMING_SNAKE_CASE : List[str] = parquet_writer_kwargs.pop("""path_or_buf""" , _A) _SCREAMING_SNAKE_CASE : Any = self.dataset.features.arrow_schema _SCREAMING_SNAKE_CASE : List[str] = pq.ParquetWriter(_A , schema=_A , **_A) for offset in logging.tqdm( range(0 , len(self.dataset) , _A) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): _SCREAMING_SNAKE_CASE : Union[str, Any] = query_table( table=self.dataset._data , key=slice(_A , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_A) written += batch.nbytes writer.close() return written
635
"""simple docstring""" from __future__ import annotations def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
635
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
79
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase ( self )-> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self )-> Union[str, Any]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_euler' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self )-> Optional[Any]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_euler' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def UpperCamelCase ( self )-> Optional[int]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe( [prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_UpperCamelCase , ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
292
0
"""simple docstring""" from math import sqrt def lowercase__(A = 1_000_000 ) ->int: """simple docstring""" lowercase__ : int= 0 lowercase__ : int= 0 lowercase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
85
"""simple docstring""" from ....utils import logging a : List[str] = logging.get_logger(__name__) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=2048 ): '''simple docstring''' lowercase__ : Dict= config.__dict__ lowercase__ : str= modal_hidden_size if num_labels: lowercase__ : List[str]= num_labels
85
1
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : Any = """efficientnet""" def __init__( self : Optional[Any] , a_ : int = 3 , a_ : int = 6_00 , a_ : float = 2.0 , a_ : float = 3.1 , a_ : int = 8 , a_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , a_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , a_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , a_ : List[int] = [] , a_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , a_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , a_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , a_ : float = 0.25 , a_ : str = "swish" , a_ : int = 25_60 , a_ : str = "mean" , a_ : float = 0.02 , a_ : float = 0.001 , a_ : float = 0.99 , a_ : float = 0.5 , a_ : float = 0.2 , **a_ : List[Any] , )-> List[Any]: """simple docstring""" super().__init__(**a_ ) UpperCAmelCase_ : Tuple = num_channels UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : Optional[Any] = width_coefficient UpperCAmelCase_ : int = depth_coefficient UpperCAmelCase_ : int = depth_divisor UpperCAmelCase_ : Optional[int] = kernel_sizes UpperCAmelCase_ : Any = in_channels UpperCAmelCase_ : Any = out_channels UpperCAmelCase_ : Optional[Any] = depthwise_padding UpperCAmelCase_ : Tuple = strides UpperCAmelCase_ : List[str] = num_block_repeats UpperCAmelCase_ : Optional[int] = expand_ratios UpperCAmelCase_ : Any = squeeze_expansion_ratio UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : List[Any] = hidden_dim UpperCAmelCase_ : Union[str, Any] = pooling_type UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Union[str, Any] = batch_norm_eps UpperCAmelCase_ : Optional[Any] = batch_norm_momentum UpperCAmelCase_ : Union[str, Any] = dropout_rate UpperCAmelCase_ : int = drop_connect_rate UpperCAmelCase_ : List[str] = sum(a_ ) * 4 class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : Optional[int] = version.parse("""1.11""" ) @property def a ( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a ( self : List[Any] )-> float: """simple docstring""" return 1E-5
470
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
470
1
"""simple docstring""" import enum import shutil import sys __lowerCamelCase , __lowerCamelCase = shutil.get_terminal_size() __lowerCamelCase = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class _lowercase ( enum.Enum ): _lowerCamelCase = 0 _lowerCamelCase = 1 def lowercase ( __UpperCamelCase , __UpperCamelCase="" ) -> List[str]: sys.stdout.write(str(__UpperCamelCase ) + end ) sys.stdout.flush() def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="" ) -> Union[str, Any]: forceWrite(f'''\u001b[{color}m{content}\u001b[0m''' , __UpperCamelCase ) def lowercase ( ) -> Any: forceWrite('''\r''' ) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> str: forceWrite(f'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def lowercase ( ) -> Optional[int]: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def lowercase ( ) -> Tuple: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
712
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = (EulerDiscreteScheduler,) _lowerCamelCase = 10 def lowerCAmelCase__ ( self , **UpperCamelCase_ ): __magic_name__ = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**UpperCamelCase_ ) return config def lowerCAmelCase__ ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) ) __magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3 def lowerCAmelCase__ ( self ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) __magic_name__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) ) __magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowerCAmelCase__ ( self ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __magic_name__ = sample.to(UpperCamelCase_ ) for t in scheduler.timesteps: __magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) ) __magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3 def lowerCAmelCase__ ( self ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**UpperCamelCase_ , use_karras_sigmas=UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __magic_name__ = sample.to(UpperCamelCase_ ) for t in scheduler.timesteps: __magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) ) __magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1E-3
190
0
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping lowerCAmelCase__ : int = tuple[int, int] class a : """simple docstring""" def __init__( self : Any , snake_case_ : set[int] , snake_case_ : Mapping[EdgeT, int] ): '''simple docstring''' snake_case__ : set[int] = vertices snake_case__ : dict[EdgeT, int] = { (min(snake_case_ ), max(snake_case_ )): weight for edge, weight in edges.items() } def __magic_name__ ( self : Optional[int] , snake_case_ : EdgeT , snake_case_ : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) snake_case__ : Optional[int] = weight def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : Graph = Graph({min(self.vertices )} , {} ) snake_case__ : EdgeT snake_case__ : int snake_case__ : EdgeT snake_case__ : int while len(subgraph.vertices ) < len(self.vertices ): snake_case__ : List[str] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: snake_case__ : List[str] = edge snake_case__ : Tuple = weight subgraph.add_edge(snake_case_ , snake_case_ ) return subgraph def _a ( __lowerCAmelCase : str = "p107_network.txt" ): """simple docstring""" snake_case__ : str = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) snake_case__ : str = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : dict[EdgeT, int] = {} snake_case__ : list[str] snake_case__ : int snake_case__ : int with open(__lowerCAmelCase ) as f: snake_case__ : Optional[int] = f.read().strip().split('''\n''' ) snake_case__ : str = [line.split(''',''' ) for line in data] for edgea in range(1 , len(__lowerCAmelCase ) ): for edgea in range(__lowerCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": snake_case__ : Any = int(adjaceny_matrix[edgea][edgea] ) snake_case__ : Graph = Graph(set(range(len(__lowerCAmelCase ) ) ) , __lowerCAmelCase ) snake_case__ : Graph = graph.prims_algorithm() snake_case__ : int = sum(graph.edges.values() ) snake_case__ : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
347
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : """simple docstring""" def __init__( self : Optional[Any] , snake_case_ : List[str]=2 , snake_case_ : Optional[int]=3 , snake_case_ : Union[str, Any]=6_4 , snake_case_ : Optional[Any]=None ): '''simple docstring''' snake_case__ : List[str] = np.random.default_rng(snake_case_ ) snake_case__ : int = length snake_case__ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) snake_case__ : Optional[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ): '''simple docstring''' return self.length def __getitem__( self : List[str] , snake_case_ : int ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): """simple docstring""" def __init__( self : int , snake_case_ : str=0 , snake_case_ : Optional[Any]=0 , snake_case_ : Tuple=False ): '''simple docstring''' super().__init__() snake_case__ : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : int = True def __magic_name__ ( self : int , snake_case_ : str=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : str = False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): """simple docstring""" def __init__( self : List[str] , snake_case_ : Tuple=0 , snake_case_ : int=0 , snake_case_ : int=False ): '''simple docstring''' super().__init__() snake_case__ : Tuple = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : int = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : Union[str, Any] = True def __magic_name__ ( self : Union[str, Any] , snake_case_ : List[str]=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : List[Any] = False return x * self.a + self.b def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : Optional[int] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} snake_case__ : List[Any] = load_dataset('''csv''' , data_files=__lowerCAmelCase ) snake_case__ : Union[str, Any] = datasets['''train'''].unique('''label''' ) snake_case__ : Optional[Any] = {v: i for i, v in enumerate(__lowerCAmelCase )} def tokenize_function(__lowerCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) if "label" in examples: snake_case__ : List[Any] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : List[Any] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__lowerCAmelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. snake_case__ : str = DataLoader(tokenized_datasets['''train'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 ) snake_case__ : List[Any] = DataLoader(tokenized_datasets['''validation'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
347
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __UpperCAmelCase = get_logger(__name__) class lowercase__: '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = None) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] =( os.path.join(__SCREAMING_SNAKE_CASE , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase__ : List[str] =Extractor def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase__ : str =os.path.abspath(__SCREAMING_SNAKE_CASE) return os.path.join(self.extract_dir , hash_url_to_filename(__SCREAMING_SNAKE_CASE)) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(__SCREAMING_SNAKE_CASE) and not (os.path.isdir(__SCREAMING_SNAKE_CASE) and os.listdir(__SCREAMING_SNAKE_CASE)) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False) -> str: """simple docstring""" UpperCamelCase__ : Optional[int] =self.extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE) if not extractor_format: return input_path UpperCamelCase__ : Optional[Any] =self._get_output_path(__SCREAMING_SNAKE_CASE) if self._do_extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return output_path class lowercase__( snake_case__ ): '''simple docstring''' @classmethod @abstractmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" ... class lowercase__( snake_case__ , snake_case__ ): '''simple docstring''' snake_case__ = [] @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" with open(__SCREAMING_SNAKE_CASE , "rb") as f: return f.read(__SCREAMING_SNAKE_CASE) @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = b"") -> bool: """simple docstring""" if not magic_number: UpperCamelCase__ : Optional[int] =max(len(__SCREAMING_SNAKE_CASE) for cls_magic_number in cls.magic_numbers) try: UpperCamelCase__ : Tuple =cls.read_magic_number(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) except OSError: return False return any(magic_number.startswith(__SCREAMING_SNAKE_CASE) for cls_magic_number in cls.magic_numbers) class lowercase__( snake_case__ ): '''simple docstring''' @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> bool: """simple docstring""" return tarfile.is_tarfile(__SCREAMING_SNAKE_CASE) @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> str: """simple docstring""" def resolved(__SCREAMING_SNAKE_CASE) -> str: return os.path.realpath(os.path.abspath(__SCREAMING_SNAKE_CASE)) def badpath(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)).startswith(__SCREAMING_SNAKE_CASE) def badlink(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase__ : Dict =resolved(os.path.join(__SCREAMING_SNAKE_CASE , os.path.dirname(info.name))) return badpath(info.linkname , base=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =resolved(__SCREAMING_SNAKE_CASE) for finfo in members: if badpath(finfo.name , __SCREAMING_SNAKE_CASE): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =tarfile.open(__SCREAMING_SNAKE_CASE) tar_file.extractall(__SCREAMING_SNAKE_CASE , members=TarExtractor.safemembers(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) tar_file.close() class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = [b'''\x1F\x8B'''] @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" with gzip.open(__SCREAMING_SNAKE_CASE , "rb") as gzip_file: with open(__SCREAMING_SNAKE_CASE , "wb") as extracted_file: shutil.copyfileobj(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = [ b'''PK\x03\x04''', b'''PK\x05\x06''', # empty archive b'''PK\x07\x08''', # spanned archive ] @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = b"") -> bool: """simple docstring""" if super().is_extractable(__SCREAMING_SNAKE_CASE , magic_number=__SCREAMING_SNAKE_CASE): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__SCREAMING_SNAKE_CASE , "rb") as fp: UpperCamelCase__ : List[Any] =_EndRecData(__SCREAMING_SNAKE_CASE) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase__ : Tuple =fp.read(__SCREAMING_SNAKE_CASE) # CD is where we expect it to be if len(__SCREAMING_SNAKE_CASE) == sizeCentralDir: UpperCamelCase__ : List[str] =struct.unpack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) with zipfile.ZipFile(__SCREAMING_SNAKE_CASE , "r") as zip_file: zip_file.extractall(__SCREAMING_SNAKE_CASE) zip_file.close() class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = [b'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" with lzma.open(__SCREAMING_SNAKE_CASE) as compressed_file: with open(__SCREAMING_SNAKE_CASE , "wb") as extracted_file: shutil.copyfileobj(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = [b'''Rar!\x1a\x07\x00''', b'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile") import rarfile os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =rarfile.RarFile(__SCREAMING_SNAKE_CASE) rf.extractall(__SCREAMING_SNAKE_CASE) rf.close() class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = [b'''\x28\xb5\x2F\xFD'''] @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard") import zstandard as zstd UpperCamelCase__ : Any =zstd.ZstdDecompressor() with open(__SCREAMING_SNAKE_CASE , "rb") as ifh, open(__SCREAMING_SNAKE_CASE , "wb") as ofh: dctx.copy_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = [b'''\x42\x5A\x68'''] @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" with bza.open(__SCREAMING_SNAKE_CASE , "rb") as compressed_file: with open(__SCREAMING_SNAKE_CASE , "wb") as extracted_file: shutil.copyfileobj(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = [b'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr") import pyazr os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) with pyazr.SevenZipFile(__SCREAMING_SNAKE_CASE , "r") as archive: archive.extractall(__SCREAMING_SNAKE_CASE) class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = [b'''\x04\x22\x4D\x18'''] @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4") import lza.frame with lza.frame.open(__SCREAMING_SNAKE_CASE , "rb") as compressed_file: with open(__SCREAMING_SNAKE_CASE , "wb") as extracted_file: shutil.copyfileobj(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) class lowercase__: '''simple docstring''' snake_case__ = { '''tar''': TarExtractor, '''gzip''': GzipExtractor, '''zip''': ZipExtractor, '''xz''': XzExtractor, '''rar''': RarExtractor, '''zstd''': ZstdExtractor, '''bz2''': BzipaExtractor, '''7z''': SevenZipExtractor, # <Added version="2.4.0"/> '''lz4''': LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCAmelCase ( cls) -> str: """simple docstring""" return max( len(__SCREAMING_SNAKE_CASE) for extractor in cls.extractors.values() if issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for extractor_magic_number in extractor.magic_numbers) @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(__SCREAMING_SNAKE_CASE , magic_number_length=__SCREAMING_SNAKE_CASE) except OSError: return b"" @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False) -> bool: """simple docstring""" warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Optional[Any] =cls.infer_extractor_format(__SCREAMING_SNAKE_CASE) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE) -> str: # <Added version="2.4.0"/> """simple docstring""" UpperCamelCase__ : Any =cls._get_magic_number_max_length() UpperCamelCase__ : Optional[Any] =cls._read_magic_number(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__SCREAMING_SNAKE_CASE , magic_number=__SCREAMING_SNAKE_CASE): return extractor_format @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(__SCREAMING_SNAKE_CASE) , exist_ok=__SCREAMING_SNAKE_CASE) # Prevent parallel extractions UpperCamelCase__ : Optional[Any] =str(Path(__SCREAMING_SNAKE_CASE).with_suffix(".lock")) with FileLock(__SCREAMING_SNAKE_CASE): shutil.rmtree(__SCREAMING_SNAKE_CASE , ignore_errors=__SCREAMING_SNAKE_CASE) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : List[Any] =extractor if extractor != "deprecated" else extractor_format else: UpperCamelCase__ : Tuple =cls.extractors[extractor_format] return extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=__SCREAMING_SNAKE_CASE , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__SCREAMING_SNAKE_CASE): return extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
582
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase = 'scheduler_config.json' class _A ( UpperCAmelCase_ ): lowercase_ : Tuple = 1 lowercase_ : Optional[Any] = 2 lowercase_ : Dict = 3 lowercase_ : List[str] = 4 lowercase_ : List[str] = 5 @dataclass class _A ( UpperCAmelCase_ ): lowercase_ : jnp.ndarray class _A : lowercase_ : Any = SCHEDULER_CONFIG_NAME lowercase_ : str = ['''dtype'''] lowercase_ : Any = [] lowercase_ : Dict = True @classmethod def a ( cls : Union[str, Any] , lowerCamelCase__ : Dict[str, Any] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[int]=False , **lowerCamelCase__ : Dict , ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Any = cls.load_config( pretrained_model_name_or_path=lowerCamelCase__ , subfolder=lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase , __UpperCamelCase : Dict = cls.from_config(lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , **lowerCamelCase__ ) if hasattr(lowerCamelCase__ , """create_state""" ) and getattr(lowerCamelCase__ , """has_state""" , lowerCamelCase__ ): __UpperCamelCase : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def a ( self : str , lowerCamelCase__ : Union[str, os.PathLike] , lowerCamelCase__ : bool = False , **lowerCamelCase__ : List[str] ): """simple docstring""" self.save_config(save_directory=lowerCamelCase__ , push_to_hub=lowerCamelCase__ , **lowerCamelCase__ ) @property def a ( self : Any ): """simple docstring""" return self._get_compatibles() @classmethod def a ( cls : str ): """simple docstring""" __UpperCamelCase : Tuple = list(set([cls.__name__] + cls._compatibles ) ) __UpperCamelCase : Union[str, Any] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCamelCase : str = [ getattr(lowerCamelCase__ , lowerCamelCase__ ) for c in compatible_classes_str if hasattr(lowerCamelCase__ , lowerCamelCase__ ) ] return compatible_classes def __lowerCamelCase ( __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : Tuple[int] ) -> jnp.ndarray: assert len(__lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCAmelCase ) - x.ndim) ) , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=0.999 , __lowerCAmelCase : Optional[int]=jnp.floataa ) -> jnp.ndarray: def alpha_bar(__lowerCAmelCase : int ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 __UpperCamelCase : int = [] for i in range(__lowerCAmelCase ): __UpperCamelCase : Any = i / num_diffusion_timesteps __UpperCamelCase : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCAmelCase ) / alpha_bar(__lowerCAmelCase ) , __lowerCAmelCase ) ) return jnp.array(__lowerCAmelCase , dtype=__lowerCAmelCase ) @flax.struct.dataclass class _A : lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray @classmethod def a ( cls : Optional[int] , lowerCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Optional[int] = scheduler.config if config.trained_betas is not None: __UpperCamelCase : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __UpperCamelCase : Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase : Optional[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase : Optional[int] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __UpperCamelCase : Any = 1.0 - betas __UpperCamelCase : Any = jnp.cumprod(lowerCamelCase__ , axis=0 ) return cls( alphas=lowerCamelCase__ , betas=lowerCamelCase__ , alphas_cumprod=lowerCamelCase__ , ) def __lowerCamelCase ( __lowerCAmelCase : CommonSchedulerState , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ) -> int: __UpperCamelCase : Union[str, Any] = state.alphas_cumprod __UpperCamelCase : List[str] = alphas_cumprod[timesteps] ** 0.5 __UpperCamelCase : Union[str, Any] = sqrt_alpha_prod.flatten() __UpperCamelCase : Any = broadcast_to_shape_from_left(__lowerCAmelCase , original_samples.shape ) __UpperCamelCase : str = (1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCamelCase : int = sqrt_one_minus_alpha_prod.flatten() __UpperCamelCase : Union[str, Any] = broadcast_to_shape_from_left(__lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCamelCase ( __lowerCAmelCase : CommonSchedulerState , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ) -> int: __UpperCamelCase , __UpperCamelCase : Dict = get_sqrt_alpha_prod(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCamelCase : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCamelCase ( __lowerCAmelCase : CommonSchedulerState , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ) -> Any: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = get_sqrt_alpha_prod(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCamelCase : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
269
def __lowerCamelCase ( __lowerCAmelCase : str ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __UpperCamelCase : List[str] = sorted(string.lower() ) return len(__lowerCAmelCase ) == len(set(__lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase = input('Enter a string ').strip() UpperCamelCase = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
269
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Any = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = '''table-transformer''' _SCREAMING_SNAKE_CASE = ['''past_key_values'''] _SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[str] , UpperCamelCase__ : Any=True , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=3 , UpperCamelCase__ : List[Any]=1_0_0 , UpperCamelCase__ : Optional[Any]=6 , UpperCamelCase__ : str=2_0_4_8 , UpperCamelCase__ : Optional[int]=8 , UpperCamelCase__ : Optional[Any]=6 , UpperCamelCase__ : str=2_0_4_8 , UpperCamelCase__ : Tuple=8 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict="relu" , UpperCamelCase__ : int=2_5_6 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[Any]=0.0_2 , UpperCamelCase__ : int=1.0 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Optional[int]="sine" , UpperCamelCase__ : Optional[int]="resnet50" , UpperCamelCase__ : int=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Union[str, Any]=1 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Any=5 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Any=0.1 , **UpperCamelCase__ : List[str] , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCamelCase = CONFIG_MAPPING["""resnet"""](out_features=['stage4'] ) elif isinstance(A__ , A__ ): UpperCamelCase = backbone_config.get('model_type' ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(A__ ) # set timm attributes to None UpperCamelCase = None, None, None UpperCamelCase = use_timm_backbone UpperCamelCase = backbone_config UpperCamelCase = num_channels UpperCamelCase = num_queries UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = encoder_layers UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type UpperCamelCase = backbone UpperCamelCase = use_pretrained_backbone UpperCamelCase = dilation # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=A__ , **A__ ) @property def A ( self : Optional[Any] ): """simple docstring""" return self.encoder_attention_heads @property def A ( self : Optional[Any] ): """simple docstring""" return self.d_model class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def A ( self : str ): """simple docstring""" return 1E-5 @property def A ( self : Dict ): """simple docstring""" return 1_2
720
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" while a != 0: UpperCamelCase , UpperCamelCase = b % a, a return b def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" if gcd(A__ , A__ ) != 1: UpperCamelCase = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(A__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = 1, 0, a UpperCamelCase , UpperCamelCase , UpperCamelCase = 0, 1, m while va != 0: UpperCamelCase = ua // va UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
324
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class a_ : def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=33 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_12 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def lowerCAmelCase__ ( self ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ = ids_tensor([self.batch_size] , self.num_choices ) a_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = EsmModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a_ = model(lowerCAmelCase__ ) a_ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = EsmForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = self.num_labels a_ = EsmForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): a_ = self.prepare_config_and_inputs() ( a_ ) = config_and_inputs a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Tuple = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = () lowerCamelCase__ : Optional[int] = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Any = True def lowerCAmelCase__ ( self ): a_ = EsmModelTester(self ) a_ = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def lowerCAmelCase__ ( self ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = EsmModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs()[0] a_ = EsmEmbeddings(config=lowerCAmelCase__ ) a_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) a_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) a_ = create_position_ids_from_input_ids(lowerCAmelCase__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs()[0] a_ = EsmEmbeddings(config=lowerCAmelCase__ ) a_ = torch.empty(2 , 4 , 30 ) a_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] a_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) a_ = embeddings.create_position_ids_from_inputs_embeds(lowerCAmelCase__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase__ ( self ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase__ ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase__ ( self ): pass @require_torch class a_ ( a__ ): @slow def lowerCAmelCase__ ( self ): with torch.no_grad(): a_ = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() a_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) a_ = model(lowerCAmelCase__ )[0] a_ = 33 a_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) a_ = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self ): with torch.no_grad(): a_ = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() a_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a_ = model(lowerCAmelCase__ )[0] # compare the actual values for a slice. a_ = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
263
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Dict: '''simple docstring''' a : Any = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a : str = True if "large" in model_name or "huge" in model_name else False a : Optional[Any] = True if "large" in model_name or "huge" in model_name else False a : Dict = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a : Union[str, Any] = [3, 3, 3, 3] a : List[str] = [5, 5, 5, 5] elif "fl4" in model_name: a : Any = [4, 4, 4, 4] a : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a : Dict = [3, 3, 3, 3] if "lrf" in model_name: a : Optional[int] = [3, 3, 3, 3] else: a : Tuple = [2, 2, 2, 2] if "tiny" in model_name: a : List[str] = 96 elif "small" in model_name: a : Union[str, Any] = 96 elif "base" in model_name: a : Dict = 128 elif "large" in model_name: a : Union[str, Any] = 192 elif "xlarge" in model_name: a : Tuple = 256 elif "huge" in model_name: a : List[str] = 352 # set label information a : List[Any] = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a : Optional[int] = "imagenet-22k-id2label.json" else: a : List[str] = "imagenet-1k-id2label.json" a : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) a : str = {int(_lowercase ): v for k, v in idalabel.items()} a : List[str] = {v: k for k, v in idalabel.items()} a : Dict = FocalNetConfig( embed_dim=_lowercase , depths=_lowercase , focal_levels=_lowercase , focal_windows=_lowercase , use_conv_embed=_lowercase , idalabel=_lowercase , labelaid=_lowercase , use_post_layernorm=_lowercase , use_layerscale=_lowercase , ) return config def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->List[Any]: '''simple docstring''' if "patch_embed.proj" in name: a : Any = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a : List[str] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a : List[Any] = "encoder." + name if "encoder.layers" in name: a : int = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a : Any = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a : str = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a : Union[str, Any] = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a : Dict = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a : Any = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a : str = "layernorm.weight" if name == "norm.bias": a : Optional[Any] = "layernorm.bias" if "head" in name: a : Tuple = name.replace("head" , "classifier" ) else: a : int = "focalnet." + name return name def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Tuple=False ) ->str: '''simple docstring''' a : List[Any] = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a : str = model_name_to_url[model_name] print("Checkpoint URL: " , _lowercase ) a : Any = torch.hub.load_state_dict_from_url(_lowercase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a : Any = state_dict.pop(_lowercase ) a : Any = val a : Any = get_focalnet_config(_lowercase ) a : Optional[int] = FocalNetForImageClassification(_lowercase ) model.eval() # load state dict model.load_state_dict(_lowercase ) # verify conversion a : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Optional[int] = BitImageProcessor( do_resize=_lowercase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase , crop_size=224 , do_normalize=_lowercase , image_mean=_lowercase , image_std=_lowercase , ) a : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) a : Dict = processor(images=_lowercase , return_tensors="pt" ) a : Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a : str = image_transforms(_lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _lowercase , atol=1E-4 ) a : Dict = model(**_lowercase ) a : List[str] = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a : Union[str, Any] = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a : Dict = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a : Dict = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a : Any = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a : str = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) a : Tuple = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
633
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version SCREAMING_SNAKE_CASE_:Tuple = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(_lowerCAmelCase ) , version.parse(_lowerCAmelCase ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase = None ) -> None: """simple docstring""" A : int = f'''\n{hint}''' if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , _lowerCAmelCase ): A , A , A : str = requirement, None, None else: A : List[Any] = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , _lowerCAmelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f''' got {requirement}''' ) A , A : Union[str, Any] = match[0] A : Optional[int] = want_full.split(""",""" ) # there could be multiple requirements A : Optional[int] = {} for w in want_range: A : Optional[int] = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , _lowerCAmelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f''' but got {requirement}''' ) A , A : Union[str, Any] = match[0] A : Any = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": A : Optional[int] = """.""".join([str(_lowerCAmelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return # check if any version is installed try: A : List[Any] = importlib.metadata.version(_lowerCAmelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase ) -> List[str]: """simple docstring""" A : str = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(_lowerCAmelCase , _lowerCAmelCase )
520
from __future__ import annotations import math def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> float: """simple docstring""" A : str = u for i in range(1 , _lowerCAmelCase ): A : str = temp * (u - i) return temp def __UpperCamelCase ( ) -> None: """simple docstring""" A : Dict = int(input("""enter the numbers of values: """ ) ) A : list[list[float]] = [] for _ in range(_lowerCAmelCase ): y.append([] ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): y[i].append(_lowerCAmelCase ) A : Optional[Any] = 0 print("""enter the values of parameters in a list: """ ) A : Tuple = list(map(_lowerCAmelCase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(_lowerCAmelCase ): A : Optional[int] = float(input() ) A : List[Any] = int(input("""enter the value to interpolate: """ ) ) A : Union[str, Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCAmelCase ): for j in range(n - i ): A : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1] A : Optional[Any] = y[0][0] for i in range(1 , _lowerCAmelCase ): summ += (ucal(_lowerCAmelCase , _lowerCAmelCase ) * y[0][i]) / math.factorial(_lowerCAmelCase ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
520
1
import os from pathlib import Path def UpperCamelCase__ ( ): from torch.utils.cpp_extension import load lowercase = Path(a__ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowercase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" ,"""ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" ,"""ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" ,a__ ,with_cuda=a__ ,extra_include_paths=[str(a__ )] ,extra_cflags=["""-DWITH_CUDA=1"""] ,extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] ,) import MultiScaleDeformableAttention as MSDA return MSDA
428
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase_ ( _lowercase): snake_case__ = '''encoder-decoder''' snake_case__ = True def __init__( self : str , **__UpperCamelCase : str ) -> Union[str, Any]: super().__init__(**__UpperCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _UpperCamelCase = kwargs.pop('''encoder''' ) _UpperCamelCase = encoder_config.pop('''model_type''' ) _UpperCamelCase = kwargs.pop('''decoder''' ) _UpperCamelCase = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = True @classmethod def _UpperCamelCase ( cls : List[str] , __UpperCamelCase : PretrainedConfig , __UpperCamelCase : PretrainedConfig , **__UpperCamelCase : Any ) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _UpperCamelCase = True _UpperCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Optional[Any]: _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.encoder.to_dict() _UpperCamelCase = self.decoder.to_dict() _UpperCamelCase = self.__class__.model_type return output
420
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCAmelCase__ : Any = [[1, 2, 4], [1, 2, 3, 4]] lowerCAmelCase__ : List[str] = DisjunctiveConstraint(UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids , UpperCamelCase ) ) with self.assertRaises(UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCAmelCase__ : List[str] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCamelCase ): DisjunctiveConstraint(UpperCamelCase ) # fails here def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = [[1, 2, 3], [1, 2, 4]] lowerCAmelCase__ : List[str] = DisjunctiveConstraint(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = dc.update(1 ) lowerCAmelCase__ : str = stepped is True and completed is False and reset is False self.assertTrue(UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = dc.update(2 ) lowerCAmelCase__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = dc.update(3 ) lowerCAmelCase__ : Optional[int] = stepped is True and completed is True and reset is False self.assertTrue(UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCAmelCase__ : Union[str, Any] = DisjunctiveConstraint(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
507
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Dict = FlaxAutoencoderKL @property def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = 4 lowerCAmelCase__ : Tuple = 3 lowerCAmelCase__ : Union[str, Any] = (32, 32) lowerCAmelCase__ : Dict = jax.random.PRNGKey(0 ) lowerCAmelCase__ : Optional[int] = jax.random.uniform(UpperCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } lowerCAmelCase__ : List[Any] = self.dummy_input return init_dict, inputs_dict
507
1
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ ) -> list[int]: # This function is recursive UpperCAmelCase__ : Union[str, Any] = len(UpperCamelCase_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCAmelCase__ : Optional[Any] = array[0] UpperCAmelCase__ : Any = False UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Dict = [] while not is_found and i < array_length: if array[i] < pivot: UpperCAmelCase__ : Any = True UpperCAmelCase__ : Optional[Any] = [element for element in array[i:] if element >= array[i]] UpperCAmelCase__ : Dict = longest_subsequence(UpperCamelCase_ ) if len(UpperCamelCase_ ) > len(UpperCamelCase_ ): UpperCAmelCase__ : List[Any] = temp_array else: i += 1 UpperCAmelCase__ : Optional[Any] = [element for element in array[1:] if element >= pivot] UpperCAmelCase__ : Union[str, Any] = [pivot, *longest_subsequence(UpperCamelCase_ )] if len(UpperCamelCase_ ) > len(UpperCamelCase_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
75
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =FunnelTokenizer a_ =FunnelTokenizerFast a_ =True a_ =True def UpperCAmelCase ( self )-> str: '''simple docstring''' super().setUp() lowerCAmelCase__ = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "UNwant\u00E9d,running" lowerCAmelCase__ = "unwanted, running" return input_text, output_text def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: lowerCAmelCase__ = tokenizer("UNwant\u00E9d,running" ) lowerCAmelCase__ = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCAmelCase__ = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
339
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class A_ : @staticmethod def lowerCAmelCase ( *SCREAMING_SNAKE_CASE__ : Tuple ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): pass def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a =( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class A_ ( unittest.TestCase ): _UpperCAmelCase : int = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Tuple): __lowerCamelCase : int = pipeline( 'document-question-answering' ,model=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,image_processor=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = INVOICE_URL __lowerCamelCase : Optional[int] = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ ,''))) __lowerCamelCase : Tuple = 'What is the placebo?' __lowerCamelCase : int = [ { 'image': load_image(SCREAMING_SNAKE_CASE__), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Tuple = dqa_pipeline(SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual( SCREAMING_SNAKE_CASE__ ,[ [ {'score': ANY(SCREAMING_SNAKE_CASE__), 'answer': ANY(SCREAMING_SNAKE_CASE__), 'start': ANY(SCREAMING_SNAKE_CASE__), 'end': ANY(SCREAMING_SNAKE_CASE__)}, {'score': ANY(SCREAMING_SNAKE_CASE__), 'answer': ANY(SCREAMING_SNAKE_CASE__), 'start': ANY(SCREAMING_SNAKE_CASE__), 'end': ANY(SCREAMING_SNAKE_CASE__)}, ] ] * 3 ,) @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Dict = pipeline('document-question-answering' ,model='hf-internal-testing/tiny-random-layoutlmv2') __lowerCamelCase : int = INVOICE_URL __lowerCamelCase : List[Any] = 'How many cats are there?' __lowerCamelCase : str = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] __lowerCamelCase : Union[str, Any] = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ ,question=SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = dqa_pipeline({'image': image, 'question': question} ,top_k=2) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,SCREAMING_SNAKE_CASE__) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowerCamelCase : Union[str, Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' __lowerCamelCase : Any = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ ,question=SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual(SCREAMING_SNAKE_CASE__ ,[]) # We can optionnally pass directly the words and bounding boxes __lowerCamelCase : Optional[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' __lowerCamelCase : List[str] = [] __lowerCamelCase : Tuple = [] __lowerCamelCase : List[str] = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ ,question=SCREAMING_SNAKE_CASE__ ,words=SCREAMING_SNAKE_CASE__ ,boxes=SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual(SCREAMING_SNAKE_CASE__ ,[]) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Any = pipeline( 'document-question-answering' ,model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' ,revision='9977165' ,) __lowerCamelCase : Any = INVOICE_URL __lowerCamelCase : List[Any] = 'What is the invoice number?' __lowerCamelCase : List[str] = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ ,question=SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ,) __lowerCamelCase : Optional[Any] = dqa_pipeline({'image': image, 'question': question} ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ,) __lowerCamelCase : List[str] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 ,) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : str = pipeline( 'document-question-answering' ,model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' ,revision='9977165' ,max_seq_len=5_0 ,) __lowerCamelCase : Any = INVOICE_URL __lowerCamelCase : List[Any] = 'What is the invoice number?' __lowerCamelCase : Dict = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ ,question=SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ,) __lowerCamelCase : Union[str, Any] = dqa_pipeline({'image': image, 'question': question} ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ,) __lowerCamelCase : List[str] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 ,) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' ,revision='3dc6de3' ,add_prefix_space=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = pipeline( 'document-question-answering' ,model='impira/layoutlm-document-qa' ,tokenizer=SCREAMING_SNAKE_CASE__ ,revision='3dc6de3' ,) __lowerCamelCase : Tuple = INVOICE_URL __lowerCamelCase : List[str] = 'What is the invoice number?' __lowerCamelCase : str = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ ,question=SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ,) __lowerCamelCase : List[str] = dqa_pipeline({'image': image, 'question': question} ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ,) __lowerCamelCase : List[Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 ,) __lowerCamelCase : Dict = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ ,''))) # This model should also work if `image` is set to None __lowerCamelCase : Any = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ,) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' ,revision='3dc6de3' ,add_prefix_space=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = pipeline( 'document-question-answering' ,model='impira/layoutlm-document-qa' ,tokenizer=SCREAMING_SNAKE_CASE__ ,revision='3dc6de3' ,max_seq_len=5_0 ,) __lowerCamelCase : Tuple = INVOICE_URL __lowerCamelCase : Union[str, Any] = 'What is the invoice number?' __lowerCamelCase : Optional[Any] = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ ,question=SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ,) __lowerCamelCase : List[str] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 ,) __lowerCamelCase : List[str] = list(zip(*apply_tesseract(load_image(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ ,''))) # This model should also work if `image` is set to None __lowerCamelCase : Optional[Any] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} ,top_k=2) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ,) @slow @require_torch def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[Any] = pipeline( 'document-question-answering' ,model='naver-clova-ix/donut-base-finetuned-docvqa' ,tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa') ,feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' ,) __lowerCamelCase : Tuple = INVOICE_URL __lowerCamelCase : Dict = 'What is the invoice number?' __lowerCamelCase : Dict = dqa_pipeline(image=SCREAMING_SNAKE_CASE__ ,question=SCREAMING_SNAKE_CASE__ ,top_k=2) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[{'answer': 'us-001'}]) @require_tf @unittest.skip('Document question answering not implemented in TF') def lowerCAmelCase ( self : Dict): pass
337
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[int] = '''biogpt''' def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict=4_2_3_8_4 ,SCREAMING_SNAKE_CASE__ : List[str]=1_0_2_4 ,SCREAMING_SNAKE_CASE__ : List[str]=2_4 ,SCREAMING_SNAKE_CASE__ : int=1_6 ,SCREAMING_SNAKE_CASE__ : Tuple=4_0_9_6 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : List[str]=0.1 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=1_0_2_4 ,SCREAMING_SNAKE_CASE__ : int=0.02 ,SCREAMING_SNAKE_CASE__ : Optional[int]=1E-12 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : Tuple=1 ,SCREAMING_SNAKE_CASE__ : int=0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=2 ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): __lowerCamelCase : List[Any] = vocab_size __lowerCamelCase : str = max_position_embeddings __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : Optional[int] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Dict = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : Dict = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : Dict = scale_embedding __lowerCamelCase : Optional[int] = use_cache __lowerCamelCase : Optional[int] = layerdrop __lowerCamelCase : Tuple = activation_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
337
1
import os import numpy import onnx def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = a.name _A = b.name _A = '' _A = '' _A = a == b _A = name_a _A = name_b return res def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _graph_replace_input_with(node_proto.attribute[1].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _A = list(model.graph.initializer ) _A = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _A = inits[i].name _A = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = os.path.dirname(_SCREAMING_SNAKE_CASE ) _A = os.path.basename(_SCREAMING_SNAKE_CASE ) _A = onnx.load(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _A = list(model.graph.initializer ) _A = set() _A = {} _A = [] _A = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if i in dup_set: continue for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_SCREAMING_SNAKE_CASE ) dup_set.add(_SCREAMING_SNAKE_CASE ) _A = inits[j].data_type _A = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , _SCREAMING_SNAKE_CASE ) total_reduced_size += mem_size _A = inits[i].name _A = inits[j].name if name_i in dup_map: dup_map[name_i].append(_SCREAMING_SNAKE_CASE ) else: _A = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_024 / 1_024 / 1_024 , 'GB' ) _A = sorted(_SCREAMING_SNAKE_CASE ) _remove_dup_initializers_from_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 'optimized_' + model_file_name _A = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) onnx.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return new_model
27
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmModel(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = TFEsmModel(config=snake_case_ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(snake_case_ ) _A = [input_ids, input_mask] _A = model(snake_case_ , encoder_hidden_states=snake_case_ ) # Also check the case where encoder outputs are not passed _A = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = TFEsmForMaskedLM(config=snake_case_ ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = TFEsmForTokenClassification(config=snake_case_ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(snake_case_ , snake_case_ ) for k, v in name.items(): assert isinstance(snake_case_ , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(snake_case_ )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , snake_case_ ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase__ ( self ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(snake_case_ )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
27
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): UpperCamelCase__ = ['''image_processor''', '''tokenizer'''] UpperCamelCase__ = '''BridgeTowerImageProcessor''' UpperCamelCase__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , a__ , a__): super().__init__(a__ , a__) def __call__( self , a__ , a__ = None , a__ = True , a__ = False , a__ = None , a__ = None , a__ = 0 , a__ = None , a__ = None , a__ = None , a__ = False , a__ = False , a__ = False , a__ = False , a__ = True , a__ = None , **a__ , ): A__ = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_token_type_ids=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) # add pixel_values + pixel_mask A__ = self.image_processor( a__ , return_tensors=a__ , do_normalize=a__ , do_center_crop=a__ , **a__) encoding.update(a__) return encoding def snake_case_ ( self , *a__ , **a__): return self.tokenizer.batch_decode(*a__ , **a__) def snake_case_ ( self , *a__ , **a__): return self.tokenizer.decode(*a__ , **a__) @property def snake_case_ ( self): A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
526
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
526
1
import os import string import sys __A : Optional[Any] = 1 << 8 __A : List[str] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } __A : Any = KEYMAP["up"] __A : Dict = KEYMAP["left"] if sys.platform == "win32": __A : Dict = [] __A : Any = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): __A : Optional[int] = ord(str(i)) def __lowerCAmelCase( ) -> Dict: """simple docstring""" if os.name == "nt": import msvcrt _A = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_SCREAMING_SNAKE_CASE ) == 0: # Read the keystroke _A = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _A = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _A = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_SCREAMING_SNAKE_CASE ) if ord(_SCREAMING_SNAKE_CASE ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _A = chr(KEYMAP['esc'] ) except KeyError: _A = cha[1] else: _A = ch.decode(_SCREAMING_SNAKE_CASE ) else: _A = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _A = sys.stdin.fileno() _A = termios.tcgetattr(_SCREAMING_SNAKE_CASE ) try: tty.setraw(_SCREAMING_SNAKE_CASE ) _A = sys.stdin.read(1 ) finally: termios.tcsetattr(_SCREAMING_SNAKE_CASE , termios.TCSADRAIN , _SCREAMING_SNAKE_CASE ) return ch def __lowerCAmelCase( ) -> Union[str, Any]: """simple docstring""" _A = get_raw_chars() if ord(_SCREAMING_SNAKE_CASE ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_SCREAMING_SNAKE_CASE ) == KEYMAP["esc"]: _A = get_raw_chars() if ord(_SCREAMING_SNAKE_CASE ) == KEYMAP["mod_int"]: _A = get_raw_chars() if ord(_SCREAMING_SNAKE_CASE ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_SCREAMING_SNAKE_CASE ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_SCREAMING_SNAKE_CASE ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
27
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
367
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : def __init__( self :Optional[int] , __snake_case :Optional[Any] , __snake_case :List[Any]=13 , __snake_case :str=7 , __snake_case :Tuple=True , __snake_case :Dict=True , __snake_case :Optional[Any]=True , __snake_case :str=True , __snake_case :int=99 , __snake_case :int=32 , __snake_case :Dict=2 , __snake_case :Optional[Any]=4 , __snake_case :Dict=37 , __snake_case :Optional[int]="gelu" , __snake_case :Tuple=0.1 , __snake_case :Tuple=0.1 , __snake_case :int=5_12 , __snake_case :int=16 , __snake_case :int=2 , __snake_case :Optional[int]=0.02 , __snake_case :Union[str, Any]=3 , __snake_case :Any=4 , __snake_case :str=None , __snake_case :str=0 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : int =batch_size __magic_name__ : Any =seq_length __magic_name__ : List[str] =is_training __magic_name__ : Any =use_input_mask __magic_name__ : Union[str, Any] =use_token_type_ids __magic_name__ : Union[str, Any] =use_labels __magic_name__ : Optional[Any] =vocab_size __magic_name__ : Optional[Any] =hidden_size __magic_name__ : Optional[Any] =num_hidden_layers __magic_name__ : Optional[Any] =num_attention_heads __magic_name__ : Tuple =intermediate_size __magic_name__ : Tuple =hidden_act __magic_name__ : Tuple =hidden_dropout_prob __magic_name__ : Any =attention_probs_dropout_prob __magic_name__ : Union[str, Any] =max_position_embeddings __magic_name__ : int =type_vocab_size __magic_name__ : Optional[Any] =type_sequence_label_size __magic_name__ : Union[str, Any] =initializer_range __magic_name__ : Optional[Any] =num_labels __magic_name__ : Any =num_choices __magic_name__ : Optional[Any] =scope __magic_name__ : str =projection_dim def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Union[str, Any] =None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __magic_name__ : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Optional[int] =None if self.use_token_type_ids: __magic_name__ : str =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] =None __magic_name__ : List[Any] =None __magic_name__ : List[str] =None if self.use_labels: __magic_name__ : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[int] =BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) __magic_name__ : Dict =DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self :List[Any] , __snake_case :List[Any] , __snake_case :List[str] , __snake_case :Any , __snake_case :Any , __snake_case :Optional[Any] , __snake_case :Optional[Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : List[Any] =TFDPRContextEncoder(config=__snake_case ) __magic_name__ : Union[str, Any] =model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __magic_name__ : str =model(__snake_case , token_type_ids=__snake_case ) __magic_name__ : Optional[int] =model(__snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A__ ( self :int , __snake_case :str , __snake_case :Tuple , __snake_case :Optional[Any] , __snake_case :Optional[Any] , __snake_case :Tuple , __snake_case :List[Any] , __snake_case :int ): '''simple docstring''' __magic_name__ : int =TFDPRQuestionEncoder(config=__snake_case ) __magic_name__ : Union[str, Any] =model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __magic_name__ : List[str] =model(__snake_case , token_type_ids=__snake_case ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A__ ( self :List[Any] , __snake_case :List[str] , __snake_case :Optional[int] , __snake_case :str , __snake_case :Any , __snake_case :str , __snake_case :Optional[Any] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =TFDPRReader(config=__snake_case ) __magic_name__ : List[str] =model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : str =self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Union[str, Any] =config_and_inputs __magic_name__ : List[str] ={"""input_ids""": input_ids} return config, inputs_dict @require_tf class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =TFDPRModelTester(self ) __magic_name__ : Optional[Any] =ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__snake_case ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__snake_case ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Dict =TFDPRContextEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Dict =TFDPRContextEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Union[str, Any] =TFDPRQuestionEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] =TFDPRReader.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf class __A ( unittest.TestCase ): @slow def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : int =TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) __magic_name__ : int =tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] __magic_name__ : Optional[Any] =model(__snake_case )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __magic_name__ : Tuple =tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
367
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowercase__ : __UpperCAmelCase = field( default='''cifar10''' ,metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''The column name of the images in the files.'''} ) __UpperCAmelCase = field(default=A_ ,metadata={'''help''': '''A folder containing the training data.'''} ) __UpperCAmelCase = field(default=A_ ,metadata={'''help''': '''A folder containing the validation data.'''} ) __UpperCAmelCase = field( default=0.1_5 ,metadata={'''help''': '''Percent to split off of train for validation.'''} ) __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } ,) __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } ,) def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : Any = {} if self.train_dir is not None: _lowerCamelCase : int = self.train_dir if self.validation_dir is not None: _lowerCamelCase : Tuple = self.validation_dir _lowerCamelCase : Optional[int] = data_files if data_files else None @dataclass class lowercase__ : __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } ,) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } ,) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) __UpperCAmelCase = field( default='''main''' ,metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} ,) __UpperCAmelCase = field(default=A_ ,metadata={'''help''': '''Name or path of preprocessor config.'''} ) __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } ,) __UpperCAmelCase = field( default=0.7_5 ,metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase__ ( A_ ): __UpperCAmelCase = field( default=1e-3 ,metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( __snake_case : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ): """simple docstring""" _lowerCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , __snake_case , __snake_case ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _lowerCamelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. _lowerCamelCase : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase : Tuple = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __snake_case ) and data_args.train_val_split > 0.0: _lowerCamelCase : List[str] = ds["""train"""].train_test_split(data_args.train_val_split ) _lowerCamelCase : Union[str, Any] = split["""train"""] _lowerCamelCase : Optional[int] = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : str = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase : Dict = ViTMAEConfig.from_pretrained(model_args.config_name , **__snake_case ) elif model_args.model_name_or_path: _lowerCamelCase : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: _lowerCamelCase : Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase : str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__snake_case ) elif model_args.model_name_or_path: _lowerCamelCase : Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowerCamelCase : List[Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) _lowerCamelCase : Union[str, Any] = ViTMAEForPreTraining(__snake_case ) if training_args.do_train: _lowerCamelCase : List[Any] = ds["""train"""].column_names else: _lowerCamelCase : Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: _lowerCamelCase : str = data_args.image_column_name elif "image" in column_names: _lowerCamelCase : Optional[Any] = """image""" elif "img" in column_names: _lowerCamelCase : List[Any] = """img""" else: _lowerCamelCase : str = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowerCamelCase : Dict = image_processor.size["""shortest_edge"""] else: _lowerCamelCase : List[Any] = (image_processor.size["""height"""], image_processor.size["""width"""]) _lowerCamelCase : Tuple = Compose( [ Lambda(lambda __snake_case : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(__snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__snake_case : Optional[Any] ): _lowerCamelCase : Dict = [transforms(__snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: _lowerCamelCase : int = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: _lowerCamelCase : Union[str, Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__snake_case ) # Compute absolute learning rate _lowerCamelCase : Optional[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowerCamelCase : Tuple = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _lowerCamelCase : Optional[Any] = Trainer( model=__snake_case , args=__snake_case , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: _lowerCamelCase : Any = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : Union[str, Any] = last_checkpoint _lowerCamelCase : Optional[Any] = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase : int = trainer.evaluate() trainer.log_metrics("""eval""" , __snake_case ) trainer.save_metrics("""eval""" , __snake_case ) # Write model card and (optionally) push to hub _lowerCamelCase : Optional[Any] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) def _snake_case ( __snake_case : Dict ): """simple docstring""" main() if __name__ == "__main__": main()
88
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
0
"""simple docstring""" from collections import defaultdict class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Optional[int] , __lowercase :str , __lowercase :Dict ): __lowerCamelCase : Dict =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __lowerCamelCase : List[Any] =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(__lowercase ) ) ] __lowerCamelCase : List[Any] =defaultdict(__lowercase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __lowerCamelCase : List[Any] =(1 << len(__lowercase )) - 1 def __lowercase ( self :Tuple , __lowercase :int , __lowercase :List[str] ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __lowerCamelCase : int =self.count_ways_until(__lowercase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __lowerCamelCase : Dict =total_ways_util return self.dp[mask][task_no] def __lowercase ( self :Optional[Any] , __lowercase :int ): # Store the list of persons for each task for i in range(len(__lowercase ) ): for j in task_performed[i]: self.task[j].append(__lowercase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _UpperCamelCase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _UpperCamelCase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
363
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :List[str] , __lowercase :Any , __lowercase :str=100 , __lowercase :Dict=13 , __lowercase :Tuple=30 , __lowercase :Tuple=2 , __lowercase :Dict=3 , __lowercase :Optional[Any]=True , __lowercase :int=True , __lowercase :List[Any]=32 , __lowercase :str=4 , __lowercase :int=4 , __lowercase :List[str]=37 , __lowercase :Dict="gelu" , __lowercase :List[Any]=0.1 , __lowercase :Tuple=0.1 , __lowercase :Union[str, Any]=10 , __lowercase :Any=0.02 , __lowercase :Tuple=3 , __lowercase :Any=None , __lowercase :Optional[int]=[0, 1, 2, 3] , ): __lowerCamelCase : int =parent __lowerCamelCase : Optional[Any] =100 __lowerCamelCase : Optional[int] =batch_size __lowerCamelCase : Tuple =image_size __lowerCamelCase : Tuple =patch_size __lowerCamelCase : Optional[Any] =num_channels __lowerCamelCase : Union[str, Any] =is_training __lowerCamelCase : int =use_labels __lowerCamelCase : Optional[int] =hidden_size __lowerCamelCase : Optional[Any] =num_hidden_layers __lowerCamelCase : List[Any] =num_attention_heads __lowerCamelCase : Any =intermediate_size __lowerCamelCase : int =hidden_act __lowerCamelCase : Tuple =hidden_dropout_prob __lowerCamelCase : List[Any] =attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] =type_sequence_label_size __lowerCamelCase : List[str] =initializer_range __lowerCamelCase : Tuple =scope __lowerCamelCase : Union[str, Any] =out_indices __lowerCamelCase : Tuple =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : Optional[int] =(image_size // patch_size) ** 2 __lowerCamelCase : Optional[Any] =num_patches + 1 def __lowercase ( self :int ): __lowerCamelCase : Dict =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Any =None __lowerCamelCase : str =None if self.use_labels: __lowerCamelCase : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase : List[str] =self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self :Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __lowercase ( self :Any , __lowercase :List[Any] , __lowercase :str , __lowercase :Union[str, Any] , __lowercase :Dict ): __lowerCamelCase : Tuple =BeitModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : int =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self :Tuple , __lowercase :Dict , __lowercase :Tuple , __lowercase :Optional[Any] , __lowercase :Any ): __lowerCamelCase : List[str] =BeitForMaskedImageModeling(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : int =model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowercase ( self :Dict , __lowercase :str , __lowercase :Tuple , __lowercase :int , __lowercase :str ): __lowerCamelCase : int =self.type_sequence_label_size __lowerCamelCase : Optional[Any] =BeitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : Optional[Any] =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : int =1 __lowerCamelCase : str =BeitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : Tuple =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : str =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self :List[Any] , __lowercase :Dict , __lowercase :List[str] , __lowercase :int , __lowercase :str ): __lowerCamelCase : Union[str, Any] =self.num_labels __lowerCamelCase : Any =BeitForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : Any =model(__lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __lowerCamelCase : Optional[Any] =model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Optional[int] =self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str =config_and_inputs __lowerCamelCase : List[Any] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __snake_case : List[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __snake_case : Any = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case : Union[str, Any] = False __snake_case : Optional[Any] = False __snake_case : str = False def __lowercase ( self :Tuple ): __lowerCamelCase : Optional[Any] =BeitModelTester(self ) __lowerCamelCase : Optional[int] =ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def __lowercase ( self :Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def __lowercase ( self :List[str] ): pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowercase ( self :Union[str, Any] ): pass def __lowercase ( self :Any ): __lowerCamelCase , __lowerCamelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[int] =model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Union[str, Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def __lowercase ( self :Any ): __lowerCamelCase , __lowerCamelCase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Tuple =model_class(__lowercase ) __lowerCamelCase : Tuple =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple =[*signature.parameters.keys()] __lowerCamelCase : List[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def __lowercase ( self :str ): __lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowercase ( self :str ): __lowerCamelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def __lowercase ( self :Dict ): __lowerCamelCase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def __lowercase ( self :Tuple ): __lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) def __lowercase ( self :str ): if not self.model_tester.is_training: return __lowerCamelCase , __lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[Any] =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__lowercase ), BeitForMaskedImageModeling]: continue __lowerCamelCase : Any =model_class(__lowercase ) model.to(__lowercase ) model.train() __lowerCamelCase : Dict =self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __lowerCamelCase : List[Any] =model(**__lowercase ).loss loss.backward() def __lowercase ( self :List[Any] ): __lowerCamelCase , __lowerCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCamelCase : str =False __lowerCamelCase : int =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__lowercase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __lowerCamelCase : Any =model_class(__lowercase ) model.gradient_checkpointing_enable() model.to(__lowercase ) model.train() __lowerCamelCase : Any =self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __lowerCamelCase : Union[str, Any] =model(**__lowercase ).loss loss.backward() def __lowercase ( self :Dict ): __lowerCamelCase , __lowerCamelCase : str =self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple =_config_zero_init(__lowercase ) for model_class in self.all_model_classes: __lowerCamelCase : List[Any] =model_class(config=__lowercase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowercase ( self :int ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : str =BeitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : Tuple =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self :Optional[Any] ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowercase ( self :Any ): __lowerCamelCase : Union[str, Any] =BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(__lowercase ) __lowerCamelCase : Union[str, Any] =self.default_image_processor __lowerCamelCase : List[str] =prepare_img() __lowerCamelCase : Tuple =image_processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # prepare bool_masked_pos __lowerCamelCase : Dict =torch.ones((1, 196) , dtype=torch.bool ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : List[Any] =model(pixel_values=__lowercase , bool_masked_pos=__lowercase ) __lowerCamelCase : List[Any] =outputs.logits # verify the logits __lowerCamelCase : str =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __lowercase ) __lowerCamelCase : Tuple =torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __lowercase , atol=1e-2 ) ) @slow def __lowercase ( self :Tuple ): __lowerCamelCase : Optional[int] =BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(__lowercase ) __lowerCamelCase : str =self.default_image_processor __lowerCamelCase : List[Any] =prepare_img() __lowerCamelCase : List[Any] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : int =model(**__lowercase ) __lowerCamelCase : List[Any] =outputs.logits # verify the logits __lowerCamelCase : Union[str, Any] =torch.Size((1, 1000) ) self.assertEqual(logits.shape , __lowercase ) __lowerCamelCase : Optional[Any] =torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , __lowercase , atol=1e-4 ) ) __lowerCamelCase : str =281 self.assertEqual(logits.argmax(-1 ).item() , __lowercase ) @slow def __lowercase ( self :int ): __lowerCamelCase : Optional[int] =BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( __lowercase ) __lowerCamelCase : str =self.default_image_processor __lowerCamelCase : str =prepare_img() __lowerCamelCase : int =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : str =model(**__lowercase ) __lowerCamelCase : int =outputs.logits # verify the logits __lowerCamelCase : Dict =torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __lowercase ) __lowerCamelCase : List[Any] =torch.tensor([1.6881, -0.2787, 0.5901] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , __lowercase , atol=1e-4 ) ) __lowerCamelCase : List[Any] =2396 self.assertEqual(logits.argmax(-1 ).item() , __lowercase ) @slow def __lowercase ( self :Optional[int] ): __lowerCamelCase : Tuple =BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) __lowerCamelCase : int =model.to(__lowercase ) __lowerCamelCase : Tuple =BeitImageProcessor(do_resize=__lowercase , size=640 , do_center_crop=__lowercase ) __lowerCamelCase : Optional[Any] =load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __lowerCamelCase : Optional[int] =Image.open(ds[0]['''file'''] ) __lowerCamelCase : Union[str, Any] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : List[Any] =model(**__lowercase ) __lowerCamelCase : Tuple =outputs.logits # verify the logits __lowerCamelCase : Optional[Any] =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __lowercase ) __lowerCamelCase : List[Any] =version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: __lowerCamelCase : Any =torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__lowercase , ) else: __lowerCamelCase : int =torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1e-4 ) ) @slow def __lowercase ( self :Any ): __lowerCamelCase : Any =BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) __lowerCamelCase : Union[str, Any] =model.to(__lowercase ) __lowerCamelCase : List[str] =BeitImageProcessor(do_resize=__lowercase , size=640 , do_center_crop=__lowercase ) __lowerCamelCase : List[str] =load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __lowerCamelCase : Optional[Any] =Image.open(ds[0]['''file'''] ) __lowerCamelCase : List[Any] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : Tuple =model(**__lowercase ) __lowerCamelCase : str =outputs.logits.detach().cpu() __lowerCamelCase : Union[str, Any] =image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(500, 300)] ) __lowerCamelCase : Union[str, Any] =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __lowercase ) __lowerCamelCase : Optional[Any] =image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __lowerCamelCase : List[str] =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __lowercase )
363
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a_ = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def __UpperCAmelCase ( __UpperCamelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __lowercase : List[Any] = list(s_dict.keys() ) for key in keys: __lowercase : Optional[int] = R'''.*/layers_(\d+)''' __lowercase : Tuple = key if re.match(__UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , __UpperCamelCase ) __lowercase : str = R'''(encoder|decoder)\/''' if re.match(__UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = re.match(__UpperCamelCase , __UpperCamelCase ).groups() if groups[0] == "encoder": __lowercase : Dict = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , __UpperCamelCase ) __lowercase : Union[str, Any] = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , __UpperCamelCase ) elif groups[0] == "decoder": __lowercase : Optional[Any] = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , __UpperCamelCase ) __lowercase : Dict = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , __UpperCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __lowercase : Optional[Any] = new_key.replace(__UpperCamelCase , __UpperCamelCase ) print(f"""{key} -> {new_key}""" ) __lowercase : Union[str, Any] = s_dict.pop(__UpperCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowercase : Optional[Any] = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowercase : List[str] = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __lowercase : List[str] = s_dict[key].shape[0] __lowercase : str = s_dict[key] for idx in range(__UpperCamelCase ): __lowercase : str = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(__UpperCamelCase ) return s_dict a_ = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(__UpperCamelCase , '''r''' ) as f: __lowercase : Dict = f.read() __lowercase : Tuple = re.findall(R'''(.*) = ([0-9.]*)''' , __UpperCamelCase ) __lowercase : Union[str, Any] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __lowercase : Tuple = float(__UpperCamelCase ) if '''.''' in value else int(__UpperCamelCase ) __lowercase : Any = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , __UpperCamelCase )[0] __lowercase : Optional[int] = str(activation[1] ) __lowercase : int = num_experts __lowercase : Optional[int] = SwitchTransformersConfig(**__UpperCamelCase ) return config def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase="./" , __UpperCamelCase=8 ): # Initialise PyTorch model print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __lowercase : Optional[int] = checkpoints.load_tax_checkpoint(__UpperCamelCase ) if gin_file is not None: __lowercase : Union[str, Any] = convert_gin_to_config(__UpperCamelCase , __UpperCamelCase ) else: __lowercase : List[Any] = SwitchTransformersConfig.from_pretrained(__UpperCamelCase ) __lowercase : Optional[Any] = SwitchTransformersForConditionalGeneration(__UpperCamelCase ) __lowercase : int = flax_params['''target'''] __lowercase : List[Any] = flatten_dict(__UpperCamelCase , sep='''/''' ) __lowercase : int = rename_keys(__UpperCamelCase ) __lowercase : Any = unflatten_dict(__UpperCamelCase , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__UpperCamelCase , __UpperCamelCase ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') a_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
76
'''simple docstring''' import numpy as np def lowercase__ ( __UpperCamelCase : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
566
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _UpperCAmelCase : Any = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = 8 , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_pad __lowerCAmelCase = pad_size def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase ): return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = get_image_size(__lowercase ) __lowerCAmelCase = (old_height // size + 1) * size - old_height __lowerCAmelCase = (old_width // size + 1) * size - old_width return pad(__lowercase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_pad if do_pad is not None else self.do_pad __lowerCAmelCase = pad_size if pad_size is not None else self.pad_size __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_pad: __lowerCAmelCase = [self.pad(__lowercase , size=__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
705
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _UpperCAmelCase : str = ["""gpt2"""] _UpperCAmelCase : Optional[int] = """gpt2""" if is_tf_available(): class a__ ( tf.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = tokenizer __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) __lowerCAmelCase = TFGPTaLMHeadModel.from_config(__lowercase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.tokenizer(__lowercase ) __lowerCAmelCase = tokenized['''input_ids'''].to_tensor() __lowerCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCAmelCase = self.model(input_ids=__lowercase , attention_mask=__lowercase )['''logits'''] return outputs @require_tf @require_keras_nlp class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().setUp() __lowerCAmelCase = [GPTaTokenizer.from_pretrained(__lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCAmelCase = [TFGPTaTokenizer.from_pretrained(__lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowerCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case (self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __lowerCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCAmelCase = python_outputs[key].numpy() __lowerCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__lowercase , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = tf.function(__lowercase ) for test_inputs in self.test_sentences: __lowerCAmelCase = tf.constant(__lowercase ) __lowerCAmelCase = compiled_tokenizer(__lowercase ) __lowerCAmelCase = tf_tokenizer(__lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = ModelToSave(tokenizer=__lowercase ) __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = model.serving(__lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCAmelCase = Path(__lowercase ) / '''saved.model''' tf.saved_model.save(__lowercase , __lowercase , signatures={'''serving_default''': model.serving} ) __lowerCAmelCase = tf.saved_model.load(__lowercase ) __lowerCAmelCase = loaded_model.signatures['''serving_default'''](__lowercase )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = tf_tokenizer(__lowercase ) # Build model with some sample inputs __lowerCAmelCase = tf_tokenizer.get_config() __lowerCAmelCase = TFGPTaTokenizer.from_config(__lowercase ) __lowerCAmelCase = model_from_config(__lowercase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCAmelCase = 12_31_23 for max_length in [3, 5, 10_24]: __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = tf_tokenizer(__lowercase , max_length=__lowercase ) __lowerCAmelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
474
0
"""simple docstring""" import os from math import logaa def _lowercase ( __lowerCAmelCase = "base_exp.txt" ) -> int: SCREAMING_SNAKE_CASE__ : float = 0 SCREAMING_SNAKE_CASE__ : Tuple = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = list(map(__lowerCAmelCase , line.split(""",""" ) ) ) if x * logaa(__lowerCAmelCase ) > largest: SCREAMING_SNAKE_CASE__ : Tuple = x * logaa(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
680
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available a :str = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :str = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys a :Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
680
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=lowercase__ ): UpperCAmelCase : Union[str, Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self :List[str] ,*__UpperCAmelCase :List[Any] ,**__UpperCAmelCase :Optional[Any] ) -> Dict: """simple docstring""" requires_backends(self ,['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def lowercase_ ( cls :Optional[int] ,*__UpperCAmelCase :List[Any] ,**__UpperCAmelCase :Tuple ) -> str: """simple docstring""" requires_backends(cls ,['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def lowercase_ ( cls :str ,*__UpperCAmelCase :str ,**__UpperCAmelCase :Any ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''transformers''', '''torch''', '''note_seq'''] )
715
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCAmelCase : int = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : UpperCAmelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase = field( default=_lowerCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def __a ( ): """simple docstring""" lowerCamelCase__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : List[Any] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase__ : int = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase__ : Dict = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Optional[int] = train_dataset.features['''label'''].names if training_args.do_eval: lowerCamelCase__ : Optional[Any] = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : str = eval_dataset.features['''label'''].names if training_args.do_predict: lowerCamelCase__ : Tuple = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : int = predict_dataset.features['''label'''].names # Labels lowerCamelCase__ : Optional[int] = len(_lowercase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel={str(_lowercase ): label for i, label in enumerate(_lowercase )} , labelaid={label: i for i, label in enumerate(_lowercase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase__ : Dict = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase__ : Tuple = False def preprocess_function(_lowercase ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=_lowercase , max_length=data_args.max_seq_length , truncation=_lowercase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase__ : List[Any] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase__ : Tuple = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase__ : Any = train_dataset.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_lowercase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase__ : List[Any] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase__ : Union[str, Any] = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase__ : int = eval_dataset.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase__ : List[Any] = min(len(_lowercase ) , data_args.max_predict_samples ) lowerCamelCase__ : int = predict_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): lowerCamelCase__ : Any = predict_dataset.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function lowerCamelCase__ : Dict = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase ): lowerCamelCase__ : List[Any] = p.predictions[0] if isinstance(p.predictions , _lowercase ) else p.predictions lowerCamelCase__ : List[Any] = np.argmax(_lowercase , axis=1 ) return metric.compute(predictions=_lowercase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase__ : str = default_data_collator elif training_args.fpaa: lowerCamelCase__ : Dict = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) else: lowerCamelCase__ : Dict = None # Initialize our Trainer lowerCamelCase__ : List[str] = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: lowerCamelCase__ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Tuple = last_checkpoint lowerCamelCase__ : Any = trainer.train(resume_from_checkpoint=_lowercase ) lowerCamelCase__ : Union[str, Any] = train_result.metrics lowerCamelCase__ : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase__ : Optional[Any] = min(_lowercase , len(_lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase__ : Any = trainer.evaluate(eval_dataset=_lowercase ) lowerCamelCase__ : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase__ : str = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = trainer.predict(_lowercase , metric_key_prefix='''predict''' ) lowerCamelCase__ : Dict = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowercase ) ) lowerCamelCase__ : Any = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''predict''' , _lowercase ) trainer.save_metrics('''predict''' , _lowercase ) lowerCamelCase__ : Optional[Any] = np.argmax(_lowercase , axis=1 ) lowerCamelCase__ : Tuple = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(_lowercase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(_lowercase ): lowerCamelCase__ : Optional[Any] = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
121
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
488
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case_ ( __A ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Dict = 8 # DPR tok lowerCamelCase_ : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase_ : Optional[int] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase_ : List[str] = os.path.join(__magic_name__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowerCamelCase_ : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCamelCase_ : str = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCamelCase_ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCamelCase_ : Any = {"unk_token": "<unk>"} lowerCamelCase_ : Dict = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase_ : Tuple = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : int = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: lowerCamelCase_ : Optional[Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: lowerCamelCase_ : str = self.get_dummy_dataset() lowerCamelCase_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowerCamelCase_ : Tuple = dataset lowerCamelCase_ : Optional[int] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : bool ) -> List[Any]: lowerCamelCase_ : Optional[int] = self.get_dummy_dataset() lowerCamelCase_ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowerCamelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , "dataset" ) lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowerCamelCase_ : Optional[int] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCamelCase_ : List[Any] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __magic_name__ ) , ) return retriever def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : str = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ : List[str] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowerCamelCase_ : List[str] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowerCamelCase_ : Optional[int] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(__magic_name__ , open(__magic_name__ , "wb" ) ) lowerCamelCase_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowerCamelCase_ : Any = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : int = self.get_dummy_canonical_hf_index_retriever() lowerCamelCase_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: lowerCamelCase_ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowerCamelCase_ : Dict = self.get_dummy_dataset() retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : List[Any] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : Optional[int] = 1 lowerCamelCase_ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) lowerCamelCase_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: lowerCamelCase_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : List[Any] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : int = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) lowerCamelCase_ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : str = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : List[Any] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Dict = self.get_dummy_legacy_index_retriever() lowerCamelCase_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: lowerCamelCase_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : Optional[int] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : Optional[Any] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: import torch lowerCamelCase_ : Dict = 1 lowerCamelCase_ : List[str] = self.get_dummy_canonical_hf_index_retriever() lowerCamelCase_ : str = [[5, 7], [10, 11]] lowerCamelCase_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : Dict = retriever(__magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertIsInstance(__magic_name__ , np.ndarray ) lowerCamelCase_ : Dict = retriever( __magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ , return_tensors="pt" , ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__magic_name__ , torch.Tensor ) self.assertIsInstance(__magic_name__ , torch.Tensor ) self.assertIsInstance(__magic_name__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() lowerCamelCase_ : Any = 1 lowerCamelCase_ : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) retriever.set_ctx_encoder_tokenizer(__magic_name__ ) lowerCamelCase_ : List[Any] = [[5, 7], [10, 11]] lowerCamelCase_ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : int = retriever(__magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ ) self.assertEqual( len(__magic_name__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , __magic_name__ ) # check for doc token related keys in dictionary.
488
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase_ ( snake_case_,snake_case_=0.9_99,snake_case_="cosine",): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _A : Tuple = [] for i in range(snake_case_ ): _A : str = i / num_diffusion_timesteps _A : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case_ ) / alpha_bar_fn(snake_case_ ),snake_case_ ) ) return torch.tensor(snake_case_,dtype=torch.floataa ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in KarrasDiffusionSchedulers] _a = 2 @register_to_config def __init__( self , _a = 1000 , _a = 0.00085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = False , _a = False , _a = 1.0 , _a = "linspace" , _a = 0 , ) -> int: if trained_betas is not None: _A : Optional[int] = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": _A : List[str] = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : int = betas_for_alpha_bar(_a , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": _A : List[str] = betas_for_alpha_bar(_a , alpha_transform_type="""exp""" ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _A : Tuple = 1.0 - self.betas _A : Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) _A : Any = use_karras_sigmas def a__ ( self , _a , _a=None ) -> str: if schedule_timesteps is None: _A : Optional[Any] = self.timesteps _A : str = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A : List[Any] = 1 if len(_a ) > 1 else 0 else: _A : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _A : Any = self._index_counter[timestep_int] return indices[pos].item() @property def a__ ( self ) -> Any: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def a__ ( self , _a , _a , ) -> torch.FloatTensor: _A : Dict = self.index_for_timestep(_a ) _A : Optional[int] = self.sigmas[step_index] _A : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def a__ ( self , _a , _a = None , _a = None , ) -> Union[str, Any]: _A : str = num_inference_steps _A : Optional[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A : Dict = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _A : Any = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : Any = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A : Dict = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : Tuple = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _A : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A : Optional[int] = np.log(_a ) _A : List[str] = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) if self.config.use_karras_sigmas: _A : str = self._convert_to_karras(in_sigmas=_a , num_inference_steps=self.num_inference_steps ) _A : str = np.array([self._sigma_to_t(_a , _a ) for sigma in sigmas] ) _A : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A : str = torch.from_numpy(_a ).to(device=_a ) _A : int = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A : Dict = torch.from_numpy(_a ) _A : str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith("""mps""" ): # mps does not support float64 _A : Tuple = timesteps.to(_a , dtype=torch.floataa ) else: _A : Optional[int] = timesteps.to(device=_a ) # empty dt and derivative _A : Union[str, Any] = None _A : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A : Dict = defaultdict(_a ) def a__ ( self , _a , _a ) -> List[Any]: # get log sigma _A : str = np.log(_a ) # get distribution _A : List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A : int = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A : Any = low_idx + 1 _A : Dict = log_sigmas[low_idx] _A : List[str] = log_sigmas[high_idx] # interpolate sigmas _A : Tuple = (low - log_sigma) / (low - high) _A : Optional[int] = np.clip(_a , 0 , 1 ) # transform interpolation to time range _A : List[Any] = (1 - w) * low_idx + w * high_idx _A : str = t.reshape(sigma.shape ) return t def a__ ( self , _a , _a ) -> torch.FloatTensor: _A : float = in_sigmas[-1].item() _A : float = in_sigmas[0].item() _A : List[str] = 7.0 # 7.0 is the value used in the paper _A : Optional[int] = np.linspace(0 , 1 , _a ) _A : Optional[Any] = sigma_min ** (1 / rho) _A : Optional[Any] = sigma_max ** (1 / rho) _A : Union[str, Any] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def a__ ( self ) -> Dict: return self.dt is None def a__ ( self , _a , _a , _a , _a = True , ) -> Union[SchedulerOutput, Tuple]: _A : str = self.index_for_timestep(_a ) # advance index counter by 1 _A : Optional[int] = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A : Optional[Any] = self.sigmas[step_index] _A : Any = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A : Optional[int] = self.sigmas[step_index - 1] _A : List[str] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A : Union[str, Any] = 0 _A : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A : List[str] = sigma_hat if self.state_in_first_order else sigma_next _A : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A : Tuple = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A : Optional[Any] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: _A : Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A : Any = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A : Tuple = sigma_next - sigma_hat # store for 2nd order step _A : List[Any] = derivative _A : Dict = dt _A : Dict = sample else: # 2. 2nd order / Heun's method _A : Dict = (sample - pred_original_sample) / sigma_next _A : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A : Any = self.dt _A : List[str] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A : List[str] = None _A : List[Any] = None _A : List[Any] = None _A : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def a__ ( self , _a , _a , _a , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _A : List[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _A : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A : Tuple = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A : str = self.timesteps.to(original_samples.device ) _A : List[str] = timesteps.to(original_samples.device ) _A : Union[str, Any] = [self.index_for_timestep(_a , _a ) for t in timesteps] _A : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A : Optional[int] = sigma.unsqueeze(-1 ) _A : Dict = original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = "mobilenet_v2" def __init__( self : str , _snake_case : Union[str, Any]=3 , _snake_case : Optional[int]=224 , _snake_case : str=1.0 , _snake_case : Union[str, Any]=8 , _snake_case : List[Any]=8 , _snake_case : Tuple=6 , _snake_case : Optional[Any]=32 , _snake_case : Any=True , _snake_case : Tuple=True , _snake_case : Tuple="relu6" , _snake_case : Optional[int]=True , _snake_case : List[str]=0.8 , _snake_case : Any=0.02 , _snake_case : Dict=0.001 , _snake_case : List[str]=255 , **_snake_case : Any , ) -> List[Any]: super().__init__(**_snake_case ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = depth_multiplier SCREAMING_SNAKE_CASE__ = depth_divisible_by SCREAMING_SNAKE_CASE__ = min_depth SCREAMING_SNAKE_CASE__ = expand_ratio SCREAMING_SNAKE_CASE__ = output_stride SCREAMING_SNAKE_CASE__ = first_layer_is_expansion SCREAMING_SNAKE_CASE__ = finegrained_output SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = tf_padding SCREAMING_SNAKE_CASE__ = classifier_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = semantic_loss_ignore_index class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = version.parse("1.11" ) @property def lowerCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowerCAmelCase_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowerCAmelCase_ ( self : Optional[Any] ) -> float: return 1e-4
159
"""simple docstring""" import math def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> bool: SCREAMING_SNAKE_CASE__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1 / 12_345 ) -> int: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 3 while True: SCREAMING_SNAKE_CASE__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = int(__UpperCAmelCase ) total_partitions += 1 if check_partition_perfect(__UpperCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__UpperCAmelCase ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
159
1
def lowerCAmelCase_ ( A_): UpperCamelCase__: Dict = len(_snake_case) UpperCamelCase__: Optional[int] = len(matrix[0]) UpperCamelCase__: Optional[int] = min(_snake_case ,_snake_case) for row in range(_snake_case): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 ,_snake_case): UpperCamelCase__: List[str] = matrix[col][row] / matrix[row][row] for i in range(_snake_case ,_snake_case): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase__: Optional[Any] = True for i in range(row + 1 ,_snake_case): if matrix[i][row] != 0: UpperCamelCase__ , UpperCamelCase__: int = matrix[i], matrix[row] UpperCamelCase__: Union[str, Any] = False break if reduce: rank -= 1 for i in range(_snake_case): UpperCamelCase__: List[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
708
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A__: Union[str, Any] = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """albert""" def __init__( self: Dict , __lowerCamelCase: int=3_0000 , __lowerCamelCase: Dict=128 , __lowerCamelCase: Optional[int]=4096 , __lowerCamelCase: Optional[int]=12 , __lowerCamelCase: List[Any]=1 , __lowerCamelCase: List[Any]=64 , __lowerCamelCase: Optional[Any]=1_6384 , __lowerCamelCase: int=1 , __lowerCamelCase: List[str]="gelu_new" , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Optional[Any]=0 , __lowerCamelCase: Union[str, Any]=512 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: Any=1e-12 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Dict="absolute" , __lowerCamelCase: List[str]=0 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Dict=3 , **__lowerCamelCase: int , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__: Any = vocab_size UpperCamelCase__: str = embedding_size UpperCamelCase__: Optional[Any] = hidden_size UpperCamelCase__: Any = num_hidden_layers UpperCamelCase__: str = num_hidden_groups UpperCamelCase__: int = num_attention_heads UpperCamelCase__: Union[str, Any] = inner_group_num UpperCamelCase__: str = hidden_act UpperCamelCase__: Tuple = intermediate_size UpperCamelCase__: Dict = hidden_dropout_prob UpperCamelCase__: List[Any] = attention_probs_dropout_prob UpperCamelCase__: List[str] = max_position_embeddings UpperCamelCase__: Optional[Any] = type_vocab_size UpperCamelCase__: Any = initializer_range UpperCamelCase__: int = layer_norm_eps UpperCamelCase__: List[str] = classifier_dropout_prob UpperCamelCase__: str = position_embedding_type class _a ( UpperCamelCase__): """simple docstring""" @property def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__: Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__: Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
221
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any]=1E-12 ): UpperCamelCase_ : int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T UpperCamelCase_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(_SCREAMING_SNAKE_CASE , norm_emb_a.T ) class UpperCamelCase ( nn.Module ): a__ :CLIPConfig a__ :jnp.dtype = jnp.floataa def A_ (self ) -> Optional[int]: UpperCamelCase_ : Tuple = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase_ : Dict = nn.Dense(self.config.projection_dim , use_bias=__UpperCamelCase , dtype=self.dtype ) UpperCamelCase_ : Any = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCamelCase_ : str = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase_ : str = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) UpperCamelCase_ : Optional[int] = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__(self , __UpperCamelCase ) -> Optional[Any]: UpperCamelCase_ : int = self.vision_model(__UpperCamelCase )[1] UpperCamelCase_ : Tuple = self.visual_projection(__UpperCamelCase ) UpperCamelCase_ : Any = jax_cosine_distance(__UpperCamelCase , self.special_care_embeds ) UpperCamelCase_ : Dict = jax_cosine_distance(__UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase_ : Optional[int] = 0.0 UpperCamelCase_ : str = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase_ : Dict = jnp.round(__UpperCamelCase , 3 ) UpperCamelCase_ : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__UpperCamelCase ) # Use a lower threshold if an image has any special care concept UpperCamelCase_ : List[str] = is_special_care * 0.01 UpperCamelCase_ : int = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase_ : Dict = jnp.round(__UpperCamelCase , 3 ) UpperCamelCase_ : str = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class UpperCamelCase ( __a ): a__ :Tuple = CLIPConfig a__ :Optional[int] = '''clip_input''' a__ :Union[str, Any] = FlaxStableDiffusionSafetyCheckerModule def __init__(self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = jnp.floataa , __UpperCamelCase = True , **__UpperCamelCase , ) -> int: if input_shape is None: UpperCamelCase_ : str = (1, 224, 224, 3) UpperCamelCase_ : Dict = self.module_class(config=__UpperCamelCase , dtype=__UpperCamelCase , **__UpperCamelCase ) super().__init__(__UpperCamelCase , __UpperCamelCase , input_shape=__UpperCamelCase , seed=__UpperCamelCase , dtype=__UpperCamelCase , _do_init=_do_init ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None ) -> FrozenDict: # init input tensor UpperCamelCase_ : Optional[int] = jax.random.normal(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : str = jax.random.split(__UpperCamelCase ) UpperCamelCase_ : Tuple = {"""params""": params_rng, """dropout""": dropout_rng} UpperCamelCase_ : List[str] = self.module.init(__UpperCamelCase , __UpperCamelCase )["""params"""] return random_params def __call__(self , __UpperCamelCase , __UpperCamelCase = None , ) -> List[Any]: UpperCamelCase_ : str = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(__UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
635
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( __a ): def A_ (self ) -> Any: UpperCamelCase_ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , """num_attention_heads""" ) ) class UpperCamelCase : def __init__(self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=64 , __UpperCamelCase=3 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=16 , __UpperCamelCase=[128, 256, 384] , __UpperCamelCase=[4, 6, 8] , __UpperCamelCase=[2, 3, 4] , __UpperCamelCase=[16, 16, 16] , __UpperCamelCase=0 , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=2 , ) -> Optional[int]: UpperCamelCase_ : Tuple = parent UpperCamelCase_ : Optional[Any] = batch_size UpperCamelCase_ : Dict = image_size UpperCamelCase_ : Dict = num_channels UpperCamelCase_ : Optional[Any] = kernel_size UpperCamelCase_ : int = stride UpperCamelCase_ : str = padding UpperCamelCase_ : Tuple = hidden_sizes UpperCamelCase_ : int = num_attention_heads UpperCamelCase_ : List[str] = depths UpperCamelCase_ : Dict = key_dim UpperCamelCase_ : Any = drop_path_rate UpperCamelCase_ : List[Any] = patch_size UpperCamelCase_ : Any = attention_ratio UpperCamelCase_ : Optional[Any] = mlp_ratio UpperCamelCase_ : Optional[int] = initializer_range UpperCamelCase_ : Optional[Any] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase_ : Tuple = is_training UpperCamelCase_ : Any = use_labels UpperCamelCase_ : Dict = num_labels UpperCamelCase_ : List[str] = initializer_range def A_ (self ) -> Dict: UpperCamelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : List[str] = None if self.use_labels: UpperCamelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ : Any = self.get_config() return config, pixel_values, labels def A_ (self ) -> Optional[int]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: UpperCamelCase_ : int = LevitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : List[Any] = model(__UpperCamelCase ) UpperCamelCase_ : int = (self.image_size, self.image_size) UpperCamelCase_,UpperCamelCase_ : Optional[int] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase_ : Union[str, Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase_ : List[Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: UpperCamelCase_ : List[str] = self.num_labels UpperCamelCase_ : Any = LevitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : int = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ (self ) -> str: UpperCamelCase_ : Tuple = self.prepare_config_and_inputs() UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : Any = config_and_inputs UpperCamelCase_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __a , __a , unittest.TestCase ): a__ :Any = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) a__ :str = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) a__ :Optional[Any] = False a__ :Optional[int] = False a__ :Tuple = False a__ :List[str] = False a__ :Dict = False def A_ (self ) -> List[Any]: UpperCamelCase_ : int = LevitModelTester(self ) UpperCamelCase_ : Union[str, Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def A_ (self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ (self ) -> Optional[Any]: return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def A_ (self ) -> int: pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def A_ (self ) -> Any: pass @unittest.skip(reason="""Levit does not output attentions""" ) def A_ (self ) -> List[str]: pass def A_ (self ) -> Union[str, Any]: UpperCamelCase_,UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : str = model_class(__UpperCamelCase ) UpperCamelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Dict = [*signature.parameters.keys()] UpperCamelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def A_ (self ) -> Optional[Any]: def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : List[str] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : Union[str, Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ : Optional[Any] = outputs.hidden_states UpperCamelCase_ : Optional[int] = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) UpperCamelCase_ : Tuple = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase_,UpperCamelCase_ : Optional[int] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase_ : Dict = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase_ : List[str] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Union[str, Any] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A_ (self ) -> Dict: pass def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: UpperCamelCase_ : List[str] = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A_ (self ) -> Tuple: UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def A_ (self ) -> List[Any]: UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def A_ (self ) -> Optional[Any]: if not self.model_tester.is_training: return UpperCamelCase_,UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : List[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase_ : int = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() UpperCamelCase_ : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) UpperCamelCase_ : int = model(**__UpperCamelCase ).loss loss.backward() def A_ (self ) -> Union[str, Any]: UpperCamelCase_,UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase_ : str = model_class(__UpperCamelCase ) model.gradient_checkpointing_enable() model.to(__UpperCamelCase ) model.train() UpperCamelCase_ : Optional[Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = model(**__UpperCamelCase ).loss loss.backward() def A_ (self ) -> Union[str, Any]: UpperCamelCase_,UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : Any = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): UpperCamelCase_ : Any = problem_type["""title"""] UpperCamelCase_ : Dict = problem_type["""num_labels"""] UpperCamelCase_ : Dict = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() UpperCamelCase_ : Optional[int] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if problem_type["num_labels"] > 1: UpperCamelCase_ : Union[str, Any] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) UpperCamelCase_ : Tuple = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCamelCase ) as warning_list: UpperCamelCase_ : str = model(**__UpperCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def A_ (self ) -> Dict: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Any = LevitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCAmelCase_ ( ): UpperCamelCase_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def A_ (self ) -> Any: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A_ (self ) -> str: UpperCamelCase_ : Tuple = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCamelCase ) UpperCamelCase_ : Optional[Any] = self.default_image_processor UpperCamelCase_ : List[str] = prepare_img() UpperCamelCase_ : Optional[int] = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : Union[str, Any] = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ : List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ : Any = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
635
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Tuple , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Dict[str, int] = None , a_ : bool = True , a_ : Union[int, float] = 1 / 255 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = True , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = size if size is not None else {"shortest_edge": 224} __snake_case = get_size_dict(a_ , default_to_square=a_ ) __snake_case = crop_size if crop_size is not None else {"height": 224, "width": 224} __snake_case = get_size_dict(a_ , default_to_square=a_ , param_name="crop_size" ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case = do_convert_rgb def A ( self : str , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[Any] , ): """simple docstring""" __snake_case = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case = get_resize_output_image_size(a_ , size=size["shortest_edge"] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def A ( self : int , a_ : np.ndarray , a_ : Dict[str, int] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Any , ): """simple docstring""" __snake_case = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def A ( self : str , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Tuple , ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def A ( self : Optional[Any] , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[Any] , ): """simple docstring""" return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def A ( self : Dict , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : int = None , a_ : bool = None , a_ : float = None , a_ : bool = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **a_ : Any , ): """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(a_ , param_name="size" , default_to_square=a_ ) __snake_case = resample if resample is not None else self.resample __snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case = crop_size if crop_size is not None else self.crop_size __snake_case = get_size_dict(a_ , param_name="crop_size" , default_to_square=a_ ) __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __snake_case = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __snake_case = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __snake_case = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ )
680
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCAmelCase = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _snake_case ( lowerCAmelCase : List[Any] ): """simple docstring""" return EnvironmentCommand() class a__ ( A__ ): @staticmethod def __UpperCamelCase ( _A : ArgumentParser ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = parser.add_parser("env" ) download_parser.set_defaults(func=_A ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = huggingface_hub.__version__ SCREAMING_SNAKE_CASE_ : Tuple = "not installed" SCREAMING_SNAKE_CASE_ : Any = "NA" if is_torch_available(): import torch SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.__version__ SCREAMING_SNAKE_CASE_ : Dict = torch.cuda.is_available() SCREAMING_SNAKE_CASE_ : str = "not installed" if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE_ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE_ : Union[str, Any] = "not installed" if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE_ : Any = accelerate.__version__ SCREAMING_SNAKE_CASE_ : Union[str, Any] = "not installed" if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE_ : List[str] = xformers.__version__ SCREAMING_SNAKE_CASE_ : Optional[Any] = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(_A ) ) return info @staticmethod def __UpperCamelCase ( _A : Optional[int] ): """simple docstring""" return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
216
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _a = logging.get_logger(__name__) _a = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp _a = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } _a = { """RUCAIBox/mvp""": 1024, } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['input_ids', 'attention_mask'] lowercase__ = MvpTokenizer def __init__( self , __a=None , __a=None , __a=None , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , __a=True , **__a , ) -> List[str]: '''simple docstring''' super().__init__( __a , __a , tokenizer_file=__a , errors=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , trim_offsets=__a , **__a , ) _UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , __a) != add_prefix_space: _UpperCamelCase = getattr(__a , pre_tok_state.pop('''type''')) _UpperCamelCase = add_prefix_space _UpperCamelCase = pre_tok_class(**__a) _UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCamelCase = '''post_processor''' _UpperCamelCase = getattr(self.backend_tokenizer , __a , __a) if tokenizer_component_instance: _UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCamelCase = tuple(state['''sep''']) if "cls" in state: _UpperCamelCase = tuple(state['''cls''']) _UpperCamelCase = False if state.get('''add_prefix_space''' , __a) != add_prefix_space: _UpperCamelCase = add_prefix_space _UpperCamelCase = True if state.get('''trim_offsets''' , __a) != trim_offsets: _UpperCamelCase = trim_offsets _UpperCamelCase = True if changes_to_apply: _UpperCamelCase = getattr(__a , state.pop('''type''')) _UpperCamelCase = component_class(**__a) setattr(self.backend_tokenizer , __a , __a) @property def UpperCAmelCase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' _UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a) if isinstance(__a , __a) else value _UpperCamelCase = value def UpperCAmelCase ( self , *__a , **__a) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = kwargs.get('''is_split_into_words''' , __a) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''') return super()._batch_encode_plus(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = kwargs.get('''is_split_into_words''' , __a) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''') return super()._encode_plus(*__a , **__a) def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' _UpperCamelCase = self._tokenizer.model.save(__a , name=__a) return tuple(__a) def UpperCAmelCase ( self , __a , __a=None) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
78
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _a = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""PerceiverFeatureExtractor"""] _a = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
1
'''simple docstring''' from statistics import mean import numpy as np def UpperCAmelCase_ ( __lowerCamelCase : list ,__lowerCamelCase : list ,__lowerCamelCase : list ,__lowerCamelCase : int ): lowercase_ :Optional[Any] = 0 # Number of processes finished lowercase_ :List[str] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase_ :int = [0] * no_of_process # List to include calculation results lowercase_ :List[str] = [0] * no_of_process # Sort by arrival time. lowercase_ :Optional[Any] = [burst_time[i] for i in np.argsort(__lowerCamelCase )] lowercase_ :Union[str, Any] = [process_name[i] for i in np.argsort(__lowerCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: lowercase_ :List[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase_ :Any = arrival_time[i] lowercase_ :Any = 0 # Index showing the location of the process being performed lowercase_ :List[str] = 0 # Saves the current response ratio. lowercase_ :Union[str, Any] = 0 for i in range(0 ,__lowerCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase_ :int = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase_ :Tuple = temp lowercase_ :Optional[int] = i # Calculate the turn around time lowercase_ :Dict = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase_ :Dict = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCAmelCase_ ( __lowerCamelCase : list ,__lowerCamelCase : list ,__lowerCamelCase : list ,__lowerCamelCase : int ): lowercase_ :Any = [0] * no_of_process for i in range(0 ,__lowerCamelCase ): lowercase_ :Tuple = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCAmelCase : Tuple =5 lowerCAmelCase : Any =['''A''', '''B''', '''C''', '''D''', '''E'''] lowerCAmelCase : int =[1, 2, 3, 4, 5] lowerCAmelCase : List[str] =[1, 2, 3, 4, 5] lowerCAmelCase : Union[str, Any] =calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCAmelCase : int =calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
172
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class a_ ( _lowerCAmelCase ): def lowercase__ ( self : Tuple , lowercase : float ): """simple docstring""" return 0.0 def UpperCAmelCase_ ( __lowerCamelCase : np.ndarray ,__lowerCamelCase : int ): lowercase_ :List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ :Any = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def UpperCAmelCase_ ( __lowerCamelCase : FilterType ,__lowerCamelCase : int ): lowercase_ :List[Any] = 5_12 lowercase_ :Any = [1] + [0] * (size - 1) lowercase_ :List[str] = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ :Optional[int] = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ :Tuple = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ :List[Any] = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ :Tuple = get_bounds(__lowerCamelCase ,__lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) ,min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def UpperCAmelCase_ ( __lowerCamelCase : FilterType ,__lowerCamelCase : int ): lowercase_ :Union[str, Any] = 5_12 lowercase_ :Union[str, Any] = [1] + [0] * (size - 1) lowercase_ :Any = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ :Union[str, Any] = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ :Union[str, Any] = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi ,2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase ,-2 * pi ) ) plt.show()
172
1
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase__ ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] ) -> str: for attribute in key.split('.' ): lowerCamelCase_ = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: lowerCamelCase_ = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: lowerCamelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ) -> Any: lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.feature_extractor lowerCamelCase_ = hf_model.adapter for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCamelCase_ = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(_lowerCamelCase )[0].split('.' )[-2] lowerCamelCase_ = mapped_key.replace('*' , _lowerCamelCase ) if "weight_g" in name: lowerCamelCase_ = 'weight_g' elif "weight_v" in name: lowerCamelCase_ = 'weight_v' elif "bias" in name: lowerCamelCase_ = 'bias' elif "weight" in name: lowerCamelCase_ = 'weight' else: lowerCamelCase_ = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : List[Any] ) -> Optional[int]: lowerCamelCase_ = full_name.split('conv_layers.' )[-1] lowerCamelCase_ = name.split('.' ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] ) -> List[str]: lowerCamelCase_ = full_name.split('adaptor.' )[-1] lowerCamelCase_ = name.split('.' ) if items[1].isdigit(): lowerCamelCase_ = int(items[1] ) else: lowerCamelCase_ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' lowerCamelCase_ = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' lowerCamelCase_ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' lowerCamelCase_ = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' lowerCamelCase_ = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' lowerCamelCase_ = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' lowerCamelCase_ = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Optional[int] ) -> int: lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) lowerCamelCase_ = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , ) -> Dict: lowerCamelCase_ = WavaVecaConfig.from_pretrained( _lowerCamelCase , add_adapter=_lowerCamelCase , adapter_stride=_lowerCamelCase , adapter_kernel_size=_lowerCamelCase , use_auth_token=_lowerCamelCase , output_hidden_size=_lowerCamelCase , ) lowerCamelCase_ = MBartConfig.from_pretrained(_lowerCamelCase ) # load model lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) lowerCamelCase_ = model[0].eval() # load feature extractor lowerCamelCase_ = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , use_auth_token=_lowerCamelCase ) # set weights for wav2vec2 encoder lowerCamelCase_ = WavaVecaModel(_lowerCamelCase ) recursively_load_weights_wavaveca(model.encoder , _lowerCamelCase ) # load decoder weights lowerCamelCase_ = MBartForCausalLM(_lowerCamelCase ) lowerCamelCase_ , lowerCamelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCamelCase ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowerCamelCase_ = SpeechEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) lowerCamelCase_ = False lowerCamelCase_ = MBartaaTokenizer(_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowerCamelCase_ = hf_wavavec.config.to_dict() lowerCamelCase_ = tokenizer.pad_token_id lowerCamelCase_ = tokenizer.bos_token_id lowerCamelCase_ = tokenizer.eos_token_id lowerCamelCase_ = 'mbart50' lowerCamelCase_ = 'wav2vec2' lowerCamelCase_ = tokenizer.eos_token_id lowerCamelCase_ = 250004 lowerCamelCase_ = tokenizer.eos_token_id lowerCamelCase_ = SpeechEncoderDecoderConfig.from_dict(_lowerCamelCase ) hf_wavavec.save_pretrained(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=25_0004, type=int, help='''`decoder_start_token_id` of model config''') _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
714
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a ( __snake_case ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Distribution , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> Optional[Any]: lowerCamelCase_ = 1.0 if scale is None else scale lowerCamelCase_ = 0.0 if loc is None else loc super().__init__(__SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__SCREAMING_SNAKE_CASE )] ) @property def UpperCamelCase ( self : Optional[Any] ) -> Tuple: return self.base_dist.mean * self.scale + self.loc @property def UpperCamelCase ( self : int ) -> Any: return self.base_dist.variance * self.scale**2 @property def UpperCamelCase ( self : List[Any] ) -> str: return self.variance.sqrt() class a ( nn.Module ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Callable[..., Tuple[torch.Tensor]] , **__SCREAMING_SNAKE_CASE : str ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = args_dim lowerCamelCase_ = nn.ModuleList([nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] ) lowerCamelCase_ = domain_map def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Tuple[torch.Tensor]: lowerCamelCase_ = [proj(__SCREAMING_SNAKE_CASE ) for proj in self.proj] return self.domain_map(*__SCREAMING_SNAKE_CASE ) class a ( nn.Module ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: super().__init__() lowerCamelCase_ = function def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: return self.function(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) class a : SCREAMING_SNAKE_CASE : type SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Dict[str, int] def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int = 1 ) -> None: lowerCamelCase_ = dim lowerCamelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: if self.dim == 1: return self.distribution_class(*__SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(*__SCREAMING_SNAKE_CASE ) , 1 ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , ) -> Distribution: lowerCamelCase_ = self._base_distribution(__SCREAMING_SNAKE_CASE ) if loc is None and scale is None: return distr else: return AffineTransformed(__SCREAMING_SNAKE_CASE , loc=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , event_dim=self.event_dim ) @property def UpperCamelCase ( self : int ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCamelCase ( self : Optional[Any] ) -> int: return len(self.event_shape ) @property def UpperCamelCase ( self : List[Any] ) -> float: return 0.0 def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> nn.Module: return ParameterProjection( in_features=__SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def UpperCamelCase ( self : List[str] , *__SCREAMING_SNAKE_CASE : torch.Tensor ) -> List[str]: raise NotImplementedError() @staticmethod def UpperCamelCase ( __SCREAMING_SNAKE_CASE : torch.Tensor ) -> torch.Tensor: return (x + torch.sqrt(torch.square(__SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0 class a ( __snake_case ): SCREAMING_SNAKE_CASE : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} SCREAMING_SNAKE_CASE : type = StudentT @classmethod def UpperCamelCase ( cls : str , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Optional[Any]: lowerCamelCase_ = cls.squareplus(__SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase_ = 2.0 + cls.squareplus(__SCREAMING_SNAKE_CASE ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Dict[str, int] = {"loc": 1, "scale": 1} SCREAMING_SNAKE_CASE : type = Normal @classmethod def UpperCamelCase ( cls : Dict , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Tuple: lowerCamelCase_ = cls.squareplus(__SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Dict[str, int] = {"total_count": 1, "logits": 1} SCREAMING_SNAKE_CASE : type = NegativeBinomial @classmethod def UpperCamelCase ( cls : Dict , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Optional[Any]: lowerCamelCase_ = cls.squareplus(__SCREAMING_SNAKE_CASE ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Distribution: lowerCamelCase_ , lowerCamelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(total_count=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE ) , 1 ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ) -> Distribution: lowerCamelCase_ , lowerCamelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
137
0
'''simple docstring''' from math import sqrt def A__ ( __lowerCAmelCase : int = 100_0000 ): lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'{solution() = }')
50
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" __UpperCamelCase : Optional[Any] = SMALL_MODEL_IDENTIFIER __UpperCamelCase : List[str] = """pt""" __UpperCamelCase : List[Any] = """tf""" def lowerCamelCase__ ( self : Any , lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" __UpperCamelCase : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : List[str] = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCAmelCase ) model_tf.save_pretrained(lowerCAmelCase ) def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" __UpperCamelCase : Any = """mock_framework""" # Framework provided - return whatever the user provides __UpperCamelCase : List[Any] = FeaturesManager.determine_framework(self.test_model , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase ) __UpperCamelCase : Any = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase ) __UpperCamelCase : Optional[Any] = FeaturesManager.determine_framework(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : int = FeaturesManager.determine_framework(lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __UpperCamelCase : str = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ): __UpperCamelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCamelCase : Optional[int] = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): __UpperCamelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch __UpperCamelCase : Dict = MagicMock(return_value=lowerCAmelCase ) __UpperCamelCase : Any = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): __UpperCamelCase : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error __UpperCamelCase : Union[str, Any] = MagicMock(return_value=lowerCAmelCase ) __UpperCamelCase : Tuple = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : str = FeaturesManager.determine_framework(self.test_model )
279
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
def a (lowerCAmelCase__ ): __a = [] if len(lowerCAmelCase__ ) == 1: return [nums.copy()] for _ in range(len(lowerCAmelCase__ ) ): __a = nums.pop(0 ) __a = permute(lowerCAmelCase__ ) for perm in permutations: perm.append(lowerCAmelCase__ ) result.extend(lowerCAmelCase__ ) nums.append(lowerCAmelCase__ ) return result def a (lowerCAmelCase__ ): def backtrack(lowerCAmelCase__ ): if start == len(lowerCAmelCase__ ) - 1: output.append(nums[:] ) else: for i in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): __a , __a = nums[i], nums[start] backtrack(start + 1 ) __a , __a = nums[i], nums[start] # backtrack __a = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function SCREAMING_SNAKE_CASE = permutea([1, 2, 3]) print(res) doctest.testmod()
99
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : List[Any] , __UpperCamelCase : str = "▁" , __UpperCamelCase : bool = True , __UpperCamelCase : Union[str, AddedToken] = "<unk>" , __UpperCamelCase : Union[str, AddedToken] = "</s>" , __UpperCamelCase : Union[str, AddedToken] = "<pad>" , )->List[Any]: _UpperCAmelCase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } _UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _UpperCAmelCase = token_dict['''token'''] _UpperCAmelCase = Tokenizer(Unigram() ) _UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) _UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCamelCase , add_prefix_space=__UpperCamelCase ), pre_tokenizers.Digits(individual_digits=__UpperCamelCase ), pre_tokenizers.Punctuation(), ] ) _UpperCAmelCase = decoders.Metaspace(replacement=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = TemplateProcessing( single=F'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) _UpperCAmelCase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, List[str]] , __UpperCamelCase : int = 8_0_0_0 , __UpperCamelCase : bool = True , )->Any: _UpperCAmelCase = trainers.UnigramTrainer( vocab_size=__UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCamelCase , ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [files] self._tokenizer.train(__UpperCamelCase , trainer=__UpperCamelCase ) self.add_unk_id() def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Union[Iterator[str], Iterator[Iterator[str]]] , __UpperCamelCase : int = 8_0_0_0 , __UpperCamelCase : bool = True , )->int: _UpperCAmelCase = trainers.UnigramTrainer( vocab_size=__UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCamelCase , ) self._tokenizer.train_from_iterator(__UpperCamelCase , trainer=__UpperCamelCase ) self.add_unk_id() def lowercase__ ( self : int )->Dict: _UpperCAmelCase = json.loads(self._tokenizer.to_str() ) _UpperCAmelCase = self.special_tokens['''unk''']['''id'''] _UpperCAmelCase = Tokenizer.from_str(json.dumps(__UpperCamelCase ) )
602
0
import os import pytest from attr import dataclass _A : Any = 'us-east-1' # defaults region @dataclass class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : str _UpperCAmelCase : Any = "arn:aws:iam::558105141721:role/sagemaker_execution_role" _UpperCAmelCase : List[str] = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } _UpperCAmelCase : int = {**hyperparameters, "max_steps": 1_0_0_0} @property def __lowerCamelCase ( self : str ) ->str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self : int ) ->str: return F"{self.framework}-transfromers-test" @property def __lowerCamelCase ( self : str ) ->str: return F"./tests/sagemaker/scripts/{self.framework}" @property def __lowerCamelCase ( self : Any ) ->str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Any = SageMakerTestEnvironment(framework=request.cls.framework )
130
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _A : int = logging.get_logger(__name__) _A : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _A : Optional[int] = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } _A : Any = { 'roberta-base': 5_12, 'roberta-large': 5_12, 'roberta-large-mnli': 5_12, 'distilroberta-base': 5_12, 'roberta-base-openai-detector': 5_12, 'roberta-large-openai-detector': 5_12, } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : str = VOCAB_FILES_NAMES _UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : int = ["input_ids", "attention_mask"] _UpperCAmelCase : List[str] = RobertaTokenizer def __init__( self : List[str] , A : List[str]=None , A : List[Any]=None , A : Optional[int]=None , A : Tuple="replace" , A : int="<s>" , A : Any="</s>" , A : Optional[int]="</s>" , A : Tuple="<s>" , A : int="<unk>" , A : Optional[int]="<pad>" , A : Tuple="<mask>" , A : Optional[Any]=False , A : Optional[int]=True , **A : Optional[int] , ) ->Dict: super().__init__( A , A , tokenizer_file=A , errors=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , add_prefix_space=A , trim_offsets=A , **A , ) lowerCamelCase__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A ) != add_prefix_space: lowerCamelCase__ : Union[str, Any] = getattr(A , pre_tok_state.pop('''type''' ) ) lowerCamelCase__ : Optional[int] = add_prefix_space lowerCamelCase__ : List[str] = pre_tok_class(**A ) lowerCamelCase__ : Any = add_prefix_space lowerCamelCase__ : Any = '''post_processor''' lowerCamelCase__ : str = getattr(self.backend_tokenizer , A , A ) if tokenizer_component_instance: lowerCamelCase__ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : Any = tuple(state['''sep'''] ) if "cls" in state: lowerCamelCase__ : Tuple = tuple(state['''cls'''] ) lowerCamelCase__ : Tuple = False if state.get('''add_prefix_space''' , A ) != add_prefix_space: lowerCamelCase__ : Optional[Any] = add_prefix_space lowerCamelCase__ : Optional[Any] = True if state.get('''trim_offsets''' , A ) != trim_offsets: lowerCamelCase__ : Tuple = trim_offsets lowerCamelCase__ : str = True if changes_to_apply: lowerCamelCase__ : Optional[int] = getattr(A , state.pop('''type''' ) ) lowerCamelCase__ : str = component_class(**A ) setattr(self.backend_tokenizer , A , A ) @property def __lowerCamelCase ( self : List[str] ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCamelCase ( self : int , A : List[Any] ) ->List[Any]: lowerCamelCase__ : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else value lowerCamelCase__ : int = value def __lowerCamelCase ( self : Tuple , *A : List[Any] , **A : Optional[Any] ) ->BatchEncoding: lowerCamelCase__ : Dict = kwargs.get('''is_split_into_words''' , A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def __lowerCamelCase ( self : Tuple , *A : List[Any] , **A : Tuple ) ->BatchEncoding: lowerCamelCase__ : Optional[Any] = kwargs.get('''is_split_into_words''' , A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def __lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None ) ->Tuple[str]: lowerCamelCase__ : List[str] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def __lowerCamelCase ( self : Dict , A : List[str] , A : List[Any]=None ) ->List[str]: lowerCamelCase__ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None ) ->List[int]: lowerCamelCase__ : int = [self.sep_token_id] lowerCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
130
1
'''simple docstring''' from __future__ import annotations def __snake_case ( SCREAMING_SNAKE_CASE_ : list[float] ) -> float: """simple docstring""" UpperCAmelCase = 0.00 UpperCAmelCase = 0 for resistor in resistors: if resistor <= 0: UpperCAmelCase = f"Resistor at index {index} has a negative or zero value!" raise ValueError(SCREAMING_SNAKE_CASE_ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE_ ) index += 1 return 1 / first_sum def __snake_case ( SCREAMING_SNAKE_CASE_ : list[float] ) -> float: """simple docstring""" UpperCAmelCase = 0.00 UpperCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase = f"Resistor at index {index} has a negative value!" raise ValueError(SCREAMING_SNAKE_CASE_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : int = logging.get_logger(__name__) def __a ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase_ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __a ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ) -> Any: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase_ = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase_ = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase_ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase_ = in_proj_weight[ -encoder_config.hidden_size :, : ] def __a ( __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ) -> str: '''simple docstring''' lowercase_ = dct.pop(__lowerCamelCase ) lowercase_ = val def __a ( __lowerCamelCase : int ) -> Dict: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase_ = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase_ = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" lowercase_ = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __a ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> str: '''simple docstring''' lowercase_ = ViTConfig(image_size=384 , qkv_bias=__lowerCamelCase ) lowercase_ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase_ = 768 elif "large" in checkpoint_url: # use ViT-large encoder lowercase_ = 1_024 lowercase_ = 4_096 lowercase_ = 24 lowercase_ = 16 lowercase_ = 1_024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase_ = False lowercase_ = "relu" lowercase_ = 1_024 lowercase_ = True lowercase_ = False lowercase_ = False # load HuggingFace model lowercase_ = ViTModel(__lowerCamelCase , add_pooling_layer=__lowerCamelCase ) lowercase_ = TrOCRForCausalLM(__lowerCamelCase ) lowercase_ = VisionEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) model.eval() # load state_dict of original model, rename some keys lowercase_ = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="cpu" , check_hash=__lowerCamelCase )["model"] lowercase_ = create_rename_keys(__lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase_ = state_dict.pop(__lowerCamelCase ) if key.startswith("decoder" ) and "output_projection" not in key: lowercase_ = val else: lowercase_ = val # load state dict model.load_state_dict(__lowerCamelCase ) # Check outputs on an image lowercase_ = ViTImageProcessor(size=encoder_config.image_size ) lowercase_ = RobertaTokenizer.from_pretrained("roberta-large" ) lowercase_ = TrOCRProcessor(__lowerCamelCase , __lowerCamelCase ) lowercase_ = processor(images=prepare_img(__lowerCamelCase ) , return_tensors="pt" ).pixel_values # verify logits lowercase_ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase_ = model(pixel_values=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) lowercase_ = outputs.logits lowercase_ = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: lowercase_ = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase_ = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: lowercase_ = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: lowercase_ = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __lowerCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowerCAmelCase_ : Any = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
461
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( __lowerCamelCase ): def __init__( self : str , __lowerCAmelCase : Callable , __lowerCAmelCase : Optional[Features] = None , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[dict] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Union[str, Any] , ) -> List[Any]: super().__init__( features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase_ = Generator( cache_dir=__lowerCAmelCase , features=__lowerCAmelCase , generator=__lowerCAmelCase , gen_kwargs=__lowerCAmelCase , **__lowerCAmelCase , ) def __UpperCAmelCase ( self : Optional[int]) -> List[str]: # Build iterable dataset if self.streaming: lowercase_ = self.builder.as_streaming_dataset(split="train") # Build regular (map-style) dataset else: lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , ) lowercase_ = self.builder.as_dataset( split="train" , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory) return dataset
461
1
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase (a_ :Sequence[float] , a_ :float) -> float: return sum(c * (x**i) for i, c in enumerate(a_)) def lowerCamelCase (a_ :Sequence[float] , a_ :float) -> float: lowercase :List[str] = 0.0 for coeff in reversed(a_): lowercase :Tuple = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowerCamelCase (a_ :int) -> List[str]: random.seed(a_) np.random.seed(a_) torch.manual_seed(a_) torch.cuda.manual_seed_all(a_) # ^^ safe to call this function even if cuda is not available class __magic_name__ : def __init__( self : Optional[Any] , snake_case__ : Iterable[torch.nn.Parameter] , snake_case__ : float = 0.99_99 , snake_case__ : float = 0.0 , snake_case__ : int = 0 , snake_case__ : bool = False , snake_case__ : Union[float, int] = 1.0 , snake_case__ : Union[float, int] = 2 / 3 , snake_case__ : Optional[Any] = None , snake_case__ : Dict[str, Any] = None , **snake_case__ : Tuple , ): '''simple docstring''' if isinstance(snake_case__ , torch.nn.Module ): lowercase :int = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ , ) lowercase :Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility lowercase :Optional[Any] = True if kwargs.get('''max_value''' , snake_case__ ) is not None: lowercase :Optional[Any] = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) lowercase :Optional[int] = kwargs['''max_value'''] if kwargs.get('''min_value''' , snake_case__ ) is not None: lowercase :List[Any] = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) lowercase :str = kwargs['''min_value'''] lowercase :Any = list(snake_case__ ) lowercase :Optional[Any] = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , snake_case__ ) is not None: lowercase :str = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) self.to(device=kwargs['''device'''] ) lowercase :int = None lowercase :int = decay lowercase :Union[str, Any] = min_decay lowercase :List[Any] = update_after_step lowercase :Union[str, Any] = use_ema_warmup lowercase :Any = inv_gamma lowercase :Any = power lowercase :str = 0 lowercase :int = None # set in `step()` lowercase :List[str] = model_cls lowercase :Any = model_config @classmethod def __snake_case ( cls : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase , lowercase :int = model_cls.load_config(snake_case__ , return_unused_kwargs=snake_case__ ) lowercase :List[Any] = model_cls.from_pretrained(snake_case__ ) lowercase :Optional[int] = cls(model.parameters() , model_cls=snake_case__ , model_config=model.config ) ema_model.load_state_dict(snake_case__ ) return ema_model def __snake_case ( self : int , snake_case__ : Union[str, Any] ): '''simple docstring''' if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) lowercase :Dict = self.model_cls.from_config(self.model_config ) lowercase :Tuple = self.state_dict() state_dict.pop('''shadow_params''' , snake_case__ ) model.register_to_config(**snake_case__ ) self.copy_to(model.parameters() ) model.save_pretrained(snake_case__ ) def __snake_case ( self : int , snake_case__ : int ): '''simple docstring''' lowercase :Union[str, Any] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: lowercase :int = 1 - (1 + step / self.inv_gamma) ** -self.power else: lowercase :Dict = (1 + step) / (1_0 + step) lowercase :Optional[int] = min(snake_case__ , self.decay ) # make sure decay is not smaller than min_decay lowercase :Optional[int] = max(snake_case__ , self.min_decay ) return cur_decay_value @torch.no_grad() def __snake_case ( self : Any , snake_case__ : Iterable[torch.nn.Parameter] ): '''simple docstring''' if isinstance(snake_case__ , torch.nn.Module ): lowercase :Tuple = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ , ) lowercase :Union[str, Any] = parameters.parameters() lowercase :Optional[Any] = list(snake_case__ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. lowercase :List[Any] = self.get_decay(self.optimization_step ) lowercase :Optional[Any] = decay lowercase :List[Any] = 1 - decay lowercase :List[str] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , snake_case__ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): lowercase :Union[str, Any] = deepspeed.zero.GatheredParameters(snake_case__ , modifier_rank=snake_case__ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(snake_case__ ) def __snake_case ( self : str , snake_case__ : Iterable[torch.nn.Parameter] ): '''simple docstring''' lowercase :Optional[Any] = list(snake_case__ ) for s_param, param in zip(self.shadow_params , snake_case__ ): param.data.copy_(s_param.to(param.device ).data ) def __snake_case ( self : Optional[int] , snake_case__ : Dict=None , snake_case__ : Dict=None ): '''simple docstring''' lowercase :str = [ p.to(device=snake_case__ , dtype=snake_case__ ) if p.is_floating_point() else p.to(device=snake_case__ ) for p in self.shadow_params ] def __snake_case ( self : Dict ): '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __snake_case ( self : Optional[int] , snake_case__ : Iterable[torch.nn.Parameter] ): '''simple docstring''' lowercase :str = [param.detach().cpu().clone() for param in parameters] def __snake_case ( self : List[Any] , snake_case__ : Iterable[torch.nn.Parameter] ): '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , snake_case__ ): param.data.copy_(c_param.data ) # Better memory-wise. lowercase :Dict = None def __snake_case ( self : Union[str, Any] , snake_case__ : dict ): '''simple docstring''' lowercase :List[str] = copy.deepcopy(snake_case__ ) lowercase :Any = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) lowercase :int = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , snake_case__ ): raise ValueError('''Invalid min_decay''' ) lowercase :List[Any] = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , snake_case__ ): raise ValueError('''Invalid optimization_step''' ) lowercase :int = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , snake_case__ ): raise ValueError('''Invalid update_after_step''' ) lowercase :Optional[int] = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , snake_case__ ): raise ValueError('''Invalid use_ema_warmup''' ) lowercase :Any = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) lowercase :Dict = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) lowercase :Optional[int] = state_dict.get('''shadow_params''' , snake_case__ ) if shadow_params is not None: lowercase :List[Any] = shadow_params if not isinstance(self.shadow_params , snake_case__ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(snake_case__ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
677
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE =['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE =dict(zip(snake_case ,range(len(snake_case ) ) ) ) SCREAMING_SNAKE_CASE =['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] SCREAMING_SNAKE_CASE ={'unk_token': '<unk>'} SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case ) ) SCREAMING_SNAKE_CASE ={ 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,snake_case ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(snake_case ,snake_case ) def _lowerCAmelCase ( self : Any ,**snake_case : Tuple ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case ) def _lowerCAmelCase ( self : List[Any] ,**snake_case : Any ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _lowerCAmelCase ( self : Optional[int] ,**snake_case : List[str] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**snake_case ) def _lowerCAmelCase ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =[np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.get_tokenizer() SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() SCREAMING_SNAKE_CASE =self.get_image_processor() SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=snake_case ) SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,snake_case ) self.assertIsInstance(processor_fast.tokenizer ,snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,snake_case ) self.assertIsInstance(processor_fast.image_processor ,snake_case ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=snake_case ,padding_value=1.0 ) SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=snake_case ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.get_image_processor() SCREAMING_SNAKE_CASE =self.get_tokenizer() SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) SCREAMING_SNAKE_CASE =self.prepare_image_inputs() SCREAMING_SNAKE_CASE =image_processor(snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =processor(images=snake_case ,return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.get_image_processor() SCREAMING_SNAKE_CASE =self.get_tokenizer() SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) SCREAMING_SNAKE_CASE ='lower newer' SCREAMING_SNAKE_CASE =processor(text=snake_case ) SCREAMING_SNAKE_CASE =tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.get_image_processor() SCREAMING_SNAKE_CASE =self.get_tokenizer() SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) SCREAMING_SNAKE_CASE ='lower newer' SCREAMING_SNAKE_CASE =self.prepare_image_inputs() SCREAMING_SNAKE_CASE =processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.get_image_processor() SCREAMING_SNAKE_CASE =self.get_tokenizer() SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE =processor.batch_decode(snake_case ) SCREAMING_SNAKE_CASE =tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.get_image_processor() SCREAMING_SNAKE_CASE =self.get_tokenizer() SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) SCREAMING_SNAKE_CASE ='lower newer' SCREAMING_SNAKE_CASE =self.prepare_image_inputs() SCREAMING_SNAKE_CASE =processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
252
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class a_ : """simple docstring""" def __init__( self : Tuple ,snake_case : List[str] ,snake_case : List[str]=13 ,snake_case : Optional[Any]=7 ,snake_case : Union[str, Any]=False ,snake_case : str=True ,snake_case : Tuple=False ,snake_case : List[Any]=True ,snake_case : Tuple=33 ,snake_case : Dict=32 ,snake_case : str=5 ,snake_case : str=4 ,snake_case : int=37 ,snake_case : int="gelu" ,snake_case : int=0.1 ,snake_case : Dict=0.1 ,snake_case : int=512 ,snake_case : Optional[Any]=16 ,snake_case : List[Any]=2 ,snake_case : Tuple=0.02 ,snake_case : int=3 ,snake_case : Tuple=4 ,snake_case : List[str]=None ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : str ): return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Union[str, Any] ,snake_case : Tuple ,snake_case : List[Any] ,snake_case : List[str] ,snake_case : str ): SCREAMING_SNAKE_CASE =EsmModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : int ,snake_case : str ,snake_case : Tuple ,snake_case : List[str] ,snake_case : Any ,snake_case : Any ): SCREAMING_SNAKE_CASE =EsmForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : str ,snake_case : str ,snake_case : Optional[Any] ,snake_case : Any ,snake_case : List[Any] ,snake_case : Dict ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =EsmForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = False __UpperCAmelCase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = () __UpperCAmelCase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =EsmModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : str ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE =type self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _lowerCAmelCase ( self : Any ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =EsmModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE =EsmEmbeddings(config=snake_case ) SCREAMING_SNAKE_CASE =torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE =torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE =create_position_ids_from_input_ids(snake_case ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case ,snake_case ) ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE =EsmEmbeddings(config=snake_case ) SCREAMING_SNAKE_CASE =torch.empty(2 ,4 ,30 ) SCREAMING_SNAKE_CASE =[ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE =torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE =embeddings.create_position_ids_from_inputs_embeds(snake_case ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case ,snake_case ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _lowerCAmelCase ( self : List[str] ): pass @unittest.skip('Esm does not support embedding resizing' ) def _lowerCAmelCase ( self : Dict ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCAmelCase ( self : Optional[int] ): pass @require_torch class a_ ( lowerCamelCase_ ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] ): with torch.no_grad(): SCREAMING_SNAKE_CASE =EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() SCREAMING_SNAKE_CASE =torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =33 SCREAMING_SNAKE_CASE =torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): with torch.no_grad(): SCREAMING_SNAKE_CASE =EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() SCREAMING_SNAKE_CASE =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE =torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,snake_case ,atol=1e-4 ) )
252
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __a = (7_2_0, 1_2_8_0) # Height, Width __a = (0.4, 0.6) # if height or width lower than this scale, drop it. __a = 1 / 1_0_0 __a = '' __a = '' __a = '' __a = 2_5_0 def a ( ): '''simple docstring''' lowercase_ , lowercase_ = get_dataset(snake_case__ , snake_case__ ) for index in range(snake_case__ ): lowercase_ = random.sample(range(len(snake_case__ ) ) , 4 ) lowercase_ , lowercase_ , lowercase_ = update_image_and_anno( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , filter_scale=snake_case__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase_ = random_chars(32 ) lowercase_ = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] lowercase_ = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , snake_case__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase_ = [] for anno in new_annos: lowercase_ = anno[3] - anno[1] lowercase_ = anno[4] - anno[2] lowercase_ = anno[1] + width / 2 lowercase_ = anno[2] + height / 2 lowercase_ = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(snake_case__ ) with open(F'''{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def a ( snake_case__: str , snake_case__: str ): '''simple docstring''' lowercase_ = [] lowercase_ = [] for label_file in glob.glob(os.path.join(snake_case__ , '''*.txt''' ) ): lowercase_ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(snake_case__ ) as in_file: lowercase_ = in_file.readlines() lowercase_ = os.path.join(snake_case__ , F'''{label_name}.jpg''' ) lowercase_ = [] for obj_list in obj_lists: lowercase_ = obj_list.rstrip('''\n''' ).split(''' ''' ) lowercase_ = float(obj[1] ) - float(obj[3] ) / 2 lowercase_ = float(obj[2] ) - float(obj[4] ) / 2 lowercase_ = float(obj[1] ) + float(obj[3] ) / 2 lowercase_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case__ ) labels.append(snake_case__ ) return img_paths, labels def a ( snake_case__: list , snake_case__: list , snake_case__: list[int] , snake_case__: tuple[int, int] , snake_case__: tuple[float, float] , snake_case__: float = 0.0 , ): '''simple docstring''' lowercase_ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase_ = int(scale_x * output_size[1] ) lowercase_ = int(scale_y * output_size[0] ) lowercase_ = [] lowercase_ = [] for i, index in enumerate(snake_case__ ): lowercase_ = all_img_list[index] path_list.append(snake_case__ ) lowercase_ = all_annos[index] lowercase_ = cva.imread(snake_case__ ) if i == 0: # top-left lowercase_ = cva.resize(snake_case__ , (divid_point_x, divid_point_y) ) lowercase_ = img for bbox in img_annos: lowercase_ = bbox[1] * scale_x lowercase_ = bbox[2] * scale_y lowercase_ = bbox[3] * scale_x lowercase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase_ = cva.resize(snake_case__ , (output_size[1] - divid_point_x, divid_point_y) ) lowercase_ = img for bbox in img_annos: lowercase_ = scale_x + bbox[1] * (1 - scale_x) lowercase_ = bbox[2] * scale_y lowercase_ = scale_x + bbox[3] * (1 - scale_x) lowercase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase_ = cva.resize(snake_case__ , (divid_point_x, output_size[0] - divid_point_y) ) lowercase_ = img for bbox in img_annos: lowercase_ = bbox[1] * scale_x lowercase_ = scale_y + bbox[2] * (1 - scale_y) lowercase_ = bbox[3] * scale_x lowercase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase_ = cva.resize( snake_case__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase_ = img for bbox in img_annos: lowercase_ = scale_x + bbox[1] * (1 - scale_x) lowercase_ = scale_y + bbox[2] * (1 - scale_y) lowercase_ = scale_x + bbox[3] * (1 - scale_x) lowercase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def a ( snake_case__: int ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowercase_ = ascii_lowercase + digits return "".join(random.choice(snake_case__ ) for _ in range(snake_case__ ) ) if __name__ == "__main__": main() print('DONE ✅')
97
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Optional[int] = 'wav2vec2' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=3_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=7_6_8 , SCREAMING_SNAKE_CASE_ : int=1_2 , SCREAMING_SNAKE_CASE_ : Any=1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : Dict=1e-5 , SCREAMING_SNAKE_CASE_ : List[Any]="group" , SCREAMING_SNAKE_CASE_ : List[str]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE_ : Any=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE_ : str=1_6 , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : str=0.05 , SCREAMING_SNAKE_CASE_ : Dict=1_0 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.0 , SCREAMING_SNAKE_CASE_ : List[str]=1_0 , SCREAMING_SNAKE_CASE_ : List[Any]=0 , SCREAMING_SNAKE_CASE_ : Dict=3_2_0 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_0_0 , SCREAMING_SNAKE_CASE_ : List[Any]=2_5_6 , SCREAMING_SNAKE_CASE_ : int=2_5_6 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : List[str]="sum" , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=2_5_6 , SCREAMING_SNAKE_CASE_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , SCREAMING_SNAKE_CASE_ : List[Any]=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE_ : List[Any]=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE_ : Tuple=5_1_2 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden_size lowercase_ = feat_extract_norm lowercase_ = feat_extract_activation lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = conv_bias lowercase_ = num_conv_pos_embeddings lowercase_ = num_conv_pos_embedding_groups lowercase_ = len(self.conv_dim ) lowercase_ = num_hidden_layers lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = num_attention_heads lowercase_ = hidden_dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = feat_proj_dropout lowercase_ = final_dropout lowercase_ = layerdrop lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = vocab_size lowercase_ = do_stable_layer_norm lowercase_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ = apply_spec_augment lowercase_ = mask_time_prob lowercase_ = mask_time_length lowercase_ = mask_time_min_masks lowercase_ = mask_feature_prob lowercase_ = mask_feature_length lowercase_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase_ = num_codevectors_per_group lowercase_ = num_codevector_groups lowercase_ = contrastive_logits_temperature lowercase_ = feat_quantizer_dropout lowercase_ = num_negatives lowercase_ = codevector_dim lowercase_ = proj_codevector_dim lowercase_ = diversity_loss_weight # ctc loss lowercase_ = ctc_loss_reduction lowercase_ = ctc_zero_infinity # adapter lowercase_ = add_adapter lowercase_ = adapter_kernel_size lowercase_ = adapter_stride lowercase_ = num_adapter_layers lowercase_ = output_hidden_size or hidden_size lowercase_ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = xvector_output_dim @property def _lowercase ( self : Any ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
97
1
lowerCamelCase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def UpperCAmelCase_ ( __UpperCamelCase ): # Make sure the supplied data is a bytes-like object if not isinstance(__UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ ="""""".join(bin(__UpperCamelCase )[2:].zfill(8 ) for byte in data ) SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later SCREAMING_SNAKE_CASE__ =B"""=""" * ((6 - len(__UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__UpperCamelCase ) % 6) else: SCREAMING_SNAKE_CASE__ =B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(__UpperCamelCase ), 6 ) ).encode() + padding ) def UpperCAmelCase_ ( __UpperCamelCase ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__UpperCamelCase, __UpperCamelCase ) and not isinstance(__UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(__UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__UpperCamelCase, __UpperCamelCase ): try: SCREAMING_SNAKE_CASE__ =encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) SCREAMING_SNAKE_CASE__ =encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one SCREAMING_SNAKE_CASE__ =encoded_data[:-padding] SCREAMING_SNAKE_CASE__ ="""""".join( bin(B64_CHARSET.index(__UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: SCREAMING_SNAKE_CASE__ ="""""".join( bin(B64_CHARSET.index(__UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) SCREAMING_SNAKE_CASE__ =[ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(__UpperCamelCase ), 8 ) ] return bytes(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
588
import math def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =2 SCREAMING_SNAKE_CASE__ =int(math.sqrt(__UpperCamelCase ) ) # Size of every segment SCREAMING_SNAKE_CASE__ =[True] * (end + 1) SCREAMING_SNAKE_CASE__ =[] while start <= end: if temp[start] is True: in_prime.append(__UpperCamelCase ) for i in range(start * start, end + 1, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =False start += 1 prime += in_prime SCREAMING_SNAKE_CASE__ =end + 1 SCREAMING_SNAKE_CASE__ =min(2 * end, __UpperCamelCase ) while low <= n: SCREAMING_SNAKE_CASE__ =[True] * (high - low + 1) for each in in_prime: SCREAMING_SNAKE_CASE__ =math.floor(low / each ) * each if t < low: t += each for j in range(__UpperCamelCase, high + 1, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =False for j in range(len(__UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) SCREAMING_SNAKE_CASE__ =high + 1 SCREAMING_SNAKE_CASE__ =min(high + end, __UpperCamelCase ) return prime print(sieve(10**6))
588
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowerCAmelCase: Dict = trt.Logger(trt.Logger.WARNING) _lowerCAmelCase: Union[str, Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowerCAmelCase: Optional[Any] = logging.getLogger(__name__) _lowerCAmelCase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) _lowerCAmelCase: Dict = parser.parse_args() if args.tokenizer_name: _lowerCAmelCase: Any = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) _lowerCAmelCase: str = args.per_device_eval_batch_size _lowerCAmelCase: Optional[Any] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowerCAmelCase: List[str] = True _lowerCAmelCase: Tuple = """temp_engine/bert-fp32.engine""" if args.fpaa: _lowerCAmelCase: Optional[Any] = """temp_engine/bert-fp16.engine""" if args.inta: _lowerCAmelCase: str = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') _lowerCAmelCase: Dict = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowerCAmelCase: str = [network.get_input(i) for i in range(network.num_inputs)] _lowerCAmelCase: Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowerCAmelCase: int = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowerCAmelCase: int = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowerCAmelCase: Optional[int] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def _lowercase( __a : Any , __a : str , __a : Any , __a : Tuple , __a : int , __a : Union[str, Any] , __a : Optional[int] , __a : str ): a__ =np.asarray(inputs['input_ids'] , dtype=np.intaa ) a__ =np.asarray(inputs['attention_mask'] , dtype=np.intaa ) a__ =np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __a ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __a ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __a ) # start time a__ =time.time() # Run inference context.execute_async( bindings=[int(__a ) for d_inp in d_inputs] + [int(__a ), int(__a )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__a , __a , __a ) cuda.memcpy_dtoh_async(__a , __a , __a ) # Synchronize the stream and take time stream.synchronize() # end time a__ =time.time() a__ =end_time - start_time a__ =(h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowerCAmelCase: Any = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCAmelCase: Optional[int] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowerCAmelCase: Dict = raw_datasets["""validation"""].column_names _lowerCAmelCase: List[Any] = """question""" if """question""" in column_names else column_names[0] _lowerCAmelCase: int = """context""" if """context""" in column_names else column_names[1] _lowerCAmelCase: Any = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowerCAmelCase: Any = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _lowerCAmelCase: Optional[Any] = min(args.max_seq_length, tokenizer.model_max_length) def _lowercase( __a : List[Any] ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace a__ =[q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. a__ =tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=__a , stride=args.doc_stride , return_overflowing_tokens=__a , return_offsets_mapping=__a , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. a__ =tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. a__ =[] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). a__ =tokenized_examples.sequence_ids(__a ) a__ =1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. a__ =sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. a__ =[ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples _lowerCAmelCase: int = raw_datasets["""validation"""] # Validation Feature Creation _lowerCAmelCase: List[str] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) _lowerCAmelCase: Any = default_data_collator _lowerCAmelCase: Any = eval_dataset.remove_columns(['example_id', 'offset_mapping']) _lowerCAmelCase: Dict = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Tuple , __a : Optional[Any]="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. a__ =postprocess_qa_predictions( examples=__a , features=__a , predictions=__a , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__a , ) # Format the result to the format the metric expects. if args.version_2_with_negative: a__ =[ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: a__ =[{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] a__ =[{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__a , label_ids=__a ) _lowerCAmelCase: List[Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _lowercase( __a : Optional[Any] ): return trt.volume(engine.get_binding_shape(__a ) ) * engine.get_binding_dtype(__a ).itemsize # Allocate device memory for inputs and outputs. _lowerCAmelCase: Any = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowerCAmelCase: Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowerCAmelCase: List[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowerCAmelCase: str = cuda.mem_alloc(h_outputa.nbytes) _lowerCAmelCase: Dict = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowerCAmelCase: str = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") _lowerCAmelCase: Optional[int] = 0.0 _lowerCAmelCase: Dict = 0 _lowerCAmelCase: Union[str, Any] = timeit.default_timer() _lowerCAmelCase: Optional[int] = None for step, batch in enumerate(eval_dataloader): _lowerCAmelCase: Optional[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowerCAmelCase: Any = outputs _lowerCAmelCase: Optional[int] = torch.tensor(start_logits) _lowerCAmelCase: Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowerCAmelCase: Dict = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _lowerCAmelCase: Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _lowerCAmelCase: int = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowerCAmelCase: str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _lowerCAmelCase: Tuple = nested_truncate(all_preds, len(eval_dataset)) _lowerCAmelCase: int = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) _lowerCAmelCase: Tuple = post_processing_function(eval_examples, eval_dataset, all_preds) _lowerCAmelCase: str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
20
'''simple docstring''' def snake_case__ ( UpperCamelCase ) -> list: _UpperCamelCase : Any = False while is_sorted is False: # Until all the indices are traversed keep looping _UpperCamelCase : List[str] = True for i in range(0 ,len(UpperCamelCase ) - 1 ,2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _UpperCamelCase, _UpperCamelCase : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCamelCase : int = False for i in range(1 ,len(UpperCamelCase ) - 1 ,2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _UpperCamelCase, _UpperCamelCase : Optional[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCamelCase : Optional[int] = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _UpperCAmelCase : Optional[int] = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCAmelCase : Union[str, Any] = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
683
0
def SCREAMING_SNAKE_CASE_ ( __A : list , __A : int = 0 ) -> list: """simple docstring""" a_ : Tuple = length or len(__A ) a_ : Union[str, Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: a_ , a_ : Union[str, Any] = list_data[i + 1], list_data[i] a_ : Any = True return list_data if not swapped else bubble_sort(__A , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
443
UpperCAmelCase_ : Optional[int] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase_ : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase_ : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
443
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCAmelCase_ = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) lowerCAmelCase_ = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} lowerCAmelCase_ = '''zero2''' lowerCAmelCase_ = '''zero3''' lowerCAmelCase_ = [ZEROa, ZEROa] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Tuple = parameterized.to_safe_name('''_'''.join(str(_UpperCamelCase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowerCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowerCAmelCase ( _a ): @parameterized.expand(__magic_name__ , name_func=__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' self.run_and_check( stage=__magic_name__ , model=__magic_name__ , distributed=__magic_name__ , fpaa=__magic_name__ , ) @require_torch_multi_gpu @parameterized.expand(__magic_name__ , name_func=__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' self.run_and_check( stage=__magic_name__ , model=__magic_name__ , distributed=__magic_name__ , fpaa=__magic_name__ , ) @parameterized.expand(__magic_name__ , name_func=__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' self.run_and_check( stage=__magic_name__ , model=__magic_name__ , distributed=__magic_name__ , fpaa=__magic_name__ , ) @require_torch_multi_gpu @parameterized.expand(__magic_name__ , name_func=__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' self.run_and_check( stage=__magic_name__ , model=__magic_name__ , distributed=__magic_name__ , fpaa=__magic_name__ , ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' pass def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = 10 , __magic_name__ = True , __magic_name__ = True , __magic_name__ = True , ) -> Any: '''simple docstring''' snake_case_ : List[Any] = models[model] snake_case_ : Optional[int] = self.run_trainer( stage=__magic_name__ , model_name=__magic_name__ , eval_steps=__magic_name__ , num_train_epochs=1 , distributed=__magic_name__ , fpaa=__magic_name__ , ) self.do_checks(__magic_name__ ) return output_dir def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = 10 , __magic_name__ = 1 , __magic_name__ = True , __magic_name__ = True , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_auto_remove_tmp_dir('''./xxx''' , after=__magic_name__ ) snake_case_ : Optional[Any] = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__magic_name__ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case_ : Tuple = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() snake_case_ : Dict = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] snake_case_ : Optional[int] = self.get_launcher(__magic_name__ ) snake_case_ : List[Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__magic_name__ , env=self.get_env() ) return output_dir def lowerCamelCase (self , __magic_name__=False ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
60
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowercase__ : Optional[int] = '''tiny-wmt19-en-ru''' # Build # borrowed from a test lowercase__ : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase__ : List[Any] = dict(zip(vocab, range(len(vocab)))) lowercase__ : Optional[int] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Optional[Any] = Path(tmpdirname) lowercase__ : Any = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] lowercase__ : Tuple = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] lowercase__ : List[Any] = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) lowercase__ : int = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowercase__ : Tuple = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowercase__ : Optional[int] = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test lowercase__ : Dict = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowercase__ : List[Any] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
123
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''''' _lowerCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase = None # compression type in fsspec. ex: "gzip" _lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Optional[Any] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , **UpperCAmelCase_ : Dict): super().__init__(self , **UpperCAmelCase_) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCamelCase__ : int = fsspec.open( UpperCAmelCase_ , mode='rb' , protocol=UpperCAmelCase_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCamelCase__ : Tuple = os.path.basename(self.file.path.split('::')[0]) UpperCamelCase__ : Union[str, Any] = ( self.compressed_name[: self.compressed_name.rindex('.')] if '.' in self.compressed_name else self.compressed_name ) UpperCamelCase__ : str = None @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : Dict): # compressed file paths are always relative to the archive root return super()._strip_protocol(UpperCAmelCase_).lstrip('/') def __UpperCamelCase ( self : Any): if self.dir_cache is None: UpperCamelCase__ : Tuple = {**self.file.fs.info(self.file.path), 'name': self.uncompressed_name} UpperCamelCase__ : Dict = {f['name']: f} def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): return self.file.open().read() def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : str , ): UpperCamelCase__ : str = self._strip_protocol(UpperCAmelCase_) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'') return self.file.open() class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''bz2''' _lowerCamelCase = '''bz2''' _lowerCamelCase = '''.bz2''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''gzip''' _lowerCamelCase = '''gzip''' _lowerCamelCase = '''.gz''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''lz4''' _lowerCamelCase = '''lz4''' _lowerCamelCase = '''.lz4''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''xz''' _lowerCamelCase = '''xz''' _lowerCamelCase = '''.xz''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''zstd''' _lowerCamelCase = '''zstd''' _lowerCamelCase = '''.zst''' def __init__( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , UpperCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **UpperCAmelCase_ : Dict , ): super().__init__( fo=UpperCAmelCase_ , mode=UpperCAmelCase_ , target_protocol=UpperCAmelCase_ , target_options=UpperCAmelCase_ , block_size=UpperCAmelCase_ , **UpperCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCamelCase__ : str = self.file.__enter__ class __lowercase : def __init__( self : Optional[int] , UpperCAmelCase_ : Dict): UpperCamelCase__ : str = file_ def __enter__( self : str): self._file.__enter__() return self def __exit__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): self._file.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_) def __iter__( self : Tuple): return iter(self._file) def __UpperCamelCase ( self : Any): return next(self._file) def __getattr__( self : str , UpperCAmelCase_ : Tuple): return getattr(self._file , UpperCAmelCase_) def fixed_enter(*UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): return WrappedFile(_enter(*UpperCAmelCase_ , **UpperCAmelCase_)) UpperCamelCase__ : str = fixed_enter
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
"""simple docstring""" import baseaa def snake_case ( lowerCAmelCase_ ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def snake_case ( lowerCAmelCase_ ) -> str: return baseaa.baadecode(lowerCAmelCase_ ).decode('''utf-8''' ) if __name__ == "__main__": snake_case = '''Hello World!''' snake_case = baseaa_encode(test) print(encoded) snake_case = baseaa_decode(encoded) print(decoded)
103
'''simple docstring''' def A__ ( UpperCAmelCase_ = 1_0_0_0 ): _UpperCamelCase : List[str] = 3 _UpperCamelCase : Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
195
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = LayoutLMTokenizer _lowerCamelCase = LayoutLMTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCamelCase__ ( self ) -> int: super().setUp() A = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> Union[str, Any]: return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: A = """UNwant\u00E9d,running""" A = """unwanted, running""" return input_text, output_text def UpperCamelCase__ ( self ) -> List[Any]: A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase_ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[7, 4, 5, 1_0, 8, 9] ) def UpperCamelCase__ ( self ) -> Tuple: pass
255
"""simple docstring""" UpperCAmelCase =256 # Modulus to hash a string UpperCAmelCase =1_000_003 def _A ( _a : str , _a : str ): """simple docstring""" A = len(_a ) A = len(_a ) if p_len > t_len: return False A = 0 A = 0 A = 1 # Calculating the hash of pattern and substring of text for i in range(_a ): A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _A ( ): """simple docstring""" A = """abc1abc12""" A = """alskfjaldsabc1abc1abc12k23adsfabcabc""" A = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_a , _a ) and not rabin_karp(_a , _a ) # Test 2) A = """ABABX""" A = """ABABZABABYABABX""" assert rabin_karp(_a , _a ) # Test 3) A = """AAAB""" A = """ABAAAAAB""" assert rabin_karp(_a , _a ) # Test 4) A = """abcdabcy""" A = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_a , _a ) # Test 5) A = """Lü""" A = """Lüsai""" assert rabin_karp(_a , _a ) A = """Lue""" assert not rabin_karp(_a , _a ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
255
1
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase_ = [p / w for p, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase_ = sorted(SCREAMING_SNAKE_CASE_ ) # declaring useful variables UpperCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase_ = sorted_profit_by_weight[length - i - 1] UpperCamelCase_ = profit_by_weight.index(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) SCREAMING_SNAKE_CASE :List[str] = [int(x) for x in input("""Input profits separated by spaces: """).split()] SCREAMING_SNAKE_CASE :Optional[int] = [int(x) for x in input("""Input weights separated by spaces: """).split()] SCREAMING_SNAKE_CASE :Union[str, Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
628
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str ): def get_masked_lm_array(UpperCamelCase : str ): A__ = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_array(UpperCamelCase : str ): A__ = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_layer_array(UpperCamelCase : int , UpperCamelCase : str ): A__ = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_attention_layer_array(UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : int ): A__ = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) A__ = array.reshape(UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) print(F"""Loading model based on config from {config_path}...""" ) A__ = BertConfig.from_json_file(UpperCamelCase ) A__ = BertForMaskedLM(UpperCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): A__ = model.bert.encoder.layer[layer_index] # Self-attention A__ = layer.attention.self A__ = get_encoder_attention_layer_array( UpperCamelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output A__ = layer.attention.output A__ = get_encoder_attention_layer_array( UpperCamelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) A__ = get_encoder_layer_array(UpperCamelCase , """_attention_layer_norm/gamma""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_attention_layer_norm/beta""" ) # Intermediate A__ = layer.intermediate A__ = get_encoder_layer_array(UpperCamelCase , """_intermediate_dense/kernel""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_intermediate_dense/bias""" ) # Output A__ = layer.output A__ = get_encoder_layer_array(UpperCamelCase , """_output_dense/kernel""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_dense/bias""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_layer_norm/gamma""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_layer_norm/beta""" ) # Embeddings A__ = get_encoder_array("""_position_embedding_layer/embeddings""" ) A__ = get_encoder_array("""_type_embedding_layer/embeddings""" ) A__ = get_encoder_array("""_embedding_norm_layer/gamma""" ) A__ = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head A__ = model.cls.predictions.transform A__ = get_masked_lm_array("""dense/kernel""" ) A__ = get_masked_lm_array("""dense/bias""" ) A__ = get_masked_lm_array("""layer_norm/gamma""" ) A__ = get_masked_lm_array("""layer_norm/beta""" ) A__ = get_masked_lm_array("""embedding_table""" ) # Pooling A__ = BertPooler(config=UpperCamelCase ) A__ = get_encoder_array("""_pooler_layer/kernel""" ) A__ = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(UpperCamelCase ) # Integration test - should load without any errors ;) A__ = BertForMaskedLM.from_pretrained(UpperCamelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) lowerCamelCase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
574
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A : Tuple = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) A : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A : Optional[Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") A : Tuple = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def snake_case_ ( a__ : List[str] ): """simple docstring""" __lowercase = None # source code of `config_class` __lowercase = inspect.getsource(a__ ) __lowercase = _re_checkpoint.findall(a__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): __lowercase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __lowercase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: __lowercase = ckpt_name break return checkpoint def snake_case_ ( ): """simple docstring""" __lowercase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __lowercase = get_checkpoint_from_config_class(a__ ) __lowercase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(a__ ) if len(a__ ) > 0: __lowercase = """\n""".join(sorted(a__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
163
'''simple docstring''' def snake_case_ ( a__ : int ): """simple docstring""" if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence __lowercase = gray_code_sequence_string(a__ ) # # convert them to integers for i in range(len(a__ ) ): __lowercase = int(sequence[i] ,2 ) return sequence def snake_case_ ( a__ : int ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = """0""" + smaller_sequence[i] sequence.append(a__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = """1""" + smaller_sequence[i] sequence.append(a__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
163
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __lowerCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=A__ ) class a__ : A = 42 A = 42 A = None A = None A = None @dataclass(frozen=A__ ) class a__ : A = 42 A = None A = None A = None A = None if is_torch_available(): import torch from torch.utils.data import Dataset class a__ ( A__ ): A = 42 def __init__( self : Optional[int],_A : str,_A : PreTrainedTokenizer,_A : str,_A : Optional[int] = None,_A : List[Any]=False,_A : bool = False,): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,"cached_{}_{}_{}_{}".format( "dev" if evaluate else "train",tokenizer.__class__.__name__,str(_A ),_A,),) SCREAMING_SNAKE_CASE_ : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Tuple = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : str = cached_features_file + ".lock" with FileLock(_A ): if os.path.exists(_A ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(_A ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( processor.get_dev_examples(_A ) if evaluate else processor.get_train_examples(_A ) ) logger.info("Training examples: %s",len(_A ) ) SCREAMING_SNAKE_CASE_ : Any = hans_convert_examples_to_features(_A,_A,_A,_A ) logger.info("Saving features into cached file %s",_A ) torch.save(self.features,_A ) def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any],_A : Tuple ): """simple docstring""" return self.features[i] def __UpperCamelCase ( self : Any ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class a__ : A = 42 def __init__( self : Optional[int],_A : str,_A : PreTrainedTokenizer,_A : str,_A : Optional[int] = 128,_A : Union[str, Any]=False,_A : bool = False,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : List[str] = label_list SCREAMING_SNAKE_CASE_ : Any = processor.get_dev_examples(_A ) if evaluate else processor.get_train_examples(_A ) SCREAMING_SNAKE_CASE_ : Dict = hans_convert_examples_to_features(_A,_A,_A,_A ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ),desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(_A )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.data.Dataset.from_generator( _A,( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ),( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ),) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any],_A : str ): """simple docstring""" return self.features[i] def __UpperCamelCase ( self : Tuple ): """simple docstring""" return self.label_list class a__ ( A__ ): def __UpperCamelCase ( self : Dict,_A : Optional[int] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_A,"heuristics_train_set.txt" ) ),"train" ) def __UpperCamelCase ( self : Dict,_A : Any ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_A,"heuristics_evaluation_set.txt" ) ),"dev" ) def __UpperCamelCase ( self : Dict ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def __UpperCamelCase ( self : Union[str, Any],_A : str,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for i, line in enumerate(_A ): if i == 0: continue SCREAMING_SNAKE_CASE_ : Optional[Any] = "%s-%s" % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Union[str, Any] = line[5] SCREAMING_SNAKE_CASE_ : List[Any] = line[6] SCREAMING_SNAKE_CASE_ : Any = line[7][2:] if line[7].startswith("ex" ) else line[7] SCREAMING_SNAKE_CASE_ : Tuple = line[0] examples.append(InputExample(guid=_A,text_a=_A,text_b=_A,label=_A,pairID=_A ) ) return examples def _snake_case ( lowerCAmelCase : List[InputExample] , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : PreTrainedTokenizer , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {label: i for i, label in enumerate(lowerCAmelCase )} SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase ) , desc="convert examples to features" ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d" % (ex_index) ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , truncation=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : int = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase , label=lowerCAmelCase , pairID=lowerCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features __lowerCamelCase : Tuple = { '''hans''': 3, } __lowerCamelCase : Union[str, Any] = { '''hans''': HansProcessor, }
216
from __future__ import annotations def _snake_case ( lowerCAmelCase : int | float | str , lowerCAmelCase : int | float | str ): """simple docstring""" if nth_term == "": return [""] SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : list[str] = [] for temp in range(int(lowerCAmelCase ) ): series.append(f'1 / {pow(temp + 1 , int(lowerCAmelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : List[Any] = int(input('''Enter the last number (nth term) of the P-Series''')) __lowerCamelCase : int = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
216
1
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 1.5 _lowerCamelCase : List[str] = int(factor * num_class_images ) _lowerCamelCase : Optional[Any] = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_lowercase , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=_lowercase ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: _lowerCamelCase : List[Any] = client.query(text=_lowercase ) if len(_lowercase ) >= factor * num_class_images or num_images > 1E4: break else: _lowerCamelCase : Optional[int] = int(factor * num_images ) _lowerCamelCase : str = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_lowercase , aesthetic_weight=0.1 , ) _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : str = 0 _lowerCamelCase : Any = tqdm(desc="downloading real regularization images" , total=_lowercase ) with open(F'{class_data_dir}/caption.txt' , "w" ) as fa, open(F'{class_data_dir}/urls.txt' , "w" ) as fa, open( F'{class_data_dir}/images.txt' , "w" ) as fa: while total < num_class_images: _lowerCamelCase : Optional[Any] = class_images[count] count += 1 try: _lowerCamelCase : str = requests.get(images["url"] ) if img.status_code == 200: _lowerCamelCase : int = Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F'{class_data_dir}/images/{total}.jpg' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = argparse.ArgumentParser("" , add_help=_lowercase ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=_lowercase , type=_lowercase ) parser.add_argument("--class_data_dir" , help="path to save images" , required=_lowercase , type=_lowercase ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=_lowercase ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase_ : List[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
from sklearn.metrics import fa_score import datasets __a = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' __a = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' __a = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): """simple docstring""" def _lowercase ( self : List[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Tuple="binary" , SCREAMING_SNAKE_CASE_ : Any=None ) -> Any: lowercase_ = fa_score( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , pos_label=SCREAMING_SNAKE_CASE_ , average=SCREAMING_SNAKE_CASE_ , sample_weight=SCREAMING_SNAKE_CASE_ ) return {"f1": float(SCREAMING_SNAKE_CASE_ ) if score.size == 1 else score}
97
from __future__ import annotations def a ( snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Any , snake_case__: Optional[int] ): # noqa: E741 '''simple docstring''' while r - l > 1: lowercase_ = (l + r) // 2 if v[m] >= key: lowercase_ = m else: lowercase_ = m # noqa: E741 return r def a ( snake_case__: list[int] ): '''simple docstring''' if len(snake_case__ ) == 0: return 0 lowercase_ = [0] * len(snake_case__ ) lowercase_ = 1 lowercase_ = v[0] for i in range(1 , len(snake_case__ ) ): if v[i] < tail[0]: lowercase_ = v[i] elif v[i] > tail[length - 1]: lowercase_ = v[i] length += 1 else: lowercase_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
97
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={ '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] __A =['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __A =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A =get_tests_dir("fixtures") class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = mock.Mock() __UpperCAmelCase : int = 5_00 __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : List[Any] = HTTPError __UpperCAmelCase : Any = {} # Download this model to make sure it's in the cache. __UpperCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=a_ ) as mock_head: __UpperCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case__ ( cls : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(a_ ) @classmethod def snake_case__ ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(a_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) __UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(a_ , a_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( a_ , repo_id='''test-feature-extractor''' , push_to_hub=a_ , use_auth_token=self._token ) __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(a_ , a_ ) ) def snake_case__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(a_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) __UpperCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(a_ , a_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( a_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=a_ , use_auth_token=self._token ) __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a_ , getattr(a_ , a_ ) ) def snake_case__ ( self : List[str] ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCAmelCase : List[Any] = CustomFeatureExtractor.from_pretrained(a_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) __UpperCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
241
0
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowerCamelCase ( a_ ): _lowerCamelCase :torch.FloatTensor _lowerCamelCase :Optional[torch.FloatTensor] = None def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=0.999 , __UpperCAmelCase="cosine" , ) -> Dict: if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowerCAmelCase__ : Tuple = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class _lowerCamelCase ( a_ , a_ ): _lowerCamelCase :str = 1 @register_to_config def __init__( self : str , UpperCamelCase : int = 10_00 , UpperCamelCase : float = 0.0001 , UpperCamelCase : float = 0.02 , UpperCamelCase : str = "linear" , UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase : bool = True , UpperCamelCase : bool = True , UpperCamelCase : int = 0 , UpperCamelCase : str = "epsilon" , UpperCamelCase : float = 1.0 , **UpperCamelCase : List[Any] , ) -> List[Any]: """simple docstring""" if kwargs.get("""set_alpha_to_one""" , UpperCamelCase ) is not None: lowerCAmelCase__ : Tuple = ( """The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.""" ) deprecate("""set_alpha_to_one""" , """1.0.0""" , UpperCamelCase , standard_warn=UpperCamelCase ) lowerCAmelCase__ : Dict = kwargs["""set_alpha_to_one"""] if trained_betas is not None: lowerCAmelCase__ : int = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : Optional[int] = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : str = betas_for_alpha_bar(UpperCamelCase ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowerCAmelCase__ : Optional[int] = 1.0 - self.betas lowerCAmelCase__ : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowerCAmelCase__ : Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowerCAmelCase__ : Union[str, Any] = 1.0 # setable values lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Union[str, Any] = torch.from_numpy(np.arange(0 , UpperCamelCase ).copy().astype(np.intaa ) ) def _lowerCAmelCase ( self : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None ) -> Optional[int]: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) lowerCAmelCase__ : Optional[int] = num_inference_steps lowerCAmelCase__ : Dict = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) lowerCAmelCase__ : Tuple = torch.from_numpy(UpperCamelCase ).to(UpperCamelCase ) self.timesteps += self.config.steps_offset def _lowerCAmelCase ( self : Tuple , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = False , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" # 1. get previous step value (=t+1) lowerCAmelCase__ : int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowerCAmelCase__ : Dict = self.alphas_cumprod[timestep] lowerCAmelCase__ : Optional[int] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowerCAmelCase__ : Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowerCAmelCase__ : Union[str, Any] = model_output elif self.config.prediction_type == "sample": lowerCAmelCase__ : Union[str, Any] = model_output lowerCAmelCase__ : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowerCAmelCase__ : Optional[Any] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" """ `v_prediction`""" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowerCAmelCase__ : Any = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase__ : Tuple = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase__ : Union[str, Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def __len__( self : Optional[int] ) -> str: """simple docstring""" return self.config.num_train_timesteps
299
"""simple docstring""" from __future__ import annotations import queue class _lowerCamelCase : def __init__( self : Optional[int] , UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = data lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Optional[int] = None def lowercase_ ( ) -> TreeNode: print("""\n********Press N to stop entering at any point of time********\n""" ) lowerCAmelCase__ : Any = input("""Enter the value of the root node: """ ).strip().lower() lowerCAmelCase__ : queue.Queue = queue.Queue() lowerCAmelCase__ : Union[str, Any] = TreeNode(int(__UpperCAmelCase ) ) q.put(__UpperCAmelCase ) while not q.empty(): lowerCAmelCase__ : Dict = q.get() lowerCAmelCase__ : Optional[Any] = f"""Enter the left node of {node_found.data}: """ lowerCAmelCase__ : List[str] = input(__UpperCAmelCase ).strip().lower() or """n""" if check == "n": return tree_node lowerCAmelCase__ : Dict = TreeNode(int(__UpperCAmelCase ) ) lowerCAmelCase__ : Union[str, Any] = left_node q.put(__UpperCAmelCase ) lowerCAmelCase__ : str = f"""Enter the right node of {node_found.data}: """ lowerCAmelCase__ : str = input(__UpperCAmelCase ).strip().lower() or """n""" if check == "n": return tree_node lowerCAmelCase__ : List[Any] = TreeNode(int(__UpperCAmelCase ) ) lowerCAmelCase__ : List[str] = right_node q.put(__UpperCAmelCase ) raise def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ : queue.Queue = queue.Queue() q.put(__UpperCAmelCase ) while not q.empty(): lowerCAmelCase__ : Union[str, Any] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ : queue.Queue = queue.Queue() q.put(__UpperCAmelCase ) while not q.empty(): lowerCAmelCase__ : Tuple = [] while not q.empty(): lowerCAmelCase__ : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ : list[TreeNode] = [] lowerCAmelCase__ : List[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCAmelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCAmelCase__ : Optional[Any] = n.right def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ : list[TreeNode] = [] lowerCAmelCase__ : List[str] = node while n or stack: while n: stack.append(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = n.left lowerCAmelCase__ : Any = stack.pop() print(n.data , end=""",""" ) lowerCAmelCase__ : Optional[int] = n.right def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ , lowerCAmelCase__ : Dict = [], [] lowerCAmelCase__ : List[Any] = node stacka.append(__UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase__ : Tuple = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def lowercase_ ( __UpperCAmelCase = "" , __UpperCAmelCase=50 , __UpperCAmelCase="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase__ , lowerCAmelCase__ : List[str] = divmod(width - len(__UpperCAmelCase ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) _A = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
299
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _SCREAMING_SNAKE_CASE = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _SCREAMING_SNAKE_CASE = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} _SCREAMING_SNAKE_CASE = """zero2""" _SCREAMING_SNAKE_CASE = """zero3""" _SCREAMING_SNAKE_CASE = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case_ : Tuple = parameterized.to_safe_name('_'.join(str(__a ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test _SCREAMING_SNAKE_CASE = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( snake_case_ ): @parameterized.expand(_A , name_func=_A ) def UpperCAmelCase_ ( self : Tuple , _A : Optional[Any] , _A : Optional[int] ) -> Dict: """simple docstring""" self.run_and_check( stage=_A , model=_A , distributed=_A , fpaa=_A , ) @require_torch_multi_gpu @parameterized.expand(_A , name_func=_A ) def UpperCAmelCase_ ( self : int , _A : Any , _A : int ) -> Dict: """simple docstring""" self.run_and_check( stage=_A , model=_A , distributed=_A , fpaa=_A , ) @parameterized.expand(_A , name_func=_A ) def UpperCAmelCase_ ( self : str , _A : List[str] , _A : str ) -> Tuple: """simple docstring""" self.run_and_check( stage=_A , model=_A , distributed=_A , fpaa=_A , ) @require_torch_multi_gpu @parameterized.expand(_A , name_func=_A ) def UpperCAmelCase_ ( self : Optional[int] , _A : int , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" self.run_and_check( stage=_A , model=_A , distributed=_A , fpaa=_A , ) def UpperCAmelCase_ ( self : Any , _A : Union[str, Any] ) -> Any: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] , _A : str , _A : str , _A : int = 10 , _A : bool = True , _A : bool = True , _A : bool = True , ) -> Any: """simple docstring""" snake_case_ : Dict = models[model] snake_case_ : str = self.run_trainer( stage=_A , model_name=_A , eval_steps=_A , num_train_epochs=1 , distributed=_A , fpaa=_A , ) self.do_checks(_A ) return output_dir def UpperCAmelCase_ ( self : Any , _A : str , _A : str , _A : int = 10 , _A : int = 1 , _A : bool = True , _A : bool = True , ) -> Dict: """simple docstring""" snake_case_ : str = self.get_auto_remove_tmp_dir('./xxx' , after=_A ) snake_case_ : Tuple = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_A )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case_ : Any = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case_ : str = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case_ : int = self.get_launcher(_A ) snake_case_ : List[str] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_A , env=self.get_env() ) return output_dir def UpperCAmelCase_ ( self : Optional[Any] , _A : Optional[Any]=False ) -> List[str]: """simple docstring""" snake_case_ : str = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a ): # Load checkpoint snake_case_ : Union[str, Any] = torch.load(__a , map_location='cpu' ) snake_case_ : Union[str, Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository snake_case_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: snake_case_ : Tuple = v else: snake_case_ : Dict = v snake_case_ : Tuple = chkpt['params'] snake_case_ : List[Any] = {n: v for n, v in config.items() if not isinstance(__a , (torch.FloatTensor, numpy.ndarray) )} snake_case_ : Optional[int] = chkpt['dico_word2id'] snake_case_ : List[str] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model snake_case_ : List[str] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case_ : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME snake_case_ : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__a , __a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
534
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *UpperCamelCase : Dict , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : str , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *UpperCamelCase : List[str] , **UpperCamelCase : str ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Optional[int] , *UpperCamelCase : str , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : List[str] , **UpperCamelCase : str ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : Any , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *UpperCamelCase : int , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : List[Any] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Any , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , *UpperCamelCase : str , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : Any , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : Dict , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) def UpperCamelCase__ ( *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]: '''simple docstring''' requires_backends(UpperCAmelCase_ , ['''torch'''] ) def UpperCamelCase__ ( *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]: '''simple docstring''' requires_backends(UpperCAmelCase_ , ['''torch'''] ) def UpperCamelCase__ ( *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]: '''simple docstring''' requires_backends(UpperCAmelCase_ , ['''torch'''] ) def UpperCamelCase__ ( *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' requires_backends(UpperCAmelCase_ , ['''torch'''] ) def UpperCamelCase__ ( *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' requires_backends(UpperCAmelCase_ , ['''torch'''] ) def UpperCamelCase__ ( *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' requires_backends(UpperCAmelCase_ , ['''torch'''] ) def UpperCamelCase__ ( *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any: '''simple docstring''' requires_backends(UpperCAmelCase_ , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : List[Any] , **UpperCamelCase : str ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : Tuple , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : int , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : List[str] , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCamelCase : int , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : int , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Dict , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : Dict , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , *UpperCamelCase : int , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : Dict , **UpperCamelCase : str ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : Tuple , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : int ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , *UpperCamelCase : Dict , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Any , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : Tuple , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : int , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Dict , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : Dict , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *UpperCamelCase : List[str] , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : Any , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : Dict , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Optional[int] , *UpperCamelCase : str , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , *UpperCamelCase : int , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : Optional[Any] , **UpperCamelCase : str ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : List[str] , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : Dict , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : str , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : str , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : str , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : Dict , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : List[Any] , **UpperCamelCase : str ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : Optional[int] , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Optional[int] , *UpperCamelCase : Dict , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : int , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : int ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *UpperCamelCase : int , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : List[str] , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Dict , *UpperCamelCase : Tuple , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , *UpperCamelCase : int , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Any , *UpperCamelCase : int , **UpperCamelCase : int ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *UpperCamelCase : str , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Dict ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : int , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Any , *UpperCamelCase : Optional[Any] , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : Optional[int] , **UpperCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : str , *UpperCamelCase : List[str] , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : Dict , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Any , *UpperCamelCase : Any , **UpperCamelCase : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : int , *UpperCamelCase : int , **UpperCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Any , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : Any , *UpperCamelCase : str , **UpperCamelCase : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Tuple , *UpperCamelCase : str , **UpperCamelCase : int ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : str ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : str , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : Any , *UpperCamelCase : str , **UpperCamelCase : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase__ ( metaclass=A_ ): '''simple docstring''' UpperCAmelCase_ = ['''torch'''] def __init__( self : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *UpperCamelCase : Dict , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch'''] )
322
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase_ = None def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , ) -> List[str]: '''simple docstring''' import pyspark def generate_fn(): _lowercase : Any = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: _lowercase : int = df_with_partition_id.select('''*''' ).where(F'part_id = {partition_id}' ).drop('''part_id''' ) _lowercase : Union[str, Any] = partition_df.collect() _lowercase : int = 0 for row in rows: yield F'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class UpperCAmelCase__ ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : List[str]=None , ): """simple docstring""" _lowercase : List[Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Optional[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ): """simple docstring""" yield from self.generate_examples_fn() def lowerCAmelCase_ ( self : Tuple , UpperCamelCase : np.random.Generator ): """simple docstring""" _lowercase : Dict = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase ) def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" _lowercase : List[Any] = self.split_shard_indices_by_worker(UpperCamelCase , UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return len(self.partition_order ) class UpperCAmelCase__ ( datasets.DatasetBuilder ): '''simple docstring''' UpperCAmelCase_ = SparkConfig def __init__( self : Optional[int] , UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : str = None , UpperCamelCase : str = None , **UpperCamelCase : Union[str, Any] , ): """simple docstring""" import pyspark _lowercase : List[str] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : Any = df _lowercase : Dict = working_dir super().__init__( cache_dir=UpperCamelCase , config_name=str(self.df.semanticHash() ) , **UpperCamelCase , ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" def create_cache_and_write_probe(UpperCamelCase : Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCamelCase ) _lowercase : Tuple = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCamelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : Any = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def lowerCAmelCase_ ( self : str ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self : str , UpperCamelCase : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCAmelCase_ ( self : str , UpperCamelCase : Union[str, Any] ): """simple docstring""" import pyspark def get_arrow_batch_size(UpperCamelCase : int ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) _lowercase : int = self.df.count() _lowercase : Optional[Any] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : List[Any] = ( self.df.limit(UpperCamelCase ) .repartition(1 ) .mapInArrow(UpperCamelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : int = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : List[Any] = min(UpperCamelCase , int(approx_total_size / max_shard_size ) ) _lowercase : Optional[int] = self.df.repartition(UpperCamelCase ) def lowerCAmelCase_ ( self : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : int , ): """simple docstring""" import pyspark _lowercase : Optional[Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter _lowercase : List[str] = os.path.join(self._working_dir , os.path.basename(UpperCamelCase ) ) if self._working_dir else fpath _lowercase : str = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Tuple = self.config.features _lowercase : Tuple = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCamelCase : Dict ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : str = pyspark.TaskContext().taskAttemptId() _lowercase : List[Any] = next(UpperCamelCase , UpperCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) _lowercase : Dict = 0 _lowercase : Optional[int] = writer_class( features=UpperCamelCase , path=working_fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , writer_batch_size=UpperCamelCase , storage_options=UpperCamelCase , embed_local_files=UpperCamelCase , ) _lowercase : int = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 _lowercase : List[str] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , writer_batch_size=UpperCamelCase , storage_options=UpperCamelCase , embed_local_files=UpperCamelCase , ) _lowercase : List[str] = pa.Table.from_batches([batch] ) writer.write_table(UpperCamelCase ) if writer._num_bytes > 0: _lowercase , _lowercase : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCamelCase ) ): _lowercase : List[str] = os.path.join(os.path.dirname(UpperCamelCase ) , os.path.basename(UpperCamelCase ) ) shutil.move(UpperCamelCase , UpperCamelCase ) _lowercase : int = ( self.df.mapInArrow(UpperCamelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCAmelCase_ ( self : Dict , UpperCamelCase : "datasets.SplitGenerator" , UpperCamelCase : str = "arrow" , UpperCamelCase : Optional[Union[str, int]] = None , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Union[str, Any] , ): """simple docstring""" self._validate_cache_dir() _lowercase : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCamelCase ) _lowercase : Optional[Any] = not is_remote_filesystem(self._fs ) _lowercase : List[Any] = os.path.join if is_local else posixpath.join _lowercase : Optional[int] = '''-TTTTT-SSSSS-of-NNNNN''' _lowercase : str = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' _lowercase : List[str] = path_join(self._output_dir , UpperCamelCase ) _lowercase : Optional[Any] = 0 _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : int = [] _lowercase : Union[str, Any] = [] for task_id, content in self._prepare_split_single(UpperCamelCase , UpperCamelCase , UpperCamelCase ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCamelCase ) _lowercase : Optional[Any] = total_num_examples _lowercase : int = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Any = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , ): rename( UpperCamelCase , fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , fpath.replace('''TTTTT-SSSSS''' , F'{global_shard_id:05d}' ).replace('''NNNNN''' , F'{total_shards:05d}' ) , ) _lowercase : List[Any] = [] _lowercase : int = 0 for i in range(len(UpperCamelCase ) ): _lowercase , _lowercase : Optional[Any] = task_id_and_num_shards[i] for shard_id in range(UpperCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCamelCase , len(UpperCamelCase ) ).map(lambda UpperCamelCase : _rename_shard(*UpperCamelCase ) ).collect() else: # don't use any pattern _lowercase : Optional[int] = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , fpath.replace(UpperCamelCase , '''''' ) , ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
322
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( snake_case): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1, len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] __snake_case = grid[0] for row_n in range(1, len(snake_case)): __snake_case = grid[row_n] __snake_case = fill_row(snake_case, snake_case) __snake_case = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE ( snake_case, snake_case): current_row[0] += row_above[0] for cell_n in range(1, len(snake_case)): current_row[cell_n] += min(current_row[cell_n - 1], row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
93
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase : Dict = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
93
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowercase_ : def __init__( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]=99 , __lowerCamelCase : Any=32 , __lowerCamelCase : Union[str, Any]=5 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : int=16 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[Any]=0.0_2 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : Union[str, Any]=None , ): snake_case__ : Any = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Any = seq_length snake_case__ : Dict = is_training snake_case__ : List[str] = use_input_mask snake_case__ : Any = use_token_type_ids snake_case__ : Optional[int] = use_labels snake_case__ : List[Any] = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : str = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : List[Any] = type_sequence_label_size snake_case__ : Dict = initializer_range snake_case__ : str = num_labels snake_case__ : Optional[int] = num_choices snake_case__ : int = scope def _lowerCAmelCase ( self : int ): snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = None if self.use_input_mask: snake_case__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[Any] = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Any = None snake_case__ : List[str] = None snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Tuple ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , use_stable_embedding=__lowerCamelCase , ) def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): snake_case__ : int = OpenLlamaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) snake_case__ : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , ): snake_case__ : List[Any] = True snake_case__ : Tuple = OpenLlamaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) snake_case__ : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) snake_case__ : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , ): snake_case__ : List[str] = OpenLlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , ): snake_case__ : List[str] = True snake_case__ : Tuple = True snake_case__ : str = OpenLlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass snake_case__ : Tuple = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) snake_case__ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : int = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['hidden_states'][0] snake_case__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['hidden_states'][0] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) def _lowerCAmelCase ( self : str ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : List[Any] = config_and_inputs snake_case__ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A_ = (OpenLlamaForCausalLM,) if is_torch_available() else () A_ = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A_ = False A_ = False def _lowerCAmelCase ( self : Dict ): snake_case__ : Any = OpenLlamaModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCAmelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : str ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : Union[str, Any] = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = 3 snake_case__ : List[str] = input_dict['input_ids'] snake_case__ : Tuple = input_ids.ne(1 ).to(__lowerCamelCase ) snake_case__ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ : Tuple = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self : Dict ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = 3 snake_case__ : List[Any] = 'single_label_classification' snake_case__ : int = input_dict['input_ids'] snake_case__ : Union[str, Any] = input_ids.ne(1 ).to(__lowerCamelCase ) snake_case__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ : Tuple = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self : Tuple ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Any = 3 snake_case__ : str = 'multi_label_classification' snake_case__ : int = input_dict['input_ids'] snake_case__ : Union[str, Any] = input_ids.ne(1 ).to(__lowerCamelCase ) snake_case__ : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ : str = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Any ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) snake_case__ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : int = OpenLlamaModel(__lowerCamelCase ) original_model.to(__lowerCamelCase ) original_model.eval() snake_case__ : Optional[Any] = original_model(__lowerCamelCase ).last_hidden_state snake_case__ : Union[str, Any] = original_model(__lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : int = {'type': scaling_type, 'factor': 1_0.0} snake_case__ : Optional[int] = OpenLlamaModel(__lowerCamelCase ) scaled_model.to(__lowerCamelCase ) scaled_model.eval() snake_case__ : List[Any] = scaled_model(__lowerCamelCase ).last_hidden_state snake_case__ : Tuple = scaled_model(__lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) )
270
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A_ = logging.get_logger(__name__) class lowercase_ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , **__lowerCamelCase : Optional[int] ): snake_case__ : int = feature_size snake_case__ : List[str] = sampling_rate snake_case__ : Any = padding_value snake_case__ : Union[str, Any] = kwargs.pop('padding_side' , 'right' ) snake_case__ : List[Any] = kwargs.pop('return_attention_mask' , __lowerCamelCase ) super().__init__(**__lowerCamelCase ) def _lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __lowerCamelCase : Union[bool, str, PaddingStrategy] = True , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): snake_case__ : int = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys() )}" ) snake_case__ : Tuple = processed_features[self.model_input_names[0]] snake_case__ : Union[str, Any] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__lowerCamelCase ) == 0: if return_attention_mask: snake_case__ : str = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch snake_case__ : Dict = required_input[0] if isinstance(__lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. snake_case__ : List[Any] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__lowerCamelCase ): snake_case__ : List[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(__lowerCamelCase ): snake_case__ : int = 'tf' elif is_torch_tensor(__lowerCamelCase ): snake_case__ : str = 'pt' elif isinstance(__lowerCamelCase , (int, float, list, tuple, np.ndarray) ): snake_case__ : Any = 'np' else: raise ValueError( F"type of {first_element} unknown: {type(__lowerCamelCase )}. " 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): snake_case__ : List[Any] = to_numpy(__lowerCamelCase ) else: snake_case__ : List[str] = [to_numpy(__lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy snake_case__ : str = self._get_padding_strategies(padding=__lowerCamelCase , max_length=__lowerCamelCase ) snake_case__ : List[Any] = processed_features[self.model_input_names[0]] snake_case__ : Tuple = len(__lowerCamelCase ) if not all(len(__lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) snake_case__ : str = [] for i in range(__lowerCamelCase ): snake_case__ : str = {k: v[i] for k, v in processed_features.items()} # truncation snake_case__ : Optional[Any] = self._truncate( __lowerCamelCase , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , truncation=__lowerCamelCase , ) truncated_inputs.append(__lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length snake_case__ : Any = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) snake_case__ : Union[str, Any] = PaddingStrategy.MAX_LENGTH snake_case__ : List[Any] = {} for i in range(__lowerCamelCase ): # padding snake_case__ : Tuple = self._pad( truncated_inputs[i] , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: snake_case__ : Union[str, Any] = [] if value.dtype is np.dtype(np.floataa ): snake_case__ : int = value.astype(np.floataa ) batch_outputs[key].append(__lowerCamelCase ) return BatchFeature(__lowerCamelCase , tensor_type=__lowerCamelCase ) def _lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): snake_case__ : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: snake_case__ : Tuple = len(__lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case__ : Dict = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case__ : List[str] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: snake_case__ : Optional[int] = np.ones(len(__lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: snake_case__ : List[Any] = max_length - len(__lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: snake_case__ : List[str] = np.pad( processed_features['attention_mask'] , (0, difference) ) snake_case__ : List[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) snake_case__ : int = np.pad( __lowerCamelCase , __lowerCamelCase , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: snake_case__ : str = np.pad( processed_features['attention_mask'] , (difference, 0) ) snake_case__ : int = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) snake_case__ : int = np.pad( __lowerCamelCase , __lowerCamelCase , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def _lowerCAmelCase ( self : int , __lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) snake_case__ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case__ : List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case__ : str = len(__lowerCamelCase ) > max_length if needs_to_be_truncated: snake_case__ : Optional[int] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: snake_case__ : List[Any] = processed_features['attention_mask'][:max_length] return processed_features def _lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Optional[Any]=None ): # Get padding strategy if padding is not False: if padding is True: snake_case__ : int = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case__ : str = PaddingStrategy(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case__ : str = padding else: snake_case__ : Union[str, Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
270
1
from __future__ import annotations def lowerCAmelCase_ ( lowercase: Union[str, Any] ) -> list[int]: # This function is recursive '''simple docstring''' _UpperCamelCase: int = len(lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _UpperCamelCase: str = array[0] _UpperCamelCase: Optional[Any] = False _UpperCamelCase: Any = 1 _UpperCamelCase: list[int] = [] while not is_found and i < array_length: if array[i] < pivot: _UpperCamelCase: Union[str, Any] = True _UpperCamelCase: List[str] = [element for element in array[i:] if element >= array[i]] _UpperCamelCase: Union[str, Any] = longest_subsequence(lowercase ) if len(lowercase ) > len(lowercase ): _UpperCamelCase: List[str] = temp_array else: i += 1 _UpperCamelCase: List[str] = [element for element in array[1:] if element >= pivot] _UpperCamelCase: List[str] = [pivot, *longest_subsequence(lowercase )] if len(lowercase ) > len(lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
719
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCAmelCase_ ( lowercase: Optional[Any] , lowercase: Tuple ) -> Any: '''simple docstring''' _UpperCamelCase: Union[str, Any] = [] for part_id in partition_order: _UpperCamelCase: int = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(lowercase ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCamelCase: Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: int = spark.range(100 ).repartition(1 ) _UpperCamelCase: int = Spark(lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCamelCase: List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: Optional[Any] = spark.range(10 ).repartition(2 ) _UpperCamelCase: int = [1, 0] _UpperCamelCase: Any = _generate_iterable_examples(lowercase , lowercase ) # Reverse the partitions. _UpperCamelCase: List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _UpperCamelCase , _UpperCamelCase: List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' _UpperCamelCase: Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: Any = spark.range(10 ).repartition(1 ) _UpperCamelCase: int = SparkExamplesIterable(lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: _UpperCamelCase: Union[str, Any] = lambda lowercase : x.reverse() _UpperCamelCase: List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [2, 1, 0] ) _UpperCamelCase: Union[str, Any] = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCamelCase , _UpperCamelCase: List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: str = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _UpperCamelCase: List[Any] = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCamelCase: Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCamelCase , _UpperCamelCase: Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _UpperCamelCase: str = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCamelCase: str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCamelCase , _UpperCamelCase: str = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase: Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: Union[str, Any] = spark.range(100 ).repartition(1 ) _UpperCamelCase: Optional[Any] = Spark(lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
264
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : int = ['''pixel_values'''] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ = IMAGENET_DEFAULT_STD , **UpperCamelCase__ , ): """simple docstring""" super().__init__(**UpperCamelCase__ ) a_ = size if size is not None else {'shortest_edge': 224} a_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) a_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} a_ = get_size_dict(UpperCamelCase__ , param_name='crop_size' ) a_ = do_resize a_ = size a_ = resample a_ = do_center_crop a_ = crop_size a_ = do_rescale a_ = rescale_factor a_ = do_normalize a_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" a_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: a_ = int((256 / 224) * size['shortest_edge'] ) a_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) a_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( UpperCamelCase__ , size=(size_dict['height'], size_dict['width']) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" a_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(UpperCamelCase__ , size=(size['height'], size['width']) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ): """simple docstring""" a_ = do_resize if do_resize is not None else self.do_resize a_ = resample if resample is not None else self.resample a_ = do_center_crop if do_center_crop is not None else self.do_center_crop a_ = do_rescale if do_rescale is not None else self.do_rescale a_ = rescale_factor if rescale_factor is not None else self.rescale_factor a_ = do_normalize if do_normalize is not None else self.do_normalize a_ = image_mean if image_mean is not None else self.image_mean a_ = image_std if image_std is not None else self.image_std a_ = size if size is not None else self.size a_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) a_ = crop_size if crop_size is not None else self.crop_size a_ = get_size_dict(UpperCamelCase__ , param_name='crop_size' ) a_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. a_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: a_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: a_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: a_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: a_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] a_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] a_ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
536
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : List[Any] = ['''image_processor''', '''tokenizer'''] _a : List[Any] = '''ViTImageProcessor''' _a : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" a_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase__ , ) a_ = kwargs.pop('feature_extractor' ) a_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: a_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if visual_prompt is not None: a_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: a_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if visual_prompt is not None and images is not None: a_ = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a_ = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _a ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase__ , ) return self.image_processor_class @property def _a ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase__ , ) return self.image_processor
536
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( lowercase__, unittest.TestCase): UpperCamelCase__ = LEDTokenizer UpperCamelCase__ = LEDTokenizerFast UpperCamelCase__ = True def SCREAMING_SNAKE_CASE_ ( self : Tuple ): super().setUp() lowercase_ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase_ : Any = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase_ : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase_ : Dict = {"""unk_token""": """<unk>"""} lowercase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **lowercase_ : Optional[int] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int , **lowercase_ : Tuple ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple ): return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ : Any = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : Dict = tokenizer(lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : Dict = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="""pt""" ) self.assertIn("""input_ids""" , lowercase_ ) self.assertIn("""attention_mask""" , lowercase_ ) self.assertNotIn("""labels""" , lowercase_ ) self.assertNotIn("""decoder_attention_mask""" , lowercase_ ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : str = tokenizer(text_target=lowercase_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : List[Any] = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=lowercase_ , truncation=lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : str = ["""A long paragraph for summarization."""] lowercase_ : Optional[int] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : int = tokenizer(lowercase_ , return_tensors="""pt""" ) lowercase_ : Tuple = tokenizer(text_target=lowercase_ , return_tensors="""pt""" ) lowercase_ : List[Any] = inputs["""input_ids"""] lowercase_ : Optional[Any] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : str = ["""Summary of the text.""", """Another summary."""] lowercase_ : Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase_ : Optional[int] = tokenizer(lowercase_ , padding=lowercase_ ) lowercase_ : Optional[Any] = [[0] * len(lowercase_ ) for x in encoded_output["""input_ids"""]] lowercase_ : List[Any] = tokenizer.pad(lowercase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : Any ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase_ : Tuple = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase_ : Optional[Any] = """A, <mask> AllenNLP sentence.""" lowercase_ : Dict = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase_ : Tuple = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase_ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowercase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
701
'''simple docstring''' import argparse _lowercase : Optional[int] = "docs/source/_static/js/custom.js" def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Dict: with open(UpperCAmelCase__ , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Optional[int] = f.readlines() lowercase_ : Tuple = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowercase_ : Optional[Any] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") _lowercase : Dict = parser.parse_args() update_custom_js(args.version)
30
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , ) -> List[Any]: SCREAMING_SNAKE_CASE__: str= size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__: Optional[int]= parent SCREAMING_SNAKE_CASE__: str= batch_size SCREAMING_SNAKE_CASE__: Optional[Any]= num_channels SCREAMING_SNAKE_CASE__: List[Any]= image_size SCREAMING_SNAKE_CASE__: Any= min_resolution SCREAMING_SNAKE_CASE__: Tuple= max_resolution SCREAMING_SNAKE_CASE__: str= do_resize SCREAMING_SNAKE_CASE__: Dict= size SCREAMING_SNAKE_CASE__: List[str]= apply_ocr def UpperCamelCase_ ( self ) -> Dict: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: List[str]= LayoutLMvaImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Optional[Any]= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''apply_ocr''' ) ) def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def UpperCamelCase_ ( self ) -> str: pass def UpperCamelCase_ ( self ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__: Optional[int]= self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__: Tuple= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase ) self.assertIsInstance(encoding.boxes , lowerCAmelCase ) # Test batched SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__: int= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__: int= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__: str= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Union[str, Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__: Dict= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__: List[Any]= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__: Any= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Optional[int]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Any: # with apply_OCR = True SCREAMING_SNAKE_CASE__: List[Any]= LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__: Dict= load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__: str= Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__: int= image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__: Union[str, Any]= [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE__: Dict= [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase ) self.assertListEqual(encoding.boxes , lowerCAmelCase ) # with apply_OCR = False SCREAMING_SNAKE_CASE__: str= LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
64
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowercase__ =parser.parse_args() lowercase__ =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ =CLIPImageProcessor() lowercase__ =CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowercase__ =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
263
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return (data["data"], data["target"]) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = XGBRegressor(verbosity=0 ,random_state=4_2 ) xgb.fit(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Predict target for test data lowerCAmelCase : Union[str, Any] = xgb.predict(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = predictions.reshape(len(SCREAMING_SNAKE_CASE__ ) ,1 ) return predictions def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = fetch_california_housing() lowerCAmelCase , lowerCAmelCase : Any = data_handling(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = train_test_split( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,test_size=0.25 ,random_state=1 ) lowerCAmelCase : List[Any] = xgboost(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )}""" ) print(F"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class __lowercase ( unittest.TestCase ): def __lowercase ( self : str ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() ,encoding="""utf-8""" ,check=A ,) assert hasattr(self ,"""env""" ) def __lowercase ( self : Any ,A : Any ): '''simple docstring''' # configuration for running training on smdistributed Model Parallel UpperCAmelCase__ : Tuple = { """enabled""": True, """processes_per_host""": 8, } UpperCAmelCase__ : str = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCAmelCase__ : Optional[int] = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCAmelCase__ : Union[str, Any] = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" ,instance_count=A ,instance_type=self.instance_type ,debugger_hook_config=A ,hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } ,metric_definitions=self.env.metric_definitions ,distribution=A ,py_version="""py36""" ,) def __lowercase ( self : Dict ,A : Tuple ): '''simple docstring''' TrainingJobAnalytics(A ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(1,)] ) def __lowercase ( self : Tuple ,A : Union[str, Any] ): '''simple docstring''' # create estimator UpperCAmelCase__ : Optional[int] = self.create_estimator(A ) # run training estimator.fit() # result dataframe UpperCAmelCase__ : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCAmelCase__ : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,A )
65
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase_ ( A ): '''simple docstring''' _a : Dict = args.pruning_method _a : Optional[Any] = args.threshold _a : Union[str, Any] = args.model_name_or_path.rstrip('/' ) _a : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _a : List[str] = torch.load(os.path.join(A , 'pytorch_model.bin' ) ) _a : str = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _a : List[Any] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _a : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _a : Optional[Any] = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _a : Tuple = MagnitudeBinarizer.apply(inputs=A , threshold=A ) _a : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _a : str = name[:-6] _a : int = model[f'''{prefix_}mask_scores'''] _a : List[str] = TopKBinarizer.apply(A , A ) _a : Tuple = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _a : str = name[:-6] _a : List[str] = model[f'''{prefix_}mask_scores'''] _a : Tuple = ThresholdBinarizer.apply(A , A , A ) _a : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _a : Optional[int] = name[:-6] _a : Any = model[f'''{prefix_}mask_scores'''] _a , _a : Optional[int] = -0.1, 1.1 _a : List[str] = torch.sigmoid(A ) _a : Dict = s * (r - l) + l _a : int = s_bar.clamp(min=0.0 , max=1.0 ) _a : List[str] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _a : Tuple = os.path.join( os.path.dirname(A ) , f'''bertarized_{os.path.basename(A )}''' ) if not os.path.isdir(A ): shutil.copytree(A , A ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(A , os.path.join(A , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() main(args)
120
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class a_ ( UpperCAmelCase__ ): def __lt__( self : Optional[Any] , __lowerCAmelCase : List[Any] ): return self[-1] < other[-1] def __eq__( self : Dict , __lowerCAmelCase : Optional[Any] ): return self[-1] == other[-1] def lowerCamelCase__ ( a ): __snake_case = [] # sort into stacks for element in collection: __snake_case = Stack([element] ) __snake_case = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently __snake_case = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": _lowercase = input("""Enter numbers separated by a comma:\n""").strip() _lowercase = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
427
'''simple docstring''' import argparse import copy def lowerCamelCase__ ( a ): __snake_case = {} with open(a ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __snake_case = [] _list.append([line.split()[1], line.split()[2]] ) __snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __snake_case = [] _list.append([line.split()[0], line.split()[2]] ) __snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase__ ( a , a ): with open(a ) as f: __snake_case = f.read(1 ) __snake_case = start_node __snake_case = [] __snake_case = start_node __snake_case = 0 while visiting not in first_solution: __snake_case = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(a ) and k[0] not in first_solution: __snake_case = k[1] __snake_case = k[0] first_solution.append(a ) __snake_case = distance_of_first_solution + int(a ) __snake_case = best_node first_solution.append(a ) __snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def lowerCamelCase__ ( a , a ): __snake_case = [] for n in solution[1:-1]: __snake_case = solution.index(a ) for kn in solution[1:-1]: __snake_case = solution.index(a ) if n == kn: continue __snake_case = copy.deepcopy(a ) __snake_case = kn __snake_case = n __snake_case = 0 for k in _tmp[:-1]: __snake_case = _tmp[_tmp.index(a ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __snake_case = distance + int(i[1] ) _tmp.append(a ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda a : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase__ ( a , a , a , a , a ): __snake_case = 1 __snake_case = first_solution __snake_case = [] __snake_case = distance_of_first_solution __snake_case = solution while count <= iters: __snake_case = find_neighborhood(a , a ) __snake_case = 0 __snake_case = neighborhood[index_of_best_solution] __snake_case = len(a ) - 1 __snake_case = False while not found: __snake_case = 0 while i < len(a ): if best_solution[i] != solution[i]: __snake_case = best_solution[i] __snake_case = solution[i] break __snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __snake_case = True __snake_case = best_solution[:-1] __snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __snake_case = cost __snake_case = solution else: __snake_case = index_of_best_solution + 1 __snake_case = neighborhood[index_of_best_solution] if len(a ) >= size: tabu_list.pop(0 ) __snake_case = count + 1 return best_solution_ever, best_cost def lowerCamelCase__ ( a=None ): __snake_case = generate_neighbours(args.File ) __snake_case , __snake_case = generate_first_solution( args.File , a ) __snake_case , __snake_case = tabu_search( a , a , a , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
427
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCamelCase ( lowercase__ : int = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(lowercase__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) lowerCAmelCase_ : Any = QuantumRegister(lowercase__ , """qr""" ) lowerCAmelCase_ : List[Any] = ClassicalRegister(lowercase__ , """cr""" ) lowerCAmelCase_ : List[str] = QuantumCircuit(lowercase__ , lowercase__ ) lowerCAmelCase_ : Any = number_of_qubits for i in range(lowercase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowercase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowercase__ , lowercase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowercase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowercase__ , lowercase__ ) # simulate with 10000 shots lowerCAmelCase_ : str = Aer.get_backend("""qasm_simulator""" ) lowerCAmelCase_ : Optional[Any] = execute(lowercase__ , lowercase__ , shots=10000 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
600
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __UpperCamelCase ( lowercase__ : Any ) -> List[Any]: '''simple docstring''' return EnvironmentCommand() class __a ( __UpperCamelCase ): @staticmethod def A ( UpperCAmelCase : ArgumentParser ): lowerCAmelCase_ : Optional[Any] = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ : int = huggingface_hub.__version__ lowerCAmelCase_ : int = """not installed""" lowerCAmelCase_ : List[str] = """NA""" if is_torch_available(): import torch lowerCAmelCase_ : Any = torch.__version__ lowerCAmelCase_ : Tuple = torch.cuda.is_available() lowerCAmelCase_ : List[str] = """not installed""" if is_transformers_available(): import transformers lowerCAmelCase_ : Optional[int] = transformers.__version__ lowerCAmelCase_ : int = """not installed""" if is_accelerate_available(): import accelerate lowerCAmelCase_ : Optional[int] = accelerate.__version__ lowerCAmelCase_ : Tuple = """not installed""" if is_xformers_available(): import xformers lowerCAmelCase_ : Tuple = xformers.__version__ lowerCAmelCase_ : Dict = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCAmelCase ) ) return info @staticmethod def A ( UpperCAmelCase : Any ): return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
600
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case_ : """simple docstring""" def __init__( self , _A , _A=None , _A=None , _A=None , _A="resnet50" , _A=3 , _A=3_2 , _A=3 , _A=True , _A=True , ): __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def A__ ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def A__ ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def A__ ( self , _A , _A ): __lowerCAmelCase = TimmBackbone(config=_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def A__ ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase, __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case_ ( _a , _a , _a , unittest.TestCase ): """simple docstring""" __UpperCAmelCase =(TimmBackbone,) if is_torch_available() else () __UpperCAmelCase ={"""feature-extraction""": TimmBackbone} if is_torch_available() else {} __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False def A__ ( self ): __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A ) def A__ ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ): __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def A__ ( self ): pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def A__ ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def A__ ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def A__ ( self ): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def A__ ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def A__ ( self ): pass @unittest.skip('Safetensors is not supported by timm.' ) def A__ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A__ ( self ): pass def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(_A ) model.to(_A ) __lowerCAmelCase = self._prepare_for_class(_A , _A ) __lowerCAmelCase = model(**_A ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_A ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(_A ) __lowerCAmelCase = None __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(_A ) __lowerCAmelCase = False __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A )
102
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase = logging.getLogger() def __lowerCamelCase ( ) -> Optional[Any]: _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCAmelCase = parser.parse_args() return args.f def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase="eval" ) -> Optional[Any]: _UpperCAmelCase = os.path.join(_lowerCAmelCase , F'''{split}_results.json''' ) if os.path.exists(_lowerCAmelCase ): with open(_lowerCAmelCase , "r" ) as f: return json.load(_lowerCAmelCase ) raise ValueError(F'''can\'t find {path}''' ) __lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __SCREAMING_SNAKE_CASE ( lowercase): def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__UpperCamelCase , "argv" , __UpperCamelCase ): run_flax_glue.main() _UpperCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__UpperCamelCase , "argv" , __UpperCamelCase ): run_clm_flax.main() _UpperCAmelCase = get_results(__UpperCamelCase ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(__UpperCamelCase , "argv" , __UpperCamelCase ): run_summarization_flax.main() _UpperCAmelCase = get_results(__UpperCamelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(__UpperCamelCase , "argv" , __UpperCamelCase ): run_mlm_flax.main() _UpperCAmelCase = get_results(__UpperCamelCase ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__UpperCamelCase , "argv" , __UpperCamelCase ): run_ta_mlm_flax.main() _UpperCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(__UpperCamelCase , "argv" , __UpperCamelCase ): run_flax_ner.main() _UpperCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(__UpperCamelCase , "argv" , __UpperCamelCase ): run_qa.main() _UpperCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
684
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Union[str, Any]=400 , __UpperCamelCase : List[Any]=2_000 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=160 , __UpperCamelCase : Any=8 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=4_000 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def UpperCAmelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False ): def _flatten(__UpperCamelCase : Any ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(__UpperCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(__UpperCamelCase ) _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Tuple ): _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ): # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __UpperCamelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
684
1
"""simple docstring""" import numpy as np def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import numpy as np def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
623
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A ( unittest.TestCase ): def lowerCamelCase ( self : Union[str, Any] , lowercase_ : Tuple ) -> List[str]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): _lowerCamelCase : List[str] =model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def lowerCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" _lowerCamelCase : Any ='sshleifer/tiny-gpt2' _lowerCamelCase : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase_ , multi_process=lowercase_ , ) _lowerCamelCase : Union[str, Any] =TensorFlowBenchmark(lowercase_ ) _lowerCamelCase : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" _lowerCamelCase : Optional[Any] ='sgugger/tiny-distilbert-classification' _lowerCamelCase : int =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , only_pretrain_model=lowercase_ , ) _lowerCamelCase : Tuple =TensorFlowBenchmark(lowercase_ ) _lowerCamelCase : Tuple =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" _lowerCamelCase : int ='sshleifer/tiny-gpt2' _lowerCamelCase : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) _lowerCamelCase : Union[str, Any] =TensorFlowBenchmark(lowercase_ ) _lowerCamelCase : Optional[int] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCamelCase : Any ='sshleifer/tiny-gpt2' _lowerCamelCase : str =AutoConfig.from_pretrained(lowercase_ ) _lowerCamelCase : Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase_ , multi_process=lowercase_ , ) _lowerCamelCase : int =TensorFlowBenchmark(lowercase_ , [config] ) _lowerCamelCase : int =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] ='sshleifer/tiny-gpt2' _lowerCamelCase : int =AutoConfig.from_pretrained(lowercase_ ) _lowerCamelCase : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) _lowerCamelCase : Optional[int] =TensorFlowBenchmark(lowercase_ , [config] ) _lowerCamelCase : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : Any ) -> List[str]: """simple docstring""" _lowerCamelCase : Optional[int] ='sshleifer/tiny-gpt2' _lowerCamelCase : Optional[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) _lowerCamelCase : Optional[Any] =TensorFlowBenchmark(lowercase_ ) _lowerCamelCase : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _lowerCamelCase : List[Any] ='sshleifer/tiny-gpt2' _lowerCamelCase : Tuple =AutoConfig.from_pretrained(lowercase_ ) _lowerCamelCase : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) _lowerCamelCase : Optional[int] =TensorFlowBenchmark(lowercase_ , [config] ) _lowerCamelCase : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Tuple ='patrickvonplaten/t5-tiny-random' _lowerCamelCase : str =AutoConfig.from_pretrained(lowercase_ ) _lowerCamelCase : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) _lowerCamelCase : str =TensorFlowBenchmark(lowercase_ , configs=[config] ) _lowerCamelCase : Optional[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : Union[str, Any] ='sshleifer/tiny-gpt2' _lowerCamelCase : Tuple =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowercase_ , multi_process=lowercase_ , ) _lowerCamelCase : Optional[int] =TensorFlowBenchmark(lowercase_ ) _lowerCamelCase : Any =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _lowerCamelCase : Optional[Any] ='sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase_ , save_to_csv=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase_ , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(lowercase_ , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(lowercase_ , 'env.csv' ) , multi_process=lowercase_ , ) _lowerCamelCase : Optional[Any] =TensorFlowBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , 'env.csv' ) ).exists() ) def lowerCamelCase ( self : int ) -> Any: """simple docstring""" _lowerCamelCase : int ='sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase_ : Optional[Any] ): self.assertTrue(hasattr(lowercase_ , 'sequential' ) ) self.assertTrue(hasattr(lowercase_ , 'cumulative' ) ) self.assertTrue(hasattr(lowercase_ , 'current' ) ) self.assertTrue(hasattr(lowercase_ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase_ , 'log.txt' ) , log_print=lowercase_ , trace_memory_line_by_line=lowercase_ , eager_mode=lowercase_ , multi_process=lowercase_ , ) _lowerCamelCase : Optional[Any] =TensorFlowBenchmark(lowercase_ ) _lowerCamelCase : Union[str, Any] =benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(lowercase_ , 'log.txt' ) ).exists() )
464
import numpy as np def a_ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' return np.where(vector > 0 , SCREAMING_SNAKE_CASE__ , (alpha * (np.exp(SCREAMING_SNAKE_CASE__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
464
1
import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __a ( __a ): """simple docstring""" _A : int = "facebook/bart-large-mnli" _A : Optional[Any] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) _A : Dict = "text_classifier" _A : str = AutoTokenizer _A : List[str] = AutoModelForSequenceClassification _A : str = ["text", ["text"]] _A : List[Any] = ["text"] def __A ( self : str ) -> int: '''simple docstring''' super().setup() SCREAMING_SNAKE_CASE__ =self.model.config SCREAMING_SNAKE_CASE__ =-1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): SCREAMING_SNAKE_CASE__ =int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def __A ( self : str ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) ,[f"""This example is {label}""" for label in labels] ,return_tensors="""pt""" ,padding="""max_length""" ,) def __A ( self : List[str] ,_UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =outputs.logits SCREAMING_SNAKE_CASE__ =torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
719
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding="""utf-8""" ,check=_UpperCamelCase ,) assert hasattr(self ,"""env""" ) def __A ( self : List[str] ,_UpperCamelCase : int=1 ) -> int: '''simple docstring''' return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=f"""{self.env.base_job_name}-single""" ,instance_count=_UpperCamelCase ,instance_type=self.instance_type ,debugger_hook_config=_UpperCamelCase ,hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version="""py36""" ,) def __A ( self : Tuple ,_UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' TrainingJobAnalytics(_UpperCamelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def __A ( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.create_estimator() # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE__ =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE__ =list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) SCREAMING_SNAKE_CASE__ =list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE__ =( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,_UpperCamelCase )
588
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowerCamelCase( _a ): lowercase_ : Any = """sew-d""" def __init__( self, lowerCamelCase=32, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase=2, lowerCamelCase=5_12, lowerCamelCase=2_56, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=("p2c", "c2p"), lowerCamelCase="layer_norm", lowerCamelCase="gelu_python", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=1E-7, lowerCamelCase=1E-5, lowerCamelCase="group", lowerCamelCase="gelu", lowerCamelCase=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12), lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), lowerCamelCase=False, lowerCamelCase=1_28, lowerCamelCase=16, lowerCamelCase=True, lowerCamelCase=0.0_5, lowerCamelCase=10, lowerCamelCase=2, lowerCamelCase=0.0, lowerCamelCase=10, lowerCamelCase=0, lowerCamelCase="mean", lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=2_56, lowerCamelCase=0, lowerCamelCase=1, lowerCamelCase=2, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCamelCase, pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase) _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = feat_extract_norm _lowercase : str = feat_extract_activation _lowercase : int = list(lowerCamelCase) _lowercase : Optional[Any] = list(lowerCamelCase) _lowercase : Any = list(lowerCamelCase) _lowercase : List[str] = conv_bias _lowercase : Tuple = num_conv_pos_embeddings _lowercase : Dict = num_conv_pos_embedding_groups _lowercase : Dict = len(self.conv_dim) _lowercase : int = num_hidden_layers _lowercase : Optional[Any] = intermediate_size _lowercase : str = squeeze_factor _lowercase : Optional[Any] = max_position_embeddings _lowercase : Tuple = position_buckets _lowercase : Union[str, Any] = share_att_key _lowercase : str = relative_attention _lowercase : List[Any] = norm_rel_ebd _lowercase : int = list(lowerCamelCase) _lowercase : Tuple = hidden_act _lowercase : Union[str, Any] = num_attention_heads _lowercase : int = hidden_dropout _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = activation_dropout _lowercase : Union[str, Any] = feat_proj_dropout _lowercase : Optional[int] = final_dropout _lowercase : str = layer_norm_eps _lowercase : Any = feature_layer_norm_eps _lowercase : Optional[Any] = initializer_range _lowercase : Union[str, Any] = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : Any = apply_spec_augment _lowercase : Dict = mask_time_prob _lowercase : Optional[int] = mask_time_length _lowercase : str = mask_time_min_masks _lowercase : List[str] = mask_feature_prob _lowercase : List[Any] = mask_feature_length _lowercase : Tuple = mask_feature_min_masks # ctc loss _lowercase : List[str] = ctc_loss_reduction _lowercase : Any = ctc_zero_infinity # sequence classification _lowercase : Any = use_weighted_layer_sum _lowercase : int = classifier_proj_size @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return functools.reduce(operator.mul, self.conv_stride, 1)
89
def UpperCamelCase_( lowerCamelCase_ ) -> int: if n == 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return 0 elif n == 2: return 1 else: _lowercase : List[str] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Tuple = 0 _lowercase : List[str] = 2 while digits < n: index += 1 _lowercase : Optional[int] = len(str(fibonacci(lowerCamelCase_ ) ) ) return index def UpperCamelCase_( lowerCamelCase_ = 1000 ) -> int: return fibonacci_digits_index(lowerCamelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
89
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=9_9 , __lowerCamelCase : Any=3_2 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : List[Any]=3_7 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=5_1_2 , __lowerCamelCase : List[Any]=1_6 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : List[str]=4 , ) -> List[Any]: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_attention_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_choices def _snake_case ( self : Tuple ) -> str: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_attention_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self : int ) -> Optional[int]: __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class A_ ( _A , unittest.TestCase ): UpperCAmelCase__ = True UpperCAmelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ = FlaxRoFormerModelTester(self ) @slow def _snake_case ( self : str ) -> Optional[int]: for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=UpperCamelCase__ ) __magic_name__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ ) @require_flax class A_ ( unittest.TestCase ): @slow def _snake_case ( self : Any ) -> Any: __magic_name__ = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) __magic_name__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) __magic_name__ = model(UpperCamelCase__ )[0] __magic_name__ = 5_0_0_0_0 __magic_name__ = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase__ ) __magic_name__ = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
710
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _lowerCAmelCase ( __lowerCamelCase:float , __lowerCamelCase:float , __lowerCamelCase:int ): '''simple docstring''' __magic_name__ = x __magic_name__ = y for step in range(__lowerCamelCase ): # noqa: B007 __magic_name__ = a * a - b * b + x __magic_name__ = 2 * a * b + y __magic_name__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowerCAmelCase ( __lowerCamelCase:float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def _lowerCAmelCase ( __lowerCamelCase:float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(__lowerCamelCase , 1 , 1 ) ) def _lowerCAmelCase ( __lowerCamelCase:int = 8_0_0 , __lowerCamelCase:int = 6_0_0 , __lowerCamelCase:float = -0.6 , __lowerCamelCase:float = 0 , __lowerCamelCase:float = 3.2 , __lowerCamelCase:int = 5_0 , __lowerCamelCase:bool = True , ): '''simple docstring''' __magic_name__ = Image.new("RGB" , (image_width, image_height) ) __magic_name__ = img.load() # loop through the image-coordinates for image_x in range(__lowerCamelCase ): for image_y in range(__lowerCamelCase ): # determine the figure-coordinates based on the image-coordinates __magic_name__ = figure_width / image_width * image_height __magic_name__ = figure_center_x + (image_x / image_width - 0.5) * figure_width __magic_name__ = figure_center_y + (image_y / image_height - 0.5) * figure_height __magic_name__ = get_distance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __magic_name__ = get_color_coded_rgb(__lowerCamelCase ) else: __magic_name__ = get_black_and_white_rgb(__lowerCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
468
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Optional[Any] = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } UpperCamelCase__ : Optional[int] = {'''mobilebert-uncased''': 5_12} UpperCamelCase__ : Optional[int] = {} class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = VOCAB_FILES_NAMES __a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __a : List[str] = PRETRAINED_INIT_CONFIGURATION __a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : List[str] = MobileBertTokenizer def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__=True ,snake_case__="[UNK]" ,snake_case__="[SEP]" ,snake_case__="[PAD]" ,snake_case__="[CLS]" ,snake_case__="[MASK]" ,snake_case__=True ,snake_case__=None ,**snake_case__ ,): super().__init__( snake_case__ ,tokenizer_file=snake_case__ ,do_lower_case=snake_case__ ,unk_token=snake_case__ ,sep_token=snake_case__ ,pad_token=snake_case__ ,cls_token=snake_case__ ,mask_token=snake_case__ ,tokenize_chinese_chars=snake_case__ ,strip_accents=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' ,snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,snake_case__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(snake_case__ ,normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ : int = do_lower_case SCREAMING_SNAKE_CASE_ : Any = strip_accents SCREAMING_SNAKE_CASE_ : Optional[int] = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ : Union[str, Any] = normalizer_class(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = do_lower_case def snake_case ( self ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[int] = self._tokenizer.model.save(snake_case__ ,name=snake_case__ ) return tuple(snake_case__ )
105
"""simple docstring""" import argparse import struct import unittest class a : def __init__( self : List[str] , lowerCAmelCase : bytes ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =data # Initialize hash values SCREAMING_SNAKE_CASE_: int =[ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants SCREAMING_SNAKE_CASE_: List[Any] =[ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] SCREAMING_SNAKE_CASE_: int =self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCamelCase__ ( lowerCAmelCase : bytes ) -> bytes: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =B"""\x80""" + (B"""\x00""" * (63 - (len(lowerCAmelCase ) + 8) % 64)) SCREAMING_SNAKE_CASE_: List[Any] =struct.pack(""">Q""" , (len(lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def lowerCamelCase__ ( self : Optional[Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =[ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE_: Optional[int] =list(struct.unpack(""">16L""" , lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE_: Any =( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE_: Tuple =( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE_: List[str] =( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression SCREAMING_SNAKE_CASE_: Dict =self.ror(lowerCAmelCase , 6 ) ^ self.ror(lowerCAmelCase , 11 ) ^ self.ror(lowerCAmelCase , 25 ) SCREAMING_SNAKE_CASE_: Any =(e & f) ^ ((~e & 0XFF_FFF_FFF) & g) SCREAMING_SNAKE_CASE_: Union[str, Any] =( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 SCREAMING_SNAKE_CASE_: List[Any] =self.ror(lowerCAmelCase , 2 ) ^ self.ror(lowerCAmelCase , 13 ) ^ self.ror(lowerCAmelCase , 22 ) SCREAMING_SNAKE_CASE_: int =(a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE_: Optional[int] =(sa + maj) % 0X100_000_000 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) SCREAMING_SNAKE_CASE_: Dict =[a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE_: List[Any] =[ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE_: Tuple ="""""".join([hex(lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int ) -> int: '''simple docstring''' return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class a ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ) -> None: '''simple docstring''' import hashlib SCREAMING_SNAKE_CASE_: Union[str, Any] =bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowerCAmelCase ).hash , hashlib.shaaaa(lowerCAmelCase ).hexdigest() ) def __magic_name__ ( ): import doctest doctest.testmod() SCREAMING_SNAKE_CASE_: str =argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) SCREAMING_SNAKE_CASE_: Any =parser.parse_args() SCREAMING_SNAKE_CASE_: List[str] =args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: SCREAMING_SNAKE_CASE_: Optional[Any] =f.read() else: SCREAMING_SNAKE_CASE_: Optional[Any] =bytes(lowercase , """utf-8""" ) print(SHAaaa(lowercase ).hash ) if __name__ == "__main__": main()
409
0
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0Xe000 _lowerCamelCase = 0Xe001 _lowerCamelCase = 0Xe002 _lowerCamelCase = 0Xe003 _lowerCamelCase = 0Xe004 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCAmelCase__=chr(UpperCAmelCase__ ) , UpperCAmelCase__=chr(UpperCAmelCase__ ) , UpperCAmelCase__=chr(UpperCAmelCase__ ) , UpperCAmelCase__=chr(UpperCAmelCase__ ) , UpperCAmelCase__=chr(UpperCAmelCase__ ) , UpperCAmelCase__=chr(UpperCAmelCase__ ) , UpperCAmelCase__=False , UpperCAmelCase__=2048 , **UpperCAmelCase__ , ): SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , model_max_length=UpperCAmelCase__ , **UpperCAmelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def lowerCAmelCase__ ( self ): return self._unicode_vocab_size def lowerCAmelCase__ ( self , UpperCAmelCase__ ): return list(UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): try: return ord(UpperCAmelCase__ ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCAmelCase__ ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): return "".join(UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(UpperCAmelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCAmelCase__ )) + [1] return result def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): return ()
112
"""simple docstring""" from math import sqrt def __lowercase ( lowerCamelCase_ : int ): SCREAMING_SNAKE_CASE__ = 0 for i in range(1 , int(sqrt(lowerCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCamelCase_ ): total += i + n // i elif i == sqrt(lowerCamelCase_ ): total += i return total - n def __lowercase ( lowerCamelCase_ : int = 10000 ): SCREAMING_SNAKE_CASE__ = sum( i for i in range(1 , lowerCamelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCamelCase_ ) ) == i and sum_of_divisors(lowerCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
112
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging A : Dict = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): SCREAMING_SNAKE_CASE_ = XLNetConfig.from_json_file(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) SCREAMING_SNAKE_CASE_ = finetuning_task SCREAMING_SNAKE_CASE_ = GLUE_TASKS_NUM_LABELS[finetuning_task] SCREAMING_SNAKE_CASE_ = XLNetForSequenceClassification(__UpperCamelCase ) elif "squad" in finetuning_task: SCREAMING_SNAKE_CASE_ = finetuning_task SCREAMING_SNAKE_CASE_ = XLNetForQuestionAnswering(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = XLNetLMHeadModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) print(F'''Save PyTorch model to {os.path.abspath(__UpperCamelCase )}''' ) torch.save(model.state_dict() , __UpperCamelCase ) print(F'''Save configuration file to {os.path.abspath(__UpperCamelCase )}''' ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) A : Any = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
140
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "FlavaImageProcessor" snake_case_ = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Optional[Any] , __snake_case : str=None , __snake_case : Any=None , **__snake_case : Union[str, Any] )-> str: snake_case = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) snake_case = kwargs.pop("""feature_extractor""" ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) snake_case = self.image_processor def __call__( self : int , __snake_case : Optional[ImageInput] = None , __snake_case : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = False , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Dict , )-> Union[str, Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) if images is not None: snake_case = self.image_processor( __snake_case , return_image_mask=__snake_case , return_codebook_pixels=__snake_case , return_tensors=__snake_case , **__snake_case , ) if text is not None and images is not None: encoding.update(__snake_case ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def lowerCAmelCase ( self : Optional[int] , *__snake_case : Dict , **__snake_case : Union[str, Any] )-> int: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Any , *__snake_case : int , **__snake_case : Tuple )-> Optional[int]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowerCAmelCase ( self : List[str] )-> Tuple: snake_case = self.tokenizer.model_input_names snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase ( self : Optional[int] )-> List[str]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def lowerCAmelCase ( self : int )-> Any: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = None class _lowerCAmelCase ( A__ , A__ ): """simple docstring""" snake_case_ = 2 @register_to_config def __init__( self : Any , __snake_case : float = 0.02 , __snake_case : float = 1_00 , __snake_case : float = 1.0_07 , __snake_case : float = 80 , __snake_case : float = 0.05 , __snake_case : float = 50 , )-> List[str]: # standard deviation of the initial noise distribution snake_case = sigma_max # setable values snake_case = None snake_case = None snake_case = None # sigma(t_i) def lowerCAmelCase ( self : Optional[int] , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None )-> torch.FloatTensor: return sample def lowerCAmelCase ( self : Optional[int] , __snake_case : int , __snake_case : Union[str, torch.device] = None )-> Dict: snake_case = num_inference_steps snake_case = np.arange(0 , self.num_inference_steps )[::-1].copy() snake_case = torch.from_numpy(__snake_case ).to(__snake_case ) snake_case = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] snake_case = torch.tensor(__snake_case , dtype=torch.floataa , device=__snake_case ) def lowerCAmelCase ( self : Optional[int] , __snake_case : torch.FloatTensor , __snake_case : float , __snake_case : Optional[torch.Generator] = None )-> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: snake_case = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: snake_case = 0 # sample eps ~ N(0, S_noise^2 * I) snake_case = self.config.s_noise * randn_tensor(sample.shape , generator=__snake_case ).to(sample.device ) snake_case = sigma + gamma * sigma snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCAmelCase ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : float , __snake_case : float , __snake_case : torch.FloatTensor , __snake_case : bool = True , )-> Union[KarrasVeOutput, Tuple]: snake_case = sample_hat + sigma_hat * model_output snake_case = (sample_hat - pred_original_sample) / sigma_hat snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__snake_case , derivative=__snake_case , pred_original_sample=__snake_case ) def lowerCAmelCase ( self : List[str] , __snake_case : torch.FloatTensor , __snake_case : float , __snake_case : float , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , __snake_case : bool = True , )-> Union[KarrasVeOutput, Tuple]: snake_case = sample_prev + sigma_prev * model_output snake_case = (sample_prev - pred_original_sample) / sigma_prev snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__snake_case , derivative=__snake_case , pred_original_sample=__snake_case ) def lowerCAmelCase ( self : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] )-> Any: raise NotImplementedError()
517
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case_ = StableDiffusionPanoramaPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) UpperCAmelCase__ : int = DDIMScheduler() torch.manual_seed(0 ) UpperCAmelCase__ : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) UpperCAmelCase__ : Optional[Any] = CLIPTextModel(A ) UpperCAmelCase__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase__ : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowercase ( self : Union[str, Any] ,A : Dict ,A : Tuple=0 ): '''simple docstring''' UpperCAmelCase__ : List[str] = torch.manual_seed(A ) UpperCAmelCase__ : Union[str, Any] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : str = self.get_dummy_components() UpperCAmelCase__ : Any = StableDiffusionPanoramaPipeline(**A ) UpperCAmelCase__ : Dict = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(A ) UpperCAmelCase__ : Dict = sd_pipe(**A ).images UpperCAmelCase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowercase ( self : List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=3.25e-3 ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : str = self.get_dummy_components() UpperCAmelCase__ : Union[str, Any] = StableDiffusionPanoramaPipeline(**A ) UpperCAmelCase__ : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase__ : List[Any] = self.get_dummy_inputs(A ) UpperCAmelCase__ : Optional[int] = """french fries""" UpperCAmelCase__ : List[str] = sd_pipe(**A ,negative_prompt=A ) UpperCAmelCase__ : Optional[Any] = output.images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : str = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : str = self.get_dummy_components() UpperCAmelCase__ : Dict = StableDiffusionPanoramaPipeline(**A ) UpperCAmelCase__ : List[str] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase__ : Any = self.get_dummy_inputs(A ) UpperCAmelCase__ : List[str] = sd_pipe(**A ,view_batch_size=2 ) UpperCAmelCase__ : Dict = output.images UpperCAmelCase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Optional[Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[int] = self.get_dummy_components() UpperCAmelCase__ : List[str] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ) UpperCAmelCase__ : Optional[Any] = StableDiffusionPanoramaPipeline(**A ) UpperCAmelCase__ : List[str] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase__ : Optional[int] = self.get_dummy_inputs(A ) UpperCAmelCase__ : Tuple = sd_pipe(**A ).images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Any = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : Union[str, Any] = PNDMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,skip_prk_steps=A ) UpperCAmelCase__ : List[str] = StableDiffusionPanoramaPipeline(**A ) UpperCAmelCase__ : int = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase__ : List[str] = self.get_dummy_inputs(A ) UpperCAmelCase__ : int = sd_pipe(**A ).images UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : str = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def __lowercase ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : int ,A : Dict=0 ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.manual_seed(A ) UpperCAmelCase__ : Tuple = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = """stabilityai/stable-diffusion-2-base""" UpperCAmelCase__ : Union[str, Any] = DDIMScheduler.from_pretrained(A ,subfolder="""scheduler""" ) UpperCAmelCase__ : List[str] = StableDiffusionPanoramaPipeline.from_pretrained(A ,scheduler=A ,safety_checker=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Union[str, Any] = self.get_inputs() UpperCAmelCase__ : Tuple = pipe(**A ).images UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) UpperCAmelCase__ : List[Any] = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" ,safety_checker=A ) UpperCAmelCase__ : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() UpperCAmelCase__ : List[str] = self.get_inputs() UpperCAmelCase__ : Union[str, Any] = pipe(**A ).images UpperCAmelCase__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) UpperCAmelCase__ : Any = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = 0 def callback_fn(A : int ,A : int ,A : torch.FloatTensor ) -> None: UpperCAmelCase__ : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase__ : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase__ : Union[str, Any] = latents[0, -3:, -3:, -1] UpperCAmelCase__ : Any = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCAmelCase__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase__ : Union[str, Any] = latents[0, -3:, -3:, -1] UpperCAmelCase__ : int = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCAmelCase__ : str = False UpperCAmelCase__ : Union[str, Any] = """stabilityai/stable-diffusion-2-base""" UpperCAmelCase__ : Optional[int] = DDIMScheduler.from_pretrained(A ,subfolder="""scheduler""" ) UpperCAmelCase__ : int = StableDiffusionPanoramaPipeline.from_pretrained(A ,scheduler=A ,safety_checker=A ) UpperCAmelCase__ : List[Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() UpperCAmelCase__ : List[str] = self.get_inputs() pipe(**A ,callback=A ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowercase ( self : List[Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : int = """stabilityai/stable-diffusion-2-base""" UpperCAmelCase__ : List[str] = DDIMScheduler.from_pretrained(A ,subfolder="""scheduler""" ) UpperCAmelCase__ : Dict = StableDiffusionPanoramaPipeline.from_pretrained(A ,scheduler=A ,safety_checker=A ) UpperCAmelCase__ : List[str] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : str = self.get_inputs() UpperCAmelCase__ : Union[str, Any] = pipe(**A ) UpperCAmelCase__ : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
65
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> None: warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
249
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a :int = 16 a :List[str] = 32 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = 16 ) -> Dict: SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : int = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : Dict = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : str = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : int = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Optional[int] = 8 else: SCREAMING_SNAKE_CASE__ : Optional[int] = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a :Union[str, Any] = mocked_dataloaders # noqa: F811 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1": SCREAMING_SNAKE_CASE__ : str = 2 # New Code # SCREAMING_SNAKE_CASE__ : Optional[Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : int = config["""lr"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ : int = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ : List[str] = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) set_seed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = output.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) def _lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : List[str] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
12
"""simple docstring""" class __a : '''simple docstring''' def __init__( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = name SCREAMING_SNAKE_CASE__ : Optional[Any] = value SCREAMING_SNAKE_CASE__ : List[Any] = weight def __repr__( self ) -> List[Any]: """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _a ( self ) -> Dict: """simple docstring""" return self.value def _a ( self ) -> int: """simple docstring""" return self.name def _a ( self ) -> Optional[Any]: """simple docstring""" return self.weight def _a ( self ) -> Dict: """simple docstring""" return self.value / self.weight def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ : Any = [] for i in range(len(__lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0, 0.0 for i in range(len(__lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _lowercase ( ) -> List[str]: pass if __name__ == "__main__": import doctest doctest.testmod()
12
1
'''simple docstring''' __lowercase : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowercase_ ( ) -> None: '''simple docstring''' lowerCamelCase_ : int = input('''Enter message: ''' ) lowerCamelCase_ : Optional[int] = input('''Enter key [alphanumeric]: ''' ) lowerCamelCase_ : Dict = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowerCamelCase_ : str = '''encrypt''' lowerCamelCase_ : List[str] = encrypt_message(_UpperCAmelCase , _UpperCAmelCase ) elif mode.lower().startswith('''d''' ): lowerCamelCase_ : Optional[int] = '''decrypt''' lowerCamelCase_ : Optional[int] = decrypt_message(_UpperCAmelCase , _UpperCAmelCase ) print(F"""\n{mode.title()}ed message:""" ) print(_UpperCAmelCase ) def lowercase_ ( _lowercase , _lowercase ) -> str: '''simple docstring''' return translate_message(_UpperCAmelCase , _UpperCAmelCase , '''encrypt''' ) def lowercase_ ( _lowercase , _lowercase ) -> str: '''simple docstring''' return translate_message(_UpperCAmelCase , _UpperCAmelCase , '''decrypt''' ) def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' lowerCamelCase_ : List[str] = [] lowerCamelCase_ : Optional[int] = 0 lowerCamelCase_ : Tuple = key.upper() for symbol in message: lowerCamelCase_ : Tuple = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_UpperCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_UpperCAmelCase ): lowerCamelCase_ : str = 0 else: translated.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": main()
422
from heapq import heappop, heappush import numpy as np def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' __lowercase , __lowercase = grid.shape __lowercase = [-1, 1, 0, 0] __lowercase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __lowercase , __lowercase = [(0, source)], set() __lowercase = np.full((rows, cols) , np.inf ) __lowercase = 0 __lowercase = np.empty((rows, cols) , dtype=_UpperCAmelCase ) __lowercase = None while queue: ((__lowercase) , (__lowercase)) = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __lowercase = [] while (x, y) != source: path.append((x, y) ) __lowercase , __lowercase = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): __lowercase , __lowercase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __lowercase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) __lowercase = dist + 1 __lowercase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
321
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __snake_case :Optional[Any] ={ 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[Any] =[ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __snake_case :int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> int: '''simple docstring''' A = [] for part_id in partition_order: A = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowerCAmelCase__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(100 ).repartition(1 ) A = Spark(lowerCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(10 ).repartition(2 ) A = [1, 0] A = _generate_iterable_examples(lowerCAmelCase__ , lowerCAmelCase__ ) # Reverse the partitions. A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , lowerCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A , A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(10 ).repartition(1 ) A = SparkExamplesIterable(lowerCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: A = lambda lowerCAmelCase__ : x.reverse() A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [2, 1, 0] ) A = SparkExamplesIterable(lowerCAmelCase__ ).shuffle_data_sources(lowerCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> int: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(100 ).repartition(1 ) A = Spark(lowerCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
224
0
'''simple docstring''' from __future__ import annotations lowerCamelCase_ = [] def __lowercase ( __lowercase , __lowercase , __lowercase ) -> bool: '''simple docstring''' for i in range(len(__lowercase ) ): if board[row][i] == 1: return False for i in range(len(__lowercase ) ): if board[i][column] == 1: return False for i, j in zip(range(__lowercase , -1 , -1 ) , range(__lowercase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__lowercase , -1 , -1 ) , range(__lowercase , len(__lowercase ) ) ): if board[i][j] == 1: return False return True def __lowercase ( __lowercase , __lowercase ) -> bool: '''simple docstring''' if row >= len(__lowercase ): solution.append(__lowercase ) printboard(__lowercase ) print() return True for i in range(len(__lowercase ) ): if is_safe(__lowercase , __lowercase , __lowercase ): _A = 1 solve(__lowercase , row + 1 ) _A = 0 return False def __lowercase ( __lowercase ) -> None: '''simple docstring''' for i in range(len(__lowercase ) ): for j in range(len(__lowercase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) lowerCamelCase_ = 8 lowerCamelCase_ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
330
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } A_ = logging.WARNING def UpperCAmelCase ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = os.getenv('''DATASETS_VERBOSITY''' ,UpperCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def UpperCAmelCase ( )-> str: '''simple docstring''' return __name__.split('''.''' )[0] def UpperCAmelCase ( )-> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def UpperCAmelCase ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCAmelCase ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCAmelCase ( UpperCAmelCase = None )-> logging.Logger: '''simple docstring''' if name is None: SCREAMING_SNAKE_CASE_ = _get_library_name() return logging.getLogger(UpperCAmelCase ) def UpperCAmelCase ( )-> int: '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase ( UpperCAmelCase )-> None: '''simple docstring''' _get_library_root_logger().setLevel(UpperCAmelCase ) def UpperCAmelCase ( )-> Optional[Any]: '''simple docstring''' return set_verbosity(UpperCAmelCase ) def UpperCAmelCase ( )-> Union[str, Any]: '''simple docstring''' return set_verbosity(UpperCAmelCase ) def UpperCAmelCase ( )-> Dict: '''simple docstring''' return set_verbosity(UpperCAmelCase ) def UpperCAmelCase ( )-> Optional[int]: '''simple docstring''' return set_verbosity(UpperCAmelCase ) def UpperCAmelCase ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = False def UpperCAmelCase ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class snake_case : '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : str ) -> Optional[int]: # pylint: disable=unused-argument """simple docstring""" SCREAMING_SNAKE_CASE_ = args[0] if args else None def __iter__( self : Tuple ) -> Optional[Any]: """simple docstring""" return iter(self._iterator ) def __getattr__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> int: """simple docstring""" def empty_fn(*lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ) -> List[str]: """simple docstring""" return self def __exit__( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> Dict: """simple docstring""" return A_ = True class snake_case : '''simple docstring''' def __call__( self : Union[str, Any] , *lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False , **lowerCAmelCase_ : Tuple ) -> Tuple: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ ) else: return EmptyTqdm(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self : int , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() A_ = _tqdm_cls() def UpperCAmelCase ( )-> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase ( )-> List[str]: '''simple docstring''' global _tqdm_active SCREAMING_SNAKE_CASE_ = True def UpperCAmelCase ( )-> Optional[int]: '''simple docstring''' global _tqdm_active SCREAMING_SNAKE_CASE_ = False
393
0
"""simple docstring""" class lowerCAmelCase_ : # Public class to implement a graph '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> None: __lowerCAmelCase = row __lowerCAmelCase = col __lowerCAmelCase = graph def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # Checking all 8 elements surrounding nth element __lowerCAmelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __lowerCAmelCase = [-1, 0, 1, -1, 1, -1, 0, 1] __lowerCAmelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , A_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , A_ ) def A__ ( self ) -> int: # And finally, count all islands. __lowerCAmelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] __lowerCAmelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(A_ , A_ , A_ ) count += 1 return count
705
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ) -> None: warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
573
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
659
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase ( unittest.TestCase ): def snake_case__ ( self :List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = '''hf-internal-testing/tiny-random-t5''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE = tokenizer('''This is me''' , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**lowercase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**lowercase ) self.assertTrue(torch.allclose(lowercase , lowercase ) ) def snake_case__ ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = '''hf-internal-testing/tiny-random-t5''' SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowercase ): model.save_pretrained(lowercase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(lowercase )
201
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a ( _a ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' super().__init__() self.register_modules(vqvae=_A , unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self , snake_case_ = 1 , snake_case_ = None , snake_case_ = 0.0 , snake_case_ = 50 , snake_case_ = "pil" , snake_case_ = True , **snake_case_ , ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_A , ) __UpperCAmelCase: Union[str, Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase: Tuple = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_A ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature __UpperCAmelCase: List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase: int = {} if accepts_eta: __UpperCAmelCase: Optional[int] = eta for t in self.progress_bar(self.scheduler.timesteps ): __UpperCAmelCase: Dict = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual __UpperCAmelCase: Dict = self.unet(_A , _A ).sample # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase: Any = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # decode the image latents with the VAE __UpperCAmelCase: List[str] = self.vqvae.decode(_A ).sample __UpperCAmelCase: Dict = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase: Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase: Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
714
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase = JukeboxTokenizer __lowerCAmelCase = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def lowercase_ ( self ): '''simple docstring''' import torch __UpperCAmelCase: Dict = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) __UpperCAmelCase: List[str] = tokenizer(**self.metas )["""input_ids"""] # fmt: off __UpperCAmelCase: int = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowercase_ ( self ): '''simple docstring''' import torch __UpperCAmelCase: Any = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) __UpperCAmelCase: Tuple = tokenizer(**self.metas )["""input_ids"""] # fmt: off __UpperCAmelCase: int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
466
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" if length <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(SCREAMING_SNAKE_CASE )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
580
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _snake_case = '''src/diffusers''' _snake_case = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _snake_case = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _snake_case = spec.loader.load_module() def __snake_case ( SCREAMING_SNAKE_CASE: Optional[Any] , SCREAMING_SNAKE_CASE: Optional[Any] ): """simple docstring""" return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , SCREAMING_SNAKE_CASE ) is not None def __snake_case ( SCREAMING_SNAKE_CASE: List[str] ): """simple docstring""" _lowerCAmelCase = object_name.split('.' ) _lowerCAmelCase = 0 # First let's find the module where our object lives. _lowerCAmelCase = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase = f.readlines() # Now let's find the class / func in the code! _lowerCAmelCase = '' _lowerCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCAmelCase = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) _snake_case = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _snake_case = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') _snake_case = re.compile(R'''<FILL\s+[^>]*>''') def __snake_case ( SCREAMING_SNAKE_CASE: List[str] ): """simple docstring""" _lowerCAmelCase = code.split('\n' ) _lowerCAmelCase = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __snake_case ( SCREAMING_SNAKE_CASE: Optional[Any] ): """simple docstring""" _lowerCAmelCase = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: _lowerCAmelCase = f"""class Bla:\n{code}""" _lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=SCREAMING_SNAKE_CASE ) _lowerCAmelCase = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len('class Bla:\n' ) :] if has_indent else result def __snake_case ( SCREAMING_SNAKE_CASE: Optional[int] , SCREAMING_SNAKE_CASE: List[str]=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase = f.readlines() _lowerCAmelCase = [] _lowerCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = search.groups() _lowerCAmelCase = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_indent(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCAmelCase = theoretical_indent _lowerCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCAmelCase = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break _lowerCAmelCase = lines[line_index] _lowerCAmelCase = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase = lines[start_index:line_index] _lowerCAmelCase = ''.join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCAmelCase = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] _lowerCAmelCase = '\n'.join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = replace_pattern.replace('with' , '' ).split(',' ) _lowerCAmelCase = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = pattern.groups() _lowerCAmelCase = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": _lowerCAmelCase = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCAmelCase = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def __snake_case ( SCREAMING_SNAKE_CASE: bool = False ): """simple docstring""" _lowerCAmelCase = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '**/*.py' ) , recursive=SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [] for filename in all_files: _lowerCAmelCase = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = '\n'.join(SCREAMING_SNAKE_CASE ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _snake_case = parser.parse_args() check_copies(args.fix_and_overwrite)
580
1
__UpperCamelCase : Tuple = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase__ : Any = set() # keep track of all the paths to be checked UpperCamelCase__ : Optional[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase__ : List[str] = queue.pop(0 ) # get the last node from the path UpperCamelCase__ : List[str] = path[-1] if node not in explored: UpperCamelCase__ : Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase__ : Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase__ : Dict = [start] UpperCamelCase__ : List[Any] = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. UpperCamelCase__ : Tuple = {start: 0, target: -1} while queue: UpperCamelCase__ : Optional[Any] = queue.pop(0 ) if node == target: UpperCamelCase__ : Any = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
709
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __magic_name__ ( __lowerCAmelCase): A: Optional[Any] = "markuplm" def __init__( self : List[Any] , lowerCamelCase__ : Optional[int]=30522 , lowerCamelCase__ : Dict=768 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Optional[Any]=3072 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Tuple=512 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Union[str, Any]=0.02 , lowerCamelCase__ : Optional[Any]=1E-1_2 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : List[Any]=256 , lowerCamelCase__ : List[str]=1024 , lowerCamelCase__ : Optional[int]=216 , lowerCamelCase__ : Any=1001 , lowerCamelCase__ : int=32 , lowerCamelCase__ : Tuple=50 , lowerCamelCase__ : str="absolute" , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=None , **lowerCamelCase__ : List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : Optional[Any] = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : Tuple = max_position_embeddings UpperCamelCase__ : List[str] = type_vocab_size UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : Any = position_embedding_type UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : int = classifier_dropout # additional properties UpperCamelCase__ : int = max_depth UpperCamelCase__ : Optional[Any] = max_xpath_tag_unit_embeddings UpperCamelCase__ : List[Any] = max_xpath_subs_unit_embeddings UpperCamelCase__ : List[Any] = tag_pad_id UpperCamelCase__ : Optional[int] = subs_pad_id UpperCamelCase__ : Optional[Any] = xpath_unit_hidden_size
106
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] ,A_ : Tuple ,A_ : List[Any]=7 ,A_ : Dict=3 ,A_ : Any=18 ,A_ : List[Any]=30 ,A_ : List[Any]=400 ,A_ : List[Any]=True ,A_ : Optional[int]=None ,A_ : int=True ,A_ : Any=None ,A_ : Optional[Any]=True ,A_ : Union[str, Any]=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] ,A_ : str=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] ,A_ : Union[str, Any]=True ,) -> int: A = size if size is not None else {'height': 224, 'width': 224} A = crop_size if crop_size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_center_crop A = crop_size A = do_normalize A = image_mean A = image_std A = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=False ,A_ : List[str]=False ,A_ : Optional[Any]=False ) -> List[Any]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: A = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: A = [] for i in range(self.batch_size ): A , A = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension A = [Image.fromarray(np.moveaxis(A_ ,0 ,-1 ) ) for x in image_inputs] if torchify: A = [torch.from_numpy(A_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = ChineseCLIPImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ChineseCLIPImageProcessingTester(self ,do_center_crop=A_ ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_center_crop' ) ) self.assertTrue(hasattr(A_ ,'center_crop' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) self.assertTrue(hasattr(A_ ,'image_mean' ) ) self.assertTrue(hasattr(A_ ,'image_std' ) ) self.assertTrue(hasattr(A_ ,'do_convert_rgb' ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 224, 'width': 224} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: pass def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ ,Image.Image ) # Test not batched input A = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ,numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ ,np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ,torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ ,torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ChineseCLIPImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=A_ ) A = 3 @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_center_crop' ) ) self.assertTrue(hasattr(A_ ,'center_crop' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) self.assertTrue(hasattr(A_ ,'image_mean' ) ) self.assertTrue(hasattr(A_ ,'image_std' ) ) self.assertTrue(hasattr(A_ ,'do_convert_rgb' ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ ,Image.Image ) # Test not batched input A = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
91
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Dict = BertJapaneseTokenizer __lowercase : List[str] = False __lowercase : List[Any] = True def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """こんにちは、世界。 \nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.get_input_output_texts(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) return text, ids def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""") self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""unidic_lite""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""unidic""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(do_lower_case=lowerCAmelCase__ , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer( do_lower_case=lowerCAmelCase__ , normalize_text=lowerCAmelCase__ , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(normalize_text=lowerCAmelCase__ , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国""", """人""", """参政""", """権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人""", """参政権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人参政権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(do_lower_case=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(normalize_text=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(trim_whitespace=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(normalize_text=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(trim_whitespace=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""") , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こんにちは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは""") , ["""こん""", """##ばんは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""") , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""") __SCREAMING_SNAKE_CASE = tokenizer.subword_tokenizer __SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""") self.assertListEqual(lowerCAmelCase__ , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""]) __SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""") self.assertListEqual(lowerCAmelCase__ , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : str = BertJapaneseTokenizer __lowercase : int = False def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def snake_case_ ( self , **lowerCAmelCase__): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """こんにちは、世界。 \nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""") __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""") self.assertListEqual( lowerCAmelCase__ , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = CharacterTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こ""", """ん""", """に""", """ち""", """は"""]) self.assertListEqual(tokenizer.tokenize("""こんにちほ""") , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cl-tohoku/bert-base-japanese""" __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""")) __SCREAMING_SNAKE_CASE = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from."""))
155
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase : List[Any] =open # noqa: we just need to have a builtin inside this module to test it properly
15
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def __UpperCamelCase ( _A ): lowerCAmelCase_ = [False] * len(_A ) lowerCAmelCase_ = [-1] * len(_A ) def dfs(_A , _A ): lowerCAmelCase_ = True lowerCAmelCase_ = c for u in graph[v]: if not visited[u]: dfs(_A , 1 - c ) for i in range(len(_A ) ): if not visited[i]: dfs(_A , 0 ) for i in range(len(_A ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
431
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=13, UpperCamelCase__=10, UpperCamelCase__=3, UpperCamelCase__=2, UpperCamelCase__=2, UpperCamelCase__=2, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=32, UpperCamelCase__=5, UpperCamelCase__=4, UpperCamelCase__=37, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=10, UpperCamelCase__=0.02, UpperCamelCase__=0.9, UpperCamelCase__=None, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = tubelet_size lowerCAmelCase_ = num_frames lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = mask_ratio lowerCAmelCase_ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCAmelCase_ = (image_size // patch_size) ** 2 lowerCAmelCase_ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCAmelCase_ = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCAmelCase_ = torch.ones((self.num_masks,) ) lowerCAmelCase_ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCAmelCase_ = mask.expand(self.batch_size, -1 ).bool() lowerCAmelCase_ = model(UpperCamelCase__, UpperCamelCase__ ) # model only returns predictions for masked patches lowerCAmelCase_ = mask.sum().item() lowerCAmelCase_ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __snake_case = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VideoMAEModelTester(self ) lowerCAmelCase_ = ConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__, hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" lowerCAmelCase_ = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCAmelCase_ = torch.ones((self.model_tester.num_masks,) ) lowerCAmelCase_ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCAmelCase_ = mask.expand(self.model_tester.batch_size, -1 ).bool() lowerCAmelCase_ = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__, nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if not self.has_attentions: pass else: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = True for model_class in self.all_model_classes: lowerCAmelCase_ = self.model_tester.seq_length - self.model_tester.num_masks lowerCAmelCase_ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ = True lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowerCAmelCase_ = len(UpperCamelCase__ ) # Check attention is always last and order is fine lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) self.assertEqual(out_len + 1, len(UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) lowerCAmelCase_ = self.model_tester.seq_length - self.model_tester.num_masks lowerCAmelCase_ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def __UpperCamelCase ( ): lowerCAmelCase_ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowerCAmelCase_ = np.load(_A ) return list(_A ) @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( UpperCamelCase__ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_video() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCamelCase__, atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(UpperCamelCase__ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_video() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask lowerCAmelCase_ = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) lowerCAmelCase_ = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]], device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], UpperCamelCase__, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCAmelCase_ = torch.tensor([0.5_142], device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss, UpperCamelCase__, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCAmelCase_ = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''', norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor(torch.tensor([0.6_469] ), device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss, UpperCamelCase__, atol=1E-4 ) )
431
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} _UpperCAmelCase : List[str] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } _UpperCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A ( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def A ( lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class lowercase ( _snake_case ): __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(snake_case_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(snake_case_ ) UpperCamelCase = get_pairs(snake_case_ ) if not pairs: return token while True: UpperCamelCase = min(snake_case_ , key=lambda A_ : self.bpe_ranks.get(snake_case_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(snake_case_ ): try: UpperCamelCase = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(snake_case_ ) UpperCamelCase = new_word if len(snake_case_ ) == 1: break else: UpperCamelCase = get_pairs(snake_case_ ) UpperCamelCase = " ".join(snake_case_ ) UpperCamelCase = word return word def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , snake_case_ ): UpperCamelCase = "".join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(' ' ) ) return bpe_tokens def __UpperCamelCase ( self , A_ ) -> List[Any]: """simple docstring""" return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" return self.decoder.get(snake_case_ ) def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = "".join(snake_case_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __UpperCamelCase ( self , A_ , A_ = None ) -> Optional[Any]: """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '\n' ) UpperCamelCase = 0 with open(snake_case_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(snake_case_ ) + '\n' ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self , A_ , A_ = None ) -> List[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None , A_ = False ) -> int: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def __UpperCamelCase ( self , A_ , A_ = None ) -> int: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , A_ , A_=False , **A_ ) -> List[str]: """simple docstring""" UpperCamelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): UpperCamelCase = " " + text return (text, kwargs)
720
import os _UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowercase ) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowercase ) UpperCamelCase = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
3
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Tuple = """conditional_detr""" _snake_case : List[Any] = ["""past_key_values"""] _snake_case : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self :Dict , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Any=None , lowerCamelCase__ :Dict=3 , lowerCamelCase__ :Dict=3_00 , lowerCamelCase__ :Union[str, Any]=6 , lowerCamelCase__ :List[Any]=20_48 , lowerCamelCase__ :List[str]=8 , lowerCamelCase__ :Any=6 , lowerCamelCase__ :Optional[int]=20_48 , lowerCamelCase__ :Tuple=8 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[int]=0.0 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :List[str]="relu" , lowerCamelCase__ :List[Any]=2_56 , lowerCamelCase__ :Optional[Any]=0.1 , lowerCamelCase__ :Dict=0.0 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Tuple=0.02 , lowerCamelCase__ :Any=1.0 , lowerCamelCase__ :Dict=False , lowerCamelCase__ :str="sine" , lowerCamelCase__ :Dict="resnet50" , lowerCamelCase__ :str=True , lowerCamelCase__ :Optional[int]=False , lowerCamelCase__ :str=2 , lowerCamelCase__ :List[str]=5 , lowerCamelCase__ :List[Any]=2 , lowerCamelCase__ :str=1 , lowerCamelCase__ :Any=1 , lowerCamelCase__ :Optional[int]=2 , lowerCamelCase__ :Union[str, Any]=5 , lowerCamelCase__ :Optional[Any]=2 , lowerCamelCase__ :Union[str, Any]=0.25 , **lowerCamelCase__ :Dict , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase__ :Tuple = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :int = backbone_config.get("""model_type""" ) UpperCamelCase__ :Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ :List[Any] = config_class.from_dict(lowerCamelCase__ ) UpperCamelCase__ :str = use_timm_backbone UpperCamelCase__ :Dict = backbone_config UpperCamelCase__ :Union[str, Any] = num_channels UpperCamelCase__ :Optional[Any] = num_queries UpperCamelCase__ :Any = d_model UpperCamelCase__ :str = encoder_ffn_dim UpperCamelCase__ :Union[str, Any] = encoder_layers UpperCamelCase__ :Tuple = encoder_attention_heads UpperCamelCase__ :Optional[Any] = decoder_ffn_dim UpperCamelCase__ :Optional[int] = decoder_layers UpperCamelCase__ :Optional[Any] = decoder_attention_heads UpperCamelCase__ :Any = dropout UpperCamelCase__ :Union[str, Any] = attention_dropout UpperCamelCase__ :List[Any] = activation_dropout UpperCamelCase__ :int = activation_function UpperCamelCase__ :Tuple = init_std UpperCamelCase__ :Any = init_xavier_std UpperCamelCase__ :Any = encoder_layerdrop UpperCamelCase__ :Optional[int] = decoder_layerdrop UpperCamelCase__ :Optional[int] = encoder_layers UpperCamelCase__ :Optional[Any] = auxiliary_loss UpperCamelCase__ :List[Any] = position_embedding_type UpperCamelCase__ :Any = backbone UpperCamelCase__ :Dict = use_pretrained_backbone UpperCamelCase__ :Tuple = dilation # Hungarian matcher UpperCamelCase__ :Optional[Any] = class_cost UpperCamelCase__ :str = bbox_cost UpperCamelCase__ :int = giou_cost # Loss coefficients UpperCamelCase__ :Dict = mask_loss_coefficient UpperCamelCase__ :str = dice_loss_coefficient UpperCamelCase__ :Union[str, Any] = cls_loss_coefficient UpperCamelCase__ :List[Any] = bbox_loss_coefficient UpperCamelCase__ :List[Any] = giou_loss_coefficient UpperCamelCase__ :Dict = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def __a ( self :Union[str, Any] ): return self.encoder_attention_heads @property def __a ( self :int ): return self.d_model def __a ( self :Any ): UpperCamelCase__ :str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__ :str = self.backbone_config.to_dict() UpperCamelCase__ :Dict = self.__class__.model_type return output class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Union[str, Any] = version.parse("""1.11""" ) @property def __a ( self :int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __a ( self :List[Any] ): return 1e-5 @property def __a ( self :Optional[int] ): return 12
45
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
1
'''simple docstring''' from math import sqrt def A_ ( SCREAMING_SNAKE_CASE_ = 1_00_00_00 ) ->int: lowercase_ = 0 lowercase_ = 0 lowercase_ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(SCREAMING_SNAKE_CASE_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
603
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports __snake_case = """ import os """ __snake_case = """ def foo(): import os return False """ __snake_case = """ def foo(): def bar(): if True: import os return False return bar() """ __snake_case = """ import os try: import bar except ImportError: raise ValueError() """ __snake_case = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ __snake_case = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ __snake_case = """ import os try: import bar except ImportError as e: raise ValueError() """ __snake_case = """ import os try: import bar except: raise ValueError() """ __snake_case = """ import os try: import bar import baz except ImportError: raise ValueError() """ __snake_case = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ __snake_case = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , """test_file.py""" ) with open(SCREAMING_SNAKE_CASE_ , """w""" ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE_ ) lowercase_ = get_imports(SCREAMING_SNAKE_CASE_ ) assert parsed_imports == ["os"]
603
1