code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') a : Any = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __SCREAMING_SNAKE_CASE = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def A ( self : Any ): """simple docstring""" if self.train_file is not None: __snake_case = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self : List[Any] , a_ : str ): """simple docstring""" __snake_case = "label" if "label" in features[0].keys() else "labels" __snake_case = [feature.pop(a_ ) for feature in features] __snake_case = len(a_ ) __snake_case = len(features[0]["input_ids"] ) __snake_case = [ [{k: v[i] for k, v in feature.items()} for i in range(a_ )] for feature in features ] __snake_case = list(chain(*a_ ) ) __snake_case = self.tokenizer.pad( a_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten __snake_case = {k: v.view(a_ , a_ , -1 ) for k, v in batch.items()} # Add back labels __snake_case = torch.tensor(a_ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , _UpperCAmelCase , _UpperCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) datasets.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case = {} if data_args.train_file is not None: __snake_case = data_args.train_file if data_args.validation_file is not None: __snake_case = data_args.validation_file __snake_case = data_args.train_file.split("." )[-1] __snake_case = load_dataset( _UpperCAmelCase , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case = [F'''ending{i}''' for i in range(4 )] __snake_case = "sent1" __snake_case = "sent2" if data_args.max_seq_length is None: __snake_case = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) __snake_case = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __snake_case = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_UpperCAmelCase : Union[str, Any] ): __snake_case = [[context] * 4 for context in examples[context_name]] __snake_case = examples[question_header_name] __snake_case = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(_UpperCAmelCase ) ] # Flatten out __snake_case = list(chain(*_UpperCAmelCase ) ) __snake_case = list(chain(*_UpperCAmelCase ) ) # Tokenize __snake_case = tokenizer( _UpperCAmelCase , _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) __snake_case = raw_datasets["train"] if data_args.max_train_samples is not None: __snake_case = min(len(_UpperCAmelCase ) , data_args.max_train_samples ) __snake_case = train_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __snake_case = train_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) __snake_case = raw_datasets["validation"] if data_args.max_eval_samples is not None: __snake_case = min(len(_UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case = eval_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __snake_case = eval_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_UpperCAmelCase : Dict ): __snake_case , __snake_case = eval_predictions __snake_case = np.argmax(_UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case = train_result.metrics __snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) __snake_case = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics("train" , _UpperCAmelCase ) trainer.save_metrics("train" , _UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __snake_case = trainer.evaluate() __snake_case = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase ) __snake_case = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics("eval" , _UpperCAmelCase ) trainer.save_metrics("eval" , _UpperCAmelCase ) __snake_case = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
69
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __snake_case = gray_code_sequence_string(_UpperCAmelCase ) # # convert them to integers for i in range(len(_UpperCAmelCase ) ): __snake_case = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case = gray_code_sequence_string(bit_count - 1 ) __snake_case = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case = "0" + smaller_sequence[i] sequence.append(_UpperCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case = "1" + smaller_sequence[i] sequence.append(_UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
69
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def a_ (_lowerCAmelCase : Any )-> Optional[int]: return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def a_ ()-> Tuple: snake_case: Union[str, Any] = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=_lowerCAmelCase ) snake_case: Dict = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_lowerCAmelCase ) EnvironmentCommand.register_subcommand(_lowerCAmelCase ) TestCommand.register_subcommand(_lowerCAmelCase ) RunBeamCommand.register_subcommand(_lowerCAmelCase ) DummyDataCommand.register_subcommand(_lowerCAmelCase ) # Parse args snake_case: Optional[int] = parser.parse_known_args() if not hasattr(_lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) snake_case: int = parse_unknown_args(_lowerCAmelCase ) # Run snake_case: Tuple = args.func(_lowerCAmelCase , **_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
705
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Dict = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase ( __snake_case ): __lowerCamelCase = 'funnel' __lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , __lowerCamelCase=3_05_22 , __lowerCamelCase=[4, 4, 4] , __lowerCamelCase=None , __lowerCamelCase=2 , __lowerCamelCase=7_68 , __lowerCamelCase=12 , __lowerCamelCase=64 , __lowerCamelCase=30_72 , __lowerCamelCase="gelu_new" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=None , __lowerCamelCase=1e-9 , __lowerCamelCase="mean" , __lowerCamelCase="relative_shift" , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , **__lowerCamelCase , ) -> Optional[int]: '''simple docstring''' snake_case: int = vocab_size snake_case: List[str] = block_sizes snake_case: str = [1] * len(__lowerCamelCase ) if block_repeats is None else block_repeats assert len(__lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." snake_case: Any = num_decoder_layers snake_case: List[str] = d_model snake_case: Any = n_head snake_case: str = d_head snake_case: Optional[Any] = d_inner snake_case: Dict = hidden_act snake_case: Tuple = hidden_dropout snake_case: Optional[Any] = attention_dropout snake_case: Optional[int] = activation_dropout snake_case: Union[str, Any] = initializer_range snake_case: Tuple = initializer_std snake_case: Optional[int] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." snake_case: str = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." snake_case: List[str] = attention_type snake_case: str = separate_cls snake_case: Dict = truncate_seq snake_case: List[Any] = pool_q_only super().__init__(**__lowerCamelCase ) @property def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self , __lowerCamelCase ) -> List[Any]: '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self , __lowerCamelCase ) -> Tuple: '''simple docstring''' raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
164
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def UpperCAmelCase_ ( snake_case__ ) -> str: """simple docstring""" lowerCAmelCase__ = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def UpperCAmelCase_ ( snake_case__ ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = emb.weight.shape lowerCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) lowerCAmelCase__ = emb.weight.data return lin_layer def UpperCAmelCase_ ( snake_case__ ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = torch.load(_lowercase , map_location='cpu' ) lowerCAmelCase__ = Namespace(**checkpoint['cfg']['model'] ) lowerCAmelCase__ = checkpoint['model'] remove_ignore_keys_(_lowercase ) lowerCAmelCase__ = state_dict['decoder.embed_tokens.weight'].shape[0] lowerCAmelCase__ = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} lowerCAmelCase__ = XGLMConfig( vocab_size=_lowercase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCAmelCase__ = XGLMForCausalLM(_lowercase ) lowerCAmelCase__ = model.load_state_dict(_lowercase , strict=_lowercase ) print(_lowercase ) lowerCAmelCase__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : Optional[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
193
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=1024 ) -> Union[str, Any]: UpperCamelCase , UpperCamelCase = [], [] UpperCamelCase = list(zip(_lowercase , _lowercase ) ) UpperCamelCase , UpperCamelCase = sorted_examples[0] def is_too_big(_lowercase ): return tok(_lowercase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCamelCase = new_src + ' ' + src UpperCamelCase = new_tgt + ' ' + tgt if is_too_big(_lowercase ) or is_too_big(_lowercase ): # cant fit, finalize example finished_src.append(_lowercase ) finished_tgt.append(_lowercase ) UpperCamelCase , UpperCamelCase = src, tgt else: # can fit, keep adding UpperCamelCase , UpperCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowercase ) finished_tgt.append(_lowercase ) return finished_src, finished_tgt def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCamelCase = Path(_lowercase ) save_path.mkdir(exist_ok=_lowercase ) for split in ["train"]: UpperCamelCase , UpperCamelCase = data_dir / F'{split}.source', data_dir / F'{split}.target' UpperCamelCase = [x.rstrip() for x in Path(_lowercase ).open().readlines()] UpperCamelCase = [x.rstrip() for x in Path(_lowercase ).open().readlines()] UpperCamelCase , UpperCamelCase = pack_examples(_lowercase , _lowercase , _lowercase , _lowercase ) print(F'packed {split} split from {len(_lowercase )} examples -> {len(_lowercase )}.' ) Path(save_path / F'{split}.source' ).open('w' ).write('\n'.join(_lowercase ) ) Path(save_path / F'{split}.target' ).open('w' ).write('\n'.join(_lowercase ) ) for split in ["val", "test"]: UpperCamelCase , UpperCamelCase = data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(_lowercase , save_path / F'{split}.source' ) shutil.copyfile(_lowercase , save_path / F'{split}.target' ) def __lowerCamelCase ( ) -> Union[str, Any]: UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=_lowercase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=_lowercase , default=128 ) parser.add_argument('--data_dir' , type=_lowercase ) parser.add_argument('--save_path' , type=_lowercase ) UpperCamelCase = parser.parse_args() UpperCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_lowercase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
282
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase__( __UpperCamelCase: Dict ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: List[str] ,__UpperCamelCase: List[str] ): """simple docstring""" return max(metric_fn(__UpperCamelCase ,__UpperCamelCase ) for gt in ground_truths ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [line.strip() for line in open(__UpperCamelCase ,'r' ).readlines()] SCREAMING_SNAKE_CASE : Tuple = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE : int = pd.read_csv(__UpperCamelCase ,sep='\t' ,header=__UpperCamelCase ) for answer_list in data[1]: SCREAMING_SNAKE_CASE : Optional[Any] = ast.literal_eval(__UpperCamelCase ) answers.append(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = [line.strip() for line in open(__UpperCamelCase ,'r' ).readlines()] SCREAMING_SNAKE_CASE : Dict = [[reference] for reference in references] SCREAMING_SNAKE_CASE : Dict = 0 for prediction, ground_truths in zip(__UpperCamelCase ,__UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) fa += metric_max_over_ground_truths(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE : Any = 1_0_0.0 * fa / total logger.info(f"F1: {fa:.2f}" ) logger.info(f"EM: {em:.2f}" ) def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = args.k SCREAMING_SNAKE_CASE : Dict = [line.strip() for line in open(__UpperCamelCase ,'r' ).readlines()] SCREAMING_SNAKE_CASE : str = [line.strip() for line in open(__UpperCamelCase ,'r' ).readlines()] SCREAMING_SNAKE_CASE : str = 0 for hypo, reference in zip(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = set(hypo.split('\t' )[:k] ) SCREAMING_SNAKE_CASE : Tuple = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE : Any = 1_0_0.0 * em / total logger.info(f"Precision@{k}: {em: .2f}" ) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: str ,__UpperCamelCase: Optional[Any] ): """simple docstring""" def strip_title(__UpperCamelCase: List[Any] ): if title.startswith('"' ): SCREAMING_SNAKE_CASE : List[Any] = title[1:] if title.endswith('"' ): SCREAMING_SNAKE_CASE : List[Any] = title[:-1] return title SCREAMING_SNAKE_CASE : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase ,return_tensors='pt' ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,)['input_ids'].to(args.device ) SCREAMING_SNAKE_CASE : Optional[int] = rag_model.rag.question_encoder(__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = question_enc_outputs[0] SCREAMING_SNAKE_CASE : List[str] = rag_model.retriever( __UpperCamelCase ,question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() ,prefix=rag_model.rag.generator.config.prefix ,n_docs=rag_model.config.n_docs ,return_tensors='pt' ,) SCREAMING_SNAKE_CASE : List[str] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE : Any = [] for docs in all_docs: SCREAMING_SNAKE_CASE : List[str] = [strip_title(__UpperCamelCase ) for title in docs['title']] provenance_strings.append('\t'.join(__UpperCamelCase ) ) return provenance_strings def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: int ): """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase ,return_tensors='pt' ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE : List[str] = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE : Optional[Any] = rag_model.generate( # rag_model overwrites generate __UpperCamelCase ,attention_mask=__UpperCamelCase ,num_beams=args.num_beams ,min_length=args.min_length ,max_length=args.max_length ,early_stopping=__UpperCamelCase ,num_return_sequences=1 ,bad_words_ids=[[0, 0]] ,) SCREAMING_SNAKE_CASE : List[Any] = rag_model.retriever.generator_tokenizer.batch_decode(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase ) if args.print_predictions: for q, a in zip(__UpperCamelCase ,__UpperCamelCase ): logger.info('Q: {} - A: {}'.format(__UpperCamelCase ,__UpperCamelCase ) ) return answers def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument( '--model_type' ,choices=['rag_sequence', 'rag_token', 'bart'] ,type=__UpperCamelCase ,help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) ,) parser.add_argument( '--index_name' ,default=__UpperCamelCase ,choices=['exact', 'compressed', 'legacy'] ,type=__UpperCamelCase ,help='RAG model retriever type' ,) parser.add_argument( '--index_path' ,default=__UpperCamelCase ,type=__UpperCamelCase ,help='Path to the retrieval index' ,) parser.add_argument('--n_docs' ,default=5 ,type=__UpperCamelCase ,help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' ,default=__UpperCamelCase ,type=__UpperCamelCase ,required=__UpperCamelCase ,help='Path to pretrained checkpoints or model identifier from huggingface.co/models' ,) parser.add_argument( '--eval_mode' ,choices=['e2e', 'retrieval'] ,default='e2e' ,type=__UpperCamelCase ,help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) ,) parser.add_argument('--k' ,default=1 ,type=__UpperCamelCase ,help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' ,default=__UpperCamelCase ,type=__UpperCamelCase ,required=__UpperCamelCase ,help='Path to a file containing evaluation samples' ,) parser.add_argument( '--gold_data_path' ,default=__UpperCamelCase ,type=__UpperCamelCase ,required=__UpperCamelCase ,help='Path to a tab-separated file with gold samples' ,) parser.add_argument( '--gold_data_mode' ,default='qa' ,type=__UpperCamelCase ,choices=['qa', 'ans'] ,help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) ,) parser.add_argument( '--predictions_path' ,type=__UpperCamelCase ,default='predictions.txt' ,help='Name of the predictions file, to be stored in the checkpoints directory' ,) parser.add_argument( '--eval_all_checkpoints' ,action='store_true' ,help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' ,) parser.add_argument( '--eval_batch_size' ,default=8 ,type=__UpperCamelCase ,help='Batch size per GPU/CPU for evaluation.' ,) parser.add_argument( '--recalculate' ,help='Recalculate predictions even if the prediction file exists' ,action='store_true' ,) parser.add_argument( '--num_beams' ,default=4 ,type=__UpperCamelCase ,help='Number of beams to be used when generating answers' ,) parser.add_argument('--min_length' ,default=1 ,type=__UpperCamelCase ,help='Min length of the generated answers' ) parser.add_argument('--max_length' ,default=50 ,type=__UpperCamelCase ,help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' ,action='store_true' ,help='If True, prints predictions while evaluating.' ,) parser.add_argument( '--print_docs' ,action='store_true' ,help='If True, prints docs retried while generating.' ,) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Any = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = {} if args.model_type is None: SCREAMING_SNAKE_CASE : Union[str, Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): SCREAMING_SNAKE_CASE : Any = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration SCREAMING_SNAKE_CASE : Any = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE : Tuple = args.index_path else: SCREAMING_SNAKE_CASE : str = BartForConditionalGeneration SCREAMING_SNAKE_CASE : int = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = get_scores if args.eval_mode == 'e2e' else get_precision_at_k SCREAMING_SNAKE_CASE : Tuple = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(__UpperCamelCase ,args.predictions_path ,args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(__UpperCamelCase ) ) logger.info(' Batch size = %d' ,args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): SCREAMING_SNAKE_CASE : Tuple = RagRetriever.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_pretrained(__UpperCamelCase ,retriever=__UpperCamelCase ,**__UpperCamelCase ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set ,'r' ) as eval_file, open(args.predictions_path ,'w' ) as preds_file: SCREAMING_SNAKE_CASE : Optional[Any] = [] for line in tqdm(__UpperCamelCase ): questions.append(line.strip() ) if len(__UpperCamelCase ) == args.eval_batch_size: SCREAMING_SNAKE_CASE : Dict = evaluate_batch_fn(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) preds_file.write('\n'.join(__UpperCamelCase ) + '\n' ) preds_file.flush() SCREAMING_SNAKE_CASE : Optional[Any] = [] if len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) preds_file.write('\n'.join(__UpperCamelCase ) ) preds_file.flush() score_fn(__UpperCamelCase ,args.predictions_path ,args.gold_data_path ) if __name__ == "__main__": UpperCamelCase_ = get_args() main(args)
508
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''pixel_values'''] def __init__( self, A = True, A = None, A = PILImageResampling.BICUBIC, A = True, A = True, A = 1 / 255, A = None, A = True, A = None, A = None, **A, ): '''simple docstring''' super().__init__(**A ) SCREAMING_SNAKE_CASE : Any = size if size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(A ) SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : str = get_size_dict(A, default_to_square=A, param_name='crop_size' ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE : Optional[int] = do_normalize SCREAMING_SNAKE_CASE : List[Any] = do_center_crop SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Any = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self, A, A, A = PILImageResampling.BILINEAR, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(A ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size(A, size=size['shortest_edge'], default_to_square=A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE : Union[str, Any] = (size['height'], size['width']) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(A, size=A, resample=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(A, size=(size['height'], size['width']), data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A = None, **A ): '''simple docstring''' return rescale(A, scale=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A, A = None, **A, ): '''simple docstring''' return normalize(A, mean=A, std=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = ChannelDimension.FIRST, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : int = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(A, param_name='crop_size', default_to_square=A ) SCREAMING_SNAKE_CASE : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[int] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Dict = get_size_dict(A ) if not is_batched(A ): SCREAMING_SNAKE_CASE : List[Any] = [images] if not valid_images(A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Optional[int] = [to_numpy_array(A ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.resize(image=A, size=A, resample=A ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : List[Any] = [self.center_crop(image=A, size=A ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Optional[Any] = [self.rescale(image=A, scale=A ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Any = [self.normalize(image=A, mean=A, std=A ) for image in images] SCREAMING_SNAKE_CASE : List[Any] = [to_channel_dimension_format(A, A ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=A, tensor_type=A )
508
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a : Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def UpperCamelCase__ ( _A: Any , _A: tuple , _A: Path , _A: Tuple , _A: Optional[Any] , _A: Union[str, Any] , _A: Dict , _A: str=False , ): '''simple docstring''' output_path.parent.mkdir(parents=_A , exist_ok=_A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _A , _A , f=output_path.as_posix() , input_names=_A , output_names=_A , dynamic_axes=_A , do_constant_folding=_A , use_external_data_format=_A , enable_onnx_checker=_A , opset_version=_A , ) else: export( _A , _A , f=output_path.as_posix() , input_names=_A , output_names=_A , dynamic_axes=_A , do_constant_folding=_A , opset_version=_A , ) @torch.no_grad() def UpperCamelCase__ ( _A: str , _A: str , _A: int , _A: bool = False ): '''simple docstring''' __lowerCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCamelCase = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __lowerCamelCase = """cpu""" __lowerCamelCase = Path(_A ) # VAE DECODER __lowerCamelCase = AutoencoderKL.from_pretrained(model_path + """/vae""" ) __lowerCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCamelCase = vae_decoder.decode onnx_export( _A , model_args=( torch.randn(1 , _A , 25 , 25 ).to(device=_A , dtype=_A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_A , ) del vae_decoder if __name__ == "__main__": _a : str = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') _a : Dict = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
479
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase__ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """mock-s3-bucket""" __lowerCamelCase = f'''s3://{mock_bucket}''' __lowerCamelCase = extract_path_from_uri(_A ) assert dataset_path.startswith("""s3://""" ) is False __lowerCamelCase = """./local/path""" __lowerCamelCase = extract_path_from_uri(_A ) assert dataset_path == new_dataset_path def UpperCamelCase__ ( _A: List[Any] ): '''simple docstring''' __lowerCamelCase = is_remote_filesystem(_A ) assert is_remote is True __lowerCamelCase = fsspec.filesystem("""file""" ) __lowerCamelCase = is_remote_filesystem(_A ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , _A ) def UpperCamelCase__ ( _A: List[str] , _A: Tuple , _A: List[Any] , _A: Any , _A: List[Any] , _A: Optional[int] , _A: List[str] ): '''simple docstring''' __lowerCamelCase = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} __lowerCamelCase = input_paths[compression_fs_class.protocol] if input_path is None: __lowerCamelCase = f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_A ) __lowerCamelCase = fsspec.filesystem(compression_fs_class.protocol , fo=_A ) assert isinstance(_A , _A ) __lowerCamelCase = os.path.basename(_A ) __lowerCamelCase = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(_A , """r""" , encoding="""utf-8""" ) as f, open(_A , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def UpperCamelCase__ ( _A: Optional[Any] , _A: Union[str, Any] , _A: int ): '''simple docstring''' __lowerCamelCase = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} __lowerCamelCase = compressed_file_paths[protocol] __lowerCamelCase = """dataset.jsonl""" __lowerCamelCase = f'''{protocol}://{member_file_path}::{compressed_file_path}''' __lowerCamelCase , *__lowerCamelCase = fsspec.get_fs_token_paths(_A ) assert fs.isfile(_A ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def UpperCamelCase__ ( _A: str , _A: str , _A: Optional[int] , _A: Union[str, Any] ): '''simple docstring''' __lowerCamelCase = hf_api.dataset_info(_A , token=_A ) __lowerCamelCase = HfFileSystem(repo_info=_A , token=_A ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(_A ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_A , _A , clobber=_A ) with pytest.warns(_A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_A ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
479
1
from math import factorial def UpperCamelCase_( _A :int = 1_00 )-> int: return sum(map(_A , str(factorial(_A ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
185
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" @staticmethod @abstractmethod def snake_case__ ( snake_case ): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self ): '''simple docstring''' raise NotImplementedError()
185
1
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 1_6000 ) -> List[Any]: """simple docstring""" __UpperCAmelCase : int = int(round(sample_rate * max_length ) ) if len(UpperCamelCase ) <= sample_length: return wav __UpperCAmelCase : int = randint(0 , len(UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class a__ : lowercase_ = field(default=__magic_name__ , metadata={"help": "Name of a dataset from the datasets package"} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "A file containing the training audio paths and labels."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "A file containing the validation audio paths and labels."} ) lowercase_ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowercase_ = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowercase_ = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) lowercase_ = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) lowercase_ = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase_ = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowercase_ = field( default=2_0 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class a__ : lowercase_ = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) lowercase_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Name or path of preprocessor config."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) lowercase_ = field( default=__magic_name__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowercase_ = field( default=__magic_name__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def a_ ( self : Optional[int]): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , UpperCamelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def _UpperCamelCase ( ) -> Any: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , UpperCamelCase , UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase : List[str] = training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __UpperCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. __UpperCAmelCase : Optional[int] = DatasetDict() __UpperCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " f"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " f"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __UpperCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __UpperCAmelCase : List[str] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __UpperCAmelCase : Tuple = feature_extractor.model_input_names[0] def train_transforms(UpperCamelCase ): __UpperCAmelCase : Optional[int] = [] for audio in batch[data_args.audio_column_name]: __UpperCAmelCase : int = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(UpperCamelCase ) __UpperCAmelCase : Any = feature_extractor(UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) __UpperCAmelCase : Any = {model_input_name: inputs.get(UpperCamelCase )} __UpperCAmelCase : int = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(UpperCamelCase ): __UpperCAmelCase : Any = [audio["array"] for audio in batch[data_args.audio_column_name]] __UpperCAmelCase : List[Any] = feature_extractor(UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) __UpperCAmelCase : Union[str, Any] = {model_input_name: inputs.get(UpperCamelCase )} __UpperCAmelCase : List[Any] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __UpperCAmelCase : Tuple = raw_datasets["train"].features[data_args.label_column_name].names __UpperCAmelCase , __UpperCAmelCase : List[Any] = {}, {} for i, label in enumerate(UpperCamelCase ): __UpperCAmelCase : List[str] = str(UpperCamelCase ) __UpperCAmelCase : str = label # Load the accuracy metric from the datasets package __UpperCAmelCase : Union[str, Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase ): __UpperCAmelCase : str = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=UpperCamelCase , references=eval_pred.label_ids ) __UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel=UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Tuple = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __UpperCAmelCase : Any = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(UpperCamelCase , output_all_columns=UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: __UpperCAmelCase : Union[str, Any] = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(UpperCamelCase , output_all_columns=UpperCamelCase ) # Initialize our trainer __UpperCAmelCase : Optional[int] = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=UpperCamelCase , tokenizer=UpperCamelCase , ) # Training if training_args.do_train: __UpperCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : Tuple = last_checkpoint __UpperCAmelCase : Optional[Any] = trainer.train(resume_from_checkpoint=UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCAmelCase : Union[str, Any] = trainer.evaluate() trainer.log_metrics("eval" , UpperCamelCase ) trainer.save_metrics("eval" , UpperCamelCase ) # Write model card and (optionally) push to hub __UpperCAmelCase : Any = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase ) else: trainer.create_model_card(**UpperCamelCase ) if __name__ == "__main__": main()
77
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_: int = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: Any = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: Any = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: List[Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys lowercase_: List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
648
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _a (__magic_name__ ): '''simple docstring''' def __A ( self ): A__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A__ , """num_attention_heads""" ) ) class _a : '''simple docstring''' def __init__( self , A__ , A__=13 , A__=64 , A__=3 , A__=3 , A__=2 , A__=1 , A__=16 , A__=[128, 256, 384] , A__=[4, 6, 8] , A__=[2, 3, 4] , A__=[16, 16, 16] , A__=0 , A__=[2, 2, 2] , A__=[2, 2, 2] , A__=0.0_2 , A__=True , A__=True , A__=2 , ): A__ : Dict = parent A__ : str = batch_size A__ : Dict = image_size A__ : Optional[int] = num_channels A__ : List[str] = kernel_size A__ : List[str] = stride A__ : Union[str, Any] = padding A__ : int = hidden_sizes A__ : Union[str, Any] = num_attention_heads A__ : Union[str, Any] = depths A__ : List[str] = key_dim A__ : Any = drop_path_rate A__ : List[Any] = patch_size A__ : Optional[int] = attention_ratio A__ : Optional[Any] = mlp_ratio A__ : List[Any] = initializer_range A__ : List[Any] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] A__ : int = is_training A__ : List[str] = use_labels A__ : Tuple = num_labels A__ : int = initializer_range def __A ( self ): A__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Any = None if self.use_labels: A__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) A__ : str = self.get_config() return config, pixel_values, labels def __A ( self ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __A ( self , A__ , A__ , A__ ): A__ : Optional[int] = LevitModel(config=A__ ) model.to(A__ ) model.eval() A__ : Tuple = model(A__ ) A__ : str = (self.image_size, self.image_size) A__ : Any = image_size[0], image_size[1] for _ in range(4 ): A__ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) A__ : Union[str, Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __A ( self , A__ , A__ , A__ ): A__ : Optional[Any] = self.num_labels A__ : Any = LevitForImageClassification(A__ ) model.to(A__ ) model.eval() A__ : List[Any] = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): A__ : Tuple = self.prepare_config_and_inputs() A__ : List[Any] = config_and_inputs A__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Union[str, Any] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCAmelCase__: Union[str, Any] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__: List[str] = False UpperCAmelCase__: List[Any] = False UpperCAmelCase__: int = False UpperCAmelCase__: Optional[int] = False UpperCAmelCase__: Dict = False def __A ( self ): A__ : Dict = LevitModelTester(self ) A__ : Optional[int] = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def __A ( self ): pass @unittest.skip(reason="""Levit does not output attentions""" ) def __A ( self ): pass def __A ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : str = model_class(A__ ) A__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : str = [*signature.parameters.keys()] A__ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def __A ( self ): def check_hidden_states_output(A__ , A__ , A__ ): A__ : str = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): A__ : List[Any] = model(**self._prepare_for_class(A__ , A__ ) ) A__ : List[Any] = outputs.hidden_states A__ : int = len(self.model_tester.depths ) + 1 self.assertEqual(len(A__ ) , A__ ) A__ : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) A__ : List[str] = image_size[0], image_size[1] for _ in range(4 ): A__ : str = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) A__ : List[str] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) A__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Union[str, Any] = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Dict = True check_hidden_states_output(A__ , A__ , A__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ): pass def __A ( self , A__ , A__ , A__=False ): A__ : Tuple = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) def __A ( self ): if not self.model_tester.is_training: return A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A__ : Dict = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue A__ : Dict = model_class(A__ ) model.to(A__ ) model.train() A__ : Union[str, Any] = self._prepare_for_class(A__ , A__ , return_labels=A__ ) A__ : List[Any] = model(**A__ ).loss loss.backward() def __A ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A__ : Dict = False A__ : Any = True for model_class in self.all_model_classes: if model_class in get_values(A__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue A__ : List[Any] = model_class(A__ ) model.gradient_checkpointing_enable() model.to(A__ ) model.train() A__ : Optional[Any] = self._prepare_for_class(A__ , A__ , return_labels=A__ ) A__ : Any = model(**A__ ).loss loss.backward() def __A ( self ): A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Union[str, Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): A__ : Any = problem_type["""title"""] A__ : Any = problem_type["""num_labels"""] A__ : List[Any] = model_class(A__ ) model.to(A__ ) model.train() A__ : Optional[Any] = self._prepare_for_class(A__ , A__ , return_labels=A__ ) if problem_type["num_labels"] > 1: A__ : Any = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A__ : Dict = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A__ ) as warning_list: A__ : Dict = model(**A__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __A ( self ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = LevitModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def UpperCamelCase () -> Dict: A__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _a (unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __A ( self ): A__ : Tuple = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A__ ) A__ : Optional[int] = self.default_image_processor A__ : List[Any] = prepare_img() A__ : Dict = image_processor(images=A__ , return_tensors="""pt""" ).to(A__ ) # forward pass with torch.no_grad(): A__ : Optional[int] = model(**A__ ) # verify the logits A__ : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A__ ) A__ : Any = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1e-4 ) )
701
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCamelCase (*lowercase_: Optional[int] , lowercase_: Optional[Union[Dict, Any]] = None , lowercase_: Dict=True , lowercase_: Tuple=2 ) -> Dict: from .. import __version__ A__ : Dict = take_from A__ : str = () if not isinstance(args[0] , lowercase_ ): A__ : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase_ ).base_version ) >= version.parse(lowercase_ ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) A__ : Any = None if isinstance(lowercase_ , lowercase_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase_ ),) A__ : List[str] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(lowercase_ , lowercase_ ): values += (getattr(lowercase_ , lowercase_ ),) A__ : Optional[Any] = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: A__ : int = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: A__ : int = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , lowercase_ , stacklevel=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0: A__ : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] A__ : Optional[Any] = call_frame.filename A__ : Optional[int] = call_frame.lineno A__ : Any = call_frame.function A__ , A__ : List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(lowercase_ ) == 0: return elif len(lowercase_ ) == 1: return values[0] return values
64
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _snake_case = 25_6047 _snake_case = 25_6145 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = NllbTokenizer lowerCamelCase__ = NllbTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = {} def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : str = NllbTokenizer(__a, keep_accents=__a) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = NllbTokenizer(__a, keep_accents=__a) _lowerCAmelCase : Optional[int] = tokenizer.tokenize("This is a test") self.assertListEqual(__a, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _lowerCAmelCase : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __a, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(__a) self.assertListEqual( __a, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(__a, **__a) _lowerCAmelCase : List[Any] = tempfile.mkdtemp() _lowerCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(__a) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(__a) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) _lowerCAmelCase : List[str] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(__a, __a) # Checks everything loads correctly in the same way _lowerCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(__a) _lowerCAmelCase : str = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a, __a)) shutil.rmtree(__a) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : List[str] = tokenizer_r.save_pretrained(__a, legacy_format=__a) _lowerCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(__a) # Checks it save with the same files self.assertSequenceEqual(__a, __a) # Checks everything loads correctly in the same way _lowerCAmelCase : List[Any] = tokenizer_r.from_pretrained(__a) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a, __a)) shutil.rmtree(__a) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : List[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(__a, legacy_format=__a) _lowerCAmelCase : Dict = tokenizer_p.save_pretrained(__a) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way _lowerCAmelCase : List[Any] = tokenizer_r.from_pretrained(__a) _lowerCAmelCase : Dict = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a, __a)) shutil.rmtree(__a) @require_torch def snake_case__ ( self): '''simple docstring''' if not self.test_seqaseq: return _lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Longer text that will definitely require truncation. _lowerCAmelCase : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] _lowerCAmelCase : Optional[int] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: _lowerCAmelCase : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=__a, tgt_texts=__a, max_length=3, max_target_length=10, return_tensors="pt", src_lang="eng_Latn", tgt_lang="ron_Latn", ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 10) # max_target_length will default to max_length if not specified _lowerCAmelCase : Dict = tokenizer.prepare_seqaseq_batch( __a, tgt_texts=__a, max_length=3, return_tensors="pt") self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 3) _lowerCAmelCase : List[Any] = tokenizer.prepare_seqaseq_batch( src_texts=__a, max_length=3, max_target_length=10, return_tensors="pt") self.assertEqual(batch_encoder_only.input_ids.shape[1], 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3) self.assertNotIn("decoder_input_ids", __a) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : Tuple = [AddedToken("<special>", lstrip=__a)] _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a, additional_special_tokens=__a, **__a) _lowerCAmelCase : Tuple = tokenizer_r.encode("Hey this is a <special> token") _lowerCAmelCase : Tuple = tokenizer_r.encode("<special>", add_special_tokens=__a)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: _lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( __a, additional_special_tokens=__a, **__a, ) _lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained( __a, additional_special_tokens=__a, **__a) _lowerCAmelCase : Any = tokenizer_p.encode("Hey this is a <special> token") _lowerCAmelCase : List[Any] = tokenizer_cr.encode("Hey this is a <special> token") self.assertEqual(__a, __a) self.assertEqual(__a, __a) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = 'facebook/nllb-200-distilled-600M' lowerCamelCase__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase__ = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def snake_case__ ( cls): '''simple docstring''' _lowerCAmelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang="eng_Latn", tgt_lang="ron_Latn") _lowerCAmelCase : List[Any] = 1 return cls def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"], 25_6001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"], 25_6002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"], 25_6057) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, __a) def snake_case__ ( self): '''simple docstring''' self.assertIn(__a, self.tokenizer.all_special_ids) # fmt: off _lowerCAmelCase : Tuple = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on _lowerCAmelCase : Union[str, Any] = self.tokenizer.decode(__a, skip_special_tokens=__a) _lowerCAmelCase : int = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=__a) self.assertEqual(__a, __a) self.assertNotIn(self.tokenizer.eos_token, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0], __a) _lowerCAmelCase : Any = 10 _lowerCAmelCase : Optional[Any] = self.tokenizer(__a, max_length=__a, truncation=__a).input_ids[0] self.assertEqual(ids[-1], 2) self.assertEqual(ids[0], __a) self.assertEqual(len(__a), __a) def snake_case__ ( self): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [25_6203, 3]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = tempfile.mkdtemp() _lowerCAmelCase : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a) _lowerCAmelCase : Dict = NllbTokenizer.from_pretrained(__a) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, __a) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=__a, truncation=__a, max_length=len(self.expected_src_tokens), return_tensors="pt", ) _lowerCAmelCase : str = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id["ron_Latn"]) self.assertIsInstance(__a, __a) self.assertEqual((2, 15), batch.input_ids.shape) self.assertEqual((2, 15), batch.attention_mask.shape) _lowerCAmelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, __a) self.assertEqual(__a, batch.decoder_input_ids[0, 0]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text, padding=__a, truncation=__a, max_length=3, return_tensors="pt") _lowerCAmelCase : Union[str, Any] = self.tokenizer( text_target=self.tgt_text, padding=__a, truncation=__a, max_length=10, return_tensors="pt") _lowerCAmelCase : str = targets["input_ids"] _lowerCAmelCase : Any = shift_tokens_right( __a, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="eng_Latn", tgt_lang="fra_Latn") self.assertEqual( nested_simplify(__a), { # A, test, EOS, en_XX "input_ids": [[25_6047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_6057, }, ) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : str = self.tokenizer( "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn") self.assertEqual( inputs.input_ids, [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047]) _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Any = self.tokenizer( "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn") self.assertEqual( inputs.input_ids, [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2])
500
from __future__ import annotations class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = text, pattern _lowerCAmelCase , _lowerCAmelCase : int = len(__a), len(__a) def snake_case__ ( self, __a): '''simple docstring''' for i in range(self.patLen - 1, -1, -1): if char == self.pattern[i]: return i return -1 def snake_case__ ( self, __a): '''simple docstring''' for i in range(self.patLen - 1, -1, -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(self.textLen - self.patLen + 1): _lowerCAmelCase : Dict = self.mismatch_in_text(__a) if mismatch_index == -1: positions.append(__a) else: _lowerCAmelCase : List[str] = self.match_in_pattern(self.text[mismatch_index]) _lowerCAmelCase : Dict = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _snake_case = "ABAABA" _snake_case = "AB" _snake_case = BoyerMooreSearch(text, pattern) _snake_case = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
500
1
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase__ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowerCAmelCase__ = get_tests_dir('''fixtures/vocab.json''') lowerCAmelCase__ = get_tests_dir('''fixtures''') class __snake_case ( unittest.TestCase): snake_case__ : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = 0 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Any = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[int] = WavaVecaConfig() _lowerCamelCase : List[Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''vocab.json''' ) ) _lowerCamelCase : Optional[int] = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Tuple = WavaVecaFeatureExtractor() _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) _lowerCamelCase : Dict = WavaVecaProcessor(__lowerCAmelCase , __lowerCAmelCase ) # save in new folder processor.save_pretrained(__lowerCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , '''r''' ) as f: _lowerCamelCase : Optional[int] = json.load(__lowerCAmelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , '''w''' ) as f: f.write(json.dumps(__lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[str] = WavaVecaFeatureExtractor() _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) _lowerCamelCase : Dict = WavaVecaProcessor(__lowerCAmelCase , __lowerCAmelCase ) # save in new folder processor.save_pretrained(__lowerCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , '''r''' ) as f: _lowerCamelCase : int = json.load(__lowerCAmelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , '''w''' ) as f: f.write(json.dumps(__lowerCAmelCase ) ) _lowerCamelCase : Any = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Dict = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(__lowerCAmelCase ) # copy relevant files copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , '''w''' ) as f: f.write('''{}''' ) _lowerCamelCase : int = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[str] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Any = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) _lowerCamelCase : str = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) _lowerCamelCase : Dict = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version _lowerCamelCase : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) _lowerCamelCase : str = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" try: AutoConfig.register('''custom''' , __lowerCAmelCase ) AutoFeatureExtractor.register(__lowerCAmelCase , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : int = os.path.join(__lowerCAmelCase , '''vocab.txt''' ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase : int = CustomTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = CustomProcessor(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" class __snake_case ( _lowercase): snake_case__ : Optional[Any] = False class __snake_case ( _lowercase): snake_case__ : List[str] = False class __snake_case ( _lowercase): snake_case__ : List[Any] = "AutoFeatureExtractor" snake_case__ : Tuple = "AutoTokenizer" snake_case__ : Dict = False try: AutoConfig.register('''custom''' , __lowerCAmelCase ) AutoFeatureExtractor.register(__lowerCAmelCase , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # If remote code is not set, the default is to use local classes. _lowerCamelCase : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _lowerCamelCase : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _lowerCamelCase : int = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class __snake_case ( unittest.TestCase): snake_case__ : Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def SCREAMING_SNAKE_CASE ( cls : str ): """simple docstring""" _lowerCamelCase : List[str] = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = WavaVecaProcessor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCAmelCase , '''test-processor''' ) , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _lowerCamelCase : str = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(new_processor.feature_extractor , __lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = WavaVecaProcessor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCAmelCase , '''test-processor-org''' ) , push_to_hub=__lowerCAmelCase , use_auth_token=self._token , organization='''valid_org''' , ) _lowerCamelCase : str = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(new_processor.feature_extractor , __lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _lowerCamelCase : Tuple = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : int = os.path.join(__lowerCAmelCase , '''vocab.txt''' ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase : str = CustomTokenizer(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = CustomProcessor(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) _lowerCamelCase : List[str] = Repository(__lowerCAmelCase , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__lowerCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) ) as f: _lowerCamelCase : Tuple = json.load(__lowerCAmelCase ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , '''custom_processing.py''' ) ) ) repo.push_to_hub() _lowerCamelCase : List[str] = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__lowerCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
598
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __snake_case ( unittest.TestCase): @parameterized.expand([(None,), ('''foo.json''',)] ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Dict = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase , config_name=__lowerCAmelCase ) _lowerCamelCase : int = GenerationConfig.from_pretrained(__lowerCAmelCase , config_name=__lowerCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Dict = AutoConfig.from_pretrained('''gpt2''' ) _lowerCamelCase : List[Any] = GenerationConfig.from_model_config(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = GenerationConfig() _lowerCamelCase : Any = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } _lowerCamelCase : Optional[Any] = copy.deepcopy(__lowerCAmelCase ) _lowerCamelCase : List[str] = generation_config.update(**__lowerCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCAmelCase , {'''foo''': '''bar'''} ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : int = GenerationConfig() _lowerCamelCase : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple = GenerationConfig.from_pretrained(__lowerCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) _lowerCamelCase : Any = GenerationConfig.from_model_config(__lowerCAmelCase ) assert not hasattr(__lowerCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __lowerCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) _lowerCamelCase : int = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __lowerCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple = GenerationConfig.from_pretrained(__lowerCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __lowerCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __snake_case ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE ( cls : Any ): """simple docstring""" _lowerCamelCase : Dict = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) _lowerCamelCase : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase , repo_id='''test-generation-config''' , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _lowerCamelCase : Optional[int] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = GenerationConfig( do_sample=__lowerCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) _lowerCamelCase : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _lowerCamelCase : str = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
598
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class A ( UpperCamelCase_ ): UpperCamelCase__ : Optional[int] ='speech_to_text_2' UpperCamelCase__ : int =['past_key_values'] UpperCamelCase__ : Tuple ={'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Any , lowercase_ : str=1_0000 , lowercase_ : Dict=6 , lowercase_ : List[str]=2048 , lowercase_ : Any=4 , lowercase_ : List[Any]=0.0 , lowercase_ : List[str]=True , lowercase_ : int="relu" , lowercase_ : Tuple=256 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[str]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[str]=0.02 , lowercase_ : Any=2 , lowercase_ : Any=True , lowercase_ : int=1 , lowercase_ : List[str]=0 , lowercase_ : List[str]=2 , lowercase_ : Union[str, Any]=1024 , **lowercase_ : int , ) -> int: """simple docstring""" _lowerCamelCase : Optional[Any] =vocab_size _lowerCamelCase : Tuple =d_model _lowerCamelCase : Optional[int] =decoder_ffn_dim _lowerCamelCase : Optional[int] =decoder_layers _lowerCamelCase : List[Any] =decoder_attention_heads _lowerCamelCase : str =dropout _lowerCamelCase : Dict =attention_dropout _lowerCamelCase : Dict =activation_dropout _lowerCamelCase : int =activation_function _lowerCamelCase : int =init_std _lowerCamelCase : Dict =decoder_layerdrop _lowerCamelCase : List[str] =use_cache _lowerCamelCase : List[str] =decoder_layers _lowerCamelCase : str =scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : Dict =max_target_positions super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
464
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class A ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , lowercase_ : int ) -> Optional[int]: """simple docstring""" _lowerCamelCase : List[str] =3 _lowerCamelCase : Dict =250 _lowerCamelCase : Tuple =ids_tensor((batch_size, length) , lowercase_ ) _lowerCamelCase : str =torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] =self._get_tensors(5 ) _lowerCamelCase : Dict =StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : List[str] =self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Optional[int] =self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _lowerCamelCase : Any =MaxLengthCriteria(max_length=10 ) _lowerCamelCase , _lowerCamelCase : List[str] =self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Optional[int] =self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Optional[int] =self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _lowerCamelCase , _lowerCamelCase : str =self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] =self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Dict =self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase : Optional[Any] =StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] =self._get_tensors(5 ) _lowerCamelCase : Tuple =MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase : int =MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _lowerCamelCase : Optional[Any] =validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
464
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , __lowerCAmelCase=0 , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope lowerCamelCase__ = projection_dim def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) lowerCamelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRContextEncoder(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRQuestionEncoder(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TFDPRReader(config=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFDPRModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowerCAmelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRContextEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRQuestionEncoder.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFDPRReader.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) lowerCamelCase__ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase__ = model(__lowerCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase__ = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
721
from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase__ = cst_fwd.get(__snake_case ,np.inf ) lowerCamelCase__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase__ = new_cost_f lowerCamelCase__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = -1 lowerCamelCase__ = set() lowerCamelCase__ = set() lowerCamelCase__ = {source: 0} lowerCamelCase__ = {destination: 0} lowerCamelCase__ = {source: None} lowerCamelCase__ = {destination: None} lowerCamelCase__ = PriorityQueue() lowerCamelCase__ = PriorityQueue() lowerCamelCase__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase__ , lowerCamelCase__ = queue_forward.get() visited_forward.add(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = queue_backward.get() visited_backward.add(__snake_case ) lowerCamelCase__ = pass_and_relaxation( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) lowerCamelCase__ = pass_and_relaxation( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase__ = shortest_distance return shortest_path_distance _a = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } _a = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
29
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _A : List[str] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = parent __SCREAMING_SNAKE_CASE : int = 13 __SCREAMING_SNAKE_CASE : Any = 7 __SCREAMING_SNAKE_CASE : List[str] = 30 __SCREAMING_SNAKE_CASE : List[Any] = self.seq_length + self.mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = 15 __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : Union[str, Any] = 99 __SCREAMING_SNAKE_CASE : Optional[Any] = [10, 50, 80] __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : Dict = 4 __SCREAMING_SNAKE_CASE : Union[str, Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = 128 __SCREAMING_SNAKE_CASE : Optional[int] = 2 __SCREAMING_SNAKE_CASE : Optional[Any] = 2 __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Dict = 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : int = 3 __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 0.01 def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCAmelCase__ ( self : int ): """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : str , _A : Any , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = TFTransfoXLModel(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = model(_A ).to_tuple() __SCREAMING_SNAKE_CASE : Tuple = {'''input_ids''': input_ids_a, '''mems''': mems_a} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = model(_A ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase__ ( self : Dict , _A : int , _A : List[str] , _A : int , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = TFTransfoXLLMHeadModel(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = model(_A ).to_tuple() __SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids_a, '''labels''': lm_labels} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = model(_A ).to_tuple() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = model([input_ids_a, mems_a] ).to_tuple() __SCREAMING_SNAKE_CASE : int = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = model(_A ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase__ ( self : Dict , _A : Tuple , _A : int , _A : Dict , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = TFTransfoXLForSequenceClassification(_A ) __SCREAMING_SNAKE_CASE : int = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Optional[Any] = config_and_inputs __SCREAMING_SNAKE_CASE : List[Any] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowerCAmelCase_ = () if is_tf_available() else () lowerCAmelCase_ = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any] ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = TFTransfoXLModelTester(self ) __SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_A , d_embed=37 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" self.model_tester.set_seed() __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_A ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self.model_tester.set_seed() __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Optional[int] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Dict = model_class(_A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __SCREAMING_SNAKE_CASE : List[Any] = model.get_output_embeddings() assert isinstance(_A , tf.keras.layers.Layer ) __SCREAMING_SNAKE_CASE : Any = model.get_bias() assert name is None else: __SCREAMING_SNAKE_CASE : Optional[Any] = model.get_output_embeddings() assert x is None __SCREAMING_SNAKE_CASE : Dict = model.get_bias() assert name is None def UpperCAmelCase__ ( self : int ): """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = TFTransfoXLModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def UpperCAmelCase__ ( self : int ): """simple docstring""" pass @require_tf class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __SCREAMING_SNAKE_CASE : List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __SCREAMING_SNAKE_CASE : Optional[int] = model.generate(_A , max_length=200 , do_sample=_A ) self.assertListEqual(output_ids[0].numpy().tolist() , _A )
74
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self : Dict , _A : int = 16 , _A : int = 88 , _A : Optional[int] = None , _A : Optional[int] = None , _A : int = 1 , _A : float = 0.0 , _A : int = 32 , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : str = "geglu" , _A : bool = True , _A : bool = True , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Dict = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = attention_head_dim __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads * attention_head_dim __SCREAMING_SNAKE_CASE : Tuple = in_channels __SCREAMING_SNAKE_CASE : str = torch.nn.GroupNorm(num_groups=_A , num_channels=_A , eps=1e-6 , affine=_A ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(_A , _A ) # 3. Define transformers blocks __SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A , _A , _A , dropout=_A , cross_attention_dim=_A , activation_fn=_A , attention_bias=_A , double_self_attention=_A , norm_elementwise_affine=_A , ) for d in range(_A ) ] ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(_A , _A ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : int=None , _A : Tuple=None , _A : Dict=None , _A : List[Any]=1 , _A : Union[str, Any]=None , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = hidden_states.shape __SCREAMING_SNAKE_CASE : Any = batch_frames // num_frames __SCREAMING_SNAKE_CASE : Dict = hidden_states __SCREAMING_SNAKE_CASE : str = hidden_states[None, :].reshape(_A , _A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.norm(_A ) __SCREAMING_SNAKE_CASE : List[str] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = self.proj_in(_A ) # 2. Blocks for block in self.transformer_blocks: __SCREAMING_SNAKE_CASE : Optional[Any] = block( _A , encoder_hidden_states=_A , timestep=_A , cross_attention_kwargs=_A , class_labels=_A , ) # 3. Output __SCREAMING_SNAKE_CASE : Any = self.proj_out(_A ) __SCREAMING_SNAKE_CASE : List[str] = ( hidden_states[None, None, :] .reshape(_A , _A , _A , _A , _A ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.reshape(_A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_A )
74
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class _a ( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = "dinat" __SCREAMING_SNAKE_CASE = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowerCAmelCase_=4 , lowerCAmelCase_=3 , lowerCAmelCase_=64 , lowerCAmelCase_=[3, 4, 6, 5] , lowerCAmelCase_=[2, 4, 8, 16] , lowerCAmelCase_=7 , lowerCAmelCase_=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCAmelCase_=3.0 , lowerCAmelCase_=True , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.0_2 , lowerCAmelCase_=1e-5 , lowerCAmelCase_=0.0 , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): super().__init__(**_snake_case ) _lowercase =patch_size _lowercase =num_channels _lowercase =embed_dim _lowercase =depths _lowercase =len(_snake_case ) _lowercase =num_heads _lowercase =kernel_size _lowercase =dilations _lowercase =mlp_ratio _lowercase =qkv_bias _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =drop_path_rate _lowercase =hidden_act _lowercase =layer_norm_eps _lowercase =initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowercase =int(embed_dim * 2 ** (len(_snake_case ) - 1) ) _lowercase =layer_scale_init_value _lowercase =["stem"] + [F'''stage{idx}''' for idx in range(1 , len(_snake_case ) + 1 )] _lowercase , _lowercase =get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names )
708
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCAmelCase__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) lowerCAmelCase__ = train_datagen.flow_from_directory( "dataset/training_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) lowerCAmelCase__ = test_datagen.flow_from_directory( "dataset/test_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions lowerCAmelCase__ = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(6_4, 6_4) ) lowerCAmelCase__ = tf.keras.preprocessing.image.img_to_array(test_image) lowerCAmelCase__ = np.expand_dims(test_image, axis=0) lowerCAmelCase__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCAmelCase__ = "Normal" if result[0][0] == 1: lowerCAmelCase__ = "Abnormality detected"
594
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''T5Config''' def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> jnp.ndarray: A__ = jnp.zeros_like(__UpperCamelCase ) A__ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) A__ = shifted_input_ids.at[:, 0].set(__UpperCamelCase ) A__ = jnp.where(shifted_input_ids == -100 , __UpperCamelCase , __UpperCamelCase ) return shifted_input_ids class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Tuple = "mt5" A__ : int = MTaConfig class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = "mt5" A__ : List[str] = MTaConfig class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[int] = "mt5" A__ : Union[str, Any] = MTaConfig
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] ={ """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any =[ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : int =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def SCREAMING_SNAKE_CASE_ ( )-> Generator[int, None, None]: _lowerCamelCase = {} _lowerCamelCase = 2 while True: _lowerCamelCase = factor_map.pop(snake_case , snake_case ) if factor: _lowerCamelCase = factor + prime while x in factor_map: x += factor _lowerCamelCase = factor else: _lowerCamelCase = prime yield prime prime += 1 def SCREAMING_SNAKE_CASE_ ( snake_case : float = 1e10 )-> int: _lowerCamelCase = sieve() _lowerCamelCase = 1 while True: _lowerCamelCase = next(snake_case ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(snake_case ) n += 2 if __name__ == "__main__": print(solution())
222
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase_ : List[str] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__lowerCAmelCase ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Base Case if index == len(__lowerCAmelCase ): return True # Recursive Step for i in range(__lowerCAmelCase ): if valid_coloring(graph[index] , __lowerCAmelCase , __lowerCAmelCase ): # Color current vertex _snake_case : int = i # Validate coloring if util_color(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 ): return True # Backtrack _snake_case : Optional[Any] = -1 return False def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = [-1] * len(__lowerCAmelCase ) if util_color(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 ): return colored_vertices return []
304
1
import string def A ( snake_case__ : str ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __snake_case = '' for symbol in message: if symbol in string.ascii_uppercase: __snake_case = string.ascii_uppercase.find(snake_case__ ) __snake_case = num - key if num < 0: __snake_case = num + len(string.ascii_uppercase ) __snake_case = translated + string.ascii_uppercase[num] else: __snake_case = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def A ( ) -> None: '''simple docstring''' __snake_case = input('Encrypted message: ' ) __snake_case = message.upper() decrypt(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
676
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = ["""MaskFormerFeatureExtractor"""] snake_case : Optional[int] = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] snake_case : Optional[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
545
"""simple docstring""" def A ( __snake_case: int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" __magic_name__ = limit + 1 __magic_name__ = [0] * limit for first_term in range(1 , __snake_case ): for n in range(__snake_case , __snake_case , __snake_case ): __magic_name__ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __magic_name__ = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
545
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCamelCase , cache_dir=lowerCamelCase ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(lowerCamelCase , os.listdir(lowerCamelCase )[0] , """snapshots""" ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : str ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCamelCase ) _UpperCAmelCase = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng _UpperCAmelCase = replicate(lowerCamelCase ) _UpperCAmelCase = jax.random.split(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = shard(lowerCamelCase ) _UpperCAmelCase = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1E-3 assert np.abs(np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 4_9947.875 ) < 5E-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase ) == num_samples def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=lowerCamelCase ) _UpperCAmelCase = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng _UpperCAmelCase = replicate(lowerCamelCase ) _UpperCAmelCase = jax.random.split(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = shard(lowerCamelCase ) _UpperCAmelCase = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 238_3808.2) ) < 5E-1 def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase ) _UpperCAmelCase = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng _UpperCAmelCase = replicate(lowerCamelCase ) _UpperCAmelCase = jax.random.split(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = shard(lowerCamelCase ) _UpperCAmelCase = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) _UpperCAmelCase = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng _UpperCAmelCase = replicate(lowerCamelCase ) _UpperCAmelCase = jax.random.split(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = shard(lowerCamelCase ) _UpperCAmelCase = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase ) # shard inputs and rng _UpperCAmelCase = replicate(lowerCamelCase ) _UpperCAmelCase = jax.random.split(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = shard(lowerCamelCase ) _UpperCAmelCase = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase , dtype=np.floataa ).sum() - 234_7693.5) ) < 5E-1 def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase , ) _UpperCAmelCase = replicate(lowerCamelCase ) _UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase ) _UpperCAmelCase = shard(lowerCamelCase ) _UpperCAmelCase = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase , use_memory_efficient_attention=lowerCamelCase , ) _UpperCAmelCase = replicate(lowerCamelCase ) _UpperCAmelCase = pipeline.prepare_inputs(lowerCamelCase ) _UpperCAmelCase = shard(lowerCamelCase ) _UpperCAmelCase = pipeline(lowerCamelCase , lowerCamelCase , lowerCamelCase , jit=lowerCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
402
from collections import deque from math import floor from random import random from time import time class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Any ) -> int: """simple docstring""" _UpperCAmelCase = {} def lowerCamelCase ( self : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Any=1 ) -> int: """simple docstring""" if self.graph.get(lowerCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase = [[w, v]] if not self.graph.get(lowerCamelCase ): _UpperCAmelCase = [] def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return list(self.graph ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str ) -> Optional[Any]: """simple docstring""" if self.graph.get(lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : List[str]=-2 , lowerCamelCase : List[str]=-1 ) -> Any: """simple docstring""" if s == d: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(lowerCamelCase ) visited.append(lowerCamelCase ) _UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase ) != 0: _UpperCAmelCase = stack[len(lowerCamelCase ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(lowerCamelCase ) == 0: return visited def lowerCamelCase ( self : Any , lowerCamelCase : Optional[int]=-1 ) -> int: """simple docstring""" if c == -1: _UpperCAmelCase = floor(random() * 1_0000 ) + 10 for i in range(lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase , lowerCamelCase , 1 ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : str=-2 ) -> Tuple: """simple docstring""" _UpperCAmelCase = deque() _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] d.append(lowerCamelCase ) visited.append(lowerCamelCase ) while d: _UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase ( self : Optional[int] , lowerCamelCase : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase ( self : List[str] , lowerCamelCase : Optional[Any] ) -> List[str]: """simple docstring""" return len(self.graph[u] ) def lowerCamelCase ( self : str , lowerCamelCase : Optional[int]=-2 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(lowerCamelCase ) visited.append(lowerCamelCase ) _UpperCAmelCase = s _UpperCAmelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCamelCase ) != 0: _UpperCAmelCase = stack[len(lowerCamelCase ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(lowerCamelCase ) == 0: return sorted_nodes def lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(lowerCamelCase ) visited.append(lowerCamelCase ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(lowerCamelCase ) != 0: _UpperCAmelCase = stack[len(lowerCamelCase ) - 1] else: _UpperCAmelCase = False indirect_parents.append(lowerCamelCase ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(lowerCamelCase ) == 0: return list(lowerCamelCase ) def lowerCamelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(lowerCamelCase ) visited.append(lowerCamelCase ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(lowerCamelCase ) != 0: _UpperCAmelCase = stack[len(lowerCamelCase ) - 1] else: _UpperCAmelCase = False indirect_parents.append(lowerCamelCase ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(lowerCamelCase ) == 0: return False def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Any=-2 , lowerCamelCase : List[Any]=-1 ) -> Dict: """simple docstring""" _UpperCAmelCase = time() self.dfs(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = time() return end - begin def lowerCamelCase ( self : str , lowerCamelCase : Optional[Any]=-2 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = time() self.bfs(lowerCamelCase ) _UpperCAmelCase = time() return end - begin class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = {} def lowerCamelCase ( self : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Optional[Any]=1 ) -> Tuple: """simple docstring""" # check if the u exists if self.graph.get(lowerCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase = [[w, v]] # add the other way if self.graph.get(lowerCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase = [[w, u]] def lowerCamelCase ( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : int ) -> Dict: """simple docstring""" if self.graph.get(lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase ) # the other way round if self.graph.get(lowerCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=-2 , lowerCamelCase : int=-1 ) -> Optional[Any]: """simple docstring""" if s == d: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(lowerCamelCase ) visited.append(lowerCamelCase ) _UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase ) != 0: _UpperCAmelCase = stack[len(lowerCamelCase ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(lowerCamelCase ) == 0: return visited def lowerCamelCase ( self : List[Any] , lowerCamelCase : str=-1 ) -> List[str]: """simple docstring""" if c == -1: _UpperCAmelCase = floor(random() * 1_0000 ) + 10 for i in range(lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase , lowerCamelCase , 1 ) def lowerCamelCase ( self : Any , lowerCamelCase : List[Any]=-2 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = deque() _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] d.append(lowerCamelCase ) visited.append(lowerCamelCase ) while d: _UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase ( self : Any , lowerCamelCase : Any ) -> List[Any]: """simple docstring""" return len(self.graph[u] ) def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(lowerCamelCase ) visited.append(lowerCamelCase ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(lowerCamelCase ) != 0: _UpperCAmelCase = stack[len(lowerCamelCase ) - 1] else: _UpperCAmelCase = False indirect_parents.append(lowerCamelCase ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(lowerCamelCase ) == 0: return list(lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(lowerCamelCase ) visited.append(lowerCamelCase ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(lowerCamelCase ) != 0: _UpperCAmelCase = stack[len(lowerCamelCase ) - 1] else: _UpperCAmelCase = False indirect_parents.append(lowerCamelCase ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(lowerCamelCase ) == 0: return False def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" return list(self.graph ) def lowerCamelCase ( self : str , lowerCamelCase : str=-2 , lowerCamelCase : Optional[int]=-1 ) -> List[Any]: """simple docstring""" _UpperCAmelCase = time() self.dfs(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = time() return end - begin def lowerCamelCase ( self : Any , lowerCamelCase : List[Any]=-2 ) -> Dict: """simple docstring""" _UpperCAmelCase = time() self.bfs(lowerCamelCase ) _UpperCAmelCase = time() return end - begin
402
1
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = coefficient_matrix.shape lowerCAmelCase__ , lowerCAmelCase__ = constant_matrix.shape if rowsa != colsa: lowerCAmelCase__ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: lowerCAmelCase__ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: lowerCAmelCase__ = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: lowerCAmelCase__ = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowerCAmelCase__ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCAmelCase__ , lowerCAmelCase__ = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): lowerCAmelCase__ = [] for row in range(lowerCamelCase__ ): lowerCAmelCase__ = 0 for col in range(lowerCamelCase__ ): if col == row: lowerCAmelCase__ = table[row][col] elif col == cols - 1: lowerCAmelCase__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCAmelCase__ = (temp + val) / denom new_val.append(lowerCamelCase__ ) lowerCAmelCase__ = new_val return [float(lowerCamelCase__ ) for i in new_val] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = table.shape lowerCAmelCase__ = True for i in range(0 , lowerCamelCase__ ): lowerCAmelCase__ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
644
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : Optional[Any] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : str = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCAmelCase : int = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" def remove_articles(lowerCamelCase__ ): lowerCAmelCase__ = re.compile(r"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(lowerCamelCase__ , """ """ , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): lowerCAmelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return int(normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [any(compute_exact(lowerCamelCase__ , lowerCamelCase__ ) for ref in refs ) for pred, refs in zip(lowerCamelCase__ , lowerCamelCase__ )] return (sum(lowerCamelCase__ ) / len(lowerCamelCase__ )) * 100 def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [rgram for rgrams in rgramslist for rgram in rgrams] lowerCAmelCase__ = Counter(lowerCamelCase__ ) lowerCAmelCase__ = Counter(lowerCamelCase__ ) lowerCAmelCase__ = Counter() for sgram, scount in sgramcounter.items(): lowerCAmelCase__ = scount * numref lowerCAmelCase__ = Counter(lowerCamelCase__ ) lowerCAmelCase__ = Counter() for cgram, ccount in cgramcounter.items(): lowerCAmelCase__ = ccount * numref # KEEP lowerCAmelCase__ = sgramcounter_rep & cgramcounter_rep lowerCAmelCase__ = keepgramcounter_rep & rgramcounter lowerCAmelCase__ = sgramcounter_rep & rgramcounter lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = keeptmpscorea / len(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCAmelCase__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCAmelCase__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCAmelCase__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCAmelCase__ = sgramcounter_rep - cgramcounter_rep lowerCAmelCase__ = delgramcounter_rep - rgramcounter lowerCAmelCase__ = sgramcounter_rep - rgramcounter lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase__ = 1 if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = deltmpscorea / len(lowerCamelCase__ ) # ADDITION lowerCAmelCase__ = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) lowerCAmelCase__ = set(lowerCamelCase__ ) & set(lowerCamelCase__ ) lowerCAmelCase__ = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) lowerCAmelCase__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = addtmpscore / len(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = addtmpscore / len(lowerCamelCase__ ) lowerCAmelCase__ = 0 if addscore_precision > 0 or addscore_recall > 0: lowerCAmelCase__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = len(lowerCamelCase__ ) lowerCAmelCase__ = ssent.split(""" """ ) lowerCAmelCase__ = csent.split(""" """ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for rsent in rsents: lowerCAmelCase__ = rsent.split(""" """ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] ragramslist.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: lowerCAmelCase__ = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: lowerCAmelCase__ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: lowerCAmelCase__ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) ragramslist.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: lowerCAmelCase__ = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: lowerCAmelCase__ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: lowerCAmelCase__ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(lowerCamelCase__ ) for i in range(0 , len(lowerCamelCase__ ) - 1 ): if i < len(lowerCamelCase__ ) - 1: lowerCAmelCase__ = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 2: lowerCAmelCase__ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(lowerCamelCase__ ) if i < len(lowerCamelCase__ ) - 3: lowerCAmelCase__ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(lowerCamelCase__ ) ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = SARIngram(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCAmelCase__ = sum([delascore, delascore, delascore, delascore] ) / 4 lowerCAmelCase__ = sum([addascore, addascore, addascore, addascore] ) / 4 lowerCAmelCase__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = True , lowerCamelCase__ = "13a" , lowerCamelCase__ = True ): """simple docstring""" if lowercase: lowerCAmelCase__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCAmelCase__ = sacrebleu.metrics.bleu._get_tokenizer(lowerCamelCase__ )()(lowerCamelCase__ ) else: lowerCAmelCase__ = sacrebleu.TOKENIZERS[tokenizer]()(lowerCamelCase__ ) elif tokenizer == "moses": lowerCAmelCase__ = sacremoses.MosesTokenizer().tokenize(lowerCamelCase__ , return_str=lowerCamelCase__ , escape=lowerCamelCase__ ) elif tokenizer == "penn": lowerCAmelCase__ = sacremoses.MosesTokenizer().penn_tokenize(lowerCamelCase__ , return_str=lowerCamelCase__ ) else: lowerCAmelCase__ = sentence if not return_str: lowerCAmelCase__ = normalized_sent.split() return normalized_sent def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if not (len(lowerCamelCase__ ) == len(lowerCamelCase__ ) == len(lowerCamelCase__ )): raise ValueError("""Sources length must match predictions and references lengths.""" ) lowerCAmelCase__ = 0 for src, pred, refs in zip(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): sari_score += SARIsent(normalize(lowerCamelCase__ ) , normalize(lowerCamelCase__ ) , [normalize(lowerCamelCase__ ) for sent in refs] ) lowerCAmelCase__ = sari_score / len(lowerCamelCase__ ) return 100 * sari_score def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="exp" , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(lowerCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(lowerCamelCase__ )] lowerCAmelCase__ = sacrebleu.corpus_bleu( lowerCamelCase__ , lowerCamelCase__ , smooth_method=lowerCamelCase__ , smooth_value=lowerCamelCase__ , force=lowerCamelCase__ , lowercase=lowerCamelCase__ , use_effective_order=lowerCamelCase__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = {} result.update({"""sari""": compute_sari(sources=snake_case__ , predictions=snake_case__ , references=snake_case__ )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=snake_case__ , references=snake_case__ )} ) result.update({"""exact""": compute_em(predictions=snake_case__ , references=snake_case__ )} ) return result
644
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowercase_ = logging.get_logger(__name__) lowercase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) lowercase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) lowercase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) lowercase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) lowercase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) lowercase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) lowercase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) lowercase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) lowercase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) lowercase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) lowercase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) lowercase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) lowercase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) lowercase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : Any = FLAX_MODEL_MAPPING lowercase_ = auto_class_update(FlaxAutoModel) class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : Any = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : str = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : int = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : int = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : str = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : List[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : List[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __A ( _BaseAutoModelClass ): '''simple docstring''' __lowerCamelCase : List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
352
'''simple docstring''' lowercase_ = 256 # Modulus to hash a string lowercase_ = 1_000_003 def lowerCAmelCase (__A , __A): """simple docstring""" _a = len(__A) _a = len(__A) if p_len > t_len: return False _a = 0 _a = 0 _a = 1 # Calculating the hash of pattern and substring of text for i in range(__A): _a = (ord(pattern[i]) + p_hash * alphabet_size) % modulus _a = (ord(text[i]) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _a = ( (text_hash - ord(text[i]) * modulus_power) * alphabet_size + ord(text[i + p_len]) ) % modulus return False def lowerCAmelCase (): """simple docstring""" _a = '''abc1abc12''' _a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _a = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(__A , __A) and not rabin_karp(__A , __A) # Test 2) _a = '''ABABX''' _a = '''ABABZABABYABABX''' assert rabin_karp(__A , __A) # Test 3) _a = '''AAAB''' _a = '''ABAAAAAB''' assert rabin_karp(__A , __A) # Test 4) _a = '''abcdabcy''' _a = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__A , __A) # Test 5) _a = '''Lü''' _a = '''Lüsai''' assert rabin_karp(__A , __A) _a = '''Lue''' assert not rabin_karp(__A , __A) print('''Success.''') if __name__ == "__main__": test_rabin_karp()
352
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> Tuple: random.seed(snake_case__ ) np.random.seed(snake_case__ ) torch.manual_seed(snake_case__ ) torch.cuda.manual_seed_all(snake_case__ ) # ^^ safe to call this function even if cuda is not available class A_ : """simple docstring""" def __init__( self : Dict ,__A : Iterable[torch.nn.Parameter] ,__A : float = 0.9999 ,__A : float = 0.0 ,__A : int = 0 ,__A : bool = False ,__A : Union[float, int] = 1.0 ,__A : Union[float, int] = 2 / 3 ,__A : Optional[Any] = None ,__A : Dict[str, Any] = None ,**__A : int ,) -> Tuple: if isinstance(__A ,torch.nn.Module ): _lowercase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' ,'1.0.0' ,__A ,standard_warn=__A ,) _lowercase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowercase = True if kwargs.get('max_value' ,__A ) is not None: _lowercase = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' ,'1.0.0' ,__A ,standard_warn=__A ) _lowercase = kwargs['max_value'] if kwargs.get('min_value' ,__A ) is not None: _lowercase = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' ,'1.0.0' ,__A ,standard_warn=__A ) _lowercase = kwargs['min_value'] _lowercase = list(__A ) _lowercase = [p.clone().detach() for p in parameters] if kwargs.get('device' ,__A ) is not None: _lowercase = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' ,'1.0.0' ,__A ,standard_warn=__A ) self.to(device=kwargs['device'] ) _lowercase = None _lowercase = decay _lowercase = min_decay _lowercase = update_after_step _lowercase = use_ema_warmup _lowercase = inv_gamma _lowercase = power _lowercase = 0 _lowercase = None # set in `step()` _lowercase = model_cls _lowercase = model_config @classmethod def __UpperCAmelCase ( cls : Union[str, Any] ,__A : int ,__A : List[Any] ) -> "EMAModel": _lowercase , _lowercase = model_cls.load_config(__A ,return_unused_kwargs=__A ) _lowercase = model_cls.from_pretrained(__A ) _lowercase = cls(model.parameters() ,model_cls=__A ,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def __UpperCAmelCase ( self : Optional[Any] ,__A : Optional[Any] ) -> Union[str, Any]: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _lowercase = self.model_cls.from_config(self.model_config ) _lowercase = self.state_dict() state_dict.pop('shadow_params' ,__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def __UpperCAmelCase ( self : Optional[Any] ,__A : int ) -> float: _lowercase = max(0 ,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowercase = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowercase = (1 + step) / (10 + step) _lowercase = min(__A ,self.decay ) # make sure decay is not smaller than min_decay _lowercase = max(__A ,self.min_decay ) return cur_decay_value @torch.no_grad() def __UpperCAmelCase ( self : Optional[int] ,__A : Iterable[torch.nn.Parameter] ) -> Optional[Any]: if isinstance(__A ,torch.nn.Module ): _lowercase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' ,'1.0.0' ,__A ,standard_warn=__A ,) _lowercase = parameters.parameters() _lowercase = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowercase = self.get_decay(self.optimization_step ) _lowercase = decay _lowercase = 1 - decay _lowercase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params ,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowercase = deepspeed.zero.GatheredParameters(__A ,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def __UpperCAmelCase ( self : Any ,__A : Iterable[torch.nn.Parameter] ) -> None: _lowercase = list(__A ) for s_param, param in zip(self.shadow_params ,__A ): param.data.copy_(s_param.to(param.device ).data ) def __UpperCAmelCase ( self : Any ,__A : Optional[int]=None ,__A : Union[str, Any]=None ) -> None: _lowercase = [ p.to(device=__A ,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def __UpperCAmelCase ( self : Optional[Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __UpperCAmelCase ( self : Dict ,__A : Iterable[torch.nn.Parameter] ) -> None: _lowercase = [param.detach().cpu().clone() for param in parameters] def __UpperCAmelCase ( self : int ,__A : Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params ,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowercase = None def __UpperCAmelCase ( self : List[str] ,__A : dict ) -> None: _lowercase = copy.deepcopy(__A ) _lowercase = state_dict.get('decay' ,self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _lowercase = state_dict.get('min_decay' ,self.min_decay ) if not isinstance(self.min_decay ,__A ): raise ValueError('Invalid min_decay' ) _lowercase = state_dict.get('optimization_step' ,self.optimization_step ) if not isinstance(self.optimization_step ,__A ): raise ValueError('Invalid optimization_step' ) _lowercase = state_dict.get('update_after_step' ,self.update_after_step ) if not isinstance(self.update_after_step ,__A ): raise ValueError('Invalid update_after_step' ) _lowercase = state_dict.get('use_ema_warmup' ,self.use_ema_warmup ) if not isinstance(self.use_ema_warmup ,__A ): raise ValueError('Invalid use_ema_warmup' ) _lowercase = state_dict.get('inv_gamma' ,self.inv_gamma ) if not isinstance(self.inv_gamma ,(float, int) ): raise ValueError('Invalid inv_gamma' ) _lowercase = state_dict.get('power' ,self.power ) if not isinstance(self.power ,(float, int) ): raise ValueError('Invalid power' ) _lowercase = state_dict.get('shadow_params' ,__A ) if shadow_params is not None: _lowercase = shadow_params if not isinstance(self.shadow_params ,__A ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(__A ,torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
67
import requests lowercase_ = """YOUR API KEY""" def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = giphy_api_key ) -> list: lowercase__ = '+'.join(query.split() ) lowercase__ = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
235
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: for attribute in key.split('.'): UpperCamelCase__ : Optional[Any] = getattr(_UpperCamelCase , _UpperCamelCase) if weight_type is not None: UpperCamelCase__ : int = getattr(_UpperCamelCase , _UpperCamelCase).shape else: UpperCamelCase__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Tuple = value elif weight_type == "weight_g": UpperCamelCase__ : Tuple = value elif weight_type == "weight_v": UpperCamelCase__ : Dict = value elif weight_type == "bias": UpperCamelCase__ : Optional[Any] = value else: UpperCamelCase__ : Tuple = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Dict = fairseq_model.state_dict() UpperCamelCase__ : Optional[Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : int = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Optional[Any] = True if "*" in mapped_key: UpperCamelCase__ : int = name.split(_UpperCamelCase)[0].split('.')[-2] UpperCamelCase__ : Dict = mapped_key.replace('*' , _UpperCamelCase) if "weight_g" in name: UpperCamelCase__ : List[str] = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : List[Any] = 'weight_v' elif "weight" in name: UpperCamelCase__ : Dict = 'weight' elif "bias" in name: UpperCamelCase__ : Optional[Any] = 'bias' else: UpperCamelCase__ : Optional[int] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) continue if not is_used: unused_weights.append(_UpperCamelCase) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Optional[int] = full_name.split('conv_layers.')[-1] UpperCamelCase__ : Union[str, Any] = name.split('.') UpperCamelCase__ : int = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(_UpperCamelCase) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : List[Any] = SEWConfig() if is_finetuned: UpperCamelCase__ : Optional[int] = model.wav_encoder.wav_model.cfg else: UpperCamelCase__ : Any = model.cfg UpperCamelCase__ : List[str] = fs_config.conv_bias UpperCamelCase__ : Optional[int] = eval(fs_config.conv_feature_layers) UpperCamelCase__ : Tuple = [x[0] for x in conv_layers] UpperCamelCase__ : List[str] = [x[1] for x in conv_layers] UpperCamelCase__ : str = [x[2] for x in conv_layers] UpperCamelCase__ : Any = 'gelu' UpperCamelCase__ : Optional[int] = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' UpperCamelCase__ : Tuple = 0.0 UpperCamelCase__ : Dict = fs_config.activation_fn.name UpperCamelCase__ : Tuple = fs_config.encoder_embed_dim UpperCamelCase__ : Union[str, Any] = 0.02 UpperCamelCase__ : Any = fs_config.encoder_ffn_embed_dim UpperCamelCase__ : List[str] = 1e-5 UpperCamelCase__ : int = fs_config.encoder_layerdrop UpperCamelCase__ : List[Any] = fs_config.encoder_attention_heads UpperCamelCase__ : Union[str, Any] = fs_config.conv_pos_groups UpperCamelCase__ : Optional[Any] = fs_config.conv_pos UpperCamelCase__ : str = len(_UpperCamelCase) UpperCamelCase__ : List[Any] = fs_config.encoder_layers UpperCamelCase__ : Optional[Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCamelCase__ : Optional[int] = model.cfg UpperCamelCase__ : int = fs_config.final_dropout UpperCamelCase__ : Dict = fs_config.layerdrop UpperCamelCase__ : Optional[int] = fs_config.activation_dropout UpperCamelCase__ : Optional[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCamelCase__ : Union[str, Any] = fs_config.attention_dropout UpperCamelCase__ : Optional[int] = fs_config.dropout_input UpperCamelCase__ : Dict = fs_config.dropout UpperCamelCase__ : str = fs_config.mask_channel_length UpperCamelCase__ : Dict = fs_config.mask_channel_prob UpperCamelCase__ : Union[str, Any] = fs_config.mask_length UpperCamelCase__ : Tuple = fs_config.mask_prob UpperCamelCase__ : Dict = 'Wav2Vec2FeatureExtractor' UpperCamelCase__ : List[str] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Union[str, Any]: if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) if config_path is not None: UpperCamelCase__ : Union[str, Any] = SEWConfig.from_pretrained(_UpperCamelCase) else: UpperCamelCase__ : List[Any] = convert_config(model[0] , _UpperCamelCase) UpperCamelCase__ : Dict = model[0].eval() UpperCamelCase__ : List[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) if is_finetuned: if dict_path: UpperCamelCase__ : List[Any] = Dictionary.load(_UpperCamelCase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : int = target_dict.pad_index UpperCamelCase__ : Any = target_dict.bos_index UpperCamelCase__ : Dict = target_dict.pad_index UpperCamelCase__ : Tuple = target_dict.bos_index UpperCamelCase__ : str = target_dict.eos_index UpperCamelCase__ : Union[str, Any] = len(target_dict.symbols) UpperCamelCase__ : Union[str, Any] = os.path.join(_UpperCamelCase , 'vocab.json') if not os.path.isdir(_UpperCamelCase): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCamelCase)) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase) with open(_UpperCamelCase , 'w' , encoding='utf-8') as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase) UpperCamelCase__ : str = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCamelCase , ) UpperCamelCase__ : List[Any] = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase) processor.save_pretrained(_UpperCamelCase) UpperCamelCase__ : List[Any] = SEWForCTC(_UpperCamelCase) else: UpperCamelCase__ : List[str] = SEWModel(_UpperCamelCase) feature_extractor.save_pretrained(_UpperCamelCase) recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) hf_model.save_pretrained(_UpperCamelCase) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
720
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case : Optional[int] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): __magic_name__ : int = MODEL_FOR_MASKED_LM_MAPPING __magic_name__ : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser''', }, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, ] , ) A_ = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() A_ = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(a__ , a__ ) @slow @require_torch def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(a__ ) @slow @require_tf def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(a__ ) def lowerCAmelCase_ ( self , a__ ) -> Tuple: '''simple docstring''' A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 6_1_0, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1_5_7_3, '''token_str''': ''' Chris'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2_2_0_1, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 1_2_7_9_0, '''token_str''': ''' Lyon''', }, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) A_ = None A_ = None self.run_pipeline_test(a__ , [] ) @require_tf def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) A_ = None A_ = None self.run_pipeline_test(a__ , [] ) def lowerCAmelCase_ ( self , a__ , a__ , a__ ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = [ F"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def lowerCAmelCase_ ( self , a__ , a__ ) -> Any: '''simple docstring''' A_ = fill_masker.tokenizer A_ = fill_masker.model A_ = fill_masker( F"This is a {tokenizer.mask_token}" , ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = fill_masker([F"This is a {tokenizer.mask_token}"] ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = fill_masker([F"This is a {tokenizer.mask_token}", F"Another {tokenizer.mask_token} great test."] ) self.assertEqual( a__ , [ [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], ] , ) with self.assertRaises(a__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(a__ ): fill_masker('''This is''' ) self.run_test_top_k(a__ , a__ ) self.run_test_targets(a__ , a__ ) self.run_test_top_k_targets(a__ , a__ ) self.fill_mask_with_duplicate_targets_and_top_k(a__ , a__ ) self.fill_mask_with_multiple_masks(a__ , a__ ) def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = sorted(vocab.keys() )[:2] # Pipeline argument A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , targets=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , a__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) ) # Call argument A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , a__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) ) # Score equivalence A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) A_ = [top_mask['''token_str'''] for top_mask in outputs] A_ = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ) == set(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) A_ = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) # Raises with invalid with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[''''''] ) with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets='''''' ) def lowerCAmelCase_ ( self , a__ , a__ ) -> int: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , top_k=2 ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def lowerCAmelCase_ ( self , a__ , a__ ) -> str: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) # top_k=2, ntargets=3 A_ = sorted(vocab.keys() )[:3] A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 , targets=a__ ) # If we use the most probably targets, and filter differently, we should still # have the same results A_ = [el['''token_str'''] for el in sorted(a__ , key=lambda a__ : x["score"] , reverse=a__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ).issubset(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=3 , targets=a__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = tokenizer.get_vocab() # String duplicates + id duplicates A_ = sorted(vocab.keys() )[:3] A_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] A_ = fill_masker(F"My name is {tokenizer.mask_token}" , targets=a__ , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(a__ ) , 3 ) def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker( F"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( a__ , [ [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], ] , )
141
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = (KDPMaDiscreteScheduler,) _a = 10 def __A ( self , **A ) -> List[Any]: '''simple docstring''' __magic_name__ = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A ) return config def __A ( self ) -> Optional[Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=A , beta_end=A ) def __A ( self ) -> Tuple: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def __A ( self ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def __A ( self ) -> Any: '''simple docstring''' if torch_device == "mps": return __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if str(A ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
716
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a_ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) benchmark()
678
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "sentencepiece.bpe.model"} __A = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __A = { "facebook/nllb-200-distilled-600M": 10_24, } # fmt: off __A = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] = ['input_ids', 'attention_mask'] lowerCamelCase : List[int] = [] lowerCamelCase : List[int] = [] def __init__( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any="<s>" , __SCREAMING_SNAKE_CASE : Tuple="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : Any="<mask>" , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Optional[int]=False , **__SCREAMING_SNAKE_CASE : Any , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase =AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token __UpperCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCAmelCase =legacy_behaviour super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase ={"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase =1 __UpperCAmelCase =len(self.sp_model ) __UpperCAmelCase ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } __UpperCAmelCase ={v: k for k, v in self.lang_code_to_id.items()} __UpperCAmelCase =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __UpperCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCAmelCase =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __UpperCAmelCase =src_lang if src_lang is not None else """eng_Latn""" __UpperCAmelCase =self.lang_code_to_id[self._src_lang] __UpperCAmelCase =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple ) -> Optional[Any]: __UpperCAmelCase =self.__dict__.copy() __UpperCAmelCase =None __UpperCAmelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Dict ) -> Tuple: __UpperCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __UpperCAmelCase ={} __UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _a ( self : Any ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _a ( self : str ) -> str: return self._src_lang @src_lang.setter def _a ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> None: __UpperCAmelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =[1] * len(self.prefix_tokens ) __UpperCAmelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase =[self.sep_token_id] __UpperCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] , __SCREAMING_SNAKE_CASE : Optional[str] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __UpperCAmelCase =src_lang __UpperCAmelCase =self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tgt_lang_id return inputs def _a ( self : Any ) -> List[Any]: __UpperCAmelCase ={self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase =self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Tuple ) -> int: __UpperCAmelCase ="""""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def _a ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase =os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , """wb""" ) as fi: __UpperCAmelCase =self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str = "eng_Latn" , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : str = "fra_Latn" , **__SCREAMING_SNAKE_CASE : Dict , ) -> BatchEncoding: __UpperCAmelCase =src_lang __UpperCAmelCase =tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Any: return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self : Any ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> None: __UpperCAmelCase =self.lang_code_to_id[src_lang] if self.legacy_behaviour: __UpperCAmelCase =[] __UpperCAmelCase =[self.eos_token_id, self.cur_lang_code] else: __UpperCAmelCase =[self.cur_lang_code] __UpperCAmelCase =[self.eos_token_id] def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> None: __UpperCAmelCase =self.lang_code_to_id[lang] if self.legacy_behaviour: __UpperCAmelCase =[] __UpperCAmelCase =[self.eos_token_id, self.cur_lang_code] else: __UpperCAmelCase =[self.cur_lang_code] __UpperCAmelCase =[self.eos_token_id]
68
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase = 256 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =["""melgan"""] def __init__( self : Dict , _a : SpectrogramNotesEncoder , _a : SpectrogramContEncoder , _a : TaFilmDecoder , _a : DDPMScheduler , _a : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN __lowerCamelCase : Any = math.log(1e-5 ) # Matches MelGAN training. __lowerCamelCase : List[Any] = 4.0 # Largest value for most examples __lowerCamelCase : Tuple = 128 self.register_modules( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) def _lowercase ( self : Tuple , _a : int , _a : List[Any]=(-1.0, 1.0) , _a : Any=False ) -> Dict: __lowerCamelCase ,__lowerCamelCase : Any = output_range if clip: __lowerCamelCase : List[Any] = torch.clip(_a , self.min_value , self.max_value ) # Scale to [0, 1]. __lowerCamelCase : Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _lowercase ( self : Dict , _a : List[str] , _a : int=(-1.0, 1.0) , _a : Dict=False ) -> List[str]: __lowerCamelCase ,__lowerCamelCase : List[Any] = input_range __lowerCamelCase : Optional[Any] = torch.clip(_a , _a , _a ) if clip else outputs # Scale to [0, 1]. __lowerCamelCase : str = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _lowercase ( self : int , _a : Dict , _a : List[str] , _a : Tuple ) -> Any: __lowerCamelCase : Tuple = input_tokens > 0 __lowerCamelCase ,__lowerCamelCase : int = self.notes_encoder( encoder_input_tokens=_a , encoder_inputs_mask=_a ) __lowerCamelCase ,__lowerCamelCase : Tuple = self.continuous_encoder( encoder_inputs=_a , encoder_inputs_mask=_a ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _lowercase ( self : Tuple , _a : Tuple , _a : List[Any] , _a : int ) -> Dict: __lowerCamelCase : Any = noise_time if not torch.is_tensor(_a ): __lowerCamelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: __lowerCamelCase : List[str] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase : Tuple = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase : int = self.decoder( encodings_and_masks=_a , decoder_input_tokens=_a , decoder_noise_time=_a ) return logits @torch.no_grad() def __call__( self : Optional[int] , _a : List[List[int]] , _a : Optional[torch.Generator] = None , _a : int = 100 , _a : bool = True , _a : str = "numpy" , _a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _a : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_a )}.' ) __lowerCamelCase : Optional[int] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowerCamelCase : Dict = np.zeros([1, 0, self.n_dims] , np.floataa ) __lowerCamelCase : List[Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device ) for i, encoder_input_tokens in enumerate(_a ): if i == 0: __lowerCamelCase : List[str] = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowerCamelCase : List[Any] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowerCamelCase : int = ones __lowerCamelCase : int = self.scale_features( _a , output_range=[-1.0, 1.0] , clip=_a ) __lowerCamelCase : Tuple = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_a , continuous_mask=_a , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowerCamelCase : Optional[int] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_a , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_a ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowerCamelCase : List[Any] = self.decode( encodings_and_masks=_a , input_tokens=_a , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowerCamelCase : Optional[int] = self.scheduler.step(_a , _a , _a , generator=_a ).prev_sample __lowerCamelCase : List[Any] = self.scale_to_features(_a , input_range=[-1.0, 1.0] ) __lowerCamelCase : Union[str, Any] = mel[:1] __lowerCamelCase : Union[str, Any] = mel.cpu().float().numpy() __lowerCamelCase : Dict = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a ) logger.info('Generated segment' , _a ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __lowerCamelCase : Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowerCamelCase : List[str] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_a )
459
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig snake_case_ = logging.get_logger(__name__) snake_case_ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class a__ ( _lowercase ): __magic_name__ : Any = '''dpt''' def __init__(self : Union[str, Any], __UpperCAmelCase : Union[str, Any]=768, __UpperCAmelCase : Tuple=12, __UpperCAmelCase : Tuple=12, __UpperCAmelCase : str=3072, __UpperCAmelCase : Optional[int]="gelu", __UpperCAmelCase : List[Any]=0.0, __UpperCAmelCase : Dict=0.0, __UpperCAmelCase : Dict=0.02, __UpperCAmelCase : Any=1e-12, __UpperCAmelCase : Optional[int]=384, __UpperCAmelCase : Optional[Any]=16, __UpperCAmelCase : Dict=3, __UpperCAmelCase : Optional[Any]=False, __UpperCAmelCase : Dict=True, __UpperCAmelCase : Any=[2, 5, 8, 11], __UpperCAmelCase : Optional[Any]="project", __UpperCAmelCase : Tuple=[4, 2, 1, 0.5], __UpperCAmelCase : List[Any]=[96, 192, 384, 768], __UpperCAmelCase : Optional[Any]=256, __UpperCAmelCase : Any=-1, __UpperCAmelCase : Optional[int]=False, __UpperCAmelCase : Optional[Any]=True, __UpperCAmelCase : Dict=0.4, __UpperCAmelCase : Dict=255, __UpperCAmelCase : List[str]=0.1, __UpperCAmelCase : Optional[Any]=[1, 1024, 24, 24], __UpperCAmelCase : str=[0, 1], __UpperCAmelCase : List[str]=None, **__UpperCAmelCase : Dict, ) -> Tuple: """simple docstring""" super().__init__(**A_ ) SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Any = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) SCREAMING_SNAKE_CASE : List[str] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } SCREAMING_SNAKE_CASE : List[str] = BitConfig(**A_ ) elif isinstance(A_, A_ ): logger.info('''Initializing the config with a `BiT` backbone.''' ) SCREAMING_SNAKE_CASE : str = BitConfig(**A_ ) elif isinstance(A_, A_ ): SCREAMING_SNAKE_CASE : int = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) SCREAMING_SNAKE_CASE : Any = backbone_featmap_shape SCREAMING_SNAKE_CASE : str = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : Any = patch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : Dict = qkv_bias SCREAMING_SNAKE_CASE : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = readout_type SCREAMING_SNAKE_CASE : Tuple = reassemble_factors SCREAMING_SNAKE_CASE : Optional[int] = neck_hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = fusion_hidden_size SCREAMING_SNAKE_CASE : int = head_in_index SCREAMING_SNAKE_CASE : str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE : Any = use_auxiliary_head SCREAMING_SNAKE_CASE : Dict = auxiliary_loss_weight SCREAMING_SNAKE_CASE : str = semantic_loss_ignore_index SCREAMING_SNAKE_CASE : List[Any] = semantic_classifier_dropout def lowercase__ (self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE : List[str] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : List[str] = self.__class__.model_type return output
700
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=_lowercase ): __magic_name__ : List[Any] = ["sentencepiece"] def __init__(self : Optional[Any], *__UpperCAmelCase : List[Any], **__UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Tuple = ["sentencepiece"] def __init__(self : Optional[int], *__UpperCAmelCase : int, **__UpperCAmelCase : List[str] ) -> int: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[int] = ["sentencepiece"] def __init__(self : List[str], *__UpperCAmelCase : str, **__UpperCAmelCase : List[Any] ) -> str: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[int] = ["sentencepiece"] def __init__(self : Optional[int], *__UpperCAmelCase : str, **__UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : List[str] = ["sentencepiece"] def __init__(self : Tuple, *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Tuple ) -> Any: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Union[str, Any] = ["sentencepiece"] def __init__(self : List[Any], *__UpperCAmelCase : List[Any], **__UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : int = ["sentencepiece"] def __init__(self : Tuple, *__UpperCAmelCase : int, **__UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : str = ["sentencepiece"] def __init__(self : int, *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : str = ["sentencepiece"] def __init__(self : Tuple, *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : List[Any] = ["sentencepiece"] def __init__(self : Tuple, *__UpperCAmelCase : Optional[int], **__UpperCAmelCase : Tuple ) -> int: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Tuple = ["sentencepiece"] def __init__(self : List[Any], *__UpperCAmelCase : Optional[int], **__UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : int = ["sentencepiece"] def __init__(self : str, *__UpperCAmelCase : str, **__UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : List[str] = ["sentencepiece"] def __init__(self : int, *__UpperCAmelCase : List[str], **__UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : str = ["sentencepiece"] def __init__(self : Tuple, *__UpperCAmelCase : Tuple, **__UpperCAmelCase : str ) -> List[Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Any = ["sentencepiece"] def __init__(self : Dict, *__UpperCAmelCase : Optional[int], **__UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[int] = ["sentencepiece"] def __init__(self : str, *__UpperCAmelCase : Optional[int], **__UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[Any] = ["sentencepiece"] def __init__(self : Union[str, Any], *__UpperCAmelCase : int, **__UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[int] = ["sentencepiece"] def __init__(self : Any, *__UpperCAmelCase : str, **__UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[int] = ["sentencepiece"] def __init__(self : List[Any], *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[int] = ["sentencepiece"] def __init__(self : Dict, *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : str ) -> List[Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : List[Any] = ["sentencepiece"] def __init__(self : List[Any], *__UpperCAmelCase : Any, **__UpperCAmelCase : str ) -> int: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : str = ["sentencepiece"] def __init__(self : Optional[int], *__UpperCAmelCase : str, **__UpperCAmelCase : Tuple ) -> Any: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[int] = ["sentencepiece"] def __init__(self : Union[str, Any], *__UpperCAmelCase : Dict, **__UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Tuple = ["sentencepiece"] def __init__(self : List[str], *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Any = ["sentencepiece"] def __init__(self : int, *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : List[Any] = ["sentencepiece"] def __init__(self : Union[str, Any], *__UpperCAmelCase : Tuple, **__UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Any = ["sentencepiece"] def __init__(self : Optional[int], *__UpperCAmelCase : str, **__UpperCAmelCase : str ) -> str: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : int = ["sentencepiece"] def __init__(self : Dict, *__UpperCAmelCase : Any, **__UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[Any] = ["sentencepiece"] def __init__(self : List[Any], *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : int ) -> Any: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : int = ["sentencepiece"] def __init__(self : Tuple, *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : int ) -> int: """simple docstring""" requires_backends(self, ['''sentencepiece'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : List[Any] = ["sentencepiece"] def __init__(self : Optional[int], *__UpperCAmelCase : str, **__UpperCAmelCase : List[str] ) -> str: """simple docstring""" requires_backends(self, ['''sentencepiece'''] )
355
0
"""simple docstring""" from manim import * class UpperCAmelCase_ ( snake_case ): def _lowerCamelCase ( self ) -> List[str]: __lowercase : Tuple = Rectangle(height=0.5 , width=0.5 ) __lowercase : Tuple = Rectangle(height=0.2_5 , width=0.2_5 ) __lowercase : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __lowercase : Optional[Any] = [mem.copy() for i in range(6 )] __lowercase : Optional[int] = [mem.copy() for i in range(6 )] __lowercase : Dict = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : str = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : List[str] = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : Any = Text('''CPU''' , font_size=24 ) __lowercase : Tuple = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase_ ) __lowercase : Optional[Any] = [mem.copy() for i in range(4 )] __lowercase : List[Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : Optional[Any] = Text('''GPU''' , font_size=24 ) __lowercase : Dict = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCamelCase_ ) __lowercase : Any = [mem.copy() for i in range(6 )] __lowercase : Dict = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : Dict = Text('''Model''' , font_size=24 ) __lowercase : List[str] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCamelCase_ ) __lowercase : int = [] __lowercase : Dict = [] __lowercase : Optional[Any] = [] for i, rect in enumerate(UpperCamelCase_ ): rect.set_stroke(UpperCamelCase_ ) __lowercase : List[str] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=UpperCamelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCamelCase_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCamelCase_ , buff=0.0 ) self.add(UpperCamelCase_ ) model_cpu_arr.append(UpperCamelCase_ ) self.add(*UpperCamelCase_ , *UpperCamelCase_ , *UpperCamelCase_ ) __lowercase : Optional[int] = [mem.copy() for i in range(6 )] __lowercase : List[str] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : List[str] = Text('''Loaded Checkpoint''' , font_size=24 ) __lowercase : Dict = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(UpperCamelCase_ ) __lowercase : List[Any] = [] __lowercase : str = [] for i, rect in enumerate(UpperCamelCase_ ): __lowercase : Dict = fill.copy().set_fill(UpperCamelCase_ , opacity=0.7 ) target.move_to(UpperCamelCase_ ) ckpt_arr.append(UpperCamelCase_ ) __lowercase : Dict = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(UpperCamelCase_ ) self.add(*UpperCamelCase_ , *UpperCamelCase_ ) __lowercase : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase : List[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : Any = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCamelCase_ ) __lowercase : int = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __lowercase : int = [meta_mem.copy() for i in range(6 )] __lowercase : Optional[int] = [meta_mem.copy() for i in range(6 )] __lowercase : int = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : Any = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : List[str] = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __lowercase : Tuple = Text('''Disk''' , font_size=24 ) __lowercase : Tuple = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(UpperCamelCase_ , run_time=3 ) , Write(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) ) __lowercase : Tuple = [] for i, rect in enumerate(UpperCamelCase_ ): __lowercase : Any = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5 ) ) self.play(*UpperCamelCase_ ) self.play(FadeOut(UpperCamelCase_ ) ) __lowercase : List[Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ , run_time=3 ) ) self.play( FadeOut(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , *UpperCamelCase_ ) , ) self.wait()
76
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
'''simple docstring''' import math import random def __magic_name__( lowerCamelCase, lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value _UpperCAmelCase : Union[str, Any] = 0.02 def __magic_name__( lowerCamelCase, lowerCamelCase ): __lowerCAmelCase = float(2 * (random.randint(1, 1_0_0 )) - 1 ) for _ in range(A_ ): # Forward propagation __lowerCAmelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __lowerCAmelCase = (expected / 1_0_0) - layer_a # Error delta __lowerCAmelCase = layer_1_error * sigmoid_function(A_, A_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[Any] = int(input("""Expected value: """)) _UpperCAmelCase : Tuple = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
710
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _UpperCAmelCase : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val def __magic_name__( lowerCamelCase): __lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCAmelCase = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''') __lowerCAmelCase = value else: __lowerCAmelCase = value return new_state_dict def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = '''''' if is_panoptic: __lowerCAmelCase = '''conditional_detr.''' # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""") __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""") # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:2_5_6, :] __lowerCAmelCase = in_proj_bias[:2_5_6] __lowerCAmelCase = in_proj_weight[2_5_6:5_1_2, :] __lowerCAmelCase = in_proj_bias[2_5_6:5_1_2] __lowerCAmelCase = in_proj_weight[-2_5_6:, :] __lowerCAmelCase = in_proj_bias[-2_5_6:] def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return im @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowerCAmelCase = '''resnet101''' if "dc5" in model_name: __lowerCAmelCase = True __lowerCAmelCase = '''panoptic''' in model_name if is_panoptic: __lowerCAmelCase = 2_5_0 else: __lowerCAmelCase = 9_1 __lowerCAmelCase = '''huggingface/label-files''' __lowerCAmelCase = '''coco-detection-id2label.json''' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r''')) __lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # load image processor __lowerCAmelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __lowerCAmelCase = ConditionalDetrImageProcessor(format=lowerCamelCase) # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCamelCase, return_tensors='''pt''') __lowerCAmelCase = encoding['''pixel_values'''] logger.info(F"""Converting model {model_name}...""") # load original model from torch hub __lowerCAmelCase = torch.hub.load('''DeppMeng/ConditionalDETR''', lowerCamelCase, pretrained=lowerCamelCase).eval() __lowerCAmelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowerCAmelCase = '''conditional_detr.''' + src rename_key(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase = rename_backbone_keys(lowerCamelCase) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase, is_panoptic=lowerCamelCase) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''') and not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor''') ): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val elif key.startswith('''bbox_attention''') or key.startswith('''mask_head'''): continue else: __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val else: if not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor'''): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val # finally, create HuggingFace model and load state dict __lowerCAmelCase = ConditionalDetrForSegmentation(lowerCamelCase) if is_panoptic else ConditionalDetrForObjectDetection(lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() model.push_to_hub(repo_id=lowerCamelCase, organization='''DepuMeng''', commit_message='''Add model''') # verify our conversion __lowerCAmelCase = conditional_detr(lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1E-4) assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1E-4) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1E-4) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""") Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) image_processor.save_pretrained(lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _UpperCAmelCase : Any = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
474
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowerCamelCase__ = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCamelCase = TOKEN HfFolder.save_token(lowercase_) @classmethod def __UpperCAmelCase ( cls : Tuple) -> List[str]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-model-flax") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org") except HTTPError: pass def __UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" _UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) _UpperCamelCase = FlaxBertModel(lowercase_) model.push_to_hub("test-model-flax" , use_auth_token=self._token) _UpperCamelCase = FlaxBertModel.from_pretrained(f'{USER}/test-model-flax') _UpperCamelCase = flatten_dict(unfreeze(model.params)) _UpperCamelCase = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=f'{key} not identical') # Reset repo delete_repo(token=self._token , repo_id="test-model-flax") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ , repo_id="test-model-flax" , push_to_hub=lowercase_ , use_auth_token=self._token) _UpperCamelCase = FlaxBertModel.from_pretrained(f'{USER}/test-model-flax') _UpperCamelCase = flatten_dict(unfreeze(model.params)) _UpperCamelCase = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=f'{key} not identical') def __UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) _UpperCamelCase = FlaxBertModel(lowercase_) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token) _UpperCamelCase = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") _UpperCamelCase = flatten_dict(unfreeze(model.params)) _UpperCamelCase = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=f'{key} not identical') # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase_ , repo_id="valid_org/test-model-flax-org" , push_to_hub=lowercase_ , use_auth_token=self._token) _UpperCamelCase = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") _UpperCamelCase = flatten_dict(unfreeze(model.params)) _UpperCamelCase = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=f'{key} not identical') def lowerCAmelCase__ ( a__ , a__ ) ->Tuple: '''simple docstring''' _UpperCamelCase = True _UpperCamelCase = flatten_dict(modela.params ) _UpperCamelCase = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: _UpperCamelCase = False return models_are_equal @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") _UpperCamelCase = FlaxBertModel(lowercase_) _UpperCamelCase = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_)) with self.assertRaises(lowercase_): _UpperCamelCase = FlaxBertModel.from_pretrained(lowercase_) _UpperCamelCase = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_) self.assertTrue(check_models_equal(lowercase_ , lowercase_)) def __UpperCAmelCase ( self : str) -> Optional[Any]: """simple docstring""" _UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") _UpperCamelCase = FlaxBertModel(lowercase_) _UpperCamelCase = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_) , max_shard_size="10KB") with self.assertRaises(lowercase_): _UpperCamelCase = FlaxBertModel.from_pretrained(lowercase_) _UpperCamelCase = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_) self.assertTrue(check_models_equal(lowercase_ , lowercase_)) def __UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = "bert" _UpperCamelCase = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(lowercase_): _UpperCamelCase = FlaxBertModel.from_pretrained(lowercase_) _UpperCamelCase = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_) self.assertIsNotNone(lowercase_) def __UpperCAmelCase ( self : Any) -> Any: """simple docstring""" _UpperCamelCase = "bert" _UpperCamelCase = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(lowercase_): _UpperCamelCase = FlaxBertModel.from_pretrained(lowercase_) _UpperCamelCase = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_) self.assertIsNotNone(lowercase_)
547
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , lowercase_ : UNetaDModel , lowercase_ : UNetaDModel , lowercase_ : DDPMScheduler , lowercase_ : Any , ) -> Any: """simple docstring""" super().__init__() _UpperCamelCase = value_function _UpperCamelCase = unet _UpperCamelCase = scheduler _UpperCamelCase = env _UpperCamelCase = env.get_dataset() _UpperCamelCase = {} for key in self.data.keys(): try: _UpperCamelCase = self.data[key].mean() except: # noqa: E722 pass _UpperCamelCase = {} for key in self.data.keys(): try: _UpperCamelCase = self.data[key].std() except: # noqa: E722 pass _UpperCamelCase = env.observation_space.shape[0] _UpperCamelCase = env.action_space.shape[0] def __UpperCAmelCase ( self : Any , lowercase_ : Optional[int] , lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __UpperCAmelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __UpperCAmelCase ( self : List[Any] , lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" if type(lowercase_) is dict: return {k: self.to_torch(lowercase_) for k, v in x_in.items()} elif torch.is_tensor(lowercase_): return x_in.to(self.unet.device) return torch.tensor(lowercase_ , device=self.unet.device) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]) -> Tuple: """simple docstring""" for key, val in cond.items(): _UpperCamelCase = val.clone() return x_in def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : int) -> Dict: """simple docstring""" _UpperCamelCase = x.shape[0] _UpperCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model _UpperCamelCase = torch.full((batch_size,) , lowercase_ , device=self.unet.device , dtype=torch.long) for _ in range(lowercase_): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _UpperCamelCase = self.value_function(x.permute(0 , 2 , 1) , lowercase_).sample _UpperCamelCase = torch.autograd.grad([y.sum()] , [x])[0] _UpperCamelCase = self.scheduler._get_variance(lowercase_) _UpperCamelCase = torch.exp(0.5 * posterior_variance) _UpperCamelCase = model_std * grad _UpperCamelCase = 0 _UpperCamelCase = x.detach() _UpperCamelCase = x + scale * grad _UpperCamelCase = self.reset_xa(lowercase_ , lowercase_ , self.action_dim) _UpperCamelCase = self.unet(x.permute(0 , 2 , 1) , lowercase_).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg _UpperCamelCase = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , predict_epsilon=lowercase_)["prev_sample"] # apply conditions to the trajectory (set the initial state) _UpperCamelCase = self.reset_xa(lowercase_ , lowercase_ , self.action_dim) _UpperCamelCase = self.to_torch(lowercase_) return x, y def __call__( self : Optional[int] , lowercase_ : str , lowercase_ : int=64 , lowercase_ : Any=32 , lowercase_ : List[Any]=2 , lowercase_ : str=0.1) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.normalize(lowercase_ , "observations") _UpperCamelCase = obs[None].repeat(lowercase_ , axis=0) _UpperCamelCase = {0: self.to_torch(lowercase_)} _UpperCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _UpperCamelCase = randn_tensor(lowercase_ , device=self.unet.device) _UpperCamelCase = self.reset_xa(lowercase_ , lowercase_ , self.action_dim) _UpperCamelCase = self.to_torch(lowercase_) # run the diffusion process _UpperCamelCase , _UpperCamelCase = self.run_diffusion(lowercase_ , lowercase_ , lowercase_ , lowercase_) # sort output trajectories by value _UpperCamelCase = y.argsort(0 , descending=lowercase_).squeeze() _UpperCamelCase = x[sorted_idx] _UpperCamelCase = sorted_values[:, :, : self.action_dim] _UpperCamelCase = actions.detach().cpu().numpy() _UpperCamelCase = self.de_normalize(lowercase_ , key="actions") # select the action with the highest value if y is not None: _UpperCamelCase = 0 else: # if we didn't run value guiding, select a random action _UpperCamelCase = np.random.randint(0 , lowercase_) _UpperCamelCase = denorm_actions[selected_index, 0] return denorm_actions
547
1
import argparse import collections import json import os import re import string import sys import numpy as np __snake_case :Dict =re.compile(r'\b(a|an|the)\b', re.UNICODE) __snake_case :Optional[int] =None def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=SCREAMING_SNAKE_CASE_ , default=1.0 , help='Predict \"\" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=SCREAMING_SNAKE_CASE_ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' A = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A = bool(qa['answers']['text'] ) return qid_to_has_ans def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' def remove_articles(lowerCAmelCase__ : Optional[int] ): return ARTICLES_REGEX.sub(' ' , SCREAMING_SNAKE_CASE_ ) def white_space_fix(lowerCAmelCase__ : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase__ : Dict ): A = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase__ : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def lowerCamelCase_ ( lowerCAmelCase__ : Any ) -> str: '''simple docstring''' if not s: return [] return normalize_answer(SCREAMING_SNAKE_CASE_ ).split() def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' return int(normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) ) def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]: '''simple docstring''' A = get_tokens(SCREAMING_SNAKE_CASE_ ) A = get_tokens(SCREAMING_SNAKE_CASE_ ) A = collections.Counter(SCREAMING_SNAKE_CASE_ ) & collections.Counter(SCREAMING_SNAKE_CASE_ ) A = sum(common.values() ) if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 A = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) A = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) A = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' A = {} A = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A = qa['id'] A = [t for t in qa['answers']['text'] if normalize_answer(SCREAMING_SNAKE_CASE_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string A = [''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue A = preds[qid] # Take max over all gold answers A = max(compute_exact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for a in gold_answers ) A = max(compute_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for a in gold_answers ) return exact_scores, fa_scores def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' A = {} for qid, s in scores.items(): A = na_probs[qid] > na_prob_thresh if pred_na: A = float(not qid_to_has_ans[qid] ) else: A = s return new_scores def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]=None ) -> Tuple: '''simple docstring''' if not qid_list: A = len(SCREAMING_SNAKE_CASE_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: A = len(SCREAMING_SNAKE_CASE_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' for k in new_eval: A = new_eval[k] def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' plt.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(SCREAMING_SNAKE_CASE_ ) plt.savefig(SCREAMING_SNAKE_CASE_ ) plt.clf() def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None ) -> str: '''simple docstring''' A = sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCAmelCase__ : na_probs[k] ) A = 0.0 A = 1.0 A = 0.0 A = [1.0] A = [0.0] A = 0.0 for i, qid in enumerate(SCREAMING_SNAKE_CASE_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] A = true_pos / float(i + 1 ) A = true_pos / float(SCREAMING_SNAKE_CASE_ ) if i == len(SCREAMING_SNAKE_CASE_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(SCREAMING_SNAKE_CASE_ ) recalls.append(SCREAMING_SNAKE_CASE_ ) if out_image: plot_pr_curve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ap": 100.0 * avg_prec} def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> str: '''simple docstring''' if out_image_dir and not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) A = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return A = make_precision_recall_eval( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , out_image=os.path.join(SCREAMING_SNAKE_CASE_ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) A = make_precision_recall_eval( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , out_image=os.path.join(SCREAMING_SNAKE_CASE_ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) A = {k: float(SCREAMING_SNAKE_CASE_ ) for k, v in qid_to_has_ans.items()} A = make_precision_recall_eval( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , out_image=os.path.join(SCREAMING_SNAKE_CASE_ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'pr_exact' ) merge_eval(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'pr_f1' ) merge_eval(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'pr_oracle' ) def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' if not qid_list: return A = [na_probs[k] for k in qid_list] A = np.ones_like(SCREAMING_SNAKE_CASE_ ) / float(len(SCREAMING_SNAKE_CASE_ ) ) plt.hist(SCREAMING_SNAKE_CASE_ , weights=SCREAMING_SNAKE_CASE_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(SCREAMING_SNAKE_CASE_ , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> str: '''simple docstring''' A = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) A = num_no_ans A = cur_score A = 0.0 A = sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCAmelCase__ : na_probs[k] ) for i, qid in enumerate(SCREAMING_SNAKE_CASE_ ): if qid not in scores: continue if qid_to_has_ans[qid]: A = scores[qid] else: if preds[qid]: A = -1 else: A = 0 cur_score += diff if cur_score > best_score: A = cur_score A = na_probs[qid] return 100.0 * best_score / len(SCREAMING_SNAKE_CASE_ ), best_thresh def lowerCamelCase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' A , A = find_best_thresh(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A , A = find_best_thresh(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A = best_exact A = exact_thresh A = best_fa A = fa_thresh def lowerCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' with open(OPTS.data_file ) as f: A = json.load(SCREAMING_SNAKE_CASE_ ) A = dataset_json['data'] with open(OPTS.pred_file ) as f: A = json.load(SCREAMING_SNAKE_CASE_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: A = json.load(SCREAMING_SNAKE_CASE_ ) else: A = {k: 0.0 for k in preds} A = make_qid_to_has_ans(SCREAMING_SNAKE_CASE_ ) # maps qid to True/False A = [k for k, v in qid_to_has_ans.items() if v] A = [k for k, v in qid_to_has_ans.items() if not v] A , A = get_raw_scores(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A = apply_no_ans_threshold(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , OPTS.na_prob_thresh ) A = apply_no_ans_threshold(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , OPTS.na_prob_thresh ) A = make_eval_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if has_ans_qids: A = make_eval_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , qid_list=SCREAMING_SNAKE_CASE_ ) merge_eval(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'HasAns' ) if no_ans_qids: A = make_eval_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , qid_list=SCREAMING_SNAKE_CASE_ ) merge_eval(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , OPTS.out_image_dir ) histogram_na_prob(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: print(json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 ) ) if __name__ == "__main__": __snake_case :Union[str, Any] =parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
715
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __snake_case :Tuple ='src/transformers' __snake_case :Dict ='docs/source/en' __snake_case :Dict ='.' def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() # Find the start prompt. A = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 A = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __snake_case :List[Any] ='Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __snake_case :List[Any] =re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __snake_case :List[str] =re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __snake_case :Tuple =re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __snake_case :int =direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase_ ( lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' A = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' A = 2 if text == '✅' or text == '❌' else len(lowerCAmelCase__ ) A = (width - text_length) // 2 A = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES A = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } A = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase__ ): A = None if attr_name.endswith('Tokenizer' ): A = slow_tokenizers A = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): A = fast_tokenizers A = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase__ ) is not None: A = tf_models A = _re_tf_models.match(lowerCAmelCase__ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase__ ) is not None: A = flax_models A = _re_flax_models.match(lowerCAmelCase__ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase__ ) is not None: A = pt_models A = _re_pt_models.match(lowerCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): A = True break # Try again after removing the last word in the name A = ''.join(camel_case_split(lowerCAmelCase__ )[:-1] ) # Let's build that table! A = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) A = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). A = [len(lowerCAmelCase__ ) + 2 for c in columns] A = max([len(lowerCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se A = '|' + '|'.join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for c, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" A = {True: '✅', False: '❌'} for name in model_names: A = model_name_to_prefix[name] A = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for l, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + "|\n" return table def lowerCamelCase_ ( lowerCAmelCase__ : Tuple=False ) -> List[str]: '''simple docstring''' A , A , A , A = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) A = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": __snake_case :List[Any] =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __snake_case :List[Any] =parser.parse_args() check_model_table(args.fix_and_overwrite)
224
0
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = {} def lowercase__ ( self : int ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_UpperCAmelCase , " -> " , " -> ".join([str(_UpperCAmelCase ) for j in self.vertex[i]] ) ) def lowercase__ ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCAmelCase ) else: # else make a new vertex UpperCAmelCase_ = [to_vertex] def lowercase__ ( self : List[Any] ) -> None: '''simple docstring''' UpperCAmelCase_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : list ) -> None: '''simple docstring''' UpperCAmelCase_ = True print(_UpperCAmelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
82
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , ) -> int: lowercase__ : int = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : Union[str, Any] = num_channels lowercase__ : Tuple = image_size lowercase__ : str = min_resolution lowercase__ : Optional[Any] = max_resolution lowercase__ : Union[str, Any] = do_resize lowercase__ : Dict = size lowercase__ : Optional[Any] = do_normalize def UpperCAmelCase__( self ) -> Any: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" _a : List[Any] = ImageGPTImageProcessor if is_vision_available() else None def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : str = ImageGPTImageProcessingTester(self ) @property def UpperCAmelCase__( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__( self ) -> int: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """clusters""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_normalize""" ) ) def UpperCAmelCase__( self ) -> Any: lowercase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) lowercase__ : Optional[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Dict: lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Optional[int] = os.path.join(lowerCamelCase__ , """image_processor.json""" ) image_processor_first.to_json_file(lowerCamelCase__ ) lowercase__ : str = self.image_processing_class.from_json_file(lowerCamelCase__ ).to_dict() lowercase__ : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCamelCase__ ) lowercase__ : Union[str, Any] = self.image_processing_class.from_pretrained(lowerCamelCase__ ).to_dict() lowercase__ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def UpperCAmelCase__( self ) -> Dict: pass def _lowerCamelCase ( ): lowercase__ : Tuple = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase__ : Optional[int] = Image.open(dataset[4]["""file"""] ) lowercase__ : Union[str, Any] = Image.open(dataset[5]["""file"""] ) lowercase__ : Optional[int] = [imagea, imagea] return images @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__( self ) -> str: lowercase__ : Optional[int] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase__ : int = prepare_images() # test non-batched lowercase__ : int = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase__ : Any = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCamelCase__ ) # test batched lowercase__ : str = image_processing(lowerCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase__ : Optional[int] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCamelCase__ )
200
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def SCREAMING_SNAKE_CASE ( snake_case, snake_case=0.999, snake_case="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case): return math.exp(t * -12.0) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}") __snake_case = [] for i in range(__UpperCAmelCase): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase) / alpha_bar_fn(__UpperCAmelCase), __UpperCAmelCase)) return torch.tensor(__UpperCAmelCase, dtype=torch.floataa) class _A ( _snake_case , _snake_case ): """simple docstring""" UpperCamelCase_ : int = [e.name for e in KarrasDiffusionSchedulers] UpperCamelCase_ : str = 2 @register_to_config def __init__( self : int , A_ : int = 1_000 , A_ : float = 0.0_00_85 , A_ : float = 0.0_12 , A_ : str = "linear" , A_ : Optional[Union[np.ndarray, List[float]]] = None , A_ : str = "epsilon" , A_ : Optional[bool] = False , A_ : Optional[bool] = False , A_ : float = 1.0 , A_ : str = "linspace" , A_ : int = 0 , ) -> Dict: if trained_betas is not None: __snake_case = torch.tensor(A_ , dtype=torch.floataa ) elif beta_schedule == "linear": __snake_case = torch.linspace(A_ , A_ , A_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(A_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": __snake_case = betas_for_alpha_bar(A_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) __snake_case = 1.0 - self.betas __snake_case = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A_ , A_ , A_ ) __snake_case = use_karras_sigmas def lowercase ( self : Optional[int] , A_ : int , A_ : Dict=None ) -> Dict: if schedule_timesteps is None: __snake_case = self.timesteps __snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __snake_case = 1 if len(A_ ) > 1 else 0 else: __snake_case = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep __snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def lowercase ( self : Optional[int] ) -> str: if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase ( self : Optional[Any] , A_ : torch.FloatTensor , A_ : Union[float, torch.FloatTensor] , ) -> int: __snake_case = self.index_for_timestep(A_ ) __snake_case = self.sigmas[step_index] __snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase ( self : int , A_ : int , A_ : Union[str, torch.device] = None , A_ : Optional[int] = None , ) -> int: __snake_case = num_inference_steps __snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __snake_case = np.linspace(0 , num_train_timesteps - 1 , A_ , dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(A_ , 0 , -step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) __snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __snake_case = np.log(A_ ) __snake_case = np.interp(A_ , np.arange(0 , len(A_ ) ) , A_ ) if self.config.use_karras_sigmas: __snake_case = self._convert_to_karras(in_sigmas=A_ , num_inference_steps=self.num_inference_steps ) __snake_case = np.array([self._sigma_to_t(A_ , A_ ) for sigma in sigmas] ) __snake_case = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __snake_case = torch.from_numpy(A_ ).to(device=A_ ) __snake_case = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __snake_case = torch.from_numpy(A_ ) __snake_case = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A_ ).startswith('''mps''' ): # mps does not support float64 __snake_case = timesteps.to(A_ , dtype=torch.floataa ) else: __snake_case = timesteps.to(device=A_ ) # empty dt and derivative __snake_case = None __snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __snake_case = defaultdict(A_ ) def lowercase ( self : List[str] , A_ : Optional[Any] , A_ : Dict ) -> Any: __snake_case = np.log(A_ ) # get distribution __snake_case = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __snake_case = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __snake_case = low_idx + 1 __snake_case = log_sigmas[low_idx] __snake_case = log_sigmas[high_idx] # interpolate sigmas __snake_case = (low - log_sigma) / (low - high) __snake_case = np.clip(A_ , 0 , 1 ) # transform interpolation to time range __snake_case = (1 - w) * low_idx + w * high_idx __snake_case = t.reshape(sigma.shape ) return t def lowercase ( self : Optional[int] , A_ : torch.FloatTensor , A_ : int ) -> Any: __snake_case = in_sigmas[-1].item() __snake_case = in_sigmas[0].item() __snake_case = 7.0 # 7.0 is the value used in the paper __snake_case = np.linspace(0 , 1 , A_ ) __snake_case = sigma_min ** (1 / rho) __snake_case = sigma_max ** (1 / rho) __snake_case = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowercase ( self : Union[str, Any] ) -> int: return self.dt is None def lowercase ( self : Union[str, Any] , A_ : Union[torch.FloatTensor, np.ndarray] , A_ : Union[float, torch.FloatTensor] , A_ : Union[torch.FloatTensor, np.ndarray] , A_ : bool = True , ) -> Tuple: __snake_case = self.index_for_timestep(A_ ) # advance index counter by 1 __snake_case = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __snake_case = self.sigmas[step_index] __snake_case = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __snake_case = self.sigmas[step_index - 1] __snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __snake_case = 0 __snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __snake_case = sigma_hat if self.state_in_first_order else sigma_next __snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __snake_case = sigma_hat if self.state_in_first_order else sigma_next __snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __snake_case = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: __snake_case = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __snake_case = sigma_next - sigma_hat # store for 2nd order step __snake_case = derivative __snake_case = dt __snake_case = sample else: # 2. 2nd order / Heun's method __snake_case = (sample - pred_original_sample) / sigma_next __snake_case = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __snake_case = self.dt __snake_case = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __snake_case = None __snake_case = None __snake_case = None __snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def lowercase ( self : Dict , A_ : torch.FloatTensor , A_ : torch.FloatTensor , A_ : torch.FloatTensor , ) -> List[str]: __snake_case = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 __snake_case = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __snake_case = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __snake_case = self.timesteps.to(original_samples.device ) __snake_case = timesteps.to(original_samples.device ) __snake_case = [self.index_for_timestep(A_ , A_ ) for t in timesteps] __snake_case = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __snake_case = sigma.unsqueeze(-1 ) __snake_case = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ) -> str: return self.config.num_train_timesteps
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowercase : Optional[Any] = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _A ( SCREAMING_SNAKE_CASE__ : Dict ): UpperCamelCase :List[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : List[Any] ): UpperCamelCase :List[str] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCamelCase :str = s_dict.pop(SCREAMING_SNAKE_CASE__ ) elif "subsample" in key: UpperCamelCase :Union[str, Any] = s_dict.pop(SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : Optional[int] ): UpperCamelCase , UpperCamelCase :List[Any] = emb.weight.shape UpperCamelCase :Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = emb.weight.data return lin_layer def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): UpperCamelCase :Any = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) UpperCamelCase :Dict = mam_aaa['''args'''] UpperCamelCase :Dict = mam_aaa['''model'''] UpperCamelCase :int = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) rename_keys(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = state_dict['''decoder.embed_tokens.weight'''].shape[0] UpperCamelCase :Optional[Any] = args.share_decoder_input_output_embed UpperCamelCase :Optional[int] = [int(SCREAMING_SNAKE_CASE__ ) for i in args.conv_kernel_sizes.split(''',''' )] UpperCamelCase :Optional[Any] = SpeechaTextConfig( vocab_size=SCREAMING_SNAKE_CASE__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(SCREAMING_SNAKE_CASE__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=SCREAMING_SNAKE_CASE__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , num_beams=5 , max_length=200 , use_cache=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=2 , early_stopping=SCREAMING_SNAKE_CASE__ , ) UpperCamelCase :List[Any] = SpeechaTextForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) UpperCamelCase , UpperCamelCase :str = model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0 and not set(SCREAMING_SNAKE_CASE__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCamelCase :List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCamelCase :Any = lm_head_weights model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __snake_case = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
658
def _A ( SCREAMING_SNAKE_CASE__ : int ): if length <= 0 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(SCREAMING_SNAKE_CASE__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
1
import argparse import os from accelerate.test_utils import execute_subprocess_async def _lowercase ( _UpperCAmelCase=None ) -> Optional[int]: if subparsers is not None: lowerCamelCase =subparsers.add_parser("""test""" ) else: lowerCamelCase =argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=__SCREAMING_SNAKE_CASE , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def _lowercase ( _UpperCAmelCase ) -> List[str]: lowerCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: lowerCamelCase =script_name else: lowerCamelCase =F"""--config_file={args.config_file} {script_name}""" lowerCamelCase =["accelerate-launch"] + test_args.split() lowerCamelCase =execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def _lowercase ( ) -> Any: lowerCamelCase =test_command_parser() lowerCamelCase =parser.parse_args() test_command(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
704
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCAmelCase__ : Optional[int] ={ '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } UpperCAmelCase__ : str ={ '''169M''': 7_68, '''430M''': 10_24, '''1B5''': 20_48, '''3B''': 25_60, '''7B''': 40_96, '''14B''': 51_20, } def _lowercase ( _UpperCAmelCase ) -> Tuple: lowerCamelCase =list(state_dict.keys() ) for name in state_dict_keys: lowerCamelCase =state_dict.pop(_UpperCAmelCase ) # emb -> embedding if name.startswith("""emb.""" ): lowerCamelCase =name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): lowerCamelCase =name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention lowerCamelCase =re.sub(r"""blocks\.(\d+)\.att""" , r"""blocks.\1.attention""" , _UpperCAmelCase ) # ffn -> feed_forward lowerCamelCase =re.sub(r"""blocks\.(\d+)\.ffn""" , r"""blocks.\1.feed_forward""" , _UpperCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): lowerCamelCase =name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): lowerCamelCase =name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): lowerCamelCase =name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": lowerCamelCase ="""rwkv.""" + name lowerCamelCase =weight return state_dict def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Tuple: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) lowerCamelCase =5_02_77 lowerCamelCase =AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: lowerCamelCase =PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase ) lowerCamelCase =len(_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) # 2. Build the config lowerCamelCase =list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCamelCase =candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) lowerCamelCase =RwkvConfig( vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCAmelCase ) # 3. Download model file then convert state_dict lowerCamelCase =hf_hub_download(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =torch.load(_UpperCAmelCase , map_location="""cpu""" ) lowerCamelCase =convert_state_dict(_UpperCAmelCase ) # 4. Split in shards and save lowerCamelCase , lowerCamelCase =shard_checkpoint(_UpperCAmelCase ) for shard_file, shard in shards.items(): torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if index is not None: lowerCamelCase =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) # Save the index as well with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase =json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + """\n""" f.write(_UpperCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) lowerCamelCase =list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCamelCase =torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) lowerCamelCase =AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) model.push_to_hub(_UpperCAmelCase , max_shard_size="""2GB""" ) tokenizer.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCAmelCase__ : List[Any] =parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
269
0
from __future__ import annotations from typing import Generic, TypeVar lowercase_ = TypeVar("""T""") class __UpperCamelCase ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] , _A : T ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = data __SCREAMING_SNAKE_CASE : Optional[Any] = self __SCREAMING_SNAKE_CASE : Optional[int] = 0 class __UpperCamelCase ( Generic[T] ): """simple docstring""" def __init__( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : dict[T, DisjointSetTreeNode[T]] = {} def UpperCAmelCase__ ( self : Dict , _A : T ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = DisjointSetTreeNode(_A ) def UpperCAmelCase__ ( self : Optional[Any] , _A : T ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.map[data] if elem_ref != elem_ref.parent: __SCREAMING_SNAKE_CASE : Optional[Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase__ ( self : Optional[Any] , _A : DisjointSetTreeNode[T] , _A : DisjointSetTreeNode[T] ): """simple docstring""" if nodea.rank > nodea.rank: __SCREAMING_SNAKE_CASE : Union[str, Any] = nodea else: __SCREAMING_SNAKE_CASE : Union[str, Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase__ ( self : str , _A : T , _A : T ): """simple docstring""" self.link(self.find_set(_A ) , self.find_set(_A ) ) class __UpperCamelCase ( Generic[T] ): """simple docstring""" def __init__( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} def UpperCAmelCase__ ( self : int , _A : T ): """simple docstring""" if node not in self.connections: __SCREAMING_SNAKE_CASE : Tuple = {} def UpperCAmelCase__ ( self : Optional[int] , _A : T , _A : T , _A : int ): """simple docstring""" self.add_node(_A ) self.add_node(_A ) __SCREAMING_SNAKE_CASE : Tuple = weight __SCREAMING_SNAKE_CASE : Union[str, Any] = weight def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : List[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _A : x[2] ) # creating the disjoint set __SCREAMING_SNAKE_CASE : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_A ) # MST generation __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : List[str] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = edges[index] index += 1 __SCREAMING_SNAKE_CASE : Dict = disjoint_set.find_set(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = disjoint_set.find_set(_A ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_A , _A , _A ) disjoint_set.union(_A , _A ) return graph
74
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
287
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Optional[int] = sum(_UpperCAmelCase ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return result def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> None: if sum(_UpperCAmelCase ) > max_sum or (remaining_nums_sum + sum(_UpperCAmelCase )) < max_sum: return if sum(_UpperCAmelCase ) == max_sum: result.append(_UpperCAmelCase ) return for index in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): create_state_space_tree( _UpperCAmelCase , _UpperCAmelCase , index + 1 , [*path, nums[index]] , _UpperCAmelCase , remaining_nums_sum - nums[index] , ) _UpperCAmelCase : Union[str, Any] = [3, 34, 4, 12, 5, 2] _UpperCAmelCase : str = 9 _UpperCAmelCase : Any = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
707
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : str=32 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Dict=10 , UpperCAmelCase : List[str]=[10, 20, 30, 40] , UpperCAmelCase : Any=[1, 1, 2, 1] , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict="relu" , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict=None , ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : int = embeddings_size lowerCamelCase__ : str = hidden_sizes lowerCamelCase__ : Any = depths lowerCamelCase__ : str = is_training lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Dict = num_labels lowerCamelCase__ : Dict = scope lowerCamelCase__ : List[str] = len(UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[int]: lowerCamelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : str = self.get_config() return config, pixel_values def A_ ( self : Optional[int] ) -> Dict: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A_ ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = FlaxRegNetModel(config=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self : str , UpperCAmelCase : int , UpperCAmelCase : Tuple ) -> Tuple: lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : str = FlaxRegNetForImageClassification(config=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Dict ) -> str: lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ : Any = config_and_inputs lowerCamelCase__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : List[Any] ) -> None: lowerCamelCase__ : List[Any] = FlaxRegNetModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def A_ ( self : int ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : Any ) -> str: return def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def A_ ( self : Dict ) -> Dict: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def A_ ( self : Any ) -> Tuple: pass def A_ ( self : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A_ ( self : int ) -> List[str]: def check_hidden_states_output(UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ): lowerCamelCase__ : Any = model_class(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCamelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : List[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Dict ) -> int: lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ): return model(pixel_values=UpperCAmelCase , **UpperCAmelCase ) with self.subTest('JIT Enabled' ): lowerCamelCase__ : Dict = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase__ : Optional[int] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : Any ) -> List[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def A_ ( self : Dict ) -> Tuple: lowerCamelCase__ : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : List[str] = image_processor(images=UpperCAmelCase , return_tensors='np' ) lowerCamelCase__ : List[Any] = model(**UpperCAmelCase ) # verify the logits lowerCamelCase__ : Union[str, Any] = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase__ : Tuple = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
188
0
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ , snake_case_ : Tuple = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): snake_case_ : List[str] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowerCAmelCase_ = imread('''image_data/lena.jpg''', 1) # convert to its negative lowerCAmelCase_ = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
60
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = StableDiffusionXLImgaImgPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self ): torch.manual_seed(0 ) lowercase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=_a , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowercase : Optional[Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) lowercase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=32 , ) lowercase : str = CLIPTextModel(_a ) lowercase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_a ) lowercase : Any = CLIPTextModelWithProjection(_a ) lowercase : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_a ) lowercase : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __magic_name__ ( self , _a , _a=0 ): lowercase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowercase : List[Any] = image / 2 + 0.5 if str(_a ).startswith("mps" ): lowercase : Optional[int] = torch.manual_seed(_a ) else: lowercase : str = torch.Generator(device=_a ).manual_seed(_a ) lowercase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.7_5, } return inputs def __magic_name__ ( self ): lowercase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase : Optional[int] = self.get_dummy_components() lowercase : str = StableDiffusionXLImgaImgPipeline(**_a ) lowercase : List[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowercase : Optional[Any] = self.get_dummy_inputs(_a ) lowercase : Tuple = sd_pipe(**_a ).images lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : Tuple = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __magic_name__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): lowercase : Optional[Any] = self.get_dummy_components() lowercase : Optional[Any] = StableDiffusionXLImgaImgPipeline(**_a ) lowercase : Any = sd_pipe.to(_a ) lowercase : Any = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) # forward without prompt embeds lowercase : Union[str, Any] = self.get_dummy_inputs(_a ) lowercase : int = 3 * ["this is a negative prompt"] lowercase : Any = negative_prompt lowercase : List[str] = 3 * [inputs["prompt"]] lowercase : Optional[int] = sd_pipe(**_a ) lowercase : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowercase : Any = self.get_dummy_inputs(_a ) lowercase : List[str] = 3 * ["this is a negative prompt"] lowercase : Optional[Any] = 3 * [inputs.pop("prompt" )] ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[Any] = sd_pipe.encode_prompt(_a , negative_prompt=_a ) lowercase : int = sd_pipe( **_a , prompt_embeds=_a , negative_prompt_embeds=_a , pooled_prompt_embeds=_a , negative_pooled_prompt_embeds=_a , ) lowercase : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __magic_name__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ): lowercase : Optional[int] = torch.Generator(device=_a ).manual_seed(_a ) lowercase : Any = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowercase : List[str] = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowercase : List[Any] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __magic_name__ ( self ): lowercase : List[Any] = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowercase : Any = self.get_inputs(_a ) lowercase : int = pipe(**_a ).images lowercase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase : Optional[Any] = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
361
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
718
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowercase_ = float("""nan""") class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = sys.stdout __SCREAMING_SNAKE_CASE : int = open(_A , '''a''' ) def __getattr__( self : int , _A : str ): """simple docstring""" return getattr(self.stdout , _A ) def UpperCAmelCase__ ( self : Dict , _A : Any ): """simple docstring""" self.stdout.write(_A ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , _A , 0 , re.M ) ) def a__ ( snake_case=80 , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] # deal with critical env vars __SCREAMING_SNAKE_CASE : List[Any] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: __SCREAMING_SNAKE_CASE : Any = os.environ.get(snake_case , snake_case ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __SCREAMING_SNAKE_CASE : Optional[int] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(snake_case ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : List[Any] = '''''' while len(snake_case ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(snake_case ) == 0 or len(snake_case ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = '''''' return "\\\n".join(snake_case ) def a__ ( snake_case , snake_case ): """simple docstring""" # unwrap multi-line input __SCREAMING_SNAKE_CASE : Dict = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own __SCREAMING_SNAKE_CASE : Any = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __SCREAMING_SNAKE_CASE : Any = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.run(snake_case , capture_output=snake_case , text=snake_case ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams __SCREAMING_SNAKE_CASE : Optional[int] = variation.replace(''' ''' , '''-''' ) with open(Path(snake_case ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(snake_case ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Any = json.load(snake_case ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : str = F'''{id}: {variation:<{longest_variation_len}}''' __SCREAMING_SNAKE_CASE : Optional[int] = F'''{preamble}: ''' __SCREAMING_SNAKE_CASE : Optional[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case ) , desc=snake_case , leave=snake_case ): __SCREAMING_SNAKE_CASE : str = process_run_single( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : List[str] = single_run_metrics[target_metric_key] if not math.isnan(snake_case ): metrics.append(snake_case ) results.append(snake_case ) outcome += "✓" else: outcome += "✘" __SCREAMING_SNAKE_CASE : str = F'''\33[2K\r{outcome}''' if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __SCREAMING_SNAKE_CASE : Optional[Any] = round(mean_metrics[target_metric_key] , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{outcome} {mean_target}''' if len(snake_case ) > 1: results_str += F''' {tuple(round(snake_case , 2 ) for x in results )}''' print(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = variation return mean_metrics else: print(snake_case ) return {variation_key: variation, target_metric_key: nan} def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = pd.DataFrame(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = '''variation''' __SCREAMING_SNAKE_CASE : Union[str, Any] = '''diff_%''' __SCREAMING_SNAKE_CASE : str = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __SCREAMING_SNAKE_CASE : List[str] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case ): # as a fallback, use the minimal value as the sentinel __SCREAMING_SNAKE_CASE : Optional[Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = df.apply( lambda snake_case : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns __SCREAMING_SNAKE_CASE : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] __SCREAMING_SNAKE_CASE : Union[str, Any] = df.reindex(snake_case , axis='''columns''' ) # reorder cols # capitalize __SCREAMING_SNAKE_CASE : str = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible __SCREAMING_SNAKE_CASE : Any = df.rename(lambda snake_case : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) __SCREAMING_SNAKE_CASE : int = df.rename(lambda snake_case : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) __SCREAMING_SNAKE_CASE : int = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case , floatfmt='''.2f''' )] print('''\n\n'''.join(snake_case ) ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=snake_case , type=snake_case , required=snake_case , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=snake_case , type=snake_case , nargs='''+''' , required=snake_case , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=snake_case , type=snake_case , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=snake_case , type=snake_case , required=snake_case , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=snake_case , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=snake_case , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=snake_case , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=snake_case , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() __SCREAMING_SNAKE_CASE : str = args.output_dir Path(snake_case ).mkdir(exist_ok=snake_case ) __SCREAMING_SNAKE_CASE : int = get_base_command(snake_case , snake_case ) # split each dimension into its --foo variations __SCREAMING_SNAKE_CASE : Optional[Any] = [list(map(str.strip , re.split(R'''\|''' , snake_case ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __SCREAMING_SNAKE_CASE : Union[str, Any] = list(map(str.strip , map(''' '''.join , itertools.product(*snake_case ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = max(len(snake_case ) for x in variations ) # split wanted keys __SCREAMING_SNAKE_CASE : List[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience __SCREAMING_SNAKE_CASE : Any = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __SCREAMING_SNAKE_CASE : str = Tee(snake_case ) print(F'''\n*** Running {len(snake_case )} benchmarks:''' ) print(F'''Base command: {" ".join(snake_case )}''' ) __SCREAMING_SNAKE_CASE : str = '''variation''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for id, variation in enumerate(tqdm(snake_case , desc='''Total completion: ''' , leave=snake_case ) ): __SCREAMING_SNAKE_CASE : int = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case , snake_case , snake_case , snake_case , args.target_metric_key , snake_case , args.repeat_times , snake_case , args.verbose , ) ) process_results(snake_case , args.target_metric_key , snake_case , args.base_variation , snake_case ) if __name__ == "__main__": main()
131
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Dict = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """xglm""" __lowercase = ["""past_key_values"""] __lowercase = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase_=25_60_08 , lowerCAmelCase_=20_48 , lowerCAmelCase_=10_24 , lowerCAmelCase_=40_96 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = d_model _snake_case = ffn_dim _snake_case = num_layers _snake_case = attention_heads _snake_case = activation_function _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = layerdrop _snake_case = init_std _snake_case = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case = use_cache super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
495
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """dandelin/vilt-b32-finetuned-vqa""" __lowercase = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) __lowercase = """image_qa""" __lowercase = AutoProcessor __lowercase = AutoModelForVisualQuestionAnswering __lowercase = ["""image""", """text"""] __lowercase = ["""text"""] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return self.pre_processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='pt' ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" with torch.no_grad(): return self.model(**lowerCAmelCase_ ).logits def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
495
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCAmelCase_ = numpy.array([0, 0]) UpperCAmelCase_ = numpy.array([0.5, 0.8660254]) UpperCAmelCase_ = numpy.array([1, 0]) UpperCAmelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase ( A__ , A__ ) -> Any: _snake_case : Tuple = initial_vectors for _ in range(snake_case_ ): _snake_case : List[Any] = iteration_step(snake_case_ ) return vectors def UpperCAmelCase ( A__ ) -> List[Any]: _snake_case : Dict = [] for i, start_vector in enumerate(vectors[:-1] ): _snake_case : List[str] = vectors[i + 1] new_vectors.append(snake_case_ ) _snake_case : List[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase ( A__ , A__ ) -> Optional[int]: _snake_case : Optional[Any] = numpy.radians(snake_case_ ) _snake_case : Optional[Any] = numpy.cos(snake_case_ ), numpy.sin(snake_case_ ) _snake_case : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case_ , snake_case_ ) def UpperCAmelCase ( A__ ) -> str: _snake_case : int = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _snake_case : int = zip(*snake_case_ ) plt.plot(snake_case_ , snake_case_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
710
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'blip_2_vision_model' def __init__( self , SCREAMING_SNAKE_CASE__=14_08 , SCREAMING_SNAKE_CASE__=61_44 , SCREAMING_SNAKE_CASE__=39 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=14 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0_0001 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=1e-10 , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = hidden_size _snake_case : int = intermediate_size _snake_case : int = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : Tuple = patch_size _snake_case : Optional[int] = image_size _snake_case : Tuple = initializer_range _snake_case : List[str] = attention_dropout _snake_case : Any = layer_norm_eps _snake_case : int = hidden_act _snake_case : List[Any] = qkv_bias @classmethod def __lowerCamelCase( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : Any = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": _snake_case : List[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'blip_2_qformer' def __init__( self , SCREAMING_SNAKE_CASE__=3_05_22 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1e-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=14_08 , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case : int = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : str = hidden_act _snake_case : Dict = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : Tuple = initializer_range _snake_case : str = layer_norm_eps _snake_case : Optional[int] = position_embedding_type _snake_case : Any = cross_attention_frequency _snake_case : int = encoder_hidden_size @classmethod def __lowerCamelCase( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : Union[str, Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": _snake_case : Optional[Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'blip-2' SCREAMING_SNAKE_CASE_ = True def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) if vision_config is None: _snake_case : Any = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: _snake_case : Union[str, Any] = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: _snake_case : str = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _snake_case : Union[str, Any] = BlipaVisionConfig(**SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BlipaQFormerConfig(**SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _snake_case : Union[str, Any] = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = self.text_config.tie_word_embeddings _snake_case : Optional[int] = self.text_config.is_encoder_decoder _snake_case : Tuple = num_query_tokens _snake_case : Tuple = self.vision_config.hidden_size _snake_case : int = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _snake_case : List[str] = 1.0 _snake_case : int = 0.02 @classmethod def __lowerCamelCase( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Any = copy.deepcopy(self.__dict__ ) _snake_case : Union[str, Any] = self.vision_config.to_dict() _snake_case : Optional[int] = self.qformer_config.to_dict() _snake_case : str = self.text_config.to_dict() _snake_case : Optional[Any] = self.__class__.model_type return output
519
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __lowerCamelCase : str = logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( _UpperCAmelCase ): A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : str , **UpperCamelCase_ : Any ) -> Dict: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCamelCase_ : str = deprecated_arg[3:] setattr(self , A_ , not kwargs.pop(A_ ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowerCamelCase_ : List[Any] = kwargs.pop('''torchscript''' , self.torchscript ) lowerCamelCase_ : Tuple = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) lowerCamelCase_ : Any = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**A_ ) A = field(default=_UpperCAmelCase ,metadata={"help": "Trace the models using torchscript"} ) A = field(default=_UpperCAmelCase ,metadata={"help": "Print Xla/PyTorch tpu metrics"} ) A = field( default="O1" ,metadata={ "help": ( "For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. " "See details at https://nvidia.github.io/apex/amp.html" ) } ,) @cached_property def __UpperCamelCase ( self : List[str] ) -> Tuple["torch.device", int]: """simple docstring""" requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowerCamelCase_ : Tuple = torch.device('''cpu''' ) lowerCamelCase_ : Union[str, Any] = 0 elif is_torch_tpu_available(): lowerCamelCase_ : Tuple = xm.xla_device() lowerCamelCase_ : int = 0 else: lowerCamelCase_ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCamelCase_ : Any = torch.cuda.device_count() return device, n_gpu @property def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __UpperCamelCase ( self : str ) -> "torch.device": """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" return self.n_gpu > 0
501
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
564
0
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _lowercase : pass
712
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ : Any = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : List[str] = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : List[str] = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[int] = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
497
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase = 1_2_8_0_2_2 lowercase = 1_2_8_0_2_8 @require_sentencepiece class __A( UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = MaMaaaTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True def lowercase__ ( self : int ): super().setUp() lowerCamelCase_ = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] lowerCamelCase_ = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) lowerCamelCase_ = Path(self.tmpdirname ) save_json(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) lowerCamelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] , **__UpperCamelCase : Optional[int] ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] ): return ( "This is a test", "This is a test", ) def lowercase__ ( self : int ): lowerCamelCase_ = """</s>""" lowerCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : str ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(__UpperCamelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : str ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [2, 3, 4, 5, 6] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) lowerCamelCase_ = tokenizer.convert_tokens_to_string(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , """This is a test""" ) @slow def lowercase__ ( self : Optional[Any] ): # fmt: off lowerCamelCase_ = {"""input_ids""": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = '''facebook/m2m100_418M''' SCREAMING_SNAKE_CASE = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] SCREAMING_SNAKE_CASE = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off SCREAMING_SNAKE_CASE = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowercase__ ( cls : Union[str, Any] ): lowerCamelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) lowerCamelCase_ = 1 return cls def lowercase__ ( self : Any ): self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 1_2_8_0_6_3 ) def lowercase__ ( self : int ): lowerCamelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(__UpperCamelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = """en""" lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) def lowercase__ ( self : Optional[int] ): self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids ) # fmt: off lowerCamelCase_ = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on lowerCamelCase_ = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__UpperCamelCase ) lowerCamelCase_ = MaMaaaTokenizer.from_pretrained(__UpperCamelCase ) self.assertDictEqual(new_tok.lang_token_to_id , __UpperCamelCase ) @require_torch def lowercase__ ( self : List[str] ): lowerCamelCase_ = """en""" lowerCamelCase_ = """fr""" lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase_ = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: lowerCamelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) lowerCamelCase_ = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) lowerCamelCase_ = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowercase__ ( self : Any ): lowerCamelCase_ = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { # en_XX, A, test, EOS """input_ids""": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 1_2_8_0_0_6, } , )
272
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
1
from random import shuffle import tensorflow as tf from numpy import array def snake_case ( UpperCAmelCase : Any, UpperCAmelCase : Any ): A = int(UpperCAmelCase ) assert noofclusters < len(UpperCAmelCase ) # Find out the dimensionality A = len(vectors[0] ) # Will help select random centroids from among the available vectors A = list(range(len(UpperCAmelCase ) ) ) shuffle(UpperCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. A = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION A = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points A = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values A = tf.placeholder('float64', [dim] ) A = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCAmelCase, UpperCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) A = [tf.Variable(0 ) for i in range(len(UpperCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value A = tf.placeholder('int32' ) A = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCAmelCase, UpperCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input A = tf.placeholder('float', [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors A = tf.reduce_mean(UpperCAmelCase, 0 ) ##Node for computing Euclidean distances # Placeholders for input A = tf.placeholder('float', [dim] ) A = tf.placeholder('float', [dim] ) A = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCAmelCase, UpperCAmelCase ), 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input A = tf.placeholder('float', [noofclusters] ) A = tf.argmin(UpperCAmelCase, 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. A = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. A = 1_00 for _ in range(UpperCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCAmelCase ) ): A = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. A = [ sess.run(UpperCAmelCase, feed_dict={va: vect, va: sess.run(UpperCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input A = sess.run( UpperCAmelCase, feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n], feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCAmelCase ): # Collect all the vectors assigned to this cluster A = [ vectors[i] for i in range(len(UpperCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location A = sess.run( UpperCAmelCase, feed_dict={mean_input: array(UpperCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n], feed_dict={centroid_value: new_location} ) # Return centroids and assignments A = sess.run(UpperCAmelCase ) A = sess.run(UpperCAmelCase ) return centroids, assignments
110
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def snake_case ( UpperCAmelCase : List[Any] ): A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase, UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: A = s_dict.pop(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): A , A = emb.weight.shape A = nn.Linear(UpperCAmelCase, UpperCAmelCase, bias=UpperCAmelCase ) A = emb.weight.data return lin_layer def snake_case ( UpperCAmelCase : str, UpperCAmelCase : str ): A = torch.load(UpperCAmelCase, map_location='cpu' ) A = mam_aaa['args'] A = mam_aaa['model'] A = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) A = state_dict['decoder.embed_tokens.weight'].shape[0] A = args.share_decoder_input_output_embed A = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(',' )] A = SpeechaTextConfig( vocab_size=UpperCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='relu', num_conv_layers=len(UpperCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=UpperCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=UpperCAmelCase, num_beams=5, max_length=2_00, use_cache=UpperCAmelCase, decoder_start_token_id=2, early_stopping=UpperCAmelCase, ) A = SpeechaTextForConditionalGeneration(UpperCAmelCase ) A , A = model.model.load_state_dict(UpperCAmelCase, strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f' but all the following weights are missing {missing}' ) if tie_embeds: A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
110
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class lowerCamelCase_ ( __snake_case ): a__ = '''blip_text_model''' def __init__( self , __lowerCAmelCase=3_0_5_2_4 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=8 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0 , __lowerCAmelCase=1_0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , sep_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) __magic_name__ :Any = vocab_size __magic_name__ :Any = hidden_size __magic_name__ :List[Any] = encoder_hidden_size __magic_name__ :List[Any] = intermediate_size __magic_name__ :Dict = projection_dim __magic_name__ :List[Any] = hidden_dropout_prob __magic_name__ :Tuple = num_hidden_layers __magic_name__ :List[str] = num_attention_heads __magic_name__ :List[str] = max_position_embeddings __magic_name__ :int = layer_norm_eps __magic_name__ :int = hidden_act __magic_name__ :List[str] = initializer_range __magic_name__ :List[str] = attention_probs_dropout_prob __magic_name__ :List[Any] = is_decoder __magic_name__ :int = use_cache @classmethod def A ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(__lowerCAmelCase ) __magic_name__ :Optional[Any] = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": __magic_name__ :Any = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class lowerCamelCase_ ( __snake_case ): a__ = '''blip_vision_model''' def __init__( self , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_8_4 , __lowerCAmelCase=1_6 , __lowerCAmelCase="gelu" , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1E-10 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) __magic_name__ :List[str] = hidden_size __magic_name__ :Optional[int] = intermediate_size __magic_name__ :Optional[int] = projection_dim __magic_name__ :List[str] = num_hidden_layers __magic_name__ :List[str] = num_attention_heads __magic_name__ :int = patch_size __magic_name__ :Tuple = image_size __magic_name__ :Dict = initializer_range __magic_name__ :Any = attention_dropout __magic_name__ :Union[str, Any] = layer_norm_eps __magic_name__ :str = hidden_act @classmethod def A ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": __magic_name__ :List[str] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class lowerCamelCase_ ( __snake_case ): a__ = '''blip''' a__ = True def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2.6592 , __lowerCAmelCase=2_5_6 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) if text_config is None: __magic_name__ :Any = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: __magic_name__ :List[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) __magic_name__ :Optional[Any] = BlipTextConfig(**__lowerCAmelCase ) __magic_name__ :Tuple = BlipVisionConfig(**__lowerCAmelCase ) __magic_name__ :Tuple = self.vision_config.hidden_size __magic_name__ :Optional[int] = projection_dim __magic_name__ :Optional[Any] = logit_scale_init_value __magic_name__ :int = 1.0 __magic_name__ :List[str] = 0.02 __magic_name__ :List[str] = image_text_hidden_size @classmethod def A ( cls , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = copy.deepcopy(self.__dict__ ) __magic_name__ :Any = self.text_config.to_dict() __magic_name__ :str = self.vision_config.to_dict() __magic_name__ :Any = self.__class__.model_type return output
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): '''simple docstring''' A : Optional[Any] = [x.strip() for x in open(snake_case__ ).readlines()] A : Tuple = [x.strip() for x in open(snake_case__ ).readlines()][: len(snake_case__ )] A : Union[str, Any] = calculate_rouge(snake_case__ , snake_case__ , **snake_case__ ) if save_path is not None: save_json(snake_case__ , snake_case__ , indent=snake_case__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
634
0
'''simple docstring''' import re def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' if len(re.findall("[ATCG]" , lowerCAmelCase_ ) ) != len(lowerCAmelCase_ ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
707
import string import numpy def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , __lowerCamelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCAmelCase__ = numpy.vectorize(lambda snake_case_ : x % 36 ) lowerCAmelCase__ = numpy.vectorize(snake_case_ ) def __init__( self , UpperCAmelCase ) -> None: '''simple docstring''' lowercase_ = self.modulus(UpperCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase_ = encrypt_key.shape[0] def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self.key_string.index(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self.key_string[round(UpperCAmelCase )] def A__ ( self ) -> None: '''simple docstring''' lowercase_ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ = det % len(self.key_string ) lowercase_ = len(self.key_string ) if greatest_common_divisor(UpperCAmelCase , len(self.key_string ) ) != 1: lowercase_ = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = [char for char in text.upper() if char in self.key_string] lowercase_ = chars[-1] while len(UpperCAmelCase ) % self.break_key != 0: chars.append(UpperCAmelCase ) return "".join(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = self.process_text(text.upper() ) lowercase_ = "" for i in range(0 , len(UpperCAmelCase ) - self.break_key + 1 , self.break_key ): lowercase_ = text[i : i + self.break_key] lowercase_ = [self.replace_letters(UpperCAmelCase ) for char in batch] lowercase_ = numpy.array([vec] ).T lowercase_ = self.modulus(self.encrypt_key.dot(UpperCAmelCase ) ).T.tolist()[ 0 ] lowercase_ = "".join( self.replace_digits(UpperCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A__ ( self ) -> numpy.ndarray: '''simple docstring''' lowercase_ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ = det % len(self.key_string ) lowercase_ = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase_ = i break lowercase_ = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCAmelCase ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = self.make_decrypt_key() lowercase_ = self.process_text(text.upper() ) lowercase_ = "" for i in range(0 , len(UpperCAmelCase ) - self.break_key + 1 , self.break_key ): lowercase_ = text[i : i + self.break_key] lowercase_ = [self.replace_letters(UpperCAmelCase ) for char in batch] lowercase_ = numpy.array([vec] ).T lowercase_ = self.modulus(decrypt_key.dot(UpperCAmelCase ) ).T.tolist()[0] lowercase_ = "".join( self.replace_digits(UpperCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = int(input("Enter the order of the encryption key: " ) ) lowercase_ = [] print("Enter each row of the encryption key with space separated integers" ) for _ in range(__lowerCamelCase ): lowercase_ = [int(__lowerCamelCase ) for x in input().split()] hill_matrix.append(__lowerCamelCase ) lowercase_ = HillCipher(numpy.array(__lowerCamelCase ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) lowercase_ = input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": lowercase_ = input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(__lowerCamelCase ) ) elif option == "2": lowercase_ = input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
601
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCamelCase_ = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Tuple , **UpperCAmelCase__ : int ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase : Optional[int] =deprecated_arg[3:] setattr(self , UpperCAmelCase__ , not kwargs.pop(UpperCAmelCase__ ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase : int =kwargs.pop('''torchscript''' , self.torchscript ) lowercase : List[str] =kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) lowercase : int =kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**UpperCAmelCase__ ) lowerCamelCase_ = field(default=lowercase__ , metadata={'help': 'Trace the models using torchscript'} ) lowerCamelCase_ = field(default=lowercase__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) lowerCamelCase_ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowercase : List[Any] =torch.device('''cpu''' ) lowercase : int =0 elif is_torch_tpu_available(): lowercase : Optional[Any] =xm.xla_device() lowercase : int =0 else: lowercase : Optional[Any] =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase : str =torch.cuda.device_count() return device, n_gpu @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def lowerCamelCase_ ( self : int ): '''simple docstring''' requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCamelCase_ ( self : int ): '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' return self.n_gpu > 0
92
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: a_ : Tuple = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : Any = downstream_dict["projector.weight"] a_ : Dict = downstream_dict["projector.bias"] a_ : Tuple = downstream_dict["model.post_net.linear.weight"] a_ : int = downstream_dict["model.post_net.linear.bias"] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : List[str] = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = downstream_dict["model.linear.weight"] a_ : List[Any] = downstream_dict["model.linear.bias"] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: a_ : int = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : Any = downstream_dict["connector.weight"] a_ : Tuple = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ : List[str] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ : int = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ : Any = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ : str = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ : List[str] = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__, map_location="cpu" ) a_ : List[str] = checkpoint["Downstream"] a_ : Union[str, Any] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ : int = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ : Any = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForXVector" ): a_ : Any = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ : Tuple = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
237
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCamelCase = """pt""" elif is_tf_available(): _UpperCamelCase = """tf""" else: _UpperCamelCase = """jax""" class lowerCamelCase__ ( _snake_case, unittest.TestCase ): '''simple docstring''' A__ = ByTaTokenizer A__ = False def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' super().setUp() lowerCAmelCase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def lowercase__ ( self : Any , **__A : Union[str, Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def lowercase__ ( self : Tuple , __A : Dict , __A : Union[str, Any]=False , __A : Optional[int]=20 , __A : str=5 ) -> Tuple[str, list]: '''simple docstring''' lowerCAmelCase__ = [] for i in range(len(lowerCAmelCase__ ) ): try: lowerCAmelCase__ = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase__ = list(filter(lambda __A : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , lowerCAmelCase__ ) ) lowerCAmelCase__ = list(filter(lambda __A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) ) if max_length is not None and len(lowerCAmelCase__ ) > max_length: lowerCAmelCase__ = toks[:max_length] if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0: while len(lowerCAmelCase__ ) < min_length: lowerCAmelCase__ = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase__ = [t[0] for t in toks] # Ensure consistency lowerCAmelCase__ = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) if " " not in output_txt and len(lowerCAmelCase__ ) > 1: lowerCAmelCase__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ ) ) if with_prefix_space: lowerCAmelCase__ = """ """ + output_txt lowerCAmelCase__ = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) return output_txt, output_ids def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowerCAmelCase__ = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = """Unicode €.""" lowerCAmelCase__ = tokenizer(lowerCAmelCase__ ) lowerCAmelCase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , lowerCAmelCase__ ) # decoding lowerCAmelCase__ = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , """Unicode €.</s>""" ) lowerCAmelCase__ = tokenizer("""e è é ê ë""" ) lowerCAmelCase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , lowerCAmelCase__ ) # decoding lowerCAmelCase__ = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off lowerCAmelCase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCAmelCase__ = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) if FRAMEWORK != "jax": lowerCAmelCase__ = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCAmelCase__ = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , lowerCAmelCase__ ) self.assertIn("""attention_mask""" , lowerCAmelCase__ ) self.assertNotIn("""decoder_input_ids""" , lowerCAmelCase__ ) self.assertNotIn("""decoder_attention_mask""" , lowerCAmelCase__ ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = [ """Summary of the text.""", """Another summary.""", ] lowerCAmelCase__ = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding="""max_length""" , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.ta_base_tokenizer lowerCAmelCase__ = ["""A long paragraph for summarization. </s>"""] lowerCAmelCase__ = ["""Summary of the text. </s>"""] # fmt: off lowerCAmelCase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCAmelCase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCAmelCase__ = tokenizer(lowerCAmelCase__ , text_target=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , batch["""input_ids"""][0] ) self.assertEqual(lowerCAmelCase__ , batch["""labels"""][0] ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = """ He is very happy, UNwant\u00E9d,running""" lowerCAmelCase__ = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) lowerCAmelCase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) lowerCAmelCase__ = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowerCAmelCase__ = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase__ = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' lowerCAmelCase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowerCAmelCase__ = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowerCAmelCase__ = json.load(lowerCAmelCase__ ) lowerCAmelCase__ = [f'''<extra_id_{i}>''' for i in range(125 )] lowerCAmelCase__ = added_tokens_extra_ids + [ """an_additional_special_token""" ] lowerCAmelCase__ = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(lowerCAmelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase__ = tokenizer_class.from_pretrained( lowerCAmelCase__ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase__ = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=lowerCAmelCase__ )] lowerCAmelCase__ = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = tokenizer_class.from_pretrained(lowerCAmelCase__ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' pass def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] lowerCAmelCase__ = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowerCAmelCase__ = 0 lowerCAmelCase__ = tokenizer.convert_ids_to_tokens( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + """_id""" , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + """_id""" ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + """_id""" , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + """_id""" ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens_ids""" ) , [] ) setattr(lowerCAmelCase__ , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
701
'''simple docstring''' import argparse import datetime def _lowerCAmelCase( UpperCAmelCase_ : str ) -> str: lowerCAmelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } lowerCAmelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCAmelCase_ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month lowerCAmelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) lowerCAmelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day lowerCAmelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator lowerCAmelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year lowerCAmelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation lowerCAmelCase__ = datetime.date(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) ) # Start math if m <= 2: lowerCAmelCase__ = y - 1 lowerCAmelCase__ = m + 12 # maths var lowerCAmelCase__ = int(str(UpperCAmelCase_ )[:2] ) lowerCAmelCase__ = int(str(UpperCAmelCase_ )[2:] ) lowerCAmelCase__ = int(2.6 * m - 5.39 ) lowerCAmelCase__ = int(c / 4 ) lowerCAmelCase__ = int(k / 4 ) lowerCAmelCase__ = int(d + k ) lowerCAmelCase__ = int(t + u + v + x ) lowerCAmelCase__ = int(z - (2 * c) ) lowerCAmelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response lowerCAmelCase__ = F'''Your date {date_input}, is a {days[str(UpperCAmelCase_ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
211
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : List[Any] = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ = "audio-spectrogram-transformer" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=768 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Dict=3_072 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Any=1E-12 , __SCREAMING_SNAKE_CASE : int=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=10 , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : List[str]=1_024 , __SCREAMING_SNAKE_CASE : str=128 , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = frequency_stride __SCREAMING_SNAKE_CASE = time_stride __SCREAMING_SNAKE_CASE = max_length __SCREAMING_SNAKE_CASE = num_mel_bins
627
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : Any = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["""MobileViTFeatureExtractor"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
79
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") _lowerCAmelCase : List[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") _lowerCAmelCase : List[str] = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: _lowerCAmelCase : Optional[Any] = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowerCAmelCase : List[str] = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'markuplm' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=256 , lowerCamelCase=1024 , lowerCamelCase=216 , lowerCamelCase=1001 , lowerCamelCase=32 , lowerCamelCase=50 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Optional[int] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : List[Any] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Dict = use_cache snake_case__ : int = classifier_dropout # additional properties snake_case__ : Union[str, Any] = max_depth snake_case__ : Dict = max_xpath_tag_unit_embeddings snake_case__ : Any = max_xpath_subs_unit_embeddings snake_case__ : int = tag_pad_id snake_case__ : Tuple = subs_pad_id snake_case__ : Dict = xpath_unit_hidden_size
694
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =42 # setable values lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None @classmethod def __UpperCamelCase ( cls : Tuple , a : CommonSchedulerState , a : jnp.ndarray , a : jnp.ndarray ) -> Dict: """simple docstring""" return cls(common=a , init_noise_sigma=a , timesteps=a ) @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCamelCase ( __A , __A ): '''simple docstring''' lowerCamelCase__ =[e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase__ =42 @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return True @register_to_config def __init__( self : str , a : int = 1000 , a : float = 0.0001 , a : float = 0.02 , a : str = "linear" , a : Optional[jnp.ndarray] = None , a : str = "fixed_small" , a : bool = True , a : str = "epsilon" , a : jnp.dtype = jnp.floataa , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = dtype def __UpperCamelCase ( self : Any , a : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: SCREAMING_SNAKE_CASE : Optional[int] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : Tuple = jnp.array(1.0 , dtype=self.dtype ) SCREAMING_SNAKE_CASE : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=a , init_noise_sigma=a , timesteps=a , ) def __UpperCamelCase ( self : List[Any] , a : DDPMSchedulerState , a : jnp.ndarray , a : Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def __UpperCamelCase ( self : Optional[int] , a : DDPMSchedulerState , a : int , a : Tuple = () ) -> DDPMSchedulerState: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE : Dict = (jnp.arange(0 , a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=a , timesteps=a , ) def __UpperCamelCase ( self : Optional[Any] , a : DDPMSchedulerState , a : List[str] , a : Any=None , a : Dict=None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: SCREAMING_SNAKE_CASE : int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": SCREAMING_SNAKE_CASE : str = jnp.clip(a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": SCREAMING_SNAKE_CASE : Any = jnp.log(jnp.clip(a , a_min=1e-20 ) ) elif variance_type == "fixed_large": SCREAMING_SNAKE_CASE : int = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log SCREAMING_SNAKE_CASE : str = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": SCREAMING_SNAKE_CASE : Any = variance SCREAMING_SNAKE_CASE : int = state.common.betas[t] SCREAMING_SNAKE_CASE : Dict = (predicted_variance + 1) / 2 SCREAMING_SNAKE_CASE : List[Any] = frac * max_log + (1 - frac) * min_log return variance def __UpperCamelCase ( self : Any , a : DDPMSchedulerState , a : jnp.ndarray , a : int , a : jnp.ndarray , a : Optional[jax.random.KeyArray] = None , a : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = timestep if key is None: SCREAMING_SNAKE_CASE : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.split(a , sample.shape[1] , axis=1 ) else: SCREAMING_SNAKE_CASE : int = None # 1. compute alphas, betas SCREAMING_SNAKE_CASE : Tuple = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE : str = 1 - alpha_prod_t SCREAMING_SNAKE_CASE : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE : Tuple = jnp.clip(a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE : Optional[int] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t SCREAMING_SNAKE_CASE : int = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(a , num=1 ) SCREAMING_SNAKE_CASE : Dict = jax.random.normal(a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(a , a , predicted_variance=a ) ** 0.5) * noise SCREAMING_SNAKE_CASE : str = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=a , state=a ) def __UpperCamelCase ( self : Union[str, Any] , a : DDPMSchedulerState , a : jnp.ndarray , a : jnp.ndarray , a : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , a , a , a ) def __UpperCamelCase ( self : str , a : DDPMSchedulerState , a : jnp.ndarray , a : jnp.ndarray , a : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , a , a , a ) def __len__( self : int ) -> Any: """simple docstring""" return self.config.num_train_timesteps
25
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( __magic_name__ )-> int: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( )-> List[str]: """simple docstring""" with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" snake_case_ : str = [1, 2, 3] with pytest.raises(__magic_name__ ): with parallel_backend("unsupported backend" ): map_nested(__magic_name__ ,__magic_name__ ,num_proc=2 ) with pytest.raises(__magic_name__ ): with parallel_backend("unsupported backend" ): map_nested(__magic_name__ ,__magic_name__ ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" ,[2, -1] ) def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Optional[Any] = [1, 2] snake_case_ : Union[str, Any] = {"a": 1, "b": 2} snake_case_ : str = {"a": [1, 2], "b": [3, 4]} snake_case_ : List[str] = {"a": {"1": 1}, "b": 2} snake_case_ : Optional[int] = {"a": 1, "b": 2, "c": 3, "d": 4} snake_case_ : Tuple = [2, 3] snake_case_ : str = {"a": 2, "b": 3} snake_case_ : Dict = {"a": [2, 3], "b": [4, 5]} snake_case_ : List[Any] = {"a": {"1": 2}, "b": 3} snake_case_ : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(__magic_name__ ,__magic_name__ ,num_proc=__magic_name__ ) == expected_map_nested_sa assert map_nested(__magic_name__ ,__magic_name__ ,num_proc=__magic_name__ ) == expected_map_nested_sa assert map_nested(__magic_name__ ,__magic_name__ ,num_proc=__magic_name__ ) == expected_map_nested_sa assert map_nested(__magic_name__ ,__magic_name__ ,num_proc=__magic_name__ ) == expected_map_nested_sa assert map_nested(__magic_name__ ,__magic_name__ ,num_proc=__magic_name__ ) == expected_map_nested_sa
653
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = IFInpaintingPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def snake_case__ ( self : List[Any] ) ->Any: '''simple docstring''' return self._get_dummy_components() def snake_case__ ( self : Dict , lowercase__ : List[str] , lowercase__ : str=0 ) ->Dict: '''simple docstring''' if str(UpperCamelCase_ ).startswith("mps" ): _UpperCamelCase : List[str] = torch.manual_seed(UpperCamelCase_ ) else: _UpperCamelCase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _UpperCamelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) _UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) _UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case__ ( self : Tuple ) ->str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case__ ( self : List[str] ) ->List[Any]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def snake_case__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case__ ( self : int ) ->Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case__ ( self : List[str] ) ->Optional[int]: '''simple docstring''' self._test_save_load_local() def snake_case__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
704
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ : Any = None try: import msvcrt except ImportError: lowerCAmelCase_ : Union[str, Any] = None try: import fcntl except ImportError: lowerCAmelCase_ : List[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ : Optional[int] = OSError # Data # ------------------------------------------------ lowerCAmelCase_ : Optional[int] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] lowerCAmelCase_ : List[Any] = """3.0.12""" lowerCAmelCase_ : Optional[int] = None def __A ( ) -> Optional[Any]: '''simple docstring''' global _logger _UpperCamelCase : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , lowercase__ : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = lock_file return None def __str__( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCamelCase : Optional[int] = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , lowercase__ : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : List[str] = lock return None def __enter__( self : Any ) ->List[Any]: '''simple docstring''' return self.lock def __exit__( self : Union[str, Any] , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : int ) ->str: '''simple docstring''' self.lock.release() return None class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , lowercase__ : Tuple , lowercase__ : Any=-1 , lowercase__ : int=None ) ->int: '''simple docstring''' _UpperCamelCase : int = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _UpperCamelCase : str = self.hash_filename_if_too_long(lowercase__ , lowercase__ ) # The path to the lock file. _UpperCamelCase : Optional[int] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _UpperCamelCase : Optional[int] = None # The default timeout value. _UpperCamelCase : Any = timeout # We use this lock primarily for the lock counter. _UpperCamelCase : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _UpperCamelCase : Any = 0 return None @property def snake_case__ ( self : Optional[Any] ) ->str: '''simple docstring''' return self._lock_file @property def snake_case__ ( self : int ) ->str: '''simple docstring''' return self._timeout @timeout.setter def snake_case__ ( self : Tuple , lowercase__ : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : str = float(lowercase__ ) return None def snake_case__ ( self : Optional[Any] ) ->Tuple: '''simple docstring''' raise NotImplementedError() def snake_case__ ( self : str ) ->Optional[Any]: '''simple docstring''' raise NotImplementedError() @property def snake_case__ ( self : str ) ->Tuple: '''simple docstring''' return self._lock_file_fd is not None def snake_case__ ( self : Optional[Any] , lowercase__ : Optional[int]=None , lowercase__ : str=0.0_5 ) ->str: '''simple docstring''' if timeout is None: _UpperCamelCase : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _UpperCamelCase : List[str] = id(self ) _UpperCamelCase : List[str] = self._lock_file _UpperCamelCase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowercase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _UpperCamelCase : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def snake_case__ ( self : Dict , lowercase__ : str=False ) ->Tuple: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _UpperCamelCase : Tuple = id(self ) _UpperCamelCase : str = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() _UpperCamelCase : List[str] = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self : Optional[int] ) ->str: '''simple docstring''' self.acquire() return self def __exit__( self : List[Any] , lowercase__ : int , lowercase__ : Dict , lowercase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' self.release() return None def __del__( self : Dict ) ->int: '''simple docstring''' self.release(force=lowercase__ ) return None def snake_case__ ( self : Tuple , lowercase__ : str , lowercase__ : int ) ->str: '''simple docstring''' _UpperCamelCase : Any = os.path.basename(lowercase__ ) if len(lowercase__ ) > max_length and max_length > 0: _UpperCamelCase : Optional[Any] = os.path.dirname(lowercase__ ) _UpperCamelCase : Tuple = str(hash(lowercase__ ) ) _UpperCamelCase : Dict = filename[: max_length - len(lowercase__ ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(lowercase__ , lowercase__ ) else: return path class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , lowercase__ : str , lowercase__ : int=-1 , lowercase__ : Optional[Any]=None ) ->Optional[Any]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowercase__ , timeout=lowercase__ , max_filename_length=lowercase__ ) _UpperCamelCase : int = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def snake_case__ ( self : int ) ->Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _UpperCamelCase : str = os.open(self._lock_file , lowercase__ ) except OSError: pass else: try: msvcrt.locking(lowercase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowercase__ ) else: _UpperCamelCase : Union[str, Any] = fd return None def snake_case__ ( self : List[Any] ) ->Tuple: '''simple docstring''' _UpperCamelCase : Optional[int] = self._lock_file_fd _UpperCamelCase : Optional[int] = None msvcrt.locking(lowercase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowercase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , lowercase__ : Any , lowercase__ : Union[str, Any]=-1 , lowercase__ : Dict=None ) ->Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = os.statvfs(os.path.dirname(lowercase__ ) ).f_namemax super().__init__(lowercase__ , timeout=lowercase__ , max_filename_length=lowercase__ ) def snake_case__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _UpperCamelCase : str = os.open(self._lock_file , lowercase__ ) try: fcntl.flock(lowercase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowercase__ ) else: _UpperCamelCase : Dict = fd return None def snake_case__ ( self : Optional[Any] ) ->int: '''simple docstring''' _UpperCamelCase : List[str] = self._lock_file_fd _UpperCamelCase : List[Any] = None fcntl.flock(lowercase__ , fcntl.LOCK_UN ) os.close(lowercase__ ) return None class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def snake_case__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCamelCase : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _UpperCamelCase : Any = os.open(self._lock_file , lowercase__ ) except OSError: pass else: _UpperCamelCase : str = fd return None def snake_case__ ( self : Dict ) ->int: '''simple docstring''' os.close(self._lock_file_fd ) _UpperCamelCase : Dict = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ : List[Any] = None if msvcrt: lowerCAmelCase_ : Dict = WindowsFileLock elif fcntl: lowerCAmelCase_ : int = UnixFileLock else: lowerCAmelCase_ : Tuple = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
204
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : '''simple docstring''' @staticmethod def _snake_case ( *lowerCamelCase : Optional[int] , **lowerCamelCase : int ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : Any = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _snake_case ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __lowercase = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def _snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = object_detector(examples[0] , threshold=0.0 ) __lowercase = len(__snake_case ) self.assertGreater(__snake_case , 0 ) self.assertEqual( __snake_case , [ { "score": ANY(__snake_case ), "label": ANY(__snake_case ), "box": {"xmin": ANY(__snake_case ), "ymin": ANY(__snake_case ), "xmax": ANY(__snake_case ), "ymax": ANY(__snake_case )}, } for i in range(__snake_case ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass @require_torch def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __lowercase = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) __lowercase = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def _snake_case ( self : str ): '''simple docstring''' __lowercase = pipeline("zero-shot-object-detection" ) __lowercase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) __lowercase = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _snake_case ( self : Any ): '''simple docstring''' pass @require_torch @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 0.2 __lowercase = pipeline("zero-shot-object-detection" ) __lowercase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=__snake_case , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = 2 __lowercase = pipeline("zero-shot-object-detection" ) __lowercase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=__snake_case , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
402
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping _SCREAMING_SNAKE_CASE = tuple[int, int] class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] )-> None: snake_case = vertices snake_case = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def lowerCAmelCase ( self : Optional[Any] , __snake_case : EdgeT , __snake_case : int )-> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) snake_case = weight def lowerCAmelCase ( self : str )-> Graph: snake_case = Graph({min(self.vertices )} , {} ) snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 while len(subgraph.vertices ) < len(self.vertices ): snake_case = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: snake_case = edge snake_case = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def __lowerCamelCase ( __lowerCAmelCase : str = "p107_network.txt" ) -> int: snake_case = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) snake_case = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) snake_case = {} snake_case = 42 snake_case = 42 snake_case = 42 with open(__lowerCAmelCase ) as f: snake_case = f.read().strip().split("""\n""" ) snake_case = [line.split(""",""" ) for line in data] for edgea in range(1 , len(__lowerCAmelCase ) ): for edgea in range(__lowerCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": snake_case = int(adjaceny_matrix[edgea][edgea] ) snake_case = Graph(set(range(len(__lowerCAmelCase ) ) ) , __lowerCAmelCase ) snake_case = graph.prims_algorithm() snake_case = sum(graph.edges.values() ) snake_case = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
369
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _A ( self: int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self: Tuple ): _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self: Dict ): _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _A ( self: List[str] ): _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__UpperCamelCase , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
346
from collections.abc import Generator from math import sin def __snake_case ( _UpperCamelCase ) -> bytes: if len(_UpperCamelCase ) != 32: raise ValueError('''Input must be of length 32''' ) _a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( _UpperCamelCase ) -> bytes: if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(_UpperCamelCase , '''08x''' )[-8:] _a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __snake_case ( _UpperCamelCase ) -> bytes: _a = b'''''' for char in message: bit_string += format(_UpperCamelCase , '''08b''' ).encode('''utf-8''' ) _a = format(len(_UpperCamelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCamelCase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( _UpperCamelCase ) -> Generator[list[int], None, None]: if len(_UpperCamelCase ) % 5_12 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCamelCase ) , 5_12 ): _a = bit_string[pos : pos + 5_12] _a = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( _UpperCamelCase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(_UpperCamelCase , '''032b''' ) _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCamelCase , 2 ) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return (a + b) % 2**32 def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( _UpperCamelCase ) -> bytes: _a = preprocess(_UpperCamelCase ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0X67_45_23_01 _a = 0XEF_CD_AB_89 _a = 0X98_BA_DC_FE _a = 0X10_32_54_76 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCamelCase ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(_UpperCamelCase )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(_UpperCamelCase , left_rotate_aa(_UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
346
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""YolosFeatureExtractor"""] UpperCamelCase_ = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : int = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["""YolosFeatureExtractor"""] a__ : List[str] = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
0
import requests __A : Union[str, Any] = """YOUR API KEY""" def __UpperCamelCase ( _A : Dict , _A : Dict = giphy_api_key ) ->list: """simple docstring""" lowerCamelCase_ ="+".join(query.split() ) lowerCamelCase_ =f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' lowerCamelCase_ =requests.get(_A ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
718
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase__): _UpperCamelCase:List[Any] = ["torch", "torchsde"] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> List[Any]: requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def _snake_case ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Union[str, Any]: requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def _snake_case ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> str: requires_backends(cls , ["""torch""", """torchsde"""] )
75
0
import argparse A__: List[Any] = '''docs/source/_static/js/custom.js''' def lowerCAmelCase_ ( A_): with open(A_ ,encoding="utf-8" ,newline="\n") as f: UpperCamelCase__: Tuple = f.readlines() UpperCamelCase__: Dict = 0 # First let's put the right version while not lines[index].startswith("const stableVersion ="): index += 1 UpperCamelCase__: Dict = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith("const versionMapping = {"): index += 1 # We go until the end while not lines[index].startswith("}"): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(A_ ,"w" ,encoding="utf-8" ,newline="\n") as f: f.writelines(A_) if __name__ == "__main__": A__: Any = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') A__: Any = parser.parse_args() update_custom_js(args.version)
380
def lowerCAmelCase_ ( A_): if not all(char in "01" for char in bin_string): raise ValueError("Non-binary value was passed to the function") if not bin_string: raise ValueError("Empty string was passed to the function") UpperCamelCase__: List[Any] = "" while len(A_) % 3 != 0: UpperCamelCase__: int = "0" + bin_string UpperCamelCase__: Optional[int] = [ bin_string[index : index + 3] for index in range(len(A_)) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase__: Union[str, Any] = 0 for index, val in enumerate(A_): oct_val += int(2 ** (2 - index) * int(A_)) oct_string += str(A_) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
380
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE : int = "AutoTokenizer" _SCREAMING_SNAKE_CASE : Optional[Any] = ["tokenizer"] _SCREAMING_SNAKE_CASE : Union[str, Any] = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase ) a =speaker_embeddings @classmethod def lowerCAmelCase__ ( cls , _lowerCAmelCase , _lowerCAmelCase="speaker_embeddings_path.json" , **_lowerCAmelCase ): if speaker_embeddings_dict_path is not None: a =get_file_from_repo( _lowerCAmelCase , _lowerCAmelCase , subfolder=kwargs.pop("""subfolder""" , _lowerCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , _lowerCAmelCase ) , force_download=kwargs.pop("""force_download""" , _lowerCAmelCase ) , proxies=kwargs.pop("""proxies""" , _lowerCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , _lowerCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , _lowerCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , _lowerCAmelCase ) , revision=kwargs.pop("""revision""" , _lowerCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(_lowerCAmelCase , _lowerCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) a =None else: with open(_lowerCAmelCase ) as speaker_embeddings_json: a =json.load(_lowerCAmelCase ) else: a =None a =AutoTokenizer.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) return cls(tokenizer=_lowerCAmelCase , speaker_embeddings=_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase="speaker_embeddings_path.json" , _lowerCAmelCase="speaker_embeddings" , _lowerCAmelCase = False , **_lowerCAmelCase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(_lowerCAmelCase , _lowerCAmelCase , """v2""" ) , exist_ok=_lowerCAmelCase ) a ={} a =save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": a =self._load_voice_preset(_lowerCAmelCase ) a ={} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , _lowerCAmelCase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_lowerCAmelCase , ) a =os.path.join(_lowerCAmelCase , F'''{prompt_key}_{key}.npy''' ) a =tmp_dict with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase = None , **_lowerCAmelCase ): a =self.speaker_embeddings[voice_preset] a ={} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) a =get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _lowerCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , _lowerCAmelCase ) , force_download=kwargs.pop("""force_download""" , _lowerCAmelCase ) , proxies=kwargs.pop("""proxies""" , _lowerCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , _lowerCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , _lowerCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , _lowerCAmelCase ) , revision=kwargs.pop("""revision""" , _lowerCAmelCase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) a =np.load(_lowerCAmelCase ) return voice_preset_dict def lowerCAmelCase__ ( self , _lowerCAmelCase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="pt" , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , **_lowerCAmelCase , ): if voice_preset is not None and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): if ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): a =self._load_voice_preset(_lowerCAmelCase ) else: if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not voice_preset.endswith(""".npz""" ): a =voice_preset + """.npz""" a =np.load(_lowerCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_lowerCAmelCase , **_lowerCAmelCase ) a =BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase ) a =self.tokenizer( _lowerCAmelCase , return_tensors=_lowerCAmelCase , padding="""max_length""" , max_length=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) if voice_preset is not None: a =voice_preset return encoded_text
709
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = ["image_processor", "tokenizer"] _SCREAMING_SNAKE_CASE : Optional[int] = "Pix2StructImageProcessor" _SCREAMING_SNAKE_CASE : List[str] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): a =False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 2_048 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: a =self.tokenizer a =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values a =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , max_patches=_lowerCAmelCase , **_lowerCAmelCase ) else: # add pixel_values and bbox a =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and not self.image_processor.is_vqa: a =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) if "attention_mask" in text_encoding: a =text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: a =text_encoding.pop("""input_ids""" ) else: a =None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def lowerCAmelCase__ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def lowerCAmelCase__ ( self ): a =self.tokenizer.model_input_names a =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
321
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a =logging.get_logger(__name__) a ={"""vocab_file""": """spiece.model"""} a ={ """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } a ={ """AI-Sweden/gpt-sw3-126m""": 2048, """AI-Sweden/gpt-sw3-350m""": 2048, """AI-Sweden/gpt-sw3-1.6b""": 2048, """AI-Sweden/gpt-sw3-6.7b""": 2048, """AI-Sweden/gpt-sw3-20b""": 2048, } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[Any]=False ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : Tuple = None ,**SCREAMING_SNAKE_CASE__ : Any ,): __lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCamelCase : Optional[Any] = kwargs.get('name_or_path') if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored') __lowerCamelCase : Dict = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __lowerCamelCase : Optional[Any] = '<|endoftext|>' if eos_token is None else eos_token __lowerCamelCase : int = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __lowerCamelCase : Dict = unk_token if pad_token is None else pad_token __lowerCamelCase : List[Any] = eos_token if bos_token is None else bos_token else: __lowerCamelCase : Optional[int] = '<pad>' if pad_token is None else pad_token __lowerCamelCase : int = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ ,remove_space=SCREAMING_SNAKE_CASE__ ,keep_accents=SCREAMING_SNAKE_CASE__ ,bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Tuple = do_lower_case __lowerCamelCase : Optional[Any] = remove_space __lowerCamelCase : List[Any] = keep_accents __lowerCamelCase : Tuple = vocab_file __lowerCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(SCREAMING_SNAKE_CASE__) # Used for whitespace normalization in input texts # fmt : off __lowerCamelCase : Any = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __lowerCamelCase : str = re.compile( F"[{''.join(map(SCREAMING_SNAKE_CASE__ ,list(range(0 ,9)) + list(range(1_1 ,3_2)) + list(range(1_2_7 ,1_6_0)) + [1_6_0, 1_7_3, 8_2_0_3]))}]") def __getstate__( self : str): __lowerCamelCase : str = self.__dict__.copy() __lowerCamelCase : Optional[int] = None return state def __setstate__( self : List[str] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : Dict = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs'): __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCAmelCase ( self : Any): return len(self.sp_model) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : List[str] = self.non_printing_characters_re.sub('' ,SCREAMING_SNAKE_CASE__) # Normalize whitespaces __lowerCamelCase : Any = ''.join([char if char not in self.whitespaces else ' ' for char in text]) # NFC Unicode normalization __lowerCamelCase : List[str] = unicodedata.normalize('NFC' ,SCREAMING_SNAKE_CASE__) return text def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[int] ,**SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : List[str] = self.preprocess_text(SCREAMING_SNAKE_CASE__) return self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict): return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__) @staticmethod def lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : str): return out_string def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Tuple = [] __lowerCamelCase : str = '' __lowerCamelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) + token __lowerCamelCase : str = True __lowerCamelCase : List[str] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) return out_string def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __lowerCamelCase : Any = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE__ ,'wb') as fi: __lowerCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__) return (out_vocab_file,) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Any = False): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[int] = self.preprocess_text(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.sp_model.encode(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : List[Any] = [self.preprocess_text(SCREAMING_SNAKE_CASE__) for t in text] __lowerCamelCase : Optional[Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE__) if return_tensors is True or return_tensors == "pt": __lowerCamelCase : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE__) return token_ids def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : str): return self.sp_model.decode(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : str = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()] __lowerCamelCase : Any = ( F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(SCREAMING_SNAKE_CASE__) + F"{self.bos_token}Bot:" ) return self.encode(text=SCREAMING_SNAKE_CASE__)
652
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger("""transformers.models.speecht5""") def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" hf_model.apply_weight_norm() UpperCAmelCase = checkpoint["""input_conv.weight_g"""] UpperCAmelCase = checkpoint["""input_conv.weight_v"""] UpperCAmelCase = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCAmelCase = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCAmelCase = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCAmelCase = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCAmelCase = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCAmelCase = checkpoint["""output_conv.1.weight_g"""] UpperCAmelCase = checkpoint["""output_conv.1.weight_v"""] UpperCAmelCase = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , ): """simple docstring""" if config_path is not None: UpperCAmelCase = SpeechTaHifiGanConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = SpeechTaHifiGanConfig() UpperCAmelCase = SpeechTaHifiGan(_snake_case ) UpperCAmelCase = torch.load(_snake_case ) load_weights(orig_checkpoint["""model"""]["""generator"""] , _snake_case , _snake_case ) UpperCAmelCase = np.load(_snake_case ) UpperCAmelCase = stats[0].reshape(-1 ) UpperCAmelCase = stats[1].reshape(-1 ) UpperCAmelCase = torch.from_numpy(_snake_case ).float() UpperCAmelCase = torch.from_numpy(_snake_case ).float() model.save_pretrained(_snake_case ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
74
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowercase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = StableUnCLIPPipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : Any = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : Any = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _SCREAMING_SNAKE_CASE : Optional[int] = False def a ( self : Tuple ) -> Any: __snake_case = 32 __snake_case = embedder_hidden_size # prior components torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __snake_case = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE_ , projection_dim=SCREAMING_SNAKE_CASE_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __snake_case = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=SCREAMING_SNAKE_CASE_ , num_layers=1 , ) torch.manual_seed(0 ) __snake_case = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) __snake_case = StableUnCLIPImageNormalizer(embedding_dim=SCREAMING_SNAKE_CASE_ ) __snake_case = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __snake_case = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=SCREAMING_SNAKE_CASE_ , layers_per_block=1 , upcast_attention=SCREAMING_SNAKE_CASE_ , use_linear_projection=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) __snake_case = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='v_prediction' , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL() __snake_case = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=0 ) -> Optional[Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a ( self : int ) -> str: __snake_case = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[Any]: __snake_case = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Any ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> List[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) __snake_case = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = torch.Generator(device='cpu' ).manual_seed(0 ) __snake_case = pipe('anime turle' , generator=SCREAMING_SNAKE_CASE_ , output_type='np' ) __snake_case = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
56
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = 42 class _UpperCAmelCase ( nn.Module ): def __init__( self :Tuple , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :int=("DownEncoderBlock2D",) , __UpperCamelCase :Dict=(64,) , __UpperCamelCase :str=2 , __UpperCamelCase :List[str]=32 , __UpperCamelCase :str="silu" , __UpperCamelCase :str=True , ): super().__init__() A = layers_per_block A = torch.nn.Convad( __UpperCamelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(__UpperCamelCase ): A = output_channel A = block_out_channels[i] A = i == len(__UpperCamelCase ) - 1 A = get_down_block( __UpperCamelCase , num_layers=self.layers_per_block , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__UpperCamelCase , resnet_groups=__UpperCamelCase , attention_head_dim=__UpperCamelCase , temb_channels=__UpperCamelCase , ) self.down_blocks.append(__UpperCamelCase ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__UpperCamelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCamelCase , temb_channels=__UpperCamelCase , ) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCamelCase , eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] , __UpperCamelCase , 3 , padding=1 ) A = False def lowerCamelCase ( self :Tuple , __UpperCamelCase :str ): A = x A = self.conv_in(__UpperCamelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCamelCase :List[str] ): def custom_forward(*__UpperCamelCase :Optional[Any] ): return module(*__UpperCamelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCamelCase ) , __UpperCamelCase , use_reentrant=__UpperCamelCase ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCamelCase , use_reentrant=__UpperCamelCase ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCamelCase ) , __UpperCamelCase ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCamelCase ) else: # down for down_block in self.down_blocks: A = down_block(__UpperCamelCase ) # middle A = self.mid_block(__UpperCamelCase ) # post-process A = self.conv_norm_out(__UpperCamelCase ) A = self.conv_act(__UpperCamelCase ) A = self.conv_out(__UpperCamelCase ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self :int , __UpperCamelCase :List[str]=3 , __UpperCamelCase :int=3 , __UpperCamelCase :str=("UpDecoderBlock2D",) , __UpperCamelCase :Tuple=(64,) , __UpperCamelCase :Union[str, Any]=2 , __UpperCamelCase :str=32 , __UpperCamelCase :Union[str, Any]="silu" , __UpperCamelCase :int="group" , ): super().__init__() A = layers_per_block A = nn.Convad( __UpperCamelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == "spatial" else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__UpperCamelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCamelCase , temb_channels=__UpperCamelCase , ) # up A = list(reversed(__UpperCamelCase ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCamelCase ): A = output_channel A = reversed_block_out_channels[i] A = i == len(__UpperCamelCase ) - 1 A = get_up_block( __UpperCamelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__UpperCamelCase , resnet_groups=__UpperCamelCase , attention_head_dim=__UpperCamelCase , temb_channels=__UpperCamelCase , resnet_time_scale_shift=__UpperCamelCase , ) self.up_blocks.append(__UpperCamelCase ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] , __UpperCamelCase ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCamelCase , eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] , __UpperCamelCase , 3 , padding=1 ) A = False def lowerCamelCase ( self :str , __UpperCamelCase :Dict , __UpperCamelCase :Union[str, Any]=None ): A = z A = self.conv_in(__UpperCamelCase ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCamelCase :Union[str, Any] ): def custom_forward(*__UpperCamelCase :Union[str, Any] ): return module(*__UpperCamelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCamelCase , __UpperCamelCase , use_reentrant=__UpperCamelCase ) A = sample.to(__UpperCamelCase ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , use_reentrant=__UpperCamelCase ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCamelCase , __UpperCamelCase ) A = sample.to(__UpperCamelCase ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase ) else: # middle A = self.mid_block(__UpperCamelCase , __UpperCamelCase ) A = sample.to(__UpperCamelCase ) # up for up_block in self.up_blocks: A = up_block(__UpperCamelCase , __UpperCamelCase ) # post-process if latent_embeds is None: A = self.conv_norm_out(__UpperCamelCase ) else: A = self.conv_norm_out(__UpperCamelCase , __UpperCamelCase ) A = self.conv_act(__UpperCamelCase ) A = self.conv_out(__UpperCamelCase ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self :int , __UpperCamelCase :List[str] , __UpperCamelCase :Tuple , __UpperCamelCase :List[Any] , __UpperCamelCase :List[str]=None , __UpperCamelCase :Union[str, Any]="random" , __UpperCamelCase :int=False , __UpperCamelCase :Dict=True ): super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: A = n_e A = sane_index_shape def lowerCamelCase ( self :Any , __UpperCamelCase :Union[str, Any] ): A = inds.shape assert len(__UpperCamelCase ) > 1 A = inds.reshape(ishape[0] , -1 ) A = self.used.to(__UpperCamelCase ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(__UpperCamelCase ) def lowerCamelCase ( self :List[str] , __UpperCamelCase :Union[str, Any] ): A = inds.shape assert len(__UpperCamelCase ) > 1 A = inds.reshape(ishape[0] , -1 ) A = self.used.to(__UpperCamelCase ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCamelCase ) return back.reshape(__UpperCamelCase ) def lowerCamelCase ( self :Dict , __UpperCamelCase :Optional[Any] ): # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 , 2 , 3 , 1 ).contiguous() A = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(__UpperCamelCase , self.embedding.weight ) , dim=1 ) A = self.embedding(__UpperCamelCase ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A = self.remap_to_used(__UpperCamelCase ) A = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase ( self :Dict , __UpperCamelCase :List[Any] , __UpperCamelCase :Union[str, Any] ): # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] , -1 ) # add batch axis A = self.unmap_to_all(__UpperCamelCase ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(__UpperCamelCase ) if shape is not None: A = z_q.view(__UpperCamelCase ) # reshape back to match original input shape A = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _UpperCAmelCase ( lowercase_ ): def __init__( self :int , __UpperCamelCase :int , __UpperCamelCase :Dict=False ): A = parameters A, A = torch.chunk(__UpperCamelCase , 2 , dim=1 ) A = torch.clamp(self.logvar , -30.0 , 20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase ( self :Dict , __UpperCamelCase :Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape , generator=__UpperCamelCase , device=self.parameters.device , dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def lowerCamelCase ( self :Tuple , __UpperCamelCase :Any=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Any , __UpperCamelCase :Tuple=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCamelCase ) def lowerCamelCase ( self :Dict ): return self.mean
524
"""simple docstring""" from itertools import permutations def A__ ( UpperCamelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False A = [7, 11, 13, 17] for i, test in enumerate(UpperCamelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def A__ ( UpperCamelCase = 10 ): return sum( int("".join(map(UpperCamelCase , UpperCamelCase ) ) ) for num in permutations(range(UpperCamelCase ) ) if is_substring_divisible(UpperCamelCase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
524
1
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A__ : Union[str, Any] = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] A__ : Tuple = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> Dict: __lowerCamelCase : Optional[Any] = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __lowerCamelCase : Optional[int] = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase_ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> int: if dtype == torch.bool: return 1 / 8 __lowerCamelCase : Optional[Any] = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase_ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) __lowerCamelCase : List[str] = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ) -> Dict: # Construct model if bloom_config_file == "": __lowerCamelCase : Union[str, Any] = BloomConfig() else: __lowerCamelCase : List[str] = BloomConfig.from_json_file(UpperCAmelCase_ ) if shard_model: __lowerCamelCase : Dict = os.listdir(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = sorted(filter(lambda UpperCAmelCase_ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase_ ) ) __lowerCamelCase : Any = {'weight_map': {}, 'metadata': {}} __lowerCamelCase : int = 0 __lowerCamelCase : int = None __lowerCamelCase : Dict = BloomConfig() for j, file in enumerate(UpperCAmelCase_ ): print('Processing file: {}'.format(UpperCAmelCase_ ) ) __lowerCamelCase : Optional[Any] = None for i in range(UpperCAmelCase_ ): # load all TP files __lowerCamelCase : Optional[int] = file.replace('model_00' , F'model_0{i}' ) __lowerCamelCase : Any = torch.load(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , map_location='cpu' ) # Rename keys in the transformers names __lowerCamelCase : Dict = list(temp.keys() ) for key in keys: __lowerCamelCase : Optional[Any] = temp.pop(UpperCAmelCase_ ) if tensors is None: __lowerCamelCase : List[str] = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCamelCase : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCamelCase : str = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCamelCase : List[str] = tensors[key] / pretraining_tp torch.save( UpperCAmelCase_ , os.path.join( UpperCAmelCase_ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __lowerCamelCase : Tuple = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __lowerCamelCase : str = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase_ ) ).zfill(5 ) ) __lowerCamelCase : List[Any] = BloomConfig() __lowerCamelCase : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME __lowerCamelCase : str = total_size with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase_ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: __lowerCamelCase : Tuple = json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + '\n' f.write(UpperCAmelCase_ ) else: __lowerCamelCase : str = BloomModel(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = os.listdir(UpperCAmelCase_ ) __lowerCamelCase : Tuple = sorted(filter(lambda UpperCAmelCase_ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase_ ) ) __lowerCamelCase : List[str] = None for i, file in enumerate(UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = None for i in range(UpperCAmelCase_ ): # load all TP files __lowerCamelCase : Optional[Any] = file.replace('model_00' , F'model_0{i}' ) __lowerCamelCase : List[str] = torch.load(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , map_location='cpu' ) # Rename keys in the transformers names __lowerCamelCase : List[Any] = list(temp.keys() ) for key in keys: __lowerCamelCase : int = temp.pop(UpperCAmelCase_ ) if tensors is None: __lowerCamelCase : List[str] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCamelCase : Any = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCamelCase : int = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCamelCase : Union[str, Any] = tensors[key] / pretraining_tp __lowerCamelCase : int = model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __lowerCamelCase : str = set(other_keys.missing_keys ) else: __lowerCamelCase : int = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowerCamelCase : List[str] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __lowerCamelCase : Dict = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) A__ : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _UpperCamelCase : Optional[int] = 'src/diffusers' # Matches is_xxx_available() _UpperCamelCase : str = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _UpperCamelCase : Optional[int] = '\n{0} = None\n' _UpperCamelCase : Optional[int] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _UpperCamelCase : Optional[Any] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' lowercase = _re_backend.findall(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE__ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with open(os.path.join(SCREAMING_SNAKE_CASE__ , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase = f.readlines() # Get to the point we do the actual imports for type checking lowercase = 0 lowercase = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowercase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 lowercase = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE__ ) and len(lines[line_index] ) > 1: lowercase = lines[line_index] lowercase = _re_single_line_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase = objects else: line_index += 1 return backend_specific_objects def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Tuple ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE__ ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int]=None ): '''simple docstring''' if backend_specific_objects is None: lowercase = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowercase = {} for backend, objects in backend_specific_objects.items(): lowercase = """[""" + """, """.join(f'"{b}"' for b in backend.split('_and_' ) ) + """]""" lowercase = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for o in objects] ) lowercase = dummy_file return dummy_files def _SCREAMING_SNAKE_CASE ( __snake_case : Dict=False ): '''simple docstring''' lowercase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowercase = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowercase = os.path.join(SCREAMING_SNAKE_CASE__ , 'utils' ) lowercase = { backend: os.path.join(SCREAMING_SNAKE_CASE__ , f'dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py' ) for backend in dummy_files.keys() } lowercase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase = f.read() else: lowercase = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": _UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCamelCase : Dict = parser.parse_args() check_dummies(args.fix_and_overwrite)
704
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a : def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = inputs['prompt'] lowercase = inputs['generator'] lowercase = inputs['num_inference_steps'] lowercase = inputs['output_type'] if "image" in inputs: lowercase = inputs['image'] else: lowercase = None if "mask_image" in inputs: lowercase = inputs['mask_image'] else: lowercase = None if "original_image" in inputs: lowercase = inputs['original_image'] else: lowercase = None lowercase , lowercase = pipe.encode_prompt(_lowerCamelCase ) # inputs with prompt converted to embeddings lowercase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowerCamelCase , _lowerCamelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = inputs['generator'] lowercase = inputs['num_inference_steps'] lowercase = inputs['output_type'] # inputs with prompt converted to embeddings lowercase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image lowercase = pipe_loaded(**_lowerCamelCase )[0] lowercase = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1e-4 ) def UpperCamelCase_ ( self ): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = pipe_loaded(**_lowerCamelCase )[0] lowercase = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1e-4 )
134
0
"""simple docstring""" import re from filelock import FileLock try: import nltk __magic_name__ = True except (ImportError, ModuleNotFoundError): __magic_name__ = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def _lowerCAmelCase ( UpperCamelCase_ ): re.sub("""<n>""" , """""" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
155
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
155
1
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : str = "▁" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[str, AddedToken] = "<unk>" , UpperCamelCase_ : Union[str, AddedToken] = "</s>" , UpperCamelCase_ : Union[str, AddedToken] = "<pad>" , ) -> Any: '''simple docstring''' _lowercase : Tuple = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } _lowercase : Tuple = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _lowercase : str = token_dict['token'] _lowercase : Optional[Any] = Tokenizer(Unigram() ) _lowercase : Dict = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) _lowercase : str = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCamelCase , add_prefix_space=__UpperCamelCase ), pre_tokenizers.Digits(individual_digits=__UpperCamelCase ), pre_tokenizers.Punctuation(), ] ) _lowercase : int = decoders.Metaspace(replacement=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _lowercase : int = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) _lowercase : Tuple = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : int = 8000 , UpperCamelCase_ : bool = True , ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = trainers.UnigramTrainer( vocab_size=__UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCamelCase , ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _lowercase : str = [files] self._tokenizer.train(__UpperCamelCase , trainer=__UpperCamelCase ) self.add_unk_id() def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Union[Iterator[str], Iterator[Iterator[str]]] , UpperCamelCase_ : int = 8000 , UpperCamelCase_ : bool = True , ) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = trainers.UnigramTrainer( vocab_size=__UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCamelCase , ) self._tokenizer.train_from_iterator(__UpperCamelCase , trainer=__UpperCamelCase ) self.add_unk_id() def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = json.loads(self._tokenizer.to_str() ) _lowercase : int = self.special_tokens['unk']['id'] _lowercase : Optional[int] = Tokenizer.from_str(json.dumps(__UpperCamelCase ) )
706
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _snake_case : Optional[Any] = False class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : int , lowerCamelCase : Optional[Any]=32 ) -> Dict: set_seed(0 ) __snake_case : int = UNetaDModel(sample_size=lowerCamelCase , in_channels=3 , out_channels=3 ) __snake_case : List[Any] = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def __snake_case ( self : str ) -> List[Any]: __snake_case : int = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __snake_case : Optional[Any] = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule="linear" , clip_sample=lowerCamelCase , ) __snake_case : Tuple = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule="linear" , clip_sample=lowerCamelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __snake_case : Tuple = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(lowerCamelCase ) for _ in range(4 )] __snake_case : str = [torch.randn((4, 3, 32, 32) ).to(lowerCamelCase ) for _ in range(4 )] __snake_case : List[Any] = [torch.randint(0 , 1000 , (4,) ).long().to(lowerCamelCase ) for _ in range(4 )] # train with a DDPM scheduler __snake_case , __snake_case : str = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCamelCase ) for i in range(4 ): optimizer.zero_grad() __snake_case : Optional[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __snake_case : List[str] = model(lowerCamelCase , timesteps[i] ).sample __snake_case : Tuple = torch.nn.functional.mse_loss(lowerCamelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __snake_case , __snake_case : Optional[int] = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCamelCase ) for i in range(4 ): optimizer.zero_grad() __snake_case : str = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __snake_case : Any = model(lowerCamelCase , timesteps[i] ).sample __snake_case : Tuple = torch.nn.functional.mse_loss(lowerCamelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) )
81
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE : str =0 __SCREAMING_SNAKE_CASE : int =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE : str =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE : Any =tuple[int, int] class A_ : def __init__( self : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : Node | None , ): lowercase = pos_x lowercase = pos_y lowercase = (pos_y, pos_x) lowercase = goal_x lowercase = goal_y lowercase = g_cost lowercase = parent lowercase = self.calculate_heuristic() lowercase = self.g_cost + self.h_cost def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowercase = self.pos_x - self.goal_x lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case__ ) + abs(snake_case__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , snake_case__ : Node ): return self.f_cost < other.f_cost class A_ : def __init__( self : Any , snake_case__ : TPosition , snake_case__ : TPosition ): lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case__ ) lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , snake_case__ ) lowercase = [self.start] lowercase = [] lowercase = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case__ ) self.closed_nodes.append(snake_case__ ) lowercase = self.get_successors(snake_case__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case__ ) else: # retrieve the best current path lowercase = self.open_nodes.pop(self.open_nodes.index(snake_case__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case__ ) else: self.open_nodes.append(snake_case__ ) return [self.start.pos] def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : Node ): lowercase = [] for action in delta: lowercase = parent.pos_x + action[1] lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case__ , snake_case__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case__ , ) ) return successors def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : Node | None ): lowercase = node lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase = current_node.parent path.reverse() return path class A_ : def __init__( self : Optional[int] , snake_case__ : TPosition , snake_case__ : TPosition ): lowercase = AStar(snake_case__ , snake_case__ ) lowercase = AStar(snake_case__ , snake_case__ ) lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowercase = self.fwd_astar.open_nodes.pop(0 ) lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case__ , snake_case__ ) self.fwd_astar.closed_nodes.append(snake_case__ ) self.bwd_astar.closed_nodes.append(snake_case__ ) lowercase = current_bwd_node lowercase = current_fwd_node lowercase = { self.fwd_astar: self.fwd_astar.get_successors(snake_case__ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case__ ) else: # retrieve the best current path lowercase = astar.open_nodes.pop( astar.open_nodes.index(snake_case__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case__ ) else: astar.open_nodes.append(snake_case__ ) return [self.fwd_astar.start.pos] def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : Node , snake_case__ : Node ): lowercase = self.fwd_astar.retrace_path(snake_case__ ) lowercase = self.bwd_astar.retrace_path(snake_case__ ) bwd_path.pop() bwd_path.reverse() lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE : str =(0, 0) __SCREAMING_SNAKE_CASE : Union[str, Any] =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE : Any =time.time() __SCREAMING_SNAKE_CASE : Optional[Any] =AStar(init, goal) __SCREAMING_SNAKE_CASE : int =a_star.search() __SCREAMING_SNAKE_CASE : Optional[int] =time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __SCREAMING_SNAKE_CASE : Optional[int] =time.time() __SCREAMING_SNAKE_CASE : Dict =BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE : Tuple =time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
428
0
import argparse import struct import unittest class a : """simple docstring""" def __init__( self , lowerCAmelCase_ ) -> List[str]: _A = data # Initialize hash values _A = [ 0x6a_09e_667, 0xbb_67a_e85, 0x3c_6ef_372, 0xa5_4ff_53a, 0x51_0e5_27f, 0x9b_056_88c, 0x1f_83d_9ab, 0x5b_e0c_d19, ] # Initialize round constants _A = [ 0x42_8a2_f98, 0x71_374_491, 0xb5_c0f_bcf, 0xe9_b5d_ba5, 0x39_56c_25b, 0x59_f11_1f1, 0x92_3f8_2a4, 0xab_1c5_ed5, 0xd8_07a_a98, 0x12_835_b01, 0x24_318_5be, 0x55_0c7_dc3, 0x72_be5_d74, 0x80_deb_1fe, 0x9b_dc0_6a7, 0xc1_9bf_174, 0xe4_9b6_9c1, 0xef_be4_786, 0x0f_c19_dc6, 0x24_0ca_1cc, 0x2d_e92_c6f, 0x4a_748_4aa, 0x5c_b0a_9dc, 0x76_f98_8da, 0x98_3e5_152, 0xa8_31c_66d, 0xb0_032_7c8, 0xbf_597_fc7, 0xc6_e00_bf3, 0xd5_a79_147, 0x06_ca6_351, 0x14_292_967, 0x27_b70_a85, 0x2e_1b2_138, 0x4d_2c6_dfc, 0x53_380_d13, 0x65_0a7_354, 0x76_6a0_abb, 0x81_c2c_92e, 0x92_722_c85, 0xa2_bfe_8a1, 0xa8_1a6_64b, 0xc2_4b8_b70, 0xc7_6c5_1a3, 0xd1_92e_819, 0xd6_990_624, 0xf4_0e3_585, 0x10_6aa_070, 0x19_a4c_116, 0x1e_376_c08, 0x27_487_74c, 0x34_b0b_cb5, 0x39_1c0_cb3, 0x4e_d8a_a4a, 0x5b_9cc_a4f, 0x68_2e6_ff3, 0x74_8f8_2ee, 0x78_a56_36f, 0x84_c87_814, 0x8c_c70_208, 0x90_bef_ffa, 0xa4_506_ceb, 0xbe_f9a_3f7, 0xc6_717_8f2, ] _A = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase ( lowerCAmelCase_ ) -> Any: _A = b"""\x80""" + (b"""\x00""" * (63 - (len(A__ ) + 8) % 64)) _A = struct.pack(""">Q""" , (len(A__ ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase ( self ) -> Optional[Any]: # Convert into blocks of 64 bytes _A = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _A = list(struct.unpack(""">16L""" , A__ ) ) # add 48 0-ed integers words += [0] * 48 _A = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _A = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _A = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression _A = self.ror(A__ , 6 ) ^ self.ror(A__ , 11 ) ^ self.ror(A__ , 25 ) _A = (e & f) ^ ((~e & 0xff_fff_fff) & g) _A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 _A = self.ror(A__ , 2 ) ^ self.ror(A__ , 13 ) ^ self.ror(A__ , 22 ) _A = (a & b) ^ (a & c) ^ (b & c) _A = (sa + maj) % 0x100_000_000 _A = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) _A = [a, b, c, d, e, f, g, h] # Modify final values _A = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] _A = """""".join([hex(A__ )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: return 0xff_fff_fff & (value << (32 - rotations)) | (value >> rotations) class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: import hashlib _A = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(A__ ).hash , hashlib.shaaaa(A__ ).hexdigest() ) def snake_case ( ) -> None: import doctest doctest.testmod() _A = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""") _A = parser.parse_args() _A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""") as f: _A = f.read() else: _A = bytes(lowercase_ , """utf-8""") print(SHAaaa(lowercase_).hash) if __name__ == "__main__": main()
720
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } _SCREAMING_SNAKE_CASE = {'facebook/blenderbot_small-90M': 512} def snake_case ( snake_case__ :Tuple) -> str: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char)) _A = char _A = set(snake_case__) return pairs class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :List[Any] = VOCAB_FILES_NAMES lowerCamelCase :Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :int = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="__start__" , lowerCAmelCase_="__end__" , lowerCAmelCase_="__unk__" , lowerCAmelCase_="__null__" , **lowerCAmelCase_ , ) -> int: super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding="""utf-8""" ) as vocab_handle: _A = json.load(lowerCAmelCase_ ) _A = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: _A = merges_handle.read().split("""\n""" )[1:-1] _A = [tuple(merge.split() ) for merge in merges] _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = {} @property def UpperCAmelCase ( self ) -> int: return len(self.encoder ) def UpperCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: if token in self.cache: return self.cache[token] _A = re.sub("""([.,!?()])""" , r""" \1""" , lowerCAmelCase_ ) _A = re.sub("""(')""" , r""" \1 """ , lowerCAmelCase_ ) _A = re.sub(r"""\s{2,}""" , """ """ , lowerCAmelCase_ ) if "\n" in token: _A = token.replace("""\n""" , """ __newln__""" ) _A = token.split(""" """ ) _A = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A = token.lower() _A = tuple(lowerCAmelCase_ ) _A = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _A = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(lowerCAmelCase_ ): try: _A = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(lowerCAmelCase_ ) _A = new_word if len(lowerCAmelCase_ ) == 1: break else: _A = get_pairs(lowerCAmelCase_ ) _A = """@@ """.join(lowerCAmelCase_ ) _A = word[:-4] _A = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[str]: _A = [] _A = re.findall(r"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: _A = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: _A = """ """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _A = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + """\n""" ) _A = 0 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) _A = token_index writer.write(""" """.join(lowerCAmelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file
83
0
'''simple docstring''' def lowercase__ ( __lowercase : Union[str, Any] ) -> list[list[int]]: """simple docstring""" __UpperCamelCase = [] if len(A__ ) == 1: return [nums.copy()] for _ in range(len(A__ ) ): __UpperCamelCase = nums.pop(0 ) __UpperCamelCase = permute(A__ ) for perm in permutations: perm.append(A__ ) result.extend(A__ ) nums.append(A__ ) return result def lowercase__ ( __lowercase : List[Any] ) -> Union[str, Any]: """simple docstring""" def backtrack(__lowercase : Tuple ): if start == len(A__ ) - 1: output.append(nums[:] ) else: for i in range(A__ , len(A__ ) ): __UpperCamelCase = nums[i], nums[start] backtrack(start + 1 ) __UpperCamelCase = nums[i], nums[start] # backtrack __UpperCamelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function a__ : Union[str, Any] =permutea([1, 2, 3]) print(res) doctest.testmod()
399
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a__ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowercase , cache_dir=lowercase) a__ : Any = [t[-1] for t in os.walk(os.path.join(lowercase , os.listdir(lowercase)[0] , 'snapshots'))] a__ : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowercase) a__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Tuple = jax.random.PRNGKey(0) a__ : str = 4 a__ : Dict = jax.device_count() a__ : List[Any] = num_samples * [prompt] a__ : Any = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : str = replicate(lowercase) a__ : Dict = jax.random.split(lowercase , lowercase) a__ : Dict = shard(lowercase) a__ : List[str] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1e-3 assert np.abs(np.abs(lowercase , dtype=np.floataa).sum() - 4_99_47.8_75) < 5e-1 a__ : List[str] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(lowercase) == num_samples def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : int = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=lowercase) a__ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[str] = jax.random.PRNGKey(0) a__ : Any = 50 a__ : Tuple = jax.device_count() a__ : Optional[int] = num_samples * [prompt] a__ : Optional[int] = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : List[Any] = replicate(lowercase) a__ : int = jax.random.split(lowercase , lowercase) a__ : Optional[int] = shard(lowercase) a__ : str = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5e-1 def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase) a__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Optional[int] = jax.random.PRNGKey(0) a__ : Dict = 50 a__ : List[Any] = jax.device_count() a__ : Dict = num_samples * [prompt] a__ : Any = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : Optional[Any] = replicate(lowercase) a__ : List[Any] = jax.random.split(lowercase , lowercase) a__ : Optional[Any] = shard(lowercase) a__ : Optional[Any] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5e-1 def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) a__ : Optional[int] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[Any] = jax.random.PRNGKey(0) a__ : List[Any] = 50 a__ : int = jax.device_count() a__ : Tuple = num_samples * [prompt] a__ : Dict = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : int = replicate(lowercase) a__ : List[str] = jax.random.split(lowercase , lowercase) a__ : Optional[Any] = shard(lowercase) a__ : Tuple = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5e-1 def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Any = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=lowercase , steps_offset=1 , ) a__ , a__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=lowercase , safety_checker=lowercase , ) a__ : str = scheduler.create_state() a__ : List[str] = scheduler_state a__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[str] = jax.random.PRNGKey(0) a__ : List[Any] = 50 a__ : Tuple = jax.device_count() a__ : List[Any] = num_samples * [prompt] a__ : List[Any] = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : List[Any] = replicate(lowercase) a__ : Any = jax.random.split(lowercase , lowercase) a__ : Optional[int] = shard(lowercase) a__ : Optional[int] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5e-1 def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Optional[Any] = jax.device_count() a__ : List[str] = num_samples * [prompt] a__ : List[str] = jax.random.split(jax.random.PRNGKey(0) , lowercase) a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase , ) a__ : List[str] = replicate(lowercase) a__ : int = pipeline.prepare_inputs(lowercase) a__ : Dict = shard(lowercase) a__ : Tuple = pipeline(lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) a__ : Tuple = images[2, 0, 256, 10:17, 1] # With memory efficient attention a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase , use_memory_efficient_attention=lowercase , ) a__ : int = replicate(lowercase) a__ : str = pipeline.prepare_inputs(lowercase) a__ : Dict = shard(lowercase) a__ : int = pipeline(lowercase , lowercase , lowercase , jit=lowercase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) a__ : Dict = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
302
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ = "x" , lowercase__ = 10**-10 , lowercase__ = 1 , ) -> complex: __lowercase = symbols(lowercase__ ) __lowercase = lambdify(lowercase__ , lowercase__ ) __lowercase = lambdify(lowercase__ , diff(lowercase__ , lowercase__ ) ) __lowercase = starting_point while True: if diff_function(lowercase__ ) != 0: __lowercase = prev_guess - multiplicity * func(lowercase__ ) / diff_function( lowercase__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __lowercase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
701
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase__ : Tuple = LxmertTokenizer lowercase__ : List[str] = LxmertTokenizerFast lowercase__ : Optional[Any] = True lowercase__ : List[Any] = True def snake_case__ ( self : Tuple ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def snake_case__ ( self : Optional[int] , lowercase : int ) -> List[Any]: """simple docstring""" __lowercase = """UNwant\u00E9d,running""" __lowercase = """unwanted, running""" return input_text, output_text def snake_case__ ( self : str ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [7, 4, 5, 10, 8, 9] ) def snake_case__ ( self : Union[str, Any] ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = tokenizer.tokenize(lowercase ) __lowercase = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) __lowercase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) __lowercase = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowercase ) __lowercase = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase )
634
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) a_ :Optional[int] = logging.getLogger() def a ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''-f''' ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() return args.f def a ( A__ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(A__ , '''all_results.json''' ) if os.path.exists(A__ ): with open(A__ , '''r''' ) as f: SCREAMING_SNAKE_CASE__ : List[str] = json.load(A__ ) else: raise ValueError(f"""can't find {path}""" ) return results def a ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() a_ :Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase ( _UpperCAmelCase ): @classmethod def lowercase__ ( cls : int ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) SCREAMING_SNAKE_CASE__ : Any = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowercase__ ( cls : Any ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Any = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : str = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = get_results(_lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : int = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : List[Any] = get_results(_lowercase ) self.assertLess(result['''perplexity'''] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Tuple = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Union[str, Any] = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_results(_lowercase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu SCREAMING_SNAKE_CASE__ : str = 7 if get_gpu_count() > 1 else 2 SCREAMING_SNAKE_CASE__ : Dict = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Optional[Any] = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : List[Any] = get_results(_lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Dict = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : Any = get_results(_lowercase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : str = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Any = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : Tuple = get_results(_lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : List[Any] = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_results(_lowercase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : str = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : Any = get_results(_lowercase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''translation_no_trainer''' ) ) ) @slow def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : int = logging.StreamHandler(sys.stdout ) logger.addHandler(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : List[str] = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = get_results(_lowercase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Any = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Dict = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE__ : Optional[int] = get_results(_lowercase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''image_classification_no_trainer''' ) ) )
35
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __SCREAMING_SNAKE_CASE : str = { '''distilbert-base-uncased''': 5_1_2, '''distilbert-base-uncased-distilled-squad''': 5_1_2, '''distilbert-base-cased''': 5_1_2, '''distilbert-base-cased-distilled-squad''': 5_1_2, '''distilbert-base-german-cased''': 5_1_2, '''distilbert-base-multilingual-cased''': 5_1_2, } __SCREAMING_SNAKE_CASE : str = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = PRETRAINED_INIT_CONFIGURATION lowercase__ : int = ['input_ids', 'attention_mask'] lowercase__ : Tuple = DistilBertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**lowerCamelCase__ ) _lowerCamelCase = do_lower_case def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
661
0
from __future__ import annotations from fractions import Fraction def _lowerCamelCase ( _a , _a ): """simple docstring""" return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = [] _lowerCamelCase = 1_1 _lowerCamelCase = int('''1''' + '''0''' * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 _lowerCamelCase = 1_0 return solutions def _lowerCamelCase ( _a = 2 ): """simple docstring""" _lowerCamelCase = 1.0 for fraction in fraction_list(_lowerCamelCase ): _lowerCamelCase = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
704
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a__ , a__=2 , a__=56 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=2 , a__=2 , a__=7 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=4 , a__="block_sparse" , a__=True , a__=False , a__=2 , a__=3 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_attention_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_choices _lowerCamelCase = rescale_embeddings _lowerCamelCase = attention_type _lowerCamelCase = use_bias _lowerCamelCase = block_size _lowerCamelCase = num_random_blocks def _UpperCAmelCase ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_attention_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class __magic_name__ ( lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _UpperCamelCase = False _UpperCamelCase = False def _UpperCAmelCase ( self ): _lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): super().test_hidden_states_output() @slow def _UpperCAmelCase ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(a__ ) def _UpperCAmelCase ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(a__ , a__ ) _lowerCamelCase = model_class(a__ ) @jax.jit def model_jitted(a__ , a__=None , **a__ ): return model(input_ids=a__ , attention_mask=a__ , **a__ ) with self.subTest('''JIT Enabled''' ): _lowerCamelCase = model_jitted(**a__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__=1E-5 , a__="outputs" , a__=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(a__ , a__ , a__ , a__ , a__ , a__ )
297
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCAmelCase = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''DPTFeatureExtractor'''] __lowerCAmelCase = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import argparse import os import re lowerCamelCase_ = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase_ = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings lowerCamelCase_ = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def __lowerCamelCase ( a_ : Optional[Any] , a_ : bool = False ) -> Tuple: with open(a_ , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE :Union[str, Any] = f.read() __SCREAMING_SNAKE_CASE :Dict = content.split('''\n''' ) __SCREAMING_SNAKE_CASE :List[Any] = [] __SCREAMING_SNAKE_CASE :Optional[int] = 0 while line_idx < len(a_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __SCREAMING_SNAKE_CASE :str = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 __SCREAMING_SNAKE_CASE :Dict = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __SCREAMING_SNAKE_CASE :List[str] = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __SCREAMING_SNAKE_CASE :Optional[Any] = sorted(a_ , key=lambda a_ : _re_identifier.search(a_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(a_ ) ) elif "\n".join(a_ ) != content: return True def __lowerCamelCase ( a_ : bool = False ) -> int: __SCREAMING_SNAKE_CASE :str = [os.path.join(a_ , a_ ) for f in os.listdir(a_ ) if f.endswith('''.py''' )] __SCREAMING_SNAKE_CASE :List[str] = [sort_auto_mapping(a_ , overwrite=a_ ) for fname in fnames] if not overwrite and any(a_ ): __SCREAMING_SNAKE_CASE :str = [f for f, d in zip(a_ , a_ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {", ".join(a_ )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCamelCase_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
498
0
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
179
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=5 , lowercase__=4 , lowercase__=64 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def _UpperCamelCase ( self ) -> Union[str, Any]: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> Tuple: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = MPNetModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = MPNetForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MPNetForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : Any = MPNetForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : str = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : int = True def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : int = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase__ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple = MPNetModel.from_pretrained('microsoft/mpnet-base' ) SCREAMING_SNAKE_CASE : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase__ )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase__ ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
179
1
def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. snake_case_ = [p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order snake_case_ = sorted(lowercase__ ) # declaring useful variables snake_case_ = len(lowercase__ ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight snake_case_ = sorted_profit_by_weight[length - i - 1] snake_case_ = profit_by_weight.index(lowercase__ ) snake_case_ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) A = [int(x) for x in input('Input profits separated by spaces: ').split()] A = [int(x) for x in input('Input weights separated by spaces: ').split()] A = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
187
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", F"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", F"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qpos_proj.weight", F"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kpos_proj.weight", F"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.weight", F"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", F"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", F"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kpos_proj.weight", F"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.weight", F"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", F"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", F"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", F"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.sa_qpos_proj.bias", F"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.sa_kpos_proj.bias", F"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.bias", F"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", F"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", F"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.ca_kpos_proj.bias", F"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.bias", F"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", F"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val def __UpperCAmelCase ( UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''' ) lowercase = value else: lowercase = value return new_state_dict def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase=False )-> Tuple: """simple docstring""" lowercase = '''''' if is_panoptic: lowercase = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowercase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[:256, :] lowercase = in_proj_bias[:256] lowercase = in_proj_weight[256:512, :] lowercase = in_proj_bias[256:512] lowercase = in_proj_weight[-256:, :] lowercase = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Any: """simple docstring""" lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(UpperCAmelCase, stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Tuple: """simple docstring""" lowercase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase = '''resnet101''' if "dc5" in model_name: lowercase = True lowercase = '''panoptic''' in model_name if is_panoptic: lowercase = 250 else: lowercase = 91 lowercase = '''huggingface/label-files''' lowercase = '''coco-detection-id2label.json''' lowercase = json.load(open(hf_hub_download(UpperCAmelCase, UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) lowercase = {int(UpperCAmelCase ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # load image processor lowercase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase = ConditionalDetrImageProcessor(format=UpperCAmelCase ) # prepare image lowercase = prepare_img() lowercase = image_processor(images=UpperCAmelCase, return_tensors='''pt''' ) lowercase = encoding['''pixel_values'''] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub lowercase = torch.hub.load('''DeppMeng/ConditionalDETR''', UpperCAmelCase, pretrained=UpperCAmelCase ).eval() lowercase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase = '''conditional_detr.''' + src rename_key(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) lowercase = rename_backbone_keys(UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase, is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val # finally, create HuggingFace model and load state dict lowercase = ConditionalDetrForSegmentation(UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=UpperCAmelCase, organization='''DepuMeng''', commit_message='''Add model''' ) # verify our conversion lowercase = conditional_detr(UpperCAmelCase ) lowercase = model(UpperCAmelCase ) assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1e-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1e-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
604
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : int) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]) -> str: """simple docstring""" _lowerCAmelCase:Optional[int] = 1 _lowerCAmelCase:Union[str, Any] = 3 _lowerCAmelCase:Union[str, Any] = (32, 32) _lowerCAmelCase:int = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0)).to(a__) return image @property def __UpperCamelCase ( self : List[Any]) -> str: """simple docstring""" torch.manual_seed(0) _lowerCAmelCase:int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) return model @property def __UpperCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowerCAmelCase:Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) return model @property def __UpperCamelCase ( self : str) -> Tuple: """simple docstring""" torch.manual_seed(0) _lowerCAmelCase:Optional[Any] = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5006 ,) return RobertaSeriesModelWithTransformation(a__) @property def __UpperCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" def extract(*a__ : List[str] ,**a__ : List[Any]): class a__ : def __init__( self : List[Any]) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:Any = torch.ones([0]) def __UpperCamelCase ( self : List[Any] ,a__ : str) -> List[Any]: """simple docstring""" self.pixel_values.to(a__) return self return Out() return extract def __UpperCamelCase ( self : Tuple) -> str: """simple docstring""" _lowerCAmelCase:Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase:Union[str, Any] = self.dummy_cond_unet _lowerCAmelCase:Any = PNDMScheduler(skip_prk_steps=a__) _lowerCAmelCase:Optional[int] = self.dummy_vae _lowerCAmelCase:List[str] = self.dummy_text_encoder _lowerCAmelCase:List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') _lowerCAmelCase:Tuple = 77 _lowerCAmelCase:List[Any] = self.dummy_image.to(a__) _lowerCAmelCase:Any = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowerCAmelCase:Tuple = AltDiffusionImgaImgPipeline( unet=a__ ,scheduler=a__ ,vae=a__ ,text_encoder=a__ ,tokenizer=a__ ,safety_checker=a__ ,feature_extractor=self.dummy_extractor ,) _lowerCAmelCase:str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=a__) _lowerCAmelCase:Union[str, Any] = alt_pipe.to(a__) alt_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:str = '''A painting of a squirrel eating a burger''' _lowerCAmelCase:int = torch.Generator(device=a__).manual_seed(0) _lowerCAmelCase:str = alt_pipe( [prompt] ,generator=a__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,image=a__ ,) _lowerCAmelCase:Dict = output.images _lowerCAmelCase:Dict = torch.Generator(device=a__).manual_seed(0) _lowerCAmelCase:Optional[int] = alt_pipe( [prompt] ,generator=a__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,image=a__ ,return_dict=a__ ,)[0] _lowerCAmelCase:Any = image[0, -3:, -3:, -1] _lowerCAmelCase:Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase:Union[str, Any] = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''') def __UpperCamelCase ( self : Dict) -> int: """simple docstring""" _lowerCAmelCase:Dict = self.dummy_cond_unet _lowerCAmelCase:List[Any] = PNDMScheduler(skip_prk_steps=a__) _lowerCAmelCase:Dict = self.dummy_vae _lowerCAmelCase:Tuple = self.dummy_text_encoder _lowerCAmelCase:Union[str, Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') _lowerCAmelCase:List[Any] = 77 _lowerCAmelCase:Any = self.dummy_image.to(a__) # put models in fp16 _lowerCAmelCase:List[Any] = unet.half() _lowerCAmelCase:List[str] = vae.half() _lowerCAmelCase:List[str] = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase:List[str] = AltDiffusionImgaImgPipeline( unet=a__ ,scheduler=a__ ,vae=a__ ,text_encoder=a__ ,tokenizer=a__ ,safety_checker=a__ ,feature_extractor=self.dummy_extractor ,) _lowerCAmelCase:Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=a__) _lowerCAmelCase:Any = alt_pipe.to(a__) alt_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:List[str] = '''A painting of a squirrel eating a burger''' _lowerCAmelCase:str = torch.manual_seed(0) _lowerCAmelCase:str = alt_pipe( [prompt] ,generator=a__ ,num_inference_steps=2 ,output_type='''np''' ,image=a__ ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''') def __UpperCamelCase ( self : Optional[Any]) -> str: """simple docstring""" _lowerCAmelCase:List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCAmelCase:Dict = init_image.resize((760, 504)) _lowerCAmelCase:List[Any] = '''BAAI/AltDiffusion''' _lowerCAmelCase:List[str] = AltDiffusionImgaImgPipeline.from_pretrained( a__ ,safety_checker=a__ ,) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) pipe.enable_attention_slicing() _lowerCAmelCase:Optional[int] = '''A fantasy landscape, trending on artstation''' _lowerCAmelCase:int = torch.manual_seed(0) _lowerCAmelCase:List[str] = pipe( prompt=a__ ,image=a__ ,strength=0.75 ,guidance_scale=7.5 ,generator=a__ ,output_type='''np''' ,) _lowerCAmelCase:List[str] = output.images[0] _lowerCAmelCase:Union[str, Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _lowerCAmelCase:Tuple = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Any) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : str) -> List[Any]: """simple docstring""" _lowerCAmelCase:int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') _lowerCAmelCase:Tuple = init_image.resize((768, 512)) _lowerCAmelCase:int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''') _lowerCAmelCase:Optional[int] = '''BAAI/AltDiffusion''' _lowerCAmelCase:Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( a__ ,safety_checker=a__ ,) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) pipe.enable_attention_slicing() _lowerCAmelCase:Tuple = '''A fantasy landscape, trending on artstation''' _lowerCAmelCase:List[Any] = torch.manual_seed(0) _lowerCAmelCase:Any = pipe( prompt=a__ ,image=a__ ,strength=0.75 ,guidance_scale=7.5 ,generator=a__ ,output_type='''np''' ,) _lowerCAmelCase:List[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
439
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase_ ) class a__ ( UpperCamelCase_ ): def __init__( self : int ,*a__ : Optional[Any] ,**a__ : Union[str, Any]) -> Tuple: """simple docstring""" super().__init__(*a__ ,**a__) requires_backends(self ,'''vision''') self.check_model_type(a__) def __call__( self : str ,a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**a__ : List[str]) -> Optional[int]: """simple docstring""" return super().__call__(a__ ,**a__) def __UpperCamelCase ( self : Union[str, Any] ,**a__ : List[Any]) -> Any: """simple docstring""" return {}, {}, {} def __UpperCamelCase ( self : Tuple ,a__ : Optional[int]) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:List[str] = load_image(a__) _lowerCAmelCase:int = image.size _lowerCAmelCase:int = self.image_processor(images=a__ ,return_tensors=self.framework) return model_inputs def __UpperCamelCase ( self : Dict ,a__ : List[str]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Any = self.model(**a__) return model_outputs def __UpperCamelCase ( self : List[Any] ,a__ : Dict) -> Any: """simple docstring""" _lowerCAmelCase:Optional[int] = model_outputs.predicted_depth _lowerCAmelCase:Union[str, Any] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=a__) _lowerCAmelCase:List[str] = prediction.squeeze().cpu().numpy() _lowerCAmelCase:Any = (output * 255 / np.max(a__)).astype('''uint8''') _lowerCAmelCase:Dict = Image.fromarray(a__) _lowerCAmelCase:Tuple = {} _lowerCAmelCase:Optional[int] = predicted_depth _lowerCAmelCase:str = depth return output_dict
439
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase_ = """Create a default config file for Accelerate with only a few flags set.""" def lowerCamelCase ( a_="no" , a_ = default_json_config_file , a_ = False ) -> Tuple: lowerCAmelCase_ = Path(a_ ) path.parent.mkdir(parents=a_ , exist_ok=a_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False lowerCAmelCase_ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) lowerCAmelCase_ = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase_ = torch.cuda.device_count() lowerCAmelCase_ = num_gpus lowerCAmelCase_ = False if num_gpus > 1: lowerCAmelCase_ = 'MULTI_GPU' else: lowerCAmelCase_ = 'NO' elif is_xpu_available() and use_xpu: lowerCAmelCase_ = torch.xpu.device_count() lowerCAmelCase_ = num_xpus lowerCAmelCase_ = False if num_xpus > 1: lowerCAmelCase_ = 'MULTI_XPU' else: lowerCAmelCase_ = 'NO' elif is_npu_available(): lowerCAmelCase_ = torch.npu.device_count() lowerCAmelCase_ = num_npus lowerCAmelCase_ = False if num_npus > 1: lowerCAmelCase_ = 'MULTI_NPU' else: lowerCAmelCase_ = 'NO' else: lowerCAmelCase_ = 0 lowerCAmelCase_ = True lowerCAmelCase_ = 1 lowerCAmelCase_ = 'NO' lowerCAmelCase_ = ClusterConfig(**a_ ) config.to_json_file(a_ ) return path def lowerCamelCase ( a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = parser.add_parser('default' , parents=a_ , help=a_ , formatter_class=a_ ) parser.add_argument( '--config_file' , default=a_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=a_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=a_ ) return parser def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
318
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCamelCase ( a_=None ) -> List[str]: if subparsers is not None: lowerCAmelCase_ = subparsers.add_parser('test' ) else: lowerCAmelCase_ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=a_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCAmelCase_ = script_name else: lowerCAmelCase_ = F'''--config_file={args.config_file} {script_name}''' lowerCAmelCase_ = ['accelerate-launch'] + test_args.split() lowerCAmelCase_ = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def lowerCamelCase ( ) -> Optional[Any]: lowerCAmelCase_ = test_command_parser() lowerCAmelCase_ = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
318
1
import os import re import shutil import sys import tempfile import unittest import black __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __SCREAMING_SNAKE_CASE =""" def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class __magic_name__ ( unittest.TestCase): '''simple docstring''' def _A ( self: int ): SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) SCREAMING_SNAKE_CASE_ = self.transformer_dir shutil.copy( os.path.join(_lowerCamelCase , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def _A ( self: Dict , _lowerCamelCase: Optional[int] , _lowerCamelCase: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: str=None ): SCREAMING_SNAKE_CASE_ = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE_ = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result SCREAMING_SNAKE_CASE_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) SCREAMING_SNAKE_CASE_ = black.format_str(_lowerCamelCase , mode=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(_lowerCamelCase , '''w''' , newline='''\n''' ) as f: f.write(_lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCamelCase ) with open(_lowerCamelCase , '''r''' ) as f: self.assertTrue(f.read() , _lowerCamelCase ) def _A ( self: int ): SCREAMING_SNAKE_CASE_ = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _A ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _lowerCamelCase ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE_ = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , f"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , _lowerCamelCase , _lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _lowerCamelCase , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _lowerCamelCase ) , ) def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] SCREAMING_SNAKE_CASE_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) SCREAMING_SNAKE_CASE_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) SCREAMING_SNAKE_CASE_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) self.assertFalse(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) SCREAMING_SNAKE_CASE_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) SCREAMING_SNAKE_CASE_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(_lowerCamelCase , _lowerCamelCase )
718
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __magic_name__ ( __UpperCAmelCase , unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE__ : Dict = ["image"] SCREAMING_SNAKE_CASE__ : List[Any] = ["image"] SCREAMING_SNAKE_CASE__ : List[Any] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE__ : Optional[int] = False @property def _A ( self: Optional[Any] ): return 32 @property def _A ( self: Optional[int] ): return 32 @property def _A ( self: List[Any] ): return self.time_input_dim * 4 @property def _A ( self: Any ): return 8 @property def _A ( self: int ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE_ = CLIPVisionModel(_lowerCamelCase ) return model @property def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = CLIPImageProcessor( crop_size=2_24 , do_center_crop=_lowerCamelCase , do_normalize=_lowerCamelCase , do_resize=_lowerCamelCase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_24 , ) return image_processor @property def _A ( self: Dict ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE_ = PriorTransformer(**_lowerCamelCase ) return model @property def _A ( self: List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_ = ShapERenderer(**_lowerCamelCase ) return model def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = self.dummy_prior SCREAMING_SNAKE_CASE_ = self.dummy_image_encoder SCREAMING_SNAKE_CASE_ = self.dummy_image_processor SCREAMING_SNAKE_CASE_ = self.dummy_renderer SCREAMING_SNAKE_CASE_ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=_lowerCamelCase , clip_sample=_lowerCamelCase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def _A ( self: Optional[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[Any]=0 ): SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = '''cpu''' SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self: str ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = torch_device == '''cpu''' SCREAMING_SNAKE_CASE_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowerCamelCase , relax_max_difference=_lowerCamelCase , ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_lowerCamelCase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_ = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_ = pipe(**_lowerCamelCase , num_images_per_prompt=_lowerCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): '''simple docstring''' def _A ( self: Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE_ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( _lowerCamelCase , generator=_lowerCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
89
0
def __UpperCAmelCase ( __a : list[int] ,__a : list[int] ) -> None: """simple docstring""" _a : List[Any] = len(__a ) print('''The following activities are selected:''' ) # The first activity is always selected _a : List[Any] = 0 print(__a ,end=''',''' ) # Consider rest of the activities for j in range(__a ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__a ,end=''',''' ) _a : Optional[int] = j if __name__ == "__main__": import doctest doctest.testmod() a__ = [1, 3, 0, 5, 8, 5] a__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
14
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( __a , unittest.TestCase ): _A :Tuple = KandinskyVaaInpaintPipeline _A :Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _A :Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _A :Optional[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _A :Union[str, Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**snake_case__ ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case__ , ) lowercase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any]=0 ): lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(snake_case__ ).startswith("""mps""" ): lowercase = torch.manual_seed(snake_case__ ) else: lowercase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**snake_case__ ) lowercase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def SCREAMING_SNAKE_CASE__ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((7_68, 7_68) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowercase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
428
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowercase__ : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
451
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'table-transformer' _snake_case = ['past_key_values'] _snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="sine" , SCREAMING_SNAKE_CASE_="resnet50" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.1 , **SCREAMING_SNAKE_CASE_ , )-> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = backbone_config.get('''model_type''' ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) # set timm attributes to None __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None, None, None __UpperCamelCase = use_timm_backbone __UpperCamelCase = backbone_config __UpperCamelCase = num_channels __UpperCamelCase = num_queries __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = init_xavier_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = encoder_layers __UpperCamelCase = auxiliary_loss __UpperCamelCase = position_embedding_type __UpperCamelCase = backbone __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = dilation # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = mask_loss_coefficient __UpperCamelCase = dice_loss_coefficient __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> int: '''simple docstring''' return self.encoder_attention_heads @property def A__ ( self )-> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = version.parse('1.11' ) @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def A__ ( self )-> float: '''simple docstring''' return 1E-5 @property def A__ ( self )-> int: '''simple docstring''' return 12
451
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : Optional[Any] = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A : Any = logging.get_logger(__name__) class lowerCamelCase (__UpperCAmelCase ): """simple docstring""" lowerCamelCase__ = '''mask2former''' lowerCamelCase__ = ['''swin'''] lowerCamelCase__ = {'''hidden_size''': '''hidden_dim'''} def __init__( self : int , __magic_name__ : Dict = None , __magic_name__ : Union[str, Any] = 256 , __magic_name__ : int = 256 , __magic_name__ : Dict = 256 , __magic_name__ : Optional[int] = 1_024 , __magic_name__ : Union[str, Any] = "relu" , __magic_name__ : Dict = 6 , __magic_name__ : List[str] = 10 , __magic_name__ : Dict = 8 , __magic_name__ : List[Any] = 0.0 , __magic_name__ : Optional[int] = 2_048 , __magic_name__ : Tuple = False , __magic_name__ : Union[str, Any] = False , __magic_name__ : Any = 4 , __magic_name__ : Any = 255 , __magic_name__ : Union[str, Any] = 100 , __magic_name__ : Optional[Any] = 0.1 , __magic_name__ : List[str] = 2.0 , __magic_name__ : List[str] = 5.0 , __magic_name__ : Union[str, Any] = 5.0 , __magic_name__ : List[Any] = 12_544 , __magic_name__ : Tuple = 3.0 , __magic_name__ : Optional[Any] = 0.75 , __magic_name__ : str = 0.02 , __magic_name__ : Any = 1.0 , __magic_name__ : List[str] = True , __magic_name__ : List[Any] = [4, 8, 16, 32] , __magic_name__ : Dict = None , **__magic_name__ : Union[str, Any] , ) -> List[str]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__magic_name__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = backbone_config.pop("model_type" ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(__magic_name__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = mask_feature_size SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = encoder_feedforward_dim SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = dim_feedforward SCREAMING_SNAKE_CASE_ = pre_norm SCREAMING_SNAKE_CASE_ = enforce_input_projection SCREAMING_SNAKE_CASE_ = common_stride SCREAMING_SNAKE_CASE_ = ignore_value SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = no_object_weight SCREAMING_SNAKE_CASE_ = class_weight SCREAMING_SNAKE_CASE_ = mask_weight SCREAMING_SNAKE_CASE_ = dice_weight SCREAMING_SNAKE_CASE_ = train_num_points SCREAMING_SNAKE_CASE_ = oversample_ratio SCREAMING_SNAKE_CASE_ = importance_sample_ratio SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = feature_strides SCREAMING_SNAKE_CASE_ = output_auxiliary_logits SCREAMING_SNAKE_CASE_ = decoder_layers super().__init__(**__magic_name__ ) @classmethod def __A ( cls : Tuple , __magic_name__ : Optional[int] , **__magic_name__ : str ) -> Dict: return cls( backbone_config=__magic_name__ , **__magic_name__ , ) def __A ( self : int ) -> Dict[str, any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
140
import os from math import logaa def A_ ( A__ = "base_exp.txt" ) -> int: a__ : float = 0 a__ : Optional[Any] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): a__ , a__ : List[str] = list(map(A__ , line.split(',' ) ) ) if x * logaa(A__ ) > largest: a__ : Dict = x * logaa(A__ ) a__ : List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
302
0
def UpperCAmelCase__( __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 10_00 ): __snake_case : List[Any] = 1 __snake_case : Any = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __snake_case : list[int] = [] __snake_case : List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __snake_case : Optional[int] = len(__UpperCAmelCase ) __snake_case : List[str] = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __snake_case : Union[str, Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
715
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ : Tuple = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ lowerCamelCase__ : Union[str, Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ lowerCamelCase__ : Optional[int] = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowercase__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence"""), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence""") , id="""references"""), }) , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=SCREAMING_SNAKE_CASE_ , hypotheses=SCREAMING_SNAKE_CASE_ , min_len=SCREAMING_SNAKE_CASE_ , max_len=SCREAMING_SNAKE_CASE_) }
12
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
1
import datasets from .evaluate import evaluate _A = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" _A = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" _A = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): """simple docstring""" def A ( self : str )-> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def A ( self : Union[str, Any] , A_ : int , A_ : str )-> List[str]: __UpperCamelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} __UpperCamelCase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] __UpperCamelCase = evaluate(dataset=__lowercase , predictions=__lowercase ) return score
715
"""simple docstring""" from collections.abc import Sequence from queue import Queue class __UpperCAmelCase : """simple docstring""" def __init__( self : int , A_ : Dict , A_ : List[str] , A_ : Optional[int] , A_ : Any=None , A_ : List[Any]=None )-> Dict: __UpperCamelCase = start __UpperCamelCase = end __UpperCamelCase = val __UpperCamelCase = (start + end) // 2 __UpperCamelCase = left __UpperCamelCase = right def __repr__( self : Dict )-> Tuple: return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class __UpperCAmelCase : """simple docstring""" def __init__( self : Any , A_ : Sequence , A_ : List[str] )-> str: __UpperCamelCase = collection __UpperCamelCase = function if self.collection: __UpperCamelCase = self._build_tree(0 , len(A_ ) - 1 ) def A ( self : List[Any] , A_ : Union[str, Any] , A_ : Tuple )-> Tuple: self._update_tree(self.root , A_ , A_ ) def A ( self : str , A_ : Union[str, Any] , A_ : Any )-> Optional[Any]: return self._query_range(self.root , A_ , A_ ) def A ( self : int , A_ : Optional[Any] , A_ : Union[str, Any] )-> Optional[int]: if start == end: return SegmentTreeNode(A_ , A_ , self.collection[start] ) __UpperCamelCase = (start + end) // 2 __UpperCamelCase = self._build_tree(A_ , A_ ) __UpperCamelCase = self._build_tree(mid + 1 , A_ ) return SegmentTreeNode(A_ , A_ , self.fn(left.val , right.val ) , A_ , A_ ) def A ( self : str , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Dict )-> List[str]: if node.start == i and node.end == i: __UpperCamelCase = val return if i <= node.mid: self._update_tree(node.left , A_ , A_ ) else: self._update_tree(node.right , A_ , A_ ) __UpperCamelCase = self.fn(node.left.val , node.right.val ) def A ( self : Tuple , A_ : Tuple , A_ : Any , A_ : Union[str, Any] )-> Union[str, Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , A_ , A_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , A_ , node.mid ) , self._query_range(node.right , node.mid + 1 , A_ ) , ) else: # range in right child tree return self._query_range(node.right , A_ , A_ ) def A ( self : Any )-> str: if self.root is not None: __UpperCamelCase = Queue() queue.put(self.root ) while not queue.empty(): __UpperCamelCase = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) _A = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
228
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ = 1_0_0 UpperCAmelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __A= set() __A= 42 __A= 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int = 5000 ): """simple docstring""" for number_to_partition in range(1,_SCREAMING_SNAKE_CASE ): if len(partition(_SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
186
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } UpperCAmelCase__ = { '''AI-Sweden/gpt-sw3-126m''': 2_0_4_8, '''AI-Sweden/gpt-sw3-350m''': 2_0_4_8, '''AI-Sweden/gpt-sw3-1.6b''': 2_0_4_8, '''AI-Sweden/gpt-sw3-6.7b''': 2_0_4_8, '''AI-Sweden/gpt-sw3-20b''': 2_0_4_8, } class a__ ( a_ ): '''simple docstring''' A : int = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> None: __A= {} if sp_model_kwargs is None else sp_model_kwargs __A= kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) __A= 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __A= '<|endoftext|>' if eos_token is None else eos_token __A= '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __A= unk_token if pad_token is None else pad_token __A= eos_token if bos_token is None else bos_token else: __A= '<pad>' if pad_token is None else pad_token __A= '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __A= do_lower_case __A= remove_space __A= keep_accents __A= vocab_file __A= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) # Used for whitespace normalization in input texts # fmt : off __A= {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __A= re.compile( F"""[{"".join(map(lowerCAmelCase_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]""" ) def __getstate__( self : Optional[int] ) -> Tuple: __A= self.__dict__.copy() __A= None return state def __setstate__( self : int , lowerCAmelCase_ : int ) -> Tuple: __A= d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A= {} __A= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCAmelCase ( self : Tuple ) -> int: return len(self.sp_model ) def lowerCAmelCase ( self : int , lowerCAmelCase_ : str ) -> str: __A= self.non_printing_characters_re.sub('' , lowerCAmelCase_ ) # Normalize whitespaces __A= ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization __A= unicodedata.normalize('NFC' , lowerCAmelCase_ ) return text def lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> List[str]: __A= self.preprocess_text(lowerCAmelCase_ ) return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowerCAmelCase ( self : Any , lowerCAmelCase_ : str ) -> int: return self.sp_model.PieceToId(lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int ) -> str: return self.sp_model.IdToPiece(lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ : str ) -> str: return out_string def lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> str: __A= [] __A= '' __A= False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __A= True __A= [] else: current_sub_tokens.append(lowerCAmelCase_ ) __A= False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string def lowerCAmelCase ( self : List[Any] ) -> Dict[str, int]: __A= {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A= os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __A= self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __A= self.preprocess_text(lowerCAmelCase_ ) __A= self.sp_model.encode(lowerCAmelCase_ ) else: __A= [self.preprocess_text(lowerCAmelCase_ ) for t in text] __A= self.sp_model.encode(lowerCAmelCase_ ) if return_tensors is True or return_tensors == "pt": __A= torch.tensor(lowerCAmelCase_ ) return token_ids def lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Union[int, List[int]] ) -> str: return self.sp_model.decode(lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : "Conversation" ) -> List[int]: __A= [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __A= ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(lowerCAmelCase_ ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=lowerCAmelCase_ )
186
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A_ :Optional[Any] = TypeVar('''T''') A_ :Optional[Any] = TypeVar('''U''') class __A ( Generic[T, U] ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =key __UpperCamelCase : Union[str, Any] =val __UpperCamelCase : Dict =None __UpperCamelCase : Union[str, Any] =None def __repr__( self ): """simple docstring""" return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __A ( Generic[T, U] ): """simple docstring""" def __init__( self ): """simple docstring""" __UpperCamelCase : str =DoubleLinkedListNode(_lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : Any =DoubleLinkedListNode(_lowerCamelCase , _lowerCamelCase ) __UpperCamelCase , __UpperCamelCase : Any =self.rear, self.head def __repr__( self ): """simple docstring""" __UpperCamelCase : str =['DoubleLinkedList'] __UpperCamelCase : str =self.head while node.next is not None: rep.append(str(_lowerCamelCase ) ) __UpperCamelCase : List[str] =node.next rep.append(str(self.rear ) ) return ",\n ".join(_lowerCamelCase ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __UpperCamelCase : Tuple =node __UpperCamelCase : int =previous __UpperCamelCase : Union[str, Any] =node __UpperCamelCase : Any =self.rear def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if node.prev is None or node.next is None: return None __UpperCamelCase : Union[str, Any] =node.next __UpperCamelCase : List[Any] =node.prev __UpperCamelCase : str =None __UpperCamelCase : Optional[int] =None return node class __A ( Generic[T, U] ): """simple docstring""" UpperCamelCase__ : dict[Callable[[T], U], LRUCache[T, U]] ={} def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =DoubleLinkedList() __UpperCamelCase : List[str] =capacity __UpperCamelCase : Union[str, Any] =0 __UpperCamelCase : Dict =0 __UpperCamelCase : Optional[Any] =0 __UpperCamelCase : List[Any] ={} def __repr__( self ): """simple docstring""" return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , lowerCamelCase__ ): """simple docstring""" return key in self.cache def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if key in self.cache: self.hits += 1 __UpperCamelCase : List[str] =self.cache[key] __UpperCamelCase : Dict =self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_lowerCamelCase ) return node.val self.miss += 1 return None def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __UpperCamelCase : List[str] =self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __UpperCamelCase : str =DoubleLinkedListNode(_lowerCamelCase , _lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __UpperCamelCase : Union[str, Any] =self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __UpperCamelCase : Optional[int] =value self.list.add(_lowerCamelCase ) @classmethod def __lowercase ( cls , lowerCamelCase__ = 128 ): """simple docstring""" def cache_decorator_inner(lowerCamelCase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase__ ) -> U: if func not in cls.decorator_function_to_instance_map: __UpperCamelCase : Tuple =LRUCache(_lowerCamelCase ) __UpperCamelCase : Union[str, Any] =cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __UpperCamelCase : Optional[Any] =func(*_lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , _lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_lowerCamelCase , 'cache_info' , _lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
701
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( a ): """simple docstring""" UpperCamelCase__ : Union[str, Any] ="""dandelin/vilt-b32-finetuned-vqa""" UpperCamelCase__ : str =( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) UpperCamelCase__ : Any ="""image_qa""" UpperCamelCase__ : int =AutoProcessor UpperCamelCase__ : Optional[Any] =AutoModelForVisualQuestionAnswering UpperCamelCase__ : Dict =["""image""", """text"""] UpperCamelCase__ : List[Any] =["""text"""] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return self.pre_processor(lowerCamelCase__ , lowerCamelCase__ , return_tensors='pt' ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" with torch.no_grad(): return self.model(**lowerCamelCase__ ).logits def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
154
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __UpperCAmelCase = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowercase__ ( lowerCAmelCase__ : str = "dhaka" , lowerCAmelCase__ : int = 5 ) -> int: '''simple docstring''' a__ : int = min(lowerCAmelCase__ , 5_0 ) # Prevent abuse! a__ : Union[str, Any] = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } a__ : Optional[int] = requests.get("https://www.google.com/search" , params=lowerCAmelCase__ , headers=lowerCAmelCase__ ) a__ : Any = BeautifulSoup(html.text , "html.parser" ) a__ : List[Any] = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) a__ : Any = json.dumps(lowerCAmelCase__ ) a__ : int = json.loads(lowerCAmelCase__ ) a__ : Tuple = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , lowerCAmelCase__ , ) if not matched_google_image_data: return 0 a__ : Tuple = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(lowerCAmelCase__ ) , ) a__ : List[Any] = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , lowerCAmelCase__ , ) for index, fixed_full_res_image in enumerate(lowerCAmelCase__ ): if index >= max_images: return index a__ : Optional[int] = bytes(lowerCAmelCase__ , "ascii" ).decode( "unicode-escape" ) a__ : Any = bytes(lowerCAmelCase__ , "ascii" ).decode( "unicode-escape" ) a__ : Optional[int] = urllib.request.build_opener() a__ : int = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(lowerCAmelCase__ ) a__ : Dict = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) urllib.request.urlretrieve( # noqa: S310 lowerCAmelCase__ , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __UpperCAmelCase = download_images_from_google_query(sys.argv[1]) print(f"{image_count} images were downloaded to disk.") except IndexError: print('''Please provide a search term.''') raise
642
"""simple docstring""" import os def lowercase__ ( ) -> Optional[Any]: '''simple docstring''' with open(os.path.dirname(lowerCAmelCase__ ) + "/p022_names.txt" ) as file: a__ : Optional[int] = str(file.readlines()[0] ) a__ : Optional[int] = names.replace("\"" , "" ).split("," ) names.sort() a__ : int = 0 a__ : Dict = 0 for i, name in enumerate(lowerCAmelCase__ ): for letter in name: name_score += ord(lowerCAmelCase__ ) - 6_4 total_score += (i + 1) * name_score a__ : Tuple = 0 return total_score if __name__ == "__main__": print(solution())
642
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase ( lowerCamelCase : Optional[int]=None): if subparsers is not None: A_ : Tuple = subparsers.add_parser("""env""") else: A_ : Dict = argparse.ArgumentParser("""Accelerate env command""") parser.add_argument( """--config_file""" , default=lowerCamelCase , help="""The config file to use for the default values in the launching script.""") if subparsers is not None: parser.set_defaults(func=lowerCamelCase) return parser def lowerCamelCase ( lowerCamelCase : int): A_ : Optional[int] = torch.__version__ A_ : Optional[int] = torch.cuda.is_available() A_ : List[str] = is_xpu_available() A_ : Union[str, Any] = is_npu_available() A_ : Optional[Any] = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCamelCase): A_ : Dict = load_config_from_file(args.config_file).to_dict() A_ : Tuple = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """PyTorch XPU available""": str(lowerCamelCase), """PyTorch NPU available""": str(lowerCamelCase), """System RAM""": F'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB', } if pt_cuda_available: A_ : Tuple = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""") print("""\n""".join([F'- {prop}: {val}' for prop, val in info.items()])) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""") A_ : List[Any] = ( """\n""".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()]) if isinstance(lowerCamelCase , lowerCamelCase) else F'\t{accelerate_config}' ) print(lowerCamelCase) A_ : Optional[Any] = accelerate_config return info def lowerCamelCase ( ): A_ : Dict = env_command_parser() A_ : Dict = parser.parse_args() env_command(lowerCamelCase) return 0 if __name__ == "__main__": raise SystemExit(main())
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Dict): A_ : List[str] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: A_ : Union[str, Any] = [144, 192, 240] A_ : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: A_ : List[str] = [96, 120, 144] A_ : Any = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: A_ : Any = [64, 80, 96] A_ : List[str] = [16, 16, 24, 48, 64, 80, 320] A_ : Any = 0.05 A_ : List[Any] = 2.0 if mobilevit_name.startswith("""deeplabv3_"""): A_ : int = 512 A_ : Optional[int] = 16 A_ : List[Any] = 21 A_ : List[str] = """pascal-voc-id2label.json""" else: A_ : str = 1000 A_ : Any = """imagenet-1k-id2label.json""" A_ : Any = """huggingface/label-files""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False): for i in range(1 , 6): if F'layer_{i}.' in name: A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.') if "conv_1." in name: A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""") if ".block." in name: A_ : Optional[Any] = name.replace(""".block.""" , """.""") if "exp_1x1" in name: A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""") if "red_1x1" in name: A_ : int = name.replace("""red_1x1""" , """reduce_1x1""") if ".local_rep.conv_3x3." in name: A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""") if ".local_rep.conv_1x1." in name: A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""") if ".norm." in name: A_ : Tuple = name.replace(""".norm.""" , """.normalization.""") if ".conv." in name: A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""") if ".conv_proj." in name: A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""") for i in range(0 , 2): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.') for i in range(2 , 6): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.') if "expand_1x1" in name: A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""") if "conv_3x3" in name: A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""") if "reduce_1x1" in name: A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""") for i in range(2 , 5): if F'.global_rep.{i}.weight' in name: A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""") if F'.global_rep.{i}.bias' in name: A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""") if ".global_rep." in name: A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""") if ".pre_norm_mha.0." in name: A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""") if ".pre_norm_mha.1.out_proj." in name: A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""") if ".pre_norm_ffn.0." in name: A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""") if ".pre_norm_ffn.1." in name: A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""") if ".pre_norm_ffn.4." in name: A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""") if ".transformer." in name: A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""") if ".aspp_layer." in name: A_ : int = name.replace(""".aspp_layer.""" , """.""") if ".aspp_pool." in name: A_ : Tuple = name.replace(""".aspp_pool.""" , """.""") if "seg_head." in name: A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""") if "segmentation_head.classifier.classifier." in name: A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""") if "classifier.fc." in name: A_ : str = name.replace("""classifier.fc.""" , """classifier.""") elif (not base_model) and ("segmentation_head." not in name): A_ : str = """mobilevit.""" + name return name def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False): if base_model: A_ : Dict = """""" else: A_ : Any = """mobilevit.""" for key in orig_state_dict.copy().keys(): A_ : List[Any] = orig_state_dict.pop(lowerCamelCase) if key[:8] == "encoder.": A_ : int = key[8:] if "qkv" in key: A_ : Any = key.split(""".""") A_ : str = int(key_split[0][6:]) - 1 A_ : int = int(key_split[3]) A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}') A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size A_ : Optional[Any] = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: A_ : Dict = val[:dim, :] A_ : Optional[int] = val[dim : dim * 2, :] A_ : List[Any] = val[-dim:, :] else: A_ : Optional[Any] = val[:dim] A_ : List[Any] = val[dim : dim * 2] A_ : Any = val[-dim:] else: A_ : List[str] = val return orig_state_dict def lowerCamelCase ( ): A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False): A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase) # load original state_dict A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""") # load 🤗 model if mobilevit_name.startswith("""deeplabv3_"""): A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval() else: A_ : str = MobileViTForImageClassification(lowerCamelCase).eval() A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase) model.load_state_dict(lowerCamelCase) # Check outputs on an image, prepared by MobileViTImageProcessor A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""") A_ : List[Any] = model(**lowerCamelCase) A_ : Dict = outputs.logits if mobilevit_name.startswith("""deeplabv3_"""): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": A_ : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": A_ : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": A_ : Tuple = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4) Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if push_to_hub: A_ : str = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""") A_ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase , organization="""apple""") model.push_to_hub(lowerCamelCase , organization="""apple""") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __magic_name__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
27
1
from __future__ import annotations def lowerCamelCase ( UpperCamelCase : list[int] , UpperCamelCase : list[int] , UpperCamelCase : int ) -> tuple[float, list[float]]: _lowerCamelCase = list(range(len(UpperCamelCase ) ) ) _lowerCamelCase = [v / w for v, w in zip(UpperCamelCase , UpperCamelCase )] index.sort(key=lambda UpperCamelCase : ratio[i] , reverse=UpperCamelCase ) _lowerCamelCase = 0 _lowerCamelCase = [0] * len(UpperCamelCase ) for i in index: if weight[i] <= capacity: _lowerCamelCase = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
544
def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : int ) -> float: return base * power(UpperCamelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') A = int(input('Enter the base: ').strip()) A = int(input('Enter the exponent: ').strip()) A = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
544
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : BigBirdConfig lowercase : jnp.dtype = jnp.floataa lowercase : bool = True def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]: super().setup() A : List[Any] =nn.Dense(5 , dtype=self.dtype ) def __call__( self : Any , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: A : Dict =super().__call__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : List[str] =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def A__ ( lowercase: str, lowercase: Optional[int], lowercase: Tuple, lowercase: Dict, lowercase: Optional[Any], lowercase: Dict ) -> int: def cross_entropy(lowercase: Optional[int], lowercase: Dict, lowercase: List[str]=None ): A : Any =logits.shape[-1] A : List[Any] =(labels[..., None] == jnp.arange(lowercase )[None]).astype('f4' ) A : Union[str, Any] =jax.nn.log_softmax(lowercase, axis=-1 ) A : Union[str, Any] =-jnp.sum(labels * logits, axis=-1 ) if reduction is not None: A : List[Any] =reduction(lowercase ) return loss A : Union[str, Any] =partial(lowercase, reduction=jnp.mean ) A : Any =cross_entropy(lowercase, lowercase ) A : List[str] =cross_entropy(lowercase, lowercase ) A : Union[str, Any] =cross_entropy(lowercase, lowercase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : str = "google/bigbird-roberta-base" lowercase : int = 3000 lowercase : int = 10500 lowercase : int = 128 lowercase : int = 3 lowercase : int = 1 lowercase : int = 5 # tx_args lowercase : float = 3e-5 lowercase : float = 0.0 lowercase : int = 20000 lowercase : float = 0.0_0_9_5 lowercase : str = "bigbird-roberta-natural-questions" lowercase : str = "training-expt" lowercase : str = "data/nq-training.jsonl" lowercase : str = "data/nq-validation.jsonl" def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) A : Tuple =os.path.join(self.base_dir , self.save_dir ) A : Optional[Any] =self.batch_size_per_device * jax.device_count() @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : int lowercase : int = 4096 # no dynamic padding on TPUs def __call__( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: A : Dict =self.collate_fn(SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =jax.tree_util.tree_map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return batch def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: A , A : Optional[int] =self.fetch_inputs(features['input_ids'] ) A : Union[str, Any] ={ 'input_ids': jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ), 'attention_mask': jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]: A : Tuple =[self._fetch_inputs(SCREAMING_SNAKE_CASE__ ) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : list ) -> Any: A : Any =[1 for _ in range(len(SCREAMING_SNAKE_CASE__ ) )] while len(SCREAMING_SNAKE_CASE__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A__ ( lowercase: Optional[Any], lowercase: List[Any], lowercase: Optional[Any]=None ) -> Union[str, Any]: if seed is not None: A : Dict =dataset.shuffle(seed=lowercase ) for i in range(len(lowercase ) // batch_size ): A : Optional[int] =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase ) @partial(jax.pmap, axis_name='batch' ) def A__ ( lowercase: str, lowercase: str, **lowercase: Any ) -> Optional[int]: def loss_fn(lowercase: Dict ): A : Union[str, Any] =model_inputs.pop('start_labels' ) A : Optional[Any] =model_inputs.pop('end_labels' ) A : Any =model_inputs.pop('pooled_labels' ) A : List[Any] =state.apply_fn(**lowercase, params=lowercase, dropout_rng=lowercase, train=lowercase ) A , A , A : List[str] =outputs return state.loss_fn( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, ) A , A : Union[str, Any] =jax.random.split(lowercase ) A : Dict =jax.value_and_grad(lowercase ) A , A : str =grad_fn(state.params ) A : Any =jax.lax.pmean({'loss': loss}, axis_name='batch' ) A : Dict =jax.lax.pmean(lowercase, 'batch' ) A : List[str] =state.apply_gradients(grads=lowercase ) return state, metrics, new_drp_rng @partial(jax.pmap, axis_name='batch' ) def A__ ( lowercase: str, **lowercase: Tuple ) -> List[str]: A : List[str] =model_inputs.pop('start_labels' ) A : Union[str, Any] =model_inputs.pop('end_labels' ) A : Union[str, Any] =model_inputs.pop('pooled_labels' ) A : List[Any] =state.apply_fn(**lowercase, params=state.params, train=lowercase ) A , A , A : List[Any] =outputs A : Tuple =state.loss_fn(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) A : int =jax.lax.pmean({'loss': loss}, axis_name='batch' ) return metrics class SCREAMING_SNAKE_CASE_ ( train_state.TrainState ): '''simple docstring''' lowercase : Callable = struct.field(pytree_node=lowerCAmelCase_ ) @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : Args lowercase : Callable lowercase : Callable lowercase : Callable lowercase : Callable lowercase : wandb lowercase : Callable = None def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=None ) -> List[Any]: A : List[Any] =model.params A : int =TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE__ , tx=SCREAMING_SNAKE_CASE__ , loss_fn=SCREAMING_SNAKE_CASE__ , ) if ckpt_dir is not None: A , A , A , A , A : Dict =restore_checkpoint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : str ={ 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } A , A : Optional[int] =build_tx(**SCREAMING_SNAKE_CASE__ ) A : List[Any] =train_state.TrainState( step=SCREAMING_SNAKE_CASE__ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE__ , tx=SCREAMING_SNAKE_CASE__ , opt_state=SCREAMING_SNAKE_CASE__ , ) A : int =args A : List[str] =data_collator A : List[str] =lr A : Any =params A : Any =jax_utils.replicate(SCREAMING_SNAKE_CASE__ ) return state def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: A : Union[str, Any] =self.args A : Optional[int] =len(SCREAMING_SNAKE_CASE__ ) // args.batch_size A : Optional[int] =jax.random.PRNGKey(0 ) A : str =jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) for epoch in range(args.max_epochs ): A : Optional[Any] =jnp.array(0 , dtype=jnp.floataa ) A : Union[str, Any] =get_batched_dataset(SCREAMING_SNAKE_CASE__ , args.batch_size , seed=SCREAMING_SNAKE_CASE__ ) A : Any =0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , total=SCREAMING_SNAKE_CASE__ , desc=f'Running EPOCH-{epoch}' ): A : Dict =self.data_collator(SCREAMING_SNAKE_CASE__ ) A , A , A : Union[str, Any] =self.train_step_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: A : Union[str, Any] =jax_utils.unreplicate(state.step ) A : int =running_loss.item() / i A : List[Any] =self.scheduler_fn(state_step - 1 ) A : str =self.evaluate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Tuple ={ 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE__ ) ) self.logger.log(SCREAMING_SNAKE_CASE__ , commit=SCREAMING_SNAKE_CASE__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: A : List[Any] =get_batched_dataset(SCREAMING_SNAKE_CASE__ , self.args.batch_size ) A : str =len(SCREAMING_SNAKE_CASE__ ) // self.args.batch_size A : List[str] =jnp.array(0 , dtype=jnp.floataa ) A : Optional[int] =0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , total=SCREAMING_SNAKE_CASE__ , desc='Evaluating ... ' ): A : Dict =self.data_collator(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.val_step_fn(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: A : List[Any] =jax_utils.unreplicate(SCREAMING_SNAKE_CASE__ ) print(f'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(SCREAMING_SNAKE_CASE__ , params=state.params ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE__ , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE__ , 'data_collator.joblib' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , SCREAMING_SNAKE_CASE__ ) print('DONE' ) def A__ ( lowercase: Tuple, lowercase: Dict ) -> Optional[Any]: print(F'RESTORING CHECKPOINT FROM {save_dir}', end=' ... ' ) with open(os.path.join(lowercase, 'flax_model.msgpack' ), 'rb' ) as f: A : Tuple =from_bytes(state.params, f.read() ) with open(os.path.join(lowercase, 'opt_state.msgpack' ), 'rb' ) as f: A : List[str] =from_bytes(state.opt_state, f.read() ) A : Any =joblib.load(os.path.join(lowercase, 'args.joblib' ) ) A : Any =joblib.load(os.path.join(lowercase, 'data_collator.joblib' ) ) with open(os.path.join(lowercase, 'training_state.json' ), 'r' ) as f: A : List[str] =json.load(lowercase ) A : int =training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def A__ ( lowercase: Dict, lowercase: List[Any], lowercase: List[str], lowercase: List[str] ) -> int: A : str =num_train_steps - warmup_steps A : Any =optax.linear_schedule(init_value=lowercase, end_value=lowercase, transition_steps=lowercase ) A : str =optax.linear_schedule(init_value=lowercase, end_value=1e-7, transition_steps=lowercase ) A : int =optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps] ) return lr def A__ ( lowercase: Union[str, Any], lowercase: Union[str, Any], lowercase: Tuple, lowercase: Union[str, Any], lowercase: List[str] ) -> Union[str, Any]: def weight_decay_mask(lowercase: List[Any] ): A : Union[str, Any] =traverse_util.flatten_dict(lowercase ) A : List[str] ={k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase ) A : Dict =scheduler_fn(lowercase, lowercase, lowercase, lowercase ) A : List[str] =optax.adamw(learning_rate=lowercase, weight_decay=lowercase, mask=lowercase ) return tx, lr
661
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : int =2 class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]: A , A , A , A : Optional[Any] =bos, unk, pad, eos A : Dict =[] A : Union[str, Any] =[] A : Any ={} A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =len(self.symbols ) def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.indices == other.indices def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: A : Union[str, Any] =cls() d.add_from_file(SCREAMING_SNAKE_CASE__ ) return d def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: if word in self.indices and not overwrite: A : int =self.indices[word] A : Union[str, Any] =self.count[idx] + n return idx else: A : Tuple =len(self.symbols ) A : str =idx self.symbols.append(SCREAMING_SNAKE_CASE__ ) self.count.append(SCREAMING_SNAKE_CASE__ ) return idx def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) ) return A : str =f.readlines() A : int =self._load_meta(SCREAMING_SNAKE_CASE__ ) for line in lines[indices_start_line:]: try: A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A : int =True A , A : Optional[Any] =line.rsplit(' ' , 1 ) else: A : Any =False A : Tuple =int(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) ) self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A__ ( lowercase: Union[str, Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() ) A : int ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : List[Any] =d[k] # restore return da def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str: # prep if not os.path.exists(lowercase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase, exist_ok=lowercase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[str] =os.path.join(lowercase, 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Optional[Any] =torch.load(lowercase, map_location='cpu' ) A : Any =chkpt['cfg']['model'] # dicts A : Any =os.path.join(lowercase, 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Dict =Dictionary.load(lowercase ) A : Optional[Any] =rewrite_dict_keys(src_dict.indices ) A : Tuple =len(lowercase ) A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) A : List[str] =os.path.join(lowercase, 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase, lowercase ) # model config A : Tuple =os.path.join(lowercase, 'config.json' ) A : Tuple ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config A : int =os.path.join(lowercase, lowercase ) A : List[str] ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model A : List[Any] =chkpt['model'] # remove unneeded keys A : List[Any] =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) A : str =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A : Union[str, Any] =model_state_dict.pop(lowercase ) else: A : List[str] =model_state_dict.pop(lowercase ) A : Any =BioGptConfig.from_pretrained(lowercase ) A : str =BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save A : Tuple =os.path.join(lowercase, lowercase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase, lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[Any] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
661
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class snake_case__ ( UpperCamelCase): a_ = "gpt_bigcode" a_ = ["past_key_values"] a_ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , _A : str=5_02_57 , _A : int=10_24 , _A : Optional[int]=7_68 , _A : Dict=12 , _A : Optional[int]=12 , _A : List[str]=None , _A : str="gelu_pytorch_tanh" , _A : Optional[Any]=0.1 , _A : Tuple=0.1 , _A : Dict=0.1 , _A : List[str]=1e-5 , _A : List[str]=0.02 , _A : Optional[int]=True , _A : List[str]=True , _A : Optional[Any]=5_02_56 , _A : Optional[int]=5_02_56 , _A : Optional[Any]=True , _A : Union[str, Any]=True , _A : int=True , **_A : Union[str, Any] , ) -> List[str]: UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : List[Any] = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[int] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Dict = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Union[str, Any] = embd_pdrop UpperCAmelCase_ : Dict = attn_pdrop UpperCAmelCase_ : Union[str, Any] = layer_norm_epsilon UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Dict = scale_attn_weights UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : Optional[Any] = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Dict = multi_query UpperCAmelCase_ : Optional[int] = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id super().__init__(bos_token_id=_A , eos_token_id=_A , **_A )
541
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case__ ( unittest.TestCase): def __init__( self : Optional[Any] , _A : int , _A : List[Any]=7 , _A : Tuple=3 , _A : int=18 , _A : Union[str, Any]=30 , _A : Any=4_00 , _A : List[Any]=True , _A : Optional[int]=None , _A : Optional[Any]=True , _A : Union[str, Any]=None , ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = size if size is not None else {'''shortest_edge''': 20} UpperCAmelCase_ : Dict = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : List[str] = max_resolution UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : Any = size UpperCAmelCase_ : Union[str, Any] = do_center_crop UpperCAmelCase_ : Any = crop_size def A ( self : List[Any] ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = MobileNetVaImageProcessor if is_vision_available() else None def A ( self : List[Any] ) -> List[str]: UpperCAmelCase_ : Dict = MobileNetVaImageProcessingTester(self ) @property def A ( self : Optional[Any] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[str] ) -> Dict: UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''crop_size''' ) ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def A ( self : int ) -> List[str]: pass def A ( self : List[Any] ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : str ) -> List[str]: # Initialize image_processing UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> Dict: # Initialize image_processing UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
541
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __a: Optional[int] = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
428
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = BloomTokenizerFast SCREAMING_SNAKE_CASE = BloomTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = "tokenizer_file" SCREAMING_SNAKE_CASE = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _lowerCAmelCase( self ) -> Dict: super().setUp() lowercase__ : List[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Dict: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = self.get_rust_tokenizer() lowercase__ : Union[str, Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase__ : Dict = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase__ : List[Any] = tokenizer.batch_encode_plus(__lowerCAmelCase )['''input_ids'''] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase=6 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ : str = '''This is a simple input''' lowercase__ : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase__ : Dict = ('''This is a simple input''', '''This is a pair''') lowercase__ : List[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.batch_encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.encode(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.batch_encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase__ : List[str] = None # Hotfixing padding = None self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Dict = self.get_rust_tokenizer() lowercase__ : Any = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__lowerCAmelCase ) lowercase__ : Optional[Any] = next(iter(__lowerCAmelCase ) )['''premise'''] # pick up one data lowercase__ : List[str] = list(sample_data.values() ) lowercase__ : str = list(map(tokenizer.encode , __lowerCAmelCase ) ) lowercase__ : List[str] = [tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) for x in output_tokens] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
428
1
"""simple docstring""" from __future__ import annotations def lowercase ( UpperCamelCase : str , UpperCamelCase : str ): """simple docstring""" A__ : Any =get_failure_array(UpperCamelCase ) # 2) Step through text searching for pattern A__ , A__ : List[str] =0, 0 # index into text, pattern while i < len(UpperCamelCase ): if pattern[j] == text[i]: if j == (len(UpperCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: A__ : List[str] =failure[j - 1] continue i += 1 return False def lowercase ( UpperCamelCase : str ): """simple docstring""" A__ : Union[str, Any] =[0] A__ : Any =0 A__ : Any =1 while j < len(UpperCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: A__ : str =failure[i - 1] continue j += 1 failure.append(UpperCamelCase ) return failure if __name__ == "__main__": # Test 1) __A : Dict = "abc1abc12" __A : Dict = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A : List[str] = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __A : Dict = "ABABX" __A : Any = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) __A : str = "AAAB" __A : Dict = "ABAAAAAB" assert kmp(pattern, text) # Test 4) __A : Optional[Any] = "abcdabcy" __A : int = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) __A : Union[str, Any] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
656
"""simple docstring""" __A : Union[str, Any] = {str(digit): digit**5 for digit in range(10)} def lowercase ( UpperCamelCase : int ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCamelCase ) ) def lowercase ( ): """simple docstring""" return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(UpperCamelCase ) ) if __name__ == "__main__": print(solution())
656
1
import math def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def lowerCAmelCase ( _lowerCAmelCase : float = 1 / 1_2345 ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 3 while True: UpperCAmelCase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): UpperCAmelCase__ = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
704
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def lowerCAmelCase ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float , _lowerCAmelCase : int = 1_6000 ): """simple docstring""" UpperCAmelCase__ = int(round(sample_rate * max_length ) ) if len(_lowerCAmelCase ) <= sample_length: return wav UpperCAmelCase__ = randint(0 , len(_lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _UpperCamelCase : UpperCAmelCase_ = field(default=lowerCAmelCase , metadata={"""help""": """Name of a dataset from the datasets package"""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the training audio paths and labels."""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) UpperCAmelCase_ = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) UpperCAmelCase_ = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) UpperCAmelCase_ = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) UpperCAmelCase_ = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCAmelCase_ = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class _UpperCamelCase : UpperCAmelCase_ = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) UpperCAmelCase_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) UpperCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def UpperCAmelCase_ ( self :str ) -> List[Any]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , lowerCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _lowerCAmelCase , _lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCAmelCase__ = DatasetDict() UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' "Make sure to set `--label_column_name` to the correct text column - one of " F'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCAmelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCAmelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCAmelCase__ = feature_extractor.model_input_names[0] def train_transforms(_lowerCAmelCase : Tuple ): UpperCAmelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCAmelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCAmelCase ) UpperCAmelCase__ = feature_extractor(_lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase__ = {model_input_name: inputs.get(_lowerCAmelCase )} UpperCAmelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCAmelCase : Union[str, Any] ): UpperCAmelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCAmelCase__ = feature_extractor(_lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase__ = {model_input_name: inputs.get(_lowerCAmelCase )} UpperCAmelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCAmelCase__ , UpperCAmelCase__ = {}, {} for i, label in enumerate(_lowerCAmelCase ): UpperCAmelCase__ = str(_lowerCAmelCase ) UpperCAmelCase__ = label # Load the accuracy metric from the datasets package UpperCAmelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCAmelCase : Optional[Any] ): UpperCAmelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCAmelCase , references=eval_pred.label_ids ) UpperCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCAmelCase ) , labelaid=_lowerCAmelCase , idalabel=_lowerCAmelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCAmelCase , output_all_columns=_lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCAmelCase , output_all_columns=_lowerCAmelCase ) # Initialize our trainer UpperCAmelCase__ = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) # Training if training_args.do_train: UpperCAmelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ = last_checkpoint UpperCAmelCase__ = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _lowerCAmelCase ) trainer.save_metrics("eval" , _lowerCAmelCase ) # Write model card and (optionally) push to hub UpperCAmelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCAmelCase ) else: trainer.create_model_card(**_lowerCAmelCase ) if __name__ == "__main__": main()
364
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = "convnextv2" def __init__( self : Tuple , A : List[str]=3 , A : Any=4 , A : Tuple=4 , A : List[str]=None , A : Union[str, Any]=None , A : Optional[Any]="gelu" , A : List[Any]=0.02 , A : Dict=1E-12 , A : List[str]=0.0 , A : Dict=224 , A : Any=None , A : List[str]=None , **A : str , ): super().__init__(**A ) _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Optional[int] = num_stages _UpperCAmelCase : Dict = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes _UpperCAmelCase : Tuple = [3, 3, 9, 3] if depths is None else depths _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : str = layer_norm_eps _UpperCAmelCase : Optional[Any] = drop_path_rate _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Dict = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : str = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names )
244
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , A : List[Any] , ): _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Tuple = 13 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : List[Any] = 30 _UpperCAmelCase : Any = self.seq_length + self.mem_len _UpperCAmelCase : str = 15 _UpperCAmelCase : Dict = True _UpperCAmelCase : str = True _UpperCAmelCase : Tuple = 99 _UpperCAmelCase : int = [10, 50, 80] _UpperCAmelCase : List[str] = 32 _UpperCAmelCase : List[str] = 32 _UpperCAmelCase : Any = 4 _UpperCAmelCase : List[Any] = 8 _UpperCAmelCase : Any = 128 _UpperCAmelCase : Dict = 2 _UpperCAmelCase : int = 2 _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Any = 3 _UpperCAmelCase : List[str] = self.vocab_size - 1 _UpperCAmelCase : Any = 0.01 def _A ( self : Any ): _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _A ( self : Optional[int] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _A ( self : int , A : Union[str, Any] , A : str , A : List[str] , A : Optional[int] ): _UpperCAmelCase : int = TFTransfoXLModel(A ) _UpperCAmelCase , _UpperCAmelCase : str = model(A ).to_tuple() _UpperCAmelCase : Any = {"input_ids": input_ids_a, "mems": mems_a} _UpperCAmelCase , _UpperCAmelCase : Dict = model(A ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _A ( self : Optional[int] , A : Dict , A : Union[str, Any] , A : Any , A : Tuple ): _UpperCAmelCase : Tuple = TFTransfoXLLMHeadModel(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = model(A ).to_tuple() _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCAmelCase , _UpperCAmelCase : List[Any] = model(A ).to_tuple() _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() _UpperCAmelCase : Tuple = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCAmelCase , _UpperCAmelCase : Tuple = model(A ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _A ( self : Optional[Any] , A : Optional[Any] , A : Tuple , A : List[str] , A : Union[str, Any] ): _UpperCAmelCase : Dict = TFTransfoXLForSequenceClassification(A ) _UpperCAmelCase : List[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : int ): _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Optional[Any] = config_and_inputs _UpperCAmelCase : Any = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class lowerCamelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Any = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __UpperCamelCase: Tuple = () if is_tf_available() else () __UpperCamelCase: Union[str, Any] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __UpperCamelCase: Any = False __UpperCamelCase: Optional[Any] = False __UpperCamelCase: List[str] = False __UpperCamelCase: List[Any] = False def _A ( self : Tuple , A : Dict , A : int , A : str , A : Any , A : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _A ( self : List[str] ): _UpperCAmelCase : int = TFTransfoXLModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=A , d_embed=37 ) def _A ( self : int ): self.config_tester.run_common_tests() def _A ( self : List[Any] ): self.model_tester.set_seed() _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A ) def _A ( self : str ): self.model_tester.set_seed() _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A ) def _A ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class(A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _UpperCAmelCase : List[Any] = model.get_output_embeddings() assert isinstance(A , tf.keras.layers.Layer ) _UpperCAmelCase : List[Any] = model.get_bias() assert name is None else: _UpperCAmelCase : Optional[int] = model.get_output_embeddings() assert x is None _UpperCAmelCase : Any = model.get_bias() assert name is None def _A ( self : Dict ): # TODO JP: Make TransfoXL XLA compliant pass @slow def _A ( self : Any ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = TFTransfoXLModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def _A ( self : Any ): pass @require_tf class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved." ) @slow def _A ( self : Union[str, Any] ): _UpperCAmelCase : str = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off _UpperCAmelCase : int = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCAmelCase : List[str] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCAmelCase : List[Any] = model.generate(A , max_length=200 , do_sample=A ) self.assertListEqual(output_ids[0].numpy().tolist() , A )
244
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a__ = logging.get_logger('''transformers.models.speecht5''') def snake_case__ ( a , a , a ) -> Optional[Any]: '''simple docstring''' hf_model.apply_weight_norm() snake_case__ = checkpoint["""input_conv.weight_g"""] snake_case__ = checkpoint["""input_conv.weight_v"""] snake_case__ = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): snake_case__ = checkpoint[F"""upsamples.{i}.1.weight_g"""] snake_case__ = checkpoint[F"""upsamples.{i}.1.weight_v"""] snake_case__ = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): snake_case__ = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] snake_case__ = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] snake_case__ = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] snake_case__ = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] snake_case__ = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] snake_case__ = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] snake_case__ = checkpoint["""output_conv.1.weight_g"""] snake_case__ = checkpoint["""output_conv.1.weight_v"""] snake_case__ = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def snake_case__ ( a , a , a , a=None , a=None , ) -> List[str]: '''simple docstring''' if config_path is not None: snake_case__ = SpeechTaHifiGanConfig.from_pretrained(a ) else: snake_case__ = SpeechTaHifiGanConfig() snake_case__ = SpeechTaHifiGan(a ) snake_case__ = torch.load(a ) load_weights(orig_checkpoint["""model"""]["""generator"""] , a , a ) snake_case__ = np.load(a ) snake_case__ = stats[0].reshape(-1 ) snake_case__ = stats[1].reshape(-1 ) snake_case__ = torch.from_numpy(a ).float() snake_case__ = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) a__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
717
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case__ ( a ) -> Optional[int]: '''simple docstring''' return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case__ ( ) -> List[Any]: '''simple docstring''' snake_case__ = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=a ) snake_case__ = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(a ) EnvironmentCommand.register_subcommand(a ) TestCommand.register_subcommand(a ) RunBeamCommand.register_subcommand(a ) DummyDataCommand.register_subcommand(a ) # Parse args snake_case__ , snake_case__ = parser.parse_known_args() if not hasattr(a , """func""" ): parser.print_help() exit(1 ) snake_case__ = parse_unknown_args(a ) # Run snake_case__ = args.func(a , **a ) service.run() if __name__ == "__main__": main()
566
0
def _lowercase ( __UpperCamelCase : int , __UpperCamelCase : int ): return int((input_a, input_a).count(1 ) != 0 ) def _lowercase ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
214
lowerCAmelCase : Dict = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _lowercase ( __UpperCamelCase : dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): snake_case__ = set() # keep track of all the paths to be checked snake_case__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue snake_case__ = queue.pop(0 ) # get the last node from the path snake_case__ = path[-1] if node not in explored: snake_case__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: snake_case__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def _lowercase ( __UpperCamelCase : dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 snake_case__ = [start] snake_case__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. snake_case__ = {start: 0, target: -1} while queue: snake_case__ = queue.pop(0 ) if node == target: snake_case__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) snake_case__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
214
1
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __lowerCamelCase : int = logging.getLogger(__name__) __lowerCamelCase : Union[str, Any] = 'Hello world! cécé herlolip' __lowerCamelCase : Union[str, Any] = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : List[str] = BertAbsConfig( temp_dir="." ,finetune_bert=_lowerCamelCase ,large=_lowerCamelCase ,share_emb=_lowerCamelCase ,use_bert_emb=_lowerCamelCase ,encoder="bert" ,max_pos=512 ,enc_layers=6 ,enc_hidden_size=512 ,enc_heads=8 ,enc_ff_size=512 ,enc_dropout=0.2 ,dec_layers=6 ,dec_hidden_size=768 ,dec_heads=8 ,dec_ff_size=2048 ,dec_dropout=0.2 ,) snake_case_ : Tuple = torch.load(_lowerCamelCase ,lambda __magic_name__ ,__magic_name__ : storage ) snake_case_ : int = AbsSummarizer(_lowerCamelCase ,torch.device("cpu" ) ,_lowerCamelCase ) original.eval() snake_case_ : Any = BertAbsSummarizer(_lowerCamelCase ,torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) snake_case_ : Any = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs snake_case_ : Tuple = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_lowerCamelCase )) ) snake_case_ : Optional[Any] = torch.tensor(_lowerCamelCase ).unsqueeze(0 ) snake_case_ : Optional[Any] = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_lowerCamelCase )) ) snake_case_ : Optional[int] = torch.tensor(_lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass snake_case_ : Any = encoder_input_ids snake_case_ : Union[str, Any] = decoder_input_ids snake_case_ : Tuple = None snake_case_ : Optional[int] = None snake_case_ : int = None snake_case_ : Any = None snake_case_ : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical snake_case_ : List[str] = original(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )[0] snake_case_ : Dict = original.generator(_lowerCamelCase ) snake_case_ : str = new_model( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )[0] snake_case_ : Optional[int] = new_model.generator(_lowerCamelCase ) snake_case_ : Optional[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_lowerCamelCase ) ) snake_case_ : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_lowerCamelCase ) ) snake_case_ : Any = torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() ,"./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) __lowerCamelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
706
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
0