code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {} UpperCamelCase__ = {} UpperCamelCase__ = {} def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , ): """simple docstring""" lowercase_ : Tuple = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) lowercase_ : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) lowercase_ : List[Any] = format_type def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" lowercase_ : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase_ : int = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: UpperCamelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: UpperCamelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: UpperCamelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = get_format_type_from_alias(_UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
620
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
620
1
'''simple docstring''' class _A : def __init__( self : int): '''simple docstring''' __a = '''''' __a = '''''' __a = [] def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __a = self.__min_dist_top_down_dp(m - 1 , n - 1) else: __a = self.__min_dist_top_down_dp(__A , n - 1) __a = self.__min_dist_top_down_dp(m - 1 , __A) __a = self.__min_dist_top_down_dp(m - 1 , n - 1) __a = 1 + min(__A , __A , __A) return self.dp[m][n] def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = worda __a = worda __a = [[-1 for _ in range(len(__A))] for _ in range(len(__A))] return self.__min_dist_top_down_dp(len(__A) - 1 , len(__A) - 1) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = worda __a = worda __a = len(__A) __a = len(__A) __a = [[0 for _ in range(n + 1)] for _ in range(m + 1)] for i in range(m + 1): for j in range(n + 1): if i == 0: # first string is empty __a = j elif j == 0: # second string is empty __a = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __a = self.dp[i - 1][j - 1] else: __a = self.dp[i][j - 1] __a = self.dp[i - 1][j] __a = self.dp[i - 1][j - 1] __a = 1 + min(__A , __A , __A) return self.dp[m][n] if __name__ == "__main__": __snake_case :Optional[Any] = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() __snake_case :List[Any] = input('''Enter the first string: ''').strip() __snake_case :List[str] = input('''Enter the second string: ''').strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
714
from collections.abc import Generator from math import sin def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) != 32: raise ValueError('''Input must be of length 32''' ) __a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) __a = format(_UpperCAmelCase , '''08x''' )[-8:] __a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __snake_case ( _UpperCAmelCase ): __a = b'''''' for char in message: bit_string += format(_UpperCAmelCase , '''08b''' ).encode('''utf-8''' ) __a = format(len(_UpperCAmelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCAmelCase ) , 512 ): __a = bit_string[pos : pos + 512] __a = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) __a = format(_UpperCAmelCase , '''032b''' ) __a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCAmelCase , 2 ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return (a + b) % 2**32 def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( _UpperCAmelCase ): __a = preprocess(_UpperCAmelCase ) __a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __a = 0X67_452_301 __a = 0Xef_cda_b89 __a = 0X98_bad_cfe __a = 0X10_325_476 __a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCAmelCase ): __a = aa __a = ba __a = ca __a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __a = d ^ (b & (c ^ d)) __a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __a = c ^ (d & (b ^ c)) __a = (5 * i + 1) % 16 elif i <= 47: __a = b ^ c ^ d __a = (3 * i + 5) % 16 else: __a = c ^ (b | not_aa(_UpperCAmelCase )) __a = (7 * i) % 16 __a = (f + a + added_consts[i] + block_words[g]) % 2**32 __a = d __a = c __a = b __a = sum_aa(_UpperCAmelCase , left_rotate_aa(_UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
60
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Optional[int] =BlenderbotSmallConfig __UpperCAmelCase : Optional[int] ={} __UpperCAmelCase : Optional[int] ="""gelu""" def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase = prepare_blenderbot_small_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def snake_case ( self , __a , __a ): __lowerCAmelCase = TFBlenderbotSmallModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() __lowerCAmelCase = inputs_dict["input_ids"] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict["attention_mask"][:1, :] __lowerCAmelCase = inputs_dict["head_mask"] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1e-3 ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ): '''simple docstring''' if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __UpperCAmelCase : Optional[Any] =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __UpperCAmelCase : Optional[int] =( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple =True __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : List[str] =False def snake_case ( self ): __lowerCAmelCase = TFBlenderbotSmallModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any =[ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] __UpperCAmelCase : Dict ="""facebook/blenderbot_small-90M""" @cached_property def snake_case ( self ): return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def snake_case ( self ): __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def snake_case ( self ): __lowerCAmelCase = self.tokenizer(self.src_text , return_tensors="tf" ) __lowerCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__SCREAMING_SNAKE_CASE , ) __lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__SCREAMING_SNAKE_CASE )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
636
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
0
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """depth_multiplier""" ) ) class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any]=13 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : List[str]=0.25 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : List[Any]=8 , lowerCAmelCase_ : str=6 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[int]="relu6" , lowerCAmelCase_ : List[str]=12_80 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str=10 , lowerCAmelCase_ : Dict=None , ) -> Dict: '''simple docstring''' A__ : int =parent A__ : List[str] =batch_size A__ : Union[str, Any] =num_channels A__ : Optional[Any] =image_size A__ : List[Any] =depth_multiplier A__ : Dict =depth_divisible_by A__ : Tuple =min_depth A__ : int =expand_ratio A__ : Tuple =tf_padding A__ : Tuple =output_stride A__ : Dict =first_layer_is_expansion A__ : Any =finegrained_output A__ : List[str] =hidden_act A__ : Tuple =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) A__ : Union[str, Any] =classifier_dropout_prob A__ : int =use_labels A__ : Optional[Any] =is_training A__ : int =num_labels A__ : Dict =initializer_range A__ : List[Any] =scope def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ : List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Tuple =None A__ : Union[str, Any] =None if self.use_labels: A__ : Any =ids_tensor([self.batch_size] , self.num_labels ) A__ : Dict =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ : str =self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ) -> str: '''simple docstring''' A__ : Dict =MobileNetVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[Any] =model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' A__ : Dict =self.num_labels A__ : List[Any] =MobileNetVaForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' A__ : Any =self.num_labels A__ : int =MobileNetVaForSemanticSegmentation(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) A__ : Optional[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : List[Any] =config_and_inputs A__ : Any ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __snake_case = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : int =MobileNetVaModelTester(self ) A__ : List[Any] =MobileNetVaConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ , A__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : str =model_class(lowerCAmelCase_ ) A__ : Optional[int] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] =[*signature.parameters.keys()] A__ : str =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ): A__ : Dict =model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): A__ : List[Any] =model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) A__ : Optional[int] =outputs.hidden_states A__ : Tuple =16 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) A__ , A__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Tuple =True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Dict =True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @slow def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Any =MobileNetVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCamelCase ( ) -> str: """simple docstring""" A__ : Tuple =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(lowerCAmelCase_ ) A__ : str =self.default_image_processor A__ : Optional[Any] =prepare_img() A__ : str =image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): A__ : Tuple =model(**lowerCAmelCase_ ) # verify the logits A__ : Optional[Any] =torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) A__ : List[str] =torch.tensor([0.2445, -1.1993, 0.1905] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] =MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) A__ : Union[str, Any] =model.to(lowerCAmelCase_ ) A__ : Optional[int] =MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) A__ : List[str] =prepare_img() A__ : List[str] =image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): A__ : Optional[int] =model(**lowerCAmelCase_ ) A__ : int =outputs.logits # verify the logits A__ : Tuple =torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , lowerCAmelCase_ ) A__ : str =torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=lowerCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
687
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _A ( yaml.SafeLoader ): '''simple docstring''' def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Tuple = [self.constructed_objects[key_node] for key_node, _ in node.value] snake_case : Optional[Any] = [tuple(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else key for key in keys] snake_case : Optional[int] = Counter(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' snake_case : Union[str, Any] = super().construct_mapping(SCREAMING_SNAKE_CASE_ ,deep=SCREAMING_SNAKE_CASE_ ) self._check_no_duplicates_on_constructed_node(SCREAMING_SNAKE_CASE_ ) return mapping def lowercase ( __A : str ) -> Tuple[Optional[str], str]: '''simple docstring''' snake_case : Any = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: snake_case : Tuple = full_content[1:].index("""---""" ) + 1 snake_case : str = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__A ) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Any = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ ,encoding="""utf-8""" ) as readme_file: snake_case , snake_case : int = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(SCREAMING_SNAKE_CASE_ ) else: return cls() def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if path.exists(): with open(SCREAMING_SNAKE_CASE_ ,encoding="""utf-8""" ) as readme_file: snake_case : Union[str, Any] = readme_file.read() else: snake_case : Dict = None snake_case : int = self._to_readme(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ,"""w""" ,encoding="""utf-8""" ) as readme_file: readme_file.write(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' if readme_content is not None: snake_case , snake_case : List[str] = _split_yaml_from_readme(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = """---\n""" + self.to_yaml_string() + """---\n""" + content else: snake_case : Optional[int] = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = yaml.load(SCREAMING_SNAKE_CASE_ ,Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields snake_case : Dict = { (key.replace("""-""" ,"""_""" ) if key.replace("""-""" ,"""_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" ,"""-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } ,sort_keys=SCREAMING_SNAKE_CASE_ ,allow_unicode=SCREAMING_SNAKE_CASE_ ,encoding="""utf-8""" ,).decode("""utf-8""" ) __lowercase : Union[str, Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowercase : List[str] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowercase : Any = ap.parse_args() __lowercase : List[Any] = Path(args.readme_filepath) __lowercase : str = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
36
'''simple docstring''' def A_ ( snake_case , snake_case ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) SCREAMING_SNAKE_CASE:int = str(bin(snake_case ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE:Dict = str(bin(snake_case ) )[2:] SCREAMING_SNAKE_CASE:List[Any] = max(len(snake_case ) , len(snake_case ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case ) , b_binary.zfill(snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
143
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2000 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , )->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' A_ : Dict = self.unet.config.sample_size A_ : List[Any] = (batch_size, 3, img_size, img_size) A_ : Union[str, Any] = self.unet A_ : Optional[Any] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) * self.scheduler.init_noise_sigma A_ : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) self.scheduler.set_sigmas(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A_ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): A_ : Optional[int] = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample A_ : Optional[int] = self.scheduler.step_correct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # prediction step A_ : int = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample A_ : Optional[int] = self.scheduler.step_pred(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) A_ , A_ : int = output.prev_sample, output.prev_sample_mean A_ : str = sample_mean.clamp(0 , 1 ) A_ : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : Union[str, Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
152
from __future__ import annotations from math import pow, sqrt def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) + pow(SCREAMING_SNAKE_CASE , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
152
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Tuple = 10 def _lowercase ( self : Optional[int] , **lowerCAmelCase_ : Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase_ ) return config def _lowercase ( self : Optional[Any] ) -> Dict: """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] ) -> Dict: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] ) -> Any: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def _lowercase ( self : Any ) -> Dict: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ = sample.to(lowerCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = model(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(lowerCAmelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if torch_device == "mps": return SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ = sample.to(lowerCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = model(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(lowerCAmelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" if torch_device == "mps": return SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter.to(lowerCAmelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = model(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(lowerCAmelCase_ ) ) if str(lowerCAmelCase_ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
393
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A_ = "sshleifer/bart-tiny-random" A_ = "patrickvonplaten/t5-tiny-random" @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return AutoConfig.from_pretrained(lowerCAmelCase_ ) def _lowercase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ ,*SCREAMING_SNAKE_CASE_ = create_student_by_copying_alternating_layers(lowerCAmelCase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowercase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ ,*SCREAMING_SNAKE_CASE_ = create_student_by_copying_alternating_layers(lowerCAmelCase_ , tempfile.mkdtemp() , e=1 , d=lowerCAmelCase_ ) def _lowercase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ ,*SCREAMING_SNAKE_CASE_ = create_student_by_copying_alternating_layers(lowerCAmelCase_ , tempfile.mkdtemp() , e=1 , d=lowerCAmelCase_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowercase ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ ,*SCREAMING_SNAKE_CASE_ = create_student_by_copying_alternating_layers(lowerCAmelCase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): create_student_by_copying_alternating_layers(lowerCAmelCase_ , tempfile.mkdtemp() , e=lowerCAmelCase_ , d=lowerCAmelCase_ )
393
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Optional[int] = inspect.getfile(accelerate.test_utils ) _UpperCamelCase : List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _UpperCamelCase : List[Any] = test_metrics @require_cpu def lowercase_ (self ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase_ (self ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase_ (self ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def lowercase_ (self ): '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) _UpperCamelCase : Optional[Any] = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase , env=os.environ.copy() )
707
"""simple docstring""" _SCREAMING_SNAKE_CASE = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 1_0: """a""", 1_1: """b""", 1_2: """c""", 1_3: """d""", 1_4: """e""", 1_5: """f""", } def __lowerCAmelCase ( __lowerCAmelCase : float ) -> str: assert type(__lowerCAmelCase ) in (int, float) and decimal == int(__lowerCAmelCase ) _UpperCamelCase : Optional[Any] = int(__lowerCAmelCase ) _UpperCamelCase : Optional[int] = "" _UpperCamelCase : List[str] = False if decimal < 0: _UpperCamelCase : List[str] = True decimal *= -1 while decimal > 0: _UpperCamelCase , _UpperCamelCase : str = divmod(__lowerCAmelCase , 16 ) _UpperCamelCase : Any = values[remainder] + hexadecimal _UpperCamelCase : Dict = "0x" + hexadecimal if negative: _UpperCamelCase : int = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
239
0
from __future__ import annotations def A ( _lowercase ): SCREAMING_SNAKE_CASE : str = str(_lowercase ) return len(_lowercase ) == 9 and set(_lowercase ) == set('''123456789''' ) def A ( ): for base_num in range(9_999 , 4_999 , -1 ): SCREAMING_SNAKE_CASE : str = 100_002 * base_num if is_9_pandigital(_lowercase ): return candidate for base_num in range(333 , 99 , -1 ): SCREAMING_SNAKE_CASE : int = 1_002_003 * base_num if is_9_pandigital(_lowercase ): return candidate return None if __name__ == "__main__": print(f"""{solution() = }""")
248
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """Salesforce/blip-image-captioning-base""" UpperCamelCase_ = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) UpperCamelCase_ = """image_captioner""" UpperCamelCase_ = AutoModelForVisionaSeq UpperCamelCase_ = ["""image"""] UpperCamelCase_ = ["""text"""] def __init__( self : Optional[int] , *UpperCamelCase__ : str , **UpperCamelCase__ : str ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Any , UpperCamelCase__ : "Image" ): '''simple docstring''' return self.pre_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) def __A ( self : Union[str, Any] , UpperCamelCase__ : Dict ): '''simple docstring''' return self.model.generate(**UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )[0].strip()
248
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } UpperCamelCase__ = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } UpperCamelCase__ = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } UpperCamelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase__ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase__ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase__ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase__ = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(__a ) class lowerCamelCase_ : def __call__( self : Optional[Any] , _A : Optional[Any] , _A : Optional[str] = None , _A : Optional[str] = None , _A : Union[bool, str] = False , _A : Union[bool, str] = False , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , **_A : List[str] , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) elif titles is None or texts is None: UpperCAmelCase__ : List[str] = titles if texts is None else texts return super().__call__( _A , _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) UpperCAmelCase__ : List[str] = titles if not isinstance(_A , _A ) else [titles] UpperCAmelCase__ : Tuple = texts if not isinstance(_A , _A ) else [texts] UpperCAmelCase__ : Optional[int] = len(_A ) UpperCAmelCase__ : Dict = questions if not isinstance(_A , _A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( f"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) UpperCAmelCase__ : int = super().__call__(_A , _A , padding=_A , truncation=_A )['''input_ids'''] UpperCAmelCase__ : Any = super().__call__(_A , add_special_tokens=_A , padding=_A , truncation=_A )['''input_ids'''] UpperCAmelCase__ : Union[str, Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A , _A ) ] } if return_attention_mask is not False: UpperCAmelCase__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase__ : Union[str, Any] = attention_mask return self.pad(_A , padding=_A , max_length=_A , return_tensors=_A ) def lowercase_ ( self : Dict , _A : BatchEncoding , _A : DPRReaderOutput , _A : int = 16 , _A : int = 64 , _A : int = 4 , ): '''simple docstring''' UpperCAmelCase__ : Any = reader_input['''input_ids'''] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = reader_output[:3] UpperCAmelCase__ : Dict = len(_A ) UpperCAmelCase__ : int = sorted(range(_A ) , reverse=_A , key=relevance_logits.__getitem__ ) UpperCAmelCase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase__ : str = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase__ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase__ : Tuple = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase__ : Optional[int] = len(_A ) UpperCAmelCase__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_A , top_spans=_A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_A , start_index=_A , end_index=_A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase_ ( self : Any , _A : List[int] , _A : List[int] , _A : int , _A : int , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase__ : List[str] = sorted(_A , key=lambda _A : x[1] , reverse=_A ) UpperCAmelCase__ : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) UpperCAmelCase__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__a ) class lowerCamelCase_ ( __a , __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = ['input_ids', 'attention_mask']
312
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'fnet' def __init__( self : List[str] , _A : Dict=32_000 , _A : Optional[Any]=768 , _A : Tuple=12 , _A : int=3_072 , _A : Union[str, Any]="gelu_new" , _A : int=0.1 , _A : List[Any]=512 , _A : List[str]=4 , _A : Optional[int]=0.0_2 , _A : List[str]=1e-12 , _A : Union[str, Any]=False , _A : Any=512 , _A : int=3 , _A : str=1 , _A : List[str]=2 , **_A : Dict , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : List[str] = layer_norm_eps UpperCAmelCase__ : Tuple = use_tpu_fourier_optimizations UpperCAmelCase__ : Union[str, Any] = tpu_short_seq_length
312
1
def __lowerCamelCase ( A__ : int ) -> int: if not isinstance(A__ , A__ ): raise TypeError("""Input value must be an 'int' type""" ) lowerCamelCase_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
278
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer snake_case__ : Dict = logging.getLogger(__name__) def __lowerCamelCase ( ) -> Any: lowerCamelCase_ : str = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=A__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=A__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=A__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=A__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=A__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=A__ , type=A__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=A__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=A__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) lowerCamelCase_ : Optional[int] = parser.parse_args() return args def __lowerCamelCase ( A__ : Tuple ) -> str: def fn(A__ : Dict ): return tokenizer(examples["""text"""] ) return fn def __lowerCamelCase ( A__ : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase_ : Dict = [] for i in range(len(tokenized_data["""input_ids"""] ) ): lowerCamelCase_ : List[str] = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } lowerCamelCase_ : Optional[int] = tf.train.Features(feature=A__ ) lowerCamelCase_ : Tuple = tf.train.Example(features=A__ ) lowerCamelCase_ : Optional[Any] = example.SerializeToString() records.append(A__ ) return records def __lowerCamelCase ( A__ : Tuple ) -> Union[str, Any]: lowerCamelCase_ : int = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCamelCase_ : str = min(len(A__ ) , args.limit ) lowerCamelCase_ : Dict = dataset.select(range(A__ ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) lowerCamelCase_ : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCamelCase_ : Optional[int] = os.path.join(args.output_dir , args.split ) if not os.path.exists(A__ ): os.makedirs(A__ ) else: lowerCamelCase_ : Any = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCamelCase_ : List[str] = tokenize_function(A__ ) lowerCamelCase_ : List[Any] = dataset.map(A__ , batched=A__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(A__ : Union[str, Any] ): # Concatenate all texts. lowerCamelCase_ : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCamelCase_ : Union[str, Any] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCamelCase_ : Union[str, Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCamelCase_ : List[str] = { k: [t[i : i + args.max_length] for i in range(0 , A__ , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCamelCase_ : Optional[int] = dataset_tokenized.map(A__ , batched=A__ , batch_size=1000 , num_proc=4 ) lowerCamelCase_ : List[str] = 0 lowerCamelCase_ : Tuple = 0 for shard in range(0 , len(A__ ) , args.shard_size ): lowerCamelCase_ : Union[str, Any] = grouped_dataset[shard : shard + args.shard_size] lowerCamelCase_ : Optional[int] = len(dataset_snapshot["""input_ids"""] ) lowerCamelCase_ : List[str] = os.path.join(A__ , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) lowerCamelCase_ : Optional[int] = get_serialized_examples(A__ ) with tf.io.TFRecordWriter(A__ ) as out_file: for i in range(len(A__ ) ): lowerCamelCase_ : Dict = serialized_examples[i] out_file.write(A__ ) print("""Wrote file {} containing {} records""".format(A__ , A__ ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(f'''Total {args.split} records: {total_records}''' , file=A__ ) if __name__ == "__main__": snake_case__ : str = parse_args() main(args)
278
1
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class A__ ( unittest.TestCase): """simple docstring""" def __init__( self: Optional[Any] , __a: Any , __a: bool = True , __a: Dict[str, int] = None , __a: int = 32 , __a: bool = True , __a: Union[int, float] = 1 / 255 , __a: bool = True , __a: bool = True , __a: Optional[Union[float, List[float]]] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , __a: Optional[Union[float, List[float]]] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , __a: bool = True , __a: Optional[int]=7 , __a: Any=30 , __a: Optional[Any]=400 , __a: int=3 , )-> int: lowerCamelCase : Optional[Any] = parent lowerCamelCase : List[str] = do_resize lowerCamelCase : str = size if size is not None else {"""shortest_edge""": 288} lowerCamelCase : Optional[int] = size_divisor lowerCamelCase : int = do_rescale lowerCamelCase : str = rescale_factor lowerCamelCase : str = do_normalize lowerCamelCase : List[str] = do_center_crop lowerCamelCase : List[Any] = image_mean lowerCamelCase : Dict = image_std lowerCamelCase : int = do_pad lowerCamelCase : Dict = batch_size lowerCamelCase : Dict = num_channels lowerCamelCase : List[str] = min_resolution lowerCamelCase : str = max_resolution def a__ ( self: List[Any] )-> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def a__ ( self: List[str] , __a: Tuple , __a: List[str]=False )-> Optional[int]: if not batched: lowerCamelCase : List[str] = self.size["""shortest_edge"""] lowerCamelCase : Optional[int] = image_inputs[0] if isinstance(__a , Image.Image ): lowerCamelCase , lowerCamelCase : Dict = image.size else: lowerCamelCase , lowerCamelCase : str = image.shape[1], image.shape[2] lowerCamelCase : Dict = size / min(__a , __a ) if h < w: lowerCamelCase , lowerCamelCase : List[Any] = size, scale * w else: lowerCamelCase , lowerCamelCase : int = scale * h, size lowerCamelCase : Any = int((1_333 / 800) * size ) if max(__a , __a ) > max_size: lowerCamelCase : Union[str, Any] = max_size / max(__a , __a ) lowerCamelCase : Any = newh * scale lowerCamelCase : Dict = neww * scale lowerCamelCase , lowerCamelCase : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 ) lowerCamelCase , lowerCamelCase : Optional[Any] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowerCamelCase : List[str] = [] for image in image_inputs: lowerCamelCase , lowerCamelCase : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase : List[Any] = max(__a , key=lambda __a : item[0] )[0] lowerCamelCase : str = max(__a , key=lambda __a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[Any] =BridgeTowerImageProcessor if is_vision_available() else None def a__ ( self: Any )-> Dict: lowerCamelCase : List[str] = BridgeTowerImageProcessingTester(self ) @property def a__ ( self: List[str] )-> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self: Optional[int] )-> Dict: lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , """image_mean""" ) ) self.assertTrue(hasattr(__a , """image_std""" ) ) self.assertTrue(hasattr(__a , """do_normalize""" ) ) self.assertTrue(hasattr(__a , """do_resize""" ) ) self.assertTrue(hasattr(__a , """size""" ) ) self.assertTrue(hasattr(__a , """size_divisor""" ) ) def a__ ( self: Union[str, Any] )-> Tuple: pass def a__ ( self: List[Any] )-> Any: # Initialize image processor lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input lowerCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase : str = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase : Dict = image_processing(__a , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase : List[Any] = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self: Optional[Any] )-> Union[str, Any]: # Initialize image processor lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input lowerCamelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase : List[str] = image_processing(__a , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase : int = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self: Optional[Any] )-> str: # Initialize image processor lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase : Dict = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase : Optional[int] = image_processing(__a , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase : Any = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
42
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A__ : """simple docstring""" def __init__( self: List[str] , __a: List[str] , __a: Dict=13 , __a: Tuple=7 , __a: Dict=False , __a: str=True , __a: List[Any]=False , __a: Dict=True , __a: Any=33 , __a: Optional[Any]=32 , __a: List[Any]=5 , __a: Any=4 , __a: Dict=37 , __a: str="gelu" , __a: str=0.1 , __a: int=0.1 , __a: Optional[int]=512 , __a: List[Any]=16 , __a: int=2 , __a: int=0.02 , __a: Optional[int]=3 , __a: str=4 , __a: Tuple=None , )-> Tuple: lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Tuple = batch_size lowerCamelCase : Any = seq_length lowerCamelCase : Any = is_training lowerCamelCase : Tuple = use_input_mask lowerCamelCase : int = use_token_type_ids lowerCamelCase : List[str] = use_labels lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : Tuple = hidden_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : Optional[int] = num_attention_heads lowerCamelCase : Optional[Any] = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Union[str, Any] = hidden_dropout_prob lowerCamelCase : Optional[Any] = attention_probs_dropout_prob lowerCamelCase : Any = max_position_embeddings lowerCamelCase : str = type_vocab_size lowerCamelCase : List[Any] = type_sequence_label_size lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : Union[str, Any] = num_labels lowerCamelCase : Optional[Any] = num_choices lowerCamelCase : Any = scope def a__ ( self: Optional[int] )-> List[Any]: lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Dict = None if self.use_input_mask: lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Any = None lowerCamelCase : int = None lowerCamelCase : Union[str, Any] = None if self.use_labels: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self: Tuple )-> Union[str, Any]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a__ ( self: List[Any] , __a: List[str] , __a: str , __a: Tuple , __a: List[str] , __a: List[str] , __a: str )-> int: lowerCamelCase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase : int = model(__a , attention_mask=__a ) lowerCamelCase : str = model(__a ) lowerCamelCase : Optional[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self: int , __a: Union[str, Any] , __a: Optional[int] , __a: List[str] , __a: str , __a: List[str] , __a: Tuple )-> int: lowerCamelCase : str = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() lowerCamelCase : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self: List[str] , __a: List[Any] , __a: List[str] , __a: int , __a: Union[str, Any] , __a: List[Any] , __a: Tuple )-> List[str]: lowerCamelCase : Tuple = self.num_labels lowerCamelCase : Dict = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() lowerCamelCase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self: Optional[int] )-> Optional[int]: lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Tuple = config_and_inputs lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : Any =False snake_case__ : Dict =( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) snake_case__ : Dict =() snake_case__ : Optional[int] =( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Any =True def a__ ( self: Optional[int] )-> Optional[int]: lowerCamelCase : Optional[Any] = EsmModelTester(self ) lowerCamelCase : Any = ConfigTester(self , config_class=__a , hidden_size=37 ) def a__ ( self: List[Any] )-> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self: int )-> Optional[Any]: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def a__ ( self: Tuple )-> Any: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase : Tuple = type self.model_tester.create_and_check_model(*__a ) def a__ ( self: List[str] )-> Tuple: lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def a__ ( self: int )-> Optional[Any]: lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def a__ ( self: Any )-> List[Any]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : int = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def a__ ( self: str )-> List[str]: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase : Union[str, Any] = EsmEmbeddings(config=__a ) lowerCamelCase : List[str] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase : Union[str, Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase : Optional[Any] = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def a__ ( self: Optional[int] )-> int: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase : Any = EsmEmbeddings(config=__a ) lowerCamelCase : Dict = torch.empty(2 , 4 , 30 ) lowerCamelCase : List[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase : Any = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase : List[str] = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def a__ ( self: Any )-> Optional[Any]: pass @unittest.skip("""Esm does not support embedding resizing""" ) def a__ ( self: Dict )-> Dict: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self: List[str] )-> Dict: pass @require_torch class A__ ( __lowercase): """simple docstring""" @slow def a__ ( self: Any )-> Union[str, Any]: with torch.no_grad(): lowerCamelCase : Union[str, Any] = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() lowerCamelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : Tuple = model(__a )[0] lowerCamelCase : Dict = 33 lowerCamelCase : List[str] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) lowerCamelCase : Tuple = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def a__ ( self: Dict )-> str: with torch.no_grad(): lowerCamelCase : Any = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() lowerCamelCase : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase : Any = model(__a )[0] # compare the actual values for a slice. lowerCamelCase : Tuple = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
42
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCAmelCase_ : int = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __A ( unittest.TestCase ): def __init__( self :Optional[Any] , __snake_case :Dict , __snake_case :List[str]=7 , __snake_case :Union[str, Any]=3 , __snake_case :int=18 , __snake_case :str=30 , __snake_case :int=4_00 , __snake_case :Dict=None , __snake_case :Tuple=True , __snake_case :Any=True , __snake_case :Tuple=None , ): '''simple docstring''' __magic_name__ : str =size if size is not None else {"""height""": 20, """width""": 20} __magic_name__ : Optional[Any] =parent __magic_name__ : Optional[Any] =batch_size __magic_name__ : Optional[int] =num_channels __magic_name__ : List[Any] =image_size __magic_name__ : Optional[Any] =min_resolution __magic_name__ : str =max_resolution __magic_name__ : List[Any] =size __magic_name__ : Any =do_normalize __magic_name__ : int =do_convert_rgb __magic_name__ : Any =[5_12, 10_24, 20_48, 40_96] __magic_name__ : List[Any] =patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def A__ ( self :Dict ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] ="""https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" __magic_name__ : Any =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = PixaStructImageProcessor if is_vision_available() else None def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =PixaStructImageProcessingTester(self ) @property def A__ ( self :str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.image_processor_tester.prepare_dummy_image() __magic_name__ : Dict =self.image_processing_class(**self.image_processor_dict ) __magic_name__ : str =20_48 __magic_name__ : Tuple =image_processor(__snake_case , return_tensors="""pt""" , max_patches=__snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : Union[str, Any] =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __magic_name__ : Union[str, Any] =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : List[str] =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : str =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 __magic_name__ : List[Any] =True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__snake_case ): __magic_name__ : Optional[Any] =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches __magic_name__ : Optional[int] ="""Hello""" __magic_name__ : List[Any] =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : Optional[Any] =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) __magic_name__ : List[Any] =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __magic_name__ : Optional[Any] =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : str =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __magic_name__ : Union[str, Any] =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __magic_name__ : Tuple =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : str =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = PixaStructImageProcessor if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Tuple =PixaStructImageProcessingTester(self , num_channels=4 ) __magic_name__ : Optional[int] =3 @property def A__ ( self :Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : str =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __magic_name__ : Any =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : List[Any] =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
21
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowercase (_lowerCAmelCase ): __lowerCAmelCase = torch.exp(_lowerCAmelCase ) __lowerCAmelCase = torch.sum(_lowerCAmelCase , dim=1 ) # sum of exp(x_i) __lowerCAmelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCAmelCase ) - B / A class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ ) -> Optional[Any]: super().__init__() __lowerCAmelCase = config.output_attentions __lowerCAmelCase = config.output_hidden_states __lowerCAmelCase = nn.ModuleList([BertLayer(snake_case_ ) for _ in range(config.num_hidden_layers )] ) __lowerCAmelCase = nn.ModuleList([BertHighway(snake_case_ ) for _ in range(config.num_hidden_layers )] ) __lowerCAmelCase = [-1 for _ in range(config.num_hidden_layers )] def A__ ( self , snake_case_ ) -> List[Any]: if (type(snake_case_ ) is float) or (type(snake_case_ ) is int): for i in range(len(self.early_exit_entropy ) ): __lowerCAmelCase = x else: __lowerCAmelCase = x def A__ ( self , snake_case_ ) -> Dict: __lowerCAmelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def A__ ( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , ) -> List[str]: __lowerCAmelCase = () __lowerCAmelCase = () __lowerCAmelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __lowerCAmelCase = all_hidden_states + (hidden_states,) __lowerCAmelCase = layer_module( snake_case_ , snake_case_ , head_mask[i] , snake_case_ , snake_case_ ) __lowerCAmelCase = layer_outputs[0] if self.output_attentions: __lowerCAmelCase = all_attentions + (layer_outputs[1],) __lowerCAmelCase = (hidden_states,) if self.output_hidden_states: __lowerCAmelCase = current_outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase = current_outputs + (all_attentions,) __lowerCAmelCase = self.highway[i](snake_case_ ) # logits, pooled_output if not self.training: __lowerCAmelCase = highway_exit[0] __lowerCAmelCase = entropy(snake_case_ ) __lowerCAmelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowerCAmelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowerCAmelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(snake_case_ , i + 1 ) else: __lowerCAmelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowerCAmelCase = all_hidden_states + (hidden_states,) __lowerCAmelCase = (hidden_states,) if self.output_hidden_states: __lowerCAmelCase = outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase = outputs + (all_attentions,) __lowerCAmelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , A__ , ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ ) -> Tuple: super().__init__(snake_case_ ) __lowerCAmelCase = config __lowerCAmelCase = BertEmbeddings(snake_case_ ) __lowerCAmelCase = DeeBertEncoder(snake_case_ ) __lowerCAmelCase = BertPooler(snake_case_ ) self.init_weights() def A__ ( self ) -> Dict: self.encoder.init_highway_pooler(self.pooler ) def A__ ( self ) -> List[Any]: return self.embeddings.word_embeddings def A__ ( self , snake_case_ ) -> Tuple: __lowerCAmelCase = value def A__ ( self , snake_case_ ) -> List[str]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(snake_case_ ) @add_start_docstrings_to_model_forward(snake_case_ ) def A__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , ) -> Optional[Any]: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __lowerCAmelCase = input_ids.size() elif inputs_embeds is not None: __lowerCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __lowerCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCAmelCase = torch.ones(snake_case_ , device=snake_case_ ) if encoder_attention_mask is None: __lowerCAmelCase = torch.ones(snake_case_ , device=snake_case_ ) if token_type_ids is None: __lowerCAmelCase = torch.zeros(snake_case_ , dtype=torch.long , device=snake_case_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCAmelCase = self.get_extended_attention_mask(snake_case_ , snake_case_ , snake_case_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowerCAmelCase = encoder_attention_mask[:, None, None, :] __lowerCAmelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __lowerCAmelCase = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCAmelCase = self.get_head_mask(snake_case_ , self.config.num_hidden_layers ) __lowerCAmelCase = self.embeddings( input_ids=snake_case_ , position_ids=snake_case_ , token_type_ids=snake_case_ , inputs_embeds=snake_case_ ) __lowerCAmelCase = self.encoder( snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(snake_case_ ) __lowerCAmelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ) -> Optional[int]: __lowerCAmelCase = message __lowerCAmelCase = exit_layer # start from 1! class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ ) -> List[Any]: super().__init__() __lowerCAmelCase = BertPooler(snake_case_ ) __lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCAmelCase = nn.Linear(config.hidden_size , config.num_labels ) def A__ ( self , snake_case_ ) -> Optional[int]: # Pooler __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(snake_case_ ) # "return" pooler_output # BertModel __lowerCAmelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowerCAmelCase = bmodel_output[1] __lowerCAmelCase = self.dropout(snake_case_ ) __lowerCAmelCase = self.classifier(snake_case_ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , A__ , ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ ) -> Optional[Any]: super().__init__(snake_case_ ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = config.num_hidden_layers __lowerCAmelCase = DeeBertModel(snake_case_ ) __lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(snake_case_ ) def A__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=-1 , snake_case_=False , ) -> Optional[int]: __lowerCAmelCase = self.num_layers try: __lowerCAmelCase = self.bert( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , position_ids=snake_case_ , head_mask=snake_case_ , inputs_embeds=snake_case_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowerCAmelCase = outputs[1] __lowerCAmelCase = self.dropout(snake_case_ ) __lowerCAmelCase = self.classifier(snake_case_ ) __lowerCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCAmelCase = e.message __lowerCAmelCase = e.exit_layer __lowerCAmelCase = outputs[0] if not self.training: __lowerCAmelCase = entropy(snake_case_ ) __lowerCAmelCase = [] __lowerCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCAmelCase = MSELoss() __lowerCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowerCAmelCase = [] for highway_exit in outputs[-1]: __lowerCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(snake_case_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowerCAmelCase = MSELoss() __lowerCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(snake_case_ ) if train_highway: __lowerCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowerCAmelCase = (loss,) + outputs if not self.training: __lowerCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
465
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : str = None @staticmethod def SCREAMING_SNAKE_CASE ( ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : str ,**lowercase__ : Any ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Tuple ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self : Tuple ): if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict ): return F"`pip install {cls.pip_package or cls.name}`" class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 'optuna' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_optuna_available() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : str ,lowercase__ : int ,lowercase__ : str ,**lowercase__ : Optional[int] ): return run_hp_search_optuna(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ): return default_hp_space_optuna(lowercase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 'ray' SCREAMING_SNAKE_CASE : Union[str, Any] = '\'ray[tune]\'' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_ray_available() def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : str ,**lowercase__ : Union[str, Any] ): return run_hp_search_ray(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Optional[int] ): return default_hp_space_ray(lowercase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 'sigopt' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_sigopt_available() def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ,lowercase__ : str ,**lowercase__ : Optional[int] ): return run_hp_search_sigopt(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[Any] ): return default_hp_space_sigopt(lowercase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 'wandb' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_wandb_available() def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : str ,**lowercase__ : Any ): return run_hp_search_wandb(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Any ): return default_hp_space_wandb(lowercase__ ) lowerCAmelCase__ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _A ( ): """simple docstring""" __lowercase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(A__ ) > 0: __lowercase = available_backends[0].name if len(A__ ) > 1: logger.info( F"{len(A__ )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
624
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = '''Hello world! cécé herlolip''' lowerCAmelCase__ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = BertAbsConfig( temp_dir='''.''' , finetune_bert=A__ , large=A__ , share_emb=A__ , use_bert_emb=A__ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __lowercase = torch.load(A__ , lambda A__ , A__ : storage ) __lowercase = AbsSummarizer(A__ , torch.device('''cpu''' ) , A__ ) original.eval() __lowercase = BertAbsSummarizer(A__ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __lowercase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __lowercase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(A__ )) ) __lowercase = torch.tensor(A__ ).unsqueeze(0 ) __lowercase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(A__ )) ) __lowercase = torch.tensor(A__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __lowercase = encoder_input_ids __lowercase = decoder_input_ids __lowercase = __lowercase = None __lowercase = None __lowercase = __lowercase = None __lowercase = __lowercase = None __lowercase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __lowercase = original(A__ , A__ , A__ , A__ , A__ , A__ , A__ )[0] __lowercase = original.generator(A__ ) __lowercase = new_model( A__ , A__ , A__ , A__ , A__ )[0] __lowercase = new_model.generator(A__ ) __lowercase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(A__ ) ) __lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(A__ ) ) __lowercase = torch.allclose(A__ , A__ , atol=1e-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) lowerCAmelCase__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
624
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : Tuple = inspect.getfile(accelerate.test_utils ) __lowerCamelCase : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __lowerCamelCase : Dict = test_metrics @require_cpu def a_ ( self : Optional[Any] ): """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def a_ ( self : Optional[int] ): """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def a_ ( self : List[Any] ): """simple docstring""" self.test_metrics.main() @require_multi_gpu def a_ ( self : Any ): """simple docstring""" print(f"Found {torch.cuda.device_count()} devices." ) __lowerCamelCase : str = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a__ , env=os.environ.copy() )
150
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = TypeVar("""DatasetType""", Dataset, IterableDataset) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "first_exhausted" ,): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase ,(Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: A_ , A_ : Optional[int] = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,stopping_strategy=_lowerCAmelCase ) else: return _interleave_iterable_datasets( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,stopping_strategy=_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 0 ,): '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase ,(Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: A_ , A_ : Dict = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,axis=_lowerCAmelCase ) else: return _concatenate_iterable_datasets(_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,axis=_lowerCAmelCase )
569
0
'''simple docstring''' def __A ( lowerCAmelCase_ ): if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _UpperCAmelCase : Any = grid[0] for row_n in range(1 , len(lowerCAmelCase_ ) ): _UpperCAmelCase : Any = grid[row_n] _UpperCAmelCase : Optional[Any] = fill_row(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = grid[row_n] return grid[-1][-1] def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): current_row[0] += row_above[0] for cell_n in range(1 , len(lowerCAmelCase_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
156
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase_ : List[Any] = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } lowerCAmelCase_ : Any = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __A ( lowerCAmelCase_ , lowerCAmelCase_=False ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = create_model( """HTSAT-tiny""" , """roberta""" , lowerCAmelCase_ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCAmelCase_ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Any = {} _UpperCAmelCase : List[str] = r""".*sequential.(\d+).*""" _UpperCAmelCase : int = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCAmelCase : Optional[int] = key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): # replace sequential layers with list _UpperCAmelCase : int = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).group(1 ) _UpperCAmelCase : Any = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(lowerCAmelCase_ )//3}.linear." ) elif re.match(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Tuple = int(re.match(lowerCAmelCase_ , lowerCAmelCase_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _UpperCAmelCase : str = 1 if projecton_layer == 0 else 2 _UpperCAmelCase : Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value _UpperCAmelCase : Dict = value _UpperCAmelCase : Optional[Any] = mixed_qkv.size(0 ) // 3 _UpperCAmelCase : Dict = mixed_qkv[:qkv_dim] _UpperCAmelCase : Union[str, Any] = mixed_qkv[qkv_dim : qkv_dim * 2] _UpperCAmelCase : Any = mixed_qkv[qkv_dim * 2 :] _UpperCAmelCase : Dict = query_layer _UpperCAmelCase : Optional[Any] = key_layer _UpperCAmelCase : Tuple = value_layer else: _UpperCAmelCase : str = value return model_state_dict def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = init_clap(lowerCAmelCase_ , enable_fusion=lowerCAmelCase_ ) clap_model.eval() _UpperCAmelCase : Union[str, Any] = clap_model.state_dict() _UpperCAmelCase : Optional[Any] = rename_state_dict(lowerCAmelCase_ ) _UpperCAmelCase : Any = ClapConfig() _UpperCAmelCase : Dict = enable_fusion _UpperCAmelCase : List[Any] = ClapModel(lowerCAmelCase_ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) transformers_config.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') lowerCAmelCase_ : Dict = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
156
1
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __A = logging.get_logger(__name__) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :Dict = to_pil_image(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ :Tuple = pil_image.size lowerCAmelCase__ :Dict = pytesseract.image_to_data(_SCREAMING_SNAKE_CASE , lang=_SCREAMING_SNAKE_CASE , output_type='dict' , config=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowerCAmelCase__ :List[str] = [idx for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if not word.strip()] lowerCAmelCase__ :Optional[Any] = [word for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :List[str] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :str = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :List[str] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :int = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ :List[Any] = [] for x, y, w, h in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Any = [x, y, x + w, y + h] actual_boxes.append(_SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes lowerCAmelCase__ :str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[int] = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_5_5 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = "" , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase__ :Union[str, Any] = get_size_dict(__UpperCAmelCase ) lowerCAmelCase__ :int = do_resize lowerCAmelCase__ :Union[str, Any] = size lowerCAmelCase__ :List[str] = resample lowerCAmelCase__ :int = do_rescale lowerCAmelCase__ :int = rescale_value lowerCAmelCase__ :List[Any] = do_normalize lowerCAmelCase__ :Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ :List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ :Tuple = apply_ocr lowerCAmelCase__ :List[str] = ocr_lang lowerCAmelCase__ :Any = tesseract_config def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowerCAmelCase__ :Tuple = (size['height'], size['width']) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ :Tuple = size if size is not None else self.size lowerCAmelCase__ :str = get_size_dict(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ :int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ :str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ :str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ :str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ :List[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ :List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ :Union[str, Any] = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ :Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ :str = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowerCAmelCase__ :Optional[Any] = [to_numpy_array(__UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowerCAmelCase__ :Union[str, Any] = [] lowerCAmelCase__ :Dict = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ :Dict = apply_tesseract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) words_batch.append(__UpperCAmelCase ) boxes_batch.append(__UpperCAmelCase ) if do_resize: lowerCAmelCase__ :Optional[int] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: lowerCAmelCase__ :List[Any] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: lowerCAmelCase__ :List[Any] = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] lowerCAmelCase__ :Tuple = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowerCAmelCase__ :List[str] = BatchFeature(data={'pixel_values': images} , tensor_type=__UpperCAmelCase ) if apply_ocr: lowerCAmelCase__ :int = words_batch lowerCAmelCase__ :Tuple = boxes_batch return data
93
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: UpperCamelCase : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCamelCase : Dict = new_module UpperCamelCase : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCamelCase : Union[str, Any] = tensor_name in module._buffers UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False else: UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: UpperCamelCase : Union[str, Any] = new_value.T UpperCamelCase : Union[str, Any] = old_value.__dict__ if is_abit: UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) UpperCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[str] = value.to(snake_case__ ) else: UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: UpperCamelCase : Optional[int] = new_value else: UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) UpperCamelCase : List[str] = new_value def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int: for name, module in model.named_children(): if current_key_name is None: UpperCamelCase : str = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape else: UpperCamelCase : Any = module.in_features UpperCamelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase : Any = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase : int = True # Store the module class in case we need to transpose the weight later UpperCamelCase : Any = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase : List[str] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] ) UpperCamelCase : Optional[int] = len(snake_case__ ) > 0 # Check if it is a base model UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase : List[Any] = list(model.named_children() ) UpperCamelCase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ ) UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys UpperCamelCase : Tuple = ['.weight', '.bias'] UpperCamelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
40
0
UpperCAmelCase__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def _A( UpperCamelCase__ : bytes ) -> Union[str, Any]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(lowerCAmelCase__ ) __lowercase = ''.join(bin(lowerCAmelCase__ )[2:].zfill(8 ) for byte in data ) __lowercase = len(lowerCAmelCase__ ) % 6 != 0 if padding_needed: # The padding that will be added later __lowercase = b'=' * ((6 - len(lowerCAmelCase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase__ ) % 6) else: __lowercase = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowerCAmelCase__ ) , 6 ) ).encode() + padding ) def _A( UpperCamelCase__ : str ) -> List[str]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = ( 'argument should be a bytes-like object or ASCII string, ' F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(lowerCAmelCase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: __lowercase = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) __lowercase = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __lowercase = encoded_data[:-padding] __lowercase = ''.join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __lowercase = ''.join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data ) __lowercase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowerCAmelCase__ ) , 8 ) ] return bytes(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
709
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCamelCase : Tuple = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
352
from __future__ import annotations import numpy as np def __a ( __lowerCAmelCase ) -> Optional[Any]: return np.maximum(0 , __lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
352
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case_ : List[str] = False class __a (unittest.TestCase ): pass @nightly @require_torch_gpu class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Any = generator.manual_seed(0 ) UpperCAmelCase_ : Dict = pipe.dual_guided( prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077''' UpperCAmelCase_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe.dual_guided( prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe.text_to_image( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
719
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = range_bbox def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : List[str] = bbox[i, j, 3] UpperCAmelCase_ : Dict = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[str] = bbox[i, j, 2] UpperCAmelCase_ : Tuple = bbox[i, j, 0] UpperCAmelCase_ : Union[str, Any] = t UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Any = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Union[str, Any] = False __a : int = False def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str: """simple docstring""" return True def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = LiltModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Tuple = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @slow class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ ) UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ ) UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ ) UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] ) UpperCAmelCase_ : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , ) self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
644
0
from collections import namedtuple snake_case__ : List[Any] = namedtuple('''from_to''', '''from_ to''') snake_case__ : Dict = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 1_0_0_0), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + """, """.join(_lowerCAmelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + """, """.join(_lowerCAmelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
392
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=13 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : int=2 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : str=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : int=37 , lowerCamelCase_ : Dict="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Optional[Any]=10 , lowerCamelCase_ : str=0.02 , lowerCamelCase_ : str="divided_space_time" , lowerCamelCase_ : Dict=None , ) ->Optional[int]: '''simple docstring''' UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_frames UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = attention_type UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope UpperCAmelCase__ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCAmelCase__ = (image_size // patch_size) ** 2 UpperCAmelCase__ = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase ( self : int ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : str ) ->List[Any]: '''simple docstring''' UpperCAmelCase__ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) UpperCAmelCase__ = self.num_labels return config def UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ) ->int: '''simple docstring''' UpperCAmelCase__ = TimesformerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = TimesformerForVideoClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase_ ) # verify the logits shape UpperCAmelCase__ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCamelCase_ ) def UpperCAmelCase ( self : str ) ->Any: '''simple docstring''' UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : List[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCamelCase__ : Union[str, Any] = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : Tuple = False UpperCamelCase__ : int = False UpperCamelCase__ : List[Any] = False def UpperCAmelCase ( self : int ) ->Dict: '''simple docstring''' UpperCAmelCase__ = TimesformerModelTester(self ) UpperCAmelCase__ = ConfigTester( self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any=False ) ->int: '''simple docstring''' UpperCAmelCase__ = copy.deepcopy(lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def UpperCAmelCase ( self : str ) ->Any: '''simple docstring''' pass def UpperCAmelCase ( self : Optional[Any] ) ->Any: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def UpperCAmelCase ( self : Optional[int] ) ->Any: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase_ ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def UpperCAmelCase ( self : Tuple ) ->int: '''simple docstring''' UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCAmelCase ( self : int ) ->Dict: '''simple docstring''' UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCamelCase_ ) @slow def UpperCAmelCase ( self : Optional[int] ) ->Any: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TimesformerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def UpperCAmelCase ( self : str ) ->Dict: '''simple docstring''' if not self.has_attentions: pass else: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = self.model_tester.seq_length UpperCAmelCase__ = self.model_tester.num_frames UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) UpperCAmelCase__ = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCamelCase_ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase ( self : List[str] ) ->int: '''simple docstring''' def check_hidden_states_output(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ): UpperCAmelCase__ = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) UpperCAmelCase__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( ): UpperCAmelCase__ = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) UpperCAmelCase__ = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : int ) ->List[Any]: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : int ) ->Any: '''simple docstring''' UpperCAmelCase__ = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCamelCase_ ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_video() UpperCAmelCase__ = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase__ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCAmelCase__ = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
392
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _lowerCAmelCase :Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[Any] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _lowerCAmelCase :Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
179
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase :int = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[str] = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
179
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCamelCase ) , 'Tatoeba directory does not exist.' ) class __magic_name__ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : Any ): __snake_case = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Optional[int] ): self.resolver.convert_models(["heb-eng"] ) @slow def lowerCAmelCase ( self : Optional[int] ): __snake_case = self.resolver.write_model_card("opus-mt-he-en" , dry_run=UpperCAmelCase_ ) assert mmeta["long_pair"] == "heb-eng"
163
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( lowerCamelCase_ = 1_000_000) -> int: UpperCamelCase__ : int = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2).is_integer(): num_cuboids += ( min(lowerCamelCase_ , sum_shortest_sides // 2) - max(1 , sum_shortest_sides - max_cuboid_size) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
596
0
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( a_: int ): if num <= 0: _UpperCAmelCase : List[Any] = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(a_ ) _UpperCAmelCase : Dict = [True] * (num + 1) _UpperCAmelCase : Any = [] _UpperCAmelCase : str = 2 _UpperCAmelCase : Optional[Any] = int(math.sqrt(a_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_ ) # Set multiples of start be False for i in range(start * start, num + 1, a_ ): if sieve[i] is True: _UpperCAmelCase : List[Any] = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(a_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
257
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __a = 'hf-internal-testing/tiny-random-bert' __a = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') __a = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : int = cached_file(lowerCAmelCase__ , lowerCAmelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCAmelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) with open(os.path.join(lowerCAmelCase__ , "refs" , "main" ) ) as f: _UpperCAmelCase : int = f.read() self.assertEqual(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "snapshots" , lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) # File is cached at the same place the second time. _UpperCAmelCase : Dict = cached_file(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Using a specific revision to test the full commit hash. _UpperCAmelCase : Optional[int] = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , revision="9b8c223" ) self.assertEqual(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "snapshots" , lowerCAmelCase__ , lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase__ , "is not a valid model identifier" ): _UpperCAmelCase : Any = cached_file("tiny-random-bert" , lowerCAmelCase__ ) with self.assertRaisesRegex(lowerCAmelCase__ , "is not a valid git identifier" ): _UpperCAmelCase : List[Any] = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , revision="aaaa" ) with self.assertRaisesRegex(lowerCAmelCase__ , "does not appear to have a file named" ): _UpperCAmelCase : Union[str, Any] = cached_file(lowerCAmelCase__ , "conf" ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase__ , "does not appear to have a file named" ): _UpperCAmelCase : Dict = cached_file(lowerCAmelCase__ , "conf" ) with open(os.path.join(lowerCAmelCase__ , "refs" , "main" ) ) as f: _UpperCAmelCase : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase__ , ".no_exist" , lowerCAmelCase__ , "conf" ) ) ) _UpperCAmelCase : Optional[int] = cached_file(lowerCAmelCase__ , "conf" , _raise_exceptions_for_missing_entries=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) _UpperCAmelCase : str = cached_file(lowerCAmelCase__ , "conf" , local_files_only=lowerCAmelCase__ , _raise_exceptions_for_missing_entries=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) _UpperCAmelCase : Any = mock.Mock() _UpperCAmelCase : str = 5_0_0 _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : Tuple = HTTPError _UpperCAmelCase : Optional[int] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head: _UpperCAmelCase : Optional[Any] = cached_file(lowerCAmelCase__ , "conf" , _raise_exceptions_for_connection_errors=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCAmelCase__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowerCAmelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCAmelCase__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowerCAmelCase__ , revision="ahaha" ) _UpperCAmelCase : Optional[Any] = get_file_from_repo("bert-base-cased" , lowerCAmelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. _UpperCAmelCase : List[Any] = json.loads(open(lowerCAmelCase__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_6_8 ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Union[str, Any] = Path(lowerCAmelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowerCAmelCase__ , "a.txt" ) , str(lowerCAmelCase__ ) ) self.assertIsNone(get_file_from_repo(lowerCAmelCase__ , "b.txt" ) )
257
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : int=7 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Optional[int]=18 , lowerCAmelCase : Union[str, Any]=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Any=None , lowerCAmelCase : str=True , ): lowercase : List[str] = size if size is not None else {'''height''': 18, '''width''': 18} lowercase : List[Any] = parent lowercase : int = batch_size lowercase : Tuple = num_channels lowercase : List[Any] = image_size lowercase : Union[str, Any] = min_resolution lowercase : Optional[Any] = max_resolution lowercase : Any = do_resize lowercase : Optional[Any] = size lowercase : Optional[int] = apply_ocr def _lowerCAmelCase ( self : List[str] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase ( __lowerCamelCase , unittest.TestCase ): a__: Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowerCAmelCase ( self : str ): lowercase : Any = LayoutLMvaImageProcessingTester(self ) @property def _lowerCAmelCase ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Optional[Any] ): lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''apply_ocr''' ) ) def _lowerCAmelCase ( self : Any ): lowercase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) lowercase : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _lowerCAmelCase ( self : Dict ): pass def _lowerCAmelCase ( self : Optional[Any] ): # Initialize image_processing lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase ) self.assertIsInstance(encoding.boxes , lowerCAmelCase ) # Test batched lowercase : Optional[Any] = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowercase : List[str] = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowercase : Union[str, Any] = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowerCAmelCase ( self : Any ): # with apply_OCR = True lowercase : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset lowercase : int = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) lowercase : Optional[Any] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) lowercase : Any = image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowercase : Union[str, Any] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 lowercase : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase ) self.assertListEqual(encoding.boxes , lowerCAmelCase ) # with apply_OCR = False lowercase : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase ) lowercase : Any = image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
583
class UpperCAmelCase : def __init__( self : Union[str, Any] , lowerCAmelCase : str = "" , lowerCAmelCase : bool = False ): # Mapping from the first character of the prefix of the node lowercase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowercase : Union[str, Any] = is_leaf lowercase : Optional[int] = prefix def _lowerCAmelCase ( self : str , lowerCAmelCase : str ): lowercase : Optional[int] = 0 for q, w in zip(self.prefix , lowerCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowerCAmelCase ( self : int , lowerCAmelCase : list[str] ): for word in words: self.insert(lowerCAmelCase ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase : str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase : List[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase : Tuple = RadixNode(prefix=lowerCAmelCase , is_leaf=lowerCAmelCase ) else: lowercase : Union[str, Any] = self.nodes[word[0]] lowercase , lowercase , lowercase : Any = incoming_node.match( lowerCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase : Tuple = remaining_prefix lowercase : Tuple = self.nodes[matching_string[0]] lowercase : Optional[Any] = RadixNode(lowerCAmelCase , lowerCAmelCase ) lowercase : Any = aux_node if remaining_word == "": lowercase : Tuple = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase : str ): lowercase : List[Any] = self.nodes.get(word[0] , lowerCAmelCase ) if not incoming_node: return False else: lowercase , lowercase , lowercase : Dict = incoming_node.match( lowerCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase : str ): lowercase : Optional[int] = self.nodes.get(word[0] , lowerCAmelCase ) if not incoming_node: return False else: lowercase , lowercase , lowercase : Tuple = incoming_node.match( lowerCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase : List[Any] = list(self.nodes.values() )[0] lowercase : List[Any] = merging_node.is_leaf self.prefix += merging_node.prefix lowercase : List[str] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase : Dict = False # If there is 1 edge, we merge it with its child else: lowercase : Optional[int] = list(incoming_node.nodes.values() )[0] lowercase : Dict = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase : Dict = merging_node.nodes return True def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int = 0 ): if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCamelCase_ ( ): lowercase : Optional[int] = '''banana bananas bandana band apple all beast'''.split() lowercase : str = RadixNode() root.insert_many(UpperCAmelCase_ ) assert all(root.find(UpperCAmelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCamelCase_ ( ): assert test_trie() def lowerCamelCase_ ( ): lowercase : List[str] = RadixNode() lowercase : Optional[int] = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(UpperCAmelCase_ ) print('''Words:''' , UpperCAmelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
583
1
def lowerCAmelCase_ ( lowercase: Any ) -> int: '''simple docstring''' if not head: return True # split the list to two parts _UpperCamelCase , _UpperCamelCase: List[str] = head.next, head while fast and fast.next: _UpperCamelCase: Union[str, Any] = fast.next.next _UpperCamelCase: Optional[int] = slow.next _UpperCamelCase: List[str] = slow.next _UpperCamelCase: List[str] = None # Don't forget here! But forget still works! # reverse the second part _UpperCamelCase: int = None while second: _UpperCamelCase: Union[str, Any] = second.next _UpperCamelCase: List[str] = node _UpperCamelCase: Union[str, Any] = second _UpperCamelCase: Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _UpperCamelCase: List[str] = node.next _UpperCamelCase: List[Any] = head.next return True def lowerCAmelCase_ ( lowercase: Union[str, Any] ) -> Optional[int]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) _UpperCamelCase: Union[str, Any] = head while fast and fast.next: _UpperCamelCase , _UpperCamelCase: Tuple = fast.next.next, slow.next # 2. Push the second half into the stack _UpperCamelCase: Dict = [slow.val] while slow.next: _UpperCamelCase: Optional[int] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _UpperCamelCase: Dict = cur.next return True def lowerCAmelCase_ ( lowercase: int ) -> List[Any]: '''simple docstring''' if not head or not head.next: return True _UpperCamelCase: Union[str, Any] = {} _UpperCamelCase: Any = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: _UpperCamelCase: Tuple = [pos] _UpperCamelCase: Optional[Any] = head.next pos += 1 _UpperCamelCase: List[str] = pos - 1 _UpperCamelCase: Optional[Any] = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: _UpperCamelCase: int = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
714
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') UpperCAmelCase_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __magic_name__ : """simple docstring""" lowerCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) lowerCAmelCase : Optional[str] = field(default=__a , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCAmelCase : Optional[str] = field(default=__a , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCAmelCase : Optional[float] = field( default=0.1_5 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCAmelCase : int = field(default=3_2 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) lowerCAmelCase : float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: Dict = {} if self.train_dir is not None: _UpperCamelCase: Tuple = self.train_dir if self.validation_dir is not None: _UpperCamelCase: Dict = self.validation_dir _UpperCamelCase: Any = data_files if data_files else None @dataclass class __magic_name__ : """simple docstring""" lowerCAmelCase : str = field( default=__a , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__a )} , ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) lowerCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase : str = field(default=__a , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCAmelCase : bool = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class __magic_name__ : """simple docstring""" def __init__( self : Any , _lowercase : str=192 , _lowercase : Optional[Any]=32 , _lowercase : str=4 , _lowercase : Union[str, Any]=0.6 ): """simple docstring""" _UpperCamelCase: Optional[int] = input_size _UpperCamelCase: int = mask_patch_size _UpperCamelCase: Tuple = model_patch_size _UpperCamelCase: List[str] = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) _UpperCamelCase: str = self.input_size // self.mask_patch_size _UpperCamelCase: Optional[Any] = self.mask_patch_size // self.model_patch_size _UpperCamelCase: Dict = self.rand_size**2 _UpperCamelCase: int = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Tuple ): """simple docstring""" _UpperCamelCase: Union[str, Any] = np.random.permutation(self.token_count )[: self.mask_count] _UpperCamelCase: int = np.zeros(self.token_count , dtype=_lowercase ) _UpperCamelCase: Optional[Any] = 1 _UpperCamelCase: List[Any] = mask.reshape((self.rand_size, self.rand_size) ) _UpperCamelCase: Tuple = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def lowerCAmelCase_ ( lowercase: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase: Optional[int] = torch.stack([example['''pixel_values'''] for example in examples] ) _UpperCamelCase: List[str] = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase: Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , lowercase , lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase: Union[str, Any] = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCamelCase: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase: Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. _UpperCamelCase: Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCamelCase: Union[str, Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: _UpperCamelCase: Any = ds['''train'''].train_test_split(data_args.train_val_split ) _UpperCamelCase: Dict = split['''train'''] _UpperCamelCase: Any = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase: Tuple = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _UpperCamelCase: Tuple = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowercase ) elif model_args.model_name_or_path: _UpperCamelCase: str = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase ) else: _UpperCamelCase: Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase , '''decoder_type''' ): _UpperCamelCase: str = '''simmim''' # adapt config _UpperCamelCase: Tuple = model_args.image_size if model_args.image_size is not None else config.image_size _UpperCamelCase: Union[str, Any] = model_args.patch_size if model_args.patch_size is not None else config.patch_size _UpperCamelCase: List[str] = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _UpperCamelCase: Dict = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase ) elif model_args.model_name_or_path: _UpperCamelCase: int = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase ) else: _UpperCamelCase: Dict = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _UpperCamelCase: Tuple = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _UpperCamelCase: Optional[int] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) _UpperCamelCase: Any = AutoModelForMaskedImageModeling.from_config(lowercase ) if training_args.do_train: _UpperCamelCase: Tuple = ds['''train'''].column_names else: _UpperCamelCase: Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: _UpperCamelCase: Optional[Any] = data_args.image_column_name elif "image" in column_names: _UpperCamelCase: Optional[int] = '''image''' elif "img" in column_names: _UpperCamelCase: Optional[Any] = '''img''' else: _UpperCamelCase: Union[str, Any] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _UpperCamelCase: Dict = Compose( [ Lambda(lambda lowercase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _UpperCamelCase: Tuple = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowercase: Dict ): _UpperCamelCase: Optional[Any] = [transforms(lowercase ) for image in examples[image_column_name]] _UpperCamelCase: Optional[int] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: _UpperCamelCase: Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: _UpperCamelCase: Union[str, Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase ) # Initialize our trainer _UpperCamelCase: Union[str, Any] = Trainer( model=lowercase , args=lowercase , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: _UpperCamelCase: int = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase: List[str] = last_checkpoint _UpperCamelCase: int = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCamelCase: Any = trainer.evaluate() trainer.log_metrics('''eval''' , lowercase ) trainer.save_metrics('''eval''' , lowercase ) # Write model card and (optionally) push to hub _UpperCamelCase: Union[str, Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
264
0
'''simple docstring''' import requests __SCREAMING_SNAKE_CASE : Union[str, Any] = '''YOUR API KEY''' def a_ ( UpperCamelCase_ , UpperCamelCase_ = giphy_api_key ): A_ = "+".join(query.split() ) A_ = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" A_ = requests.get(UpperCamelCase_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
452
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) def a_ ( UpperCamelCase_ ): if isinstance(UpperCamelCase_ , np.ndarray ): return list(tensor.shape ) A_ = tf.shape(UpperCamelCase_ ) if tensor.shape == tf.TensorShape(UpperCamelCase_ ): return dynamic A_ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCamelCase_ )] def a_ ( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCamelCase_ , name=UpperCamelCase_ ) def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1e-5 , UpperCamelCase_=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized A_ , A_ = tf.nn.moments(UpperCamelCase_ , axes=[axis] , keepdims=UpperCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A_ = [1] * inputs.shape.rank A_ = shape_list(UpperCamelCase_ )[axis] A_ = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) A_ = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) # Compute layer normalization using the batch_normalization # function. A_ = tf.nn.batch_normalization( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , offset=UpperCamelCase_ , scale=UpperCamelCase_ , variance_epsilon=UpperCamelCase_ , ) return outputs def a_ ( UpperCamelCase_ , UpperCamelCase_=0 , UpperCamelCase_=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A_ = tf.shape(UpperCamelCase_ ) A_ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A_ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) def a_ ( UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , tf.Tensor ): A_ = tf.convert_to_tensor(UpperCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A_ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A_ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = "input_ids" ): tf.debugging.assert_less( UpperCamelCase_ , tf.cast(UpperCamelCase_ , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCamelCase_ )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A_ = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A_ = [x for x in data if len(UpperCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) A_ = np.asarray(UpperCamelCase_ ) A_ = 1 A_ = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A_ = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCamelCase_ ): A_ = chunk_data else: A_ = data def a_ ( UpperCamelCase_ , UpperCamelCase_ ): if name in group.attrs: A_ = [n.decode("utf8" ) if hasattr(UpperCamelCase_ , "decode" ) else n for n in group.attrs[name]] else: A_ = [] A_ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(UpperCamelCase_ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def a_ ( UpperCamelCase_ ): def _expand_single_ad_tensor(UpperCamelCase_ ): if isinstance(UpperCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCamelCase_ )
452
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _a ( __A , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = RoFormerTokenizer __SCREAMING_SNAKE_CASE = RoFormerTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def __lowerCAmelCase ( self ): super().setUp() def __lowerCAmelCase ( self , **lowerCAmelCase_ ): return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **lowerCAmelCase_ ) def __lowerCAmelCase ( self , **lowerCAmelCase_ ): return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase ='永和服装饰品有限公司,今天天气非常好' _lowercase ='永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def __lowerCAmelCase ( self ): _lowercase =self.get_tokenizer() _lowercase =self.get_chinese_input_output_texts() _lowercase =tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , output_text.split() ) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase =self.get_rust_tokenizer() _lowercase =self.get_chinese_input_output_texts() _lowercase =tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , output_text.split() ) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): pass
704
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase__ = logging.get_logger(__name__) class _a ( lowerCamelCase_ ): """simple docstring""" def __lowerCAmelCase ( self , lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =[label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) == 0 or len(lowerCAmelCase_ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCAmelCase_ ) ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =[sequences] _lowercase =[] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCAmelCase_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase_ ) class _a ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCAmelCase_=ZeroShotClassificationArgumentHandler() , *lowerCAmelCase_ , **lowerCAmelCase_ ): _lowercase =args_parser super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def __lowerCAmelCase ( self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=TruncationStrategy.ONLY_FIRST , **lowerCAmelCase_ ): _lowercase =self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _lowercase =self.tokenizer.eos_token try: _lowercase =self.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) except Exception as e: if "too short" in str(lowerCAmelCase_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _lowercase =self.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def __lowerCAmelCase ( self , **lowerCAmelCase_ ): if kwargs.get("multi_class" , lowerCAmelCase_ ) is not None: _lowercase =kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _lowercase ={} if "candidate_labels" in kwargs: _lowercase =self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _lowercase =kwargs["hypothesis_template"] _lowercase ={} if "multi_label" in kwargs: _lowercase =kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ , ): if len(lowerCAmelCase_ ) == 0: pass elif len(lowerCAmelCase_ ) == 1 and "candidate_labels" not in kwargs: _lowercase =args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="This example is {}." ): _lowercase , _lowercase =self._args_parser(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ): _lowercase =self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCAmelCase_ ) - 1, **model_input, } def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =inputs["candidate_label"] _lowercase =inputs["sequence"] _lowercase ={k: inputs[k] for k in self.tokenizer.model_input_names} _lowercase =self.model(**lowerCAmelCase_ ) _lowercase ={ "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ): _lowercase =[outputs["candidate_label"] for outputs in model_outputs] _lowercase =[outputs["sequence"] for outputs in model_outputs] _lowercase =np.concatenate([output["logits"].numpy() for output in model_outputs] ) _lowercase =logits.shape[0] _lowercase =len(lowerCAmelCase_ ) _lowercase =N // n _lowercase =logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCAmelCase_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _lowercase =self.entailment_id _lowercase =-1 if entailment_id == 0 else 0 _lowercase =reshaped_outputs[..., [contradiction_id, entailment_id]] _lowercase =np.exp(lowerCAmelCase_ ) / np.exp(lowerCAmelCase_ ).sum(-1 , keepdims=lowerCAmelCase_ ) _lowercase =scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _lowercase =reshaped_outputs[..., self.entailment_id] _lowercase =np.exp(lowerCAmelCase_ ) / np.exp(lowerCAmelCase_ ).sum(-1 , keepdims=lowerCAmelCase_ ) _lowercase =list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
594
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : int = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) lowerCamelCase : Any = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) lowerCamelCase : Optional[int] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) lowerCamelCase : Dict = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 1_4]), ("2H 5D 3C AS 5S", False, [1_4, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) lowerCamelCase : int = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) lowerCamelCase : List[Any] = ( ("JH AH TH KH QH", 2_3), ("JH 9H TH KH QH", 2_2), ("JC KH JS JD JH", 2_1), ("KH KC 3S 3H 3D", 2_0), ("8C 9C 5C 3C TC", 1_9), ("JS QS 9H TS KH", 1_8), ("7C 7S KH 2H 7H", 1_7), ("3C KH 5D 5S KH", 1_6), ("QH 8H KD JH 8S", 1_5), ("2D 6D 9D TH 7D", 1_4), ) def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =randrange(len(_UpperCamelCase ) ), randrange(len(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _lowerCAmelCase ( _UpperCamelCase : int = 1_00 ) -> Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(_UpperCamelCase )) @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Dict ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =PokerHand(_UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Any ) -> Union[str, Any]: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" assert PokerHand(_UpperCamelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] ) -> Tuple: """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) -> Any: """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[PokerHand(_UpperCamelCase ) for hand in SORTED_HANDS] _SCREAMING_SNAKE_CASE =poker_hands.copy() shuffle(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =chain(sorted(_UpperCamelCase ) ) for index, hand in enumerate(_UpperCamelCase ): assert hand == poker_hands[index] def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =[PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =PokerHand('2C 4S AS 3D 5C' ) _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =[5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , 'poker_hands.txt' ) with open(_UpperCamelCase ) as file_hand: for line in file_hand: _SCREAMING_SNAKE_CASE =line[:14].strip() _SCREAMING_SNAKE_CASE =line[15:].strip() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =PokerHand(_UpperCamelCase ), PokerHand(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =player.compare_with(_UpperCamelCase ) if output == "Win": answer += 1 assert answer == 3_76
405
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int ) -> int: """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_UpperCamelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
405
1
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]=13 , _SCREAMING_SNAKE_CASE: Optional[int]=32 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: List[str]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=16 , _SCREAMING_SNAKE_CASE: Union[str, Any]=[1, 2, 1] , _SCREAMING_SNAKE_CASE: Union[str, Any]=[2, 2, 4] , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: Optional[Any]=2.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: Union[str, Any]="gelu" , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Any=0.02 , _SCREAMING_SNAKE_CASE: Any=1e-5 , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: str=True , _SCREAMING_SNAKE_CASE: Dict=10 , _SCREAMING_SNAKE_CASE: Optional[int]=8 , ) -> Dict: """simple docstring""" __lowerCAmelCase : int = parent __lowerCAmelCase : Any = batch_size __lowerCAmelCase : List[Any] = image_size __lowerCAmelCase : List[str] = patch_size __lowerCAmelCase : int = num_channels __lowerCAmelCase : List[str] = embed_dim __lowerCAmelCase : List[str] = depths __lowerCAmelCase : Optional[int] = num_heads __lowerCAmelCase : List[Any] = window_size __lowerCAmelCase : int = mlp_ratio __lowerCAmelCase : Dict = qkv_bias __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : Tuple = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = drop_path_rate __lowerCAmelCase : Optional[Any] = hidden_act __lowerCAmelCase : List[str] = use_absolute_embeddings __lowerCAmelCase : Tuple = patch_norm __lowerCAmelCase : str = layer_norm_eps __lowerCAmelCase : Tuple = initializer_range __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : int = scope __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : Any = type_sequence_label_size __lowerCAmelCase : Dict = encoder_stride def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCAmelCase : Optional[Any] = None if self.use_labels: __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase : str = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Union[str, Any]: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = SwinvaModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __lowerCAmelCase : str = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Dict = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : int = self.type_sequence_label_size __lowerCAmelCase : str = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : int = self.prepare_config_and_inputs() __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: int) -> Any: """simple docstring""" __lowerCAmelCase : int = SwinvaModelTester(self) __lowerCAmelCase : Tuple = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Dict: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.") def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> str: """simple docstring""" pass @unittest.skip(reason="Swinv2 does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self: Any) -> List[Any]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: int) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __lowerCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : int = True for model_class in self.all_model_classes: __lowerCAmelCase : str = True __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __lowerCAmelCase : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) __lowerCAmelCase : int = outputs.attentions __lowerCAmelCase : Union[str, Any] = len(self.model_tester.depths) self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase : int = True __lowerCAmelCase : List[Any] = config.window_size**2 __lowerCAmelCase : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __lowerCAmelCase : List[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Union[str, Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __lowerCAmelCase : int = len(_SCREAMING_SNAKE_CASE) # Check attention is always last and order is fine __lowerCAmelCase : Tuple = True __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __lowerCAmelCase : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) if hasattr(self.model_tester , "num_hidden_states_types"): __lowerCAmelCase : List[str] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __lowerCAmelCase : List[str] = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : int = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Any) -> int: """simple docstring""" __lowerCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Tuple = outputs.hidden_states __lowerCAmelCase : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) # Swinv2 has a different seq_length __lowerCAmelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __lowerCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) __lowerCAmelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = reshaped_hidden_states[0].shape __lowerCAmelCase : List[str] = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self: Any) -> Any: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str) -> Dict: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : List[str] = 3 __lowerCAmelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __lowerCAmelCase : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : List[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Any: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Tuple = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : List[Any] = _config_zero_init(_SCREAMING_SNAKE_CASE) for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class(config=_SCREAMING_SNAKE_CASE) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self: Dict) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256") if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256").to( _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = self.default_image_processor __lowerCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") __lowerCAmelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt").to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE) # verify the logits __lowerCAmelCase : Union[str, Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026]).to(_SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4))
714
"""simple docstring""" import math def _lowercase ( __snake_case ,__snake_case ) -> float: return math.pow(__snake_case ,2 ) - a def _lowercase ( __snake_case ) -> float: return 2 * x def _lowercase ( __snake_case ) -> float: __lowerCAmelCase : List[str] = 2.0 while start <= a: __lowerCAmelCase : Union[str, Any] = math.pow(__snake_case ,2 ) return start def _lowercase ( __snake_case ,__snake_case = 9_999 ,__snake_case = 0.00000000000001 ) -> float: if a < 0: raise ValueError("math domain error" ) __lowerCAmelCase : List[Any] = get_initial_point(__snake_case ) for _ in range(__snake_case ): __lowerCAmelCase : Union[str, Any] = value __lowerCAmelCase : List[str] = value - fx(__snake_case ,__snake_case ) / fx_derivative(__snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
615
0
"""simple docstring""" import numpy as np def UpperCamelCase ( _lowerCAmelCase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) def UpperCamelCase ( _lowerCAmelCase : np.array ) -> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
238
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ : int = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
238
1
def UpperCAmelCase__ ( lowercase__ = 100 ) -> int: __lowercase = n * (n + 1) * (2 * n + 1) / 6 __lowercase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
634
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCamelCase__ = datasets.logging.get_logger(__name__) UpperCamelCase__ = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" UpperCamelCase__ = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" UpperCamelCase__ = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__="dummy_doc" ) -> str: __lowercase = {doc: key_lines} __lowercase = {doc: sys_lines} __lowercase = {} __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase , __lowercase = reader.get_doc_mentions(lowercase__ , key_doc_lines[doc] , lowercase__ ) key_singletons_num += singletons_num if NP_only or min_span: __lowercase = reader.set_annotated_parse_trees(lowercase__ , key_doc_lines[doc] , lowercase__ , lowercase__ ) __lowercase , __lowercase = reader.get_doc_mentions(lowercase__ , sys_doc_lines[doc] , lowercase__ ) sys_singletons_num += singletons_num if NP_only or min_span: __lowercase = reader.set_annotated_parse_trees(lowercase__ , key_doc_lines[doc] , lowercase__ , lowercase__ ) if remove_nested: __lowercase , __lowercase = reader.remove_nested_coref_mentions(lowercase__ , lowercase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __lowercase , __lowercase = reader.remove_nested_coref_mentions(lowercase__ , lowercase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __lowercase = reader.get_mention_assignments(lowercase__ , lowercase__ ) __lowercase = reader.get_mention_assignments(lowercase__ , lowercase__ ) __lowercase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( """Number of resulting singleton clusters in the key """ F"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( F"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " """files, respectively""" ) return doc_coref_infos def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: __lowercase = get_coref_infos(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowercase = {} __lowercase = 0 __lowercase = 0 for name, metric in metrics: __lowercase , __lowercase , __lowercase = evaluator.evaluate_documents(lowercase__ , lowercase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"{name}/recall": recall, F"{name}/precision": precision, F"{name}/f1": fa} ) logger.info( name.ljust(10 ) , F"Recall: {recall * 100:.2f}" , F" Precision: {precision * 100:.2f}" , F" F1: {fa * 100:.2f}" , ) if conll_subparts_num == 3: __lowercase = (conll / 3) * 100 logger.info(F"CoNLL score: {conll:.2f}" ) output_scores.update({"""conll_score""": conll} ) return output_scores def UpperCAmelCase__ ( lowercase__ ) -> List[Any]: __lowercase = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: __lowercase = line.split()[5] if not parse_col == "-": __lowercase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def snake_case__ ( self : Tuple , lowercase : Dict , lowercase : Optional[int] , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int=False , lowercase : Dict=False ) -> str: """simple docstring""" __lowercase = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: __lowercase = util.check_gold_parse_annotation(lowercase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __lowercase = evaluate( key_lines=lowercase , sys_lines=lowercase , metrics=lowercase , NP_only=lowercase , remove_nested=lowercase , keep_singletons=lowercase , min_span=lowercase , ) return score
634
1
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : def __init__( self : Optional[int] , _lowercase : Any , _lowercase : Any=1_3 , _lowercase : Optional[Any]=7 , _lowercase : Optional[Any]=True , _lowercase : Dict=True , _lowercase : Optional[Any]=True , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : List[str]=False , _lowercase : Optional[int]=False , _lowercase : List[Any]=False , _lowercase : Optional[int]=2 , _lowercase : Dict=9_9 , _lowercase : str=0 , _lowercase : str=3_2 , _lowercase : List[str]=5 , _lowercase : List[Any]=4 , _lowercase : List[Any]=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : Tuple=5_1_2 , _lowercase : Dict=2 , _lowercase : Tuple=0.02 , _lowercase : Dict=2 , _lowercase : Optional[int]=4 , _lowercase : Optional[int]="last" , _lowercase : Dict=True , _lowercase : Tuple=None , _lowercase : str=0 , ): lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : Dict = seq_length lowerCAmelCase__ : int = is_training lowerCAmelCase__ : List[str] = use_input_lengths lowerCAmelCase__ : Optional[Any] = use_token_type_ids lowerCAmelCase__ : Any = use_labels lowerCAmelCase__ : str = gelu_activation lowerCAmelCase__ : List[str] = sinusoidal_embeddings lowerCAmelCase__ : Optional[Any] = causal lowerCAmelCase__ : Optional[Any] = asm lowerCAmelCase__ : List[str] = n_langs lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : Any = n_special lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Union[str, Any] = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : Tuple = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = max_position_embeddings lowerCAmelCase__ : List[str] = type_sequence_label_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : str = num_labels lowerCAmelCase__ : Optional[Any] = num_choices lowerCAmelCase__ : int = summary_type lowerCAmelCase__ : List[Any] = use_proj lowerCAmelCase__ : int = scope lowerCAmelCase__ : str = bos_token_id def _lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Optional[Any] = None if self.use_input_lengths: lowerCAmelCase__ : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase__ : Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase__ : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : int = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self : Dict ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCAmelCase ( self : Dict , _lowercase : Optional[int] , _lowercase : Any , _lowercase : str , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : Optional[int] , ): lowerCAmelCase__ : Tuple = XLMModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(_lowercase , lengths=_lowercase , langs=_lowercase ) lowerCAmelCase__ : Optional[Any] = model(_lowercase , langs=_lowercase ) lowerCAmelCase__ : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] , _lowercase : int , _lowercase : str , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Dict , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Any , _lowercase : Optional[int] , ): lowerCAmelCase__ : int = XLMWithLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase__ : Dict = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : List[str] , _lowercase : int , _lowercase : Optional[int] , _lowercase : Any , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : Optional[int] , ): lowerCAmelCase__ : List[Any] = XLMForQuestionAnsweringSimple(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(_lowercase ) lowerCAmelCase__ : Dict = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) lowerCAmelCase__ : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[Any] , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : Optional[Any] , ): lowerCAmelCase__ : Any = XLMForQuestionAnswering(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase__ : List[Any] = model(_lowercase ) lowerCAmelCase__ : str = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , p_mask=_lowercase , ) lowerCAmelCase__ : List[Any] = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , ) ((lowerCAmelCase__) , ) : List[Any] = result_with_labels.to_tuple() lowerCAmelCase__ : str = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) ((lowerCAmelCase__) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCAmelCase ( self : Dict , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : Any , _lowercase : int , _lowercase : Any , _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): lowerCAmelCase__ : Any = XLMForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase__ : List[str] = model(_lowercase ) lowerCAmelCase__ : str = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : Dict , _lowercase : Any , _lowercase : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): lowerCAmelCase__ : Optional[int] = self.num_labels lowerCAmelCase__ : List[str] = XLMForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Any , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : int , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Tuple , _lowercase : str , ): lowerCAmelCase__ : List[Any] = self.num_choices lowerCAmelCase__ : int = XLMForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Optional[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class lowercase_ ( a_ , a_ , a_ , unittest.TestCase ): __magic_name__ : List[str] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __magic_name__ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __magic_name__ : str = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self : Any , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : Dict , _lowercase : int ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Tuple=False ): lowerCAmelCase__ : Any = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowerCAmelCase__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) lowerCAmelCase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def _lowerCAmelCase ( self : int ): lowerCAmelCase__ : List[Any] = XLMModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=_lowercase , emb_dim=3_7 ) def _lowerCAmelCase ( self : List[Any] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_lowercase ) def _lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_lowercase ) def _lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_lowercase ) def _lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_lowercase ) def _lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_lowercase ) def _lowerCAmelCase ( self : int ): lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_lowercase ) def _lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowercase ) def _lowerCAmelCase ( self : Any , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Optional[int] , _lowercase : str=False , _lowercase : Union[str, Any]=1 ): self.assertIsInstance(_lowercase , _lowercase ) self.assertListEqual( [isinstance(_lowercase , _lowercase ) for iter_attentions in attentions] , [True] * len(_lowercase ) ) self.assertEqual(len(_lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_lowercase ): # adds PAD dummy token lowerCAmelCase__ : str = min_length + idx + 1 lowerCAmelCase__ : Union[str, Any] = min_length + idx + 1 lowerCAmelCase__ : int = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_lowercase ) ) def _lowerCAmelCase ( self : str , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=False , _lowercase : List[Any]=1 ): self.assertIsInstance(_lowercase , _lowercase ) self.assertListEqual( [isinstance(_lowercase , _lowercase ) for iter_hidden_states in hidden_states] , [True] * len(_lowercase ) , ) self.assertEqual(len(_lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_lowercase ): # adds PAD dummy token lowerCAmelCase__ : str = min_length + idx + 1 lowerCAmelCase__ : Dict = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_lowercase ) , ) pass @slow def _lowerCAmelCase ( self : str ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = XLMModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class lowercase_ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self : int ): lowerCAmelCase__ : str = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_lowercase ) lowerCAmelCase__ : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=_lowercase ) # the president lowerCAmelCase__ : Optional[Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowerCAmelCase__ : List[Any] = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _lowercase )
308
"""simple docstring""" def lowercase__ ( lowerCamelCase : int ) -> bool: if not isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase__ : Dict = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCamelCase ) if number < 0: return False lowerCAmelCase__ : List[Any] = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
478
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __lowerCamelCase = logging.getLogger(__name__) class a__ ( lowerCAmelCase_ ): lowerCamelCase__: str = """summarization""" lowerCamelCase__: List[str] = ["""loss"""] lowerCamelCase__: List[str] = ROUGE_KEYS lowerCamelCase__: Union[str, Any] = """rouge2""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ): if hparams.sortish_sampler and hparams.gpus > 1: a_ : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCamelCase_ , num_labels=lowerCamelCase_ , mode=self.mode , **lowerCamelCase_ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) a_ : Any = Path(self.output_dir ) / """metrics.json""" a_ : Tuple = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) a_ : Dict = 0 a_ : Optional[Any] = defaultdict(lowerCamelCase_ ) a_ : str = self.config.model_type a_ : Union[str, Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size a_ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } a_ : int = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } a_ : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} a_ : Optional[Any] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) a_ : int = get_git_info()["""repo_sha"""] a_ : Union[str, Any] = hparams.num_workers a_ : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCamelCase_ ): a_ : Dict = self.tokenizer.lang_code_to_id[hparams.tgt_lang] a_ : List[str] = self.decoder_start_token_id a_ : Union[str, Any] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) a_ : Union[str, Any] = False a_ : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: a_ : Union[str, Any] = self.hparams.eval_max_gen_length else: a_ : Optional[Any] = self.model.config.max_length a_ : Optional[int] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : Dict[str, torch.Tensor] ): a_ : Optional[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCamelCase_ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) a_ : List[Any] = True return readable_batch def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): return self.model(lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase( self : Tuple , lowerCamelCase_ : List[int] ): a_ : str = self.tokenizer.batch_decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return lmap(str.strip , lowerCamelCase_ ) def UpperCAmelCase( self : Optional[int] , lowerCamelCase_ : dict ): a_ : int = self.tokenizer.pad_token_id a_ , a_ : Optional[int] = batch["""input_ids"""], batch["""attention_mask"""] a_ : Optional[Any] = batch["""labels"""] if isinstance(self.model , lowerCamelCase_ ): a_ : List[Any] = self.model._shift_right(lowerCamelCase_ ) else: a_ : Dict = shift_tokens_right(lowerCamelCase_ , lowerCamelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero a_ : int = decoder_input_ids self.save_readable_batch(lowerCamelCase_ ) a_ : str = self(lowerCamelCase_ , attention_mask=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , use_cache=lowerCamelCase_ ) a_ : int = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id a_ : Any = nn.CrossEntropyLoss(ignore_index=lowerCamelCase_ ) assert lm_logits.shape[-1] == self.vocab_size a_ : Union[str, Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: a_ : int = nn.functional.log_softmax(lowerCamelCase_ , dim=-1 ) a_ , a_ : str = label_smoothed_nll_loss( lowerCamelCase_ , lowerCamelCase_ , self.hparams.label_smoothing , ignore_index=lowerCamelCase_ ) return (loss,) @property def UpperCAmelCase( self : Union[str, Any] ): return self.tokenizer.pad_token_id def UpperCAmelCase( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): a_ : Dict = self._step(lowerCamelCase_ ) a_ : Optional[int] = dict(zip(self.loss_names , lowerCamelCase_ ) ) # tokens per batch a_ : str = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() a_ : Optional[int] = batch["""input_ids"""].shape[0] a_ : int = batch["""input_ids"""].eq(self.pad ).sum() a_ : str = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCAmelCase( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ): return self._generative_step(lowerCamelCase_ ) def UpperCAmelCase( self : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int]="val" ): self.step_count += 1 a_ : Optional[Any] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} a_ : Tuple = losses["""loss"""] a_ : Optional[int] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } a_ : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) a_ : torch.FloatTensor = torch.tensor(lowerCamelCase_ ).type_as(lowerCamelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCamelCase_ ) a_ : str = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} a_ : Union[str, Any] = self.step_count self.metrics[prefix].append(lowerCamelCase_ ) # callback writes this to self.metrics_save_path a_ : List[str] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCAmelCase( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): return calculate_rouge(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int , lowerCamelCase_ : dict ): a_ : Dict = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') a_ : Any = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCamelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) a_ : Optional[int] = (time.time() - ta) / batch["""input_ids"""].shape[0] a_ : List[str] = self.ids_to_clean_text(lowerCamelCase_ ) a_ : List[str] = self.ids_to_clean_text(batch["""labels"""] ) a_ : Tuple = self._step(lowerCamelCase_ ) a_ : List[str] = dict(zip(self.loss_names , lowerCamelCase_ ) ) a_ : Dict = self.calc_generative_metrics(lowerCamelCase_ , lowerCamelCase_ ) a_ : Optional[int] = np.mean(lmap(lowerCamelCase_ , lowerCamelCase_ ) ) base_metrics.update(gen_time=lowerCamelCase_ , gen_len=lowerCamelCase_ , preds=lowerCamelCase_ , target=lowerCamelCase_ , **lowerCamelCase_ ) return base_metrics def UpperCAmelCase( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): return self._generative_step(lowerCamelCase_ ) def UpperCAmelCase( self : str , lowerCamelCase_ : Any ): return self.validation_epoch_end(lowerCamelCase_ , prefix="""test""" ) def UpperCAmelCase( self : Any , lowerCamelCase_ : Any ): a_ : List[str] = self.n_obs[type_path] a_ : Dict = self.target_lens[type_path] a_ : Optional[Any] = self.dataset_class( self.tokenizer , type_path=lowerCamelCase_ , n_obs=lowerCamelCase_ , max_target_length=lowerCamelCase_ , **self.dataset_kwargs , ) return dataset def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : bool = False ): a_ : List[str] = self.get_dataset(lowerCamelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": a_ : List[str] = dataset.make_sortish_sampler(lowerCamelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": a_ : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) def UpperCAmelCase( self : Any ): a_ : int = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCamelCase_ ) return dataloader def UpperCAmelCase( self : Dict ): return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCAmelCase( self : List[Any] ): return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCAmelCase( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): BaseTransformer.add_model_specific_args(lowerCamelCase_ , lowerCamelCase_ ) add_generic_args(lowerCamelCase_ , lowerCamelCase_ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCamelCase_ , default=lowerCamelCase_ ) parser.add_argument("""--logger_name""" , type=lowerCamelCase_ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCamelCase_ , default=5_0_0 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCamelCase_ , default="""summarization""" , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCamelCase_ , default=0.0 , required=lowerCamelCase_ ) parser.add_argument("""--src_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--tgt_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--eval_beams""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ ) parser.add_argument( """--val_metric""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCamelCase_ , default=1 , required=lowerCamelCase_ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class a__ ( lowerCAmelCase_ ): lowerCamelCase__: List[Any] = """translation""" lowerCamelCase__: int = ["""loss"""] lowerCamelCase__: List[str] = ["""bleu"""] lowerCamelCase__: Optional[Any] = """bleu""" def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Tuple ): super().__init__(lowerCamelCase_ , **lowerCamelCase_ ) a_ : Union[str, Any] = hparams.src_lang a_ : Optional[int] = hparams.tgt_lang def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): return calculate_bleu(lowerCamelCase_ , lowerCamelCase_ ) def _a ( __UpperCamelCase , __UpperCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__UpperCamelCase ) check_output_dir(__UpperCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: a_ : SummarizationModule = SummarizationModule(__UpperCamelCase ) else: a_ : SummarizationModule = TranslationModule(__UpperCamelCase ) a_ : Dict = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): a_ : Union[str, Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger a_ : Optional[int] = os.environ.get("""WANDB_PROJECT""" , __UpperCamelCase ) a_ : str = WandbLogger(name=model.output_dir.name , project=__UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger a_ : Optional[int] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: a_ : Any = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: a_ : str = False a_ : Tuple = args.val_metric == """loss""" a_ : pl.Trainer = generic_train( __UpperCamelCase , __UpperCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __UpperCamelCase ) , early_stopping_callback=__UpperCamelCase , logger=__UpperCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model a_ : Union[str, Any] = """""" a_ : int = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=__UpperCamelCase ) ) if checkpoints: a_ : Tuple = checkpoints[-1] a_ : Tuple = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = pl.Trainer.add_argparse_args(parser) __lowerCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase = parser.parse_args() main(args)
478
1
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Optional[Any] = get_activation("""swish""" ) self.assertIsInstance(UpperCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _a (self ): A_ : Dict = get_activation("""silu""" ) self.assertIsInstance(UpperCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _a (self ): A_ : Tuple = get_activation("""mish""" ) self.assertIsInstance(UpperCAmelCase_ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _a (self ): A_ : int = get_activation("""gelu""" ) self.assertIsInstance(UpperCAmelCase_ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
667
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase_ , ): snake_case_ = parent snake_case_ = 13 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = 99 snake_case_ = 32 snake_case_ = 2 snake_case_ = 4 snake_case_ = 37 snake_case_ = "gelu" snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 5_12 snake_case_ = 16 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = None def _lowercase ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TFDistilBertModel(config=UpperCAmelCase_ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} snake_case_ = model(UpperCAmelCase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TFDistilBertForMaskedLM(config=UpperCAmelCase_ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TFDistilBertForQuestionAnswering(config=UpperCAmelCase_ ) snake_case_ = { "input_ids": input_ids, "attention_mask": input_mask, } snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = self.num_labels snake_case_ = TFDistilBertForSequenceClassification(UpperCAmelCase_ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = self.num_choices snake_case_ = TFDistilBertForMultipleChoice(UpperCAmelCase_ ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = self.num_labels snake_case_ = TFDistilBertForTokenClassification(UpperCAmelCase_ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self ): snake_case_ = self.prepare_config_and_inputs() ((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) snake_case = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) snake_case = False snake_case = False def _lowercase ( self ): snake_case_ = TFDistilBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , dim=37 ) def _lowercase ( self ): self.config_tester.run_common_tests() def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase_ ) @slow def _lowercase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case_ = TFDistilBertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self ): snake_case_ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(UpperCAmelCase_ )[0] snake_case_ = [1, 6, 7_68] self.assertEqual(output.shape , UpperCAmelCase_ ) snake_case_ = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4 )
508
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE ="dandelin/vilt-b32-finetuned-vqa" _SCREAMING_SNAKE_CASE =( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) _SCREAMING_SNAKE_CASE ="image_qa" _SCREAMING_SNAKE_CASE =AutoProcessor _SCREAMING_SNAKE_CASE =AutoModelForVisualQuestionAnswering _SCREAMING_SNAKE_CASE =["image", "text"] _SCREAMING_SNAKE_CASE =["text"] def __init__( self: Tuple , *__A: int , **__A: List[Any] ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[Any] , __A: int , __A: int ): '''simple docstring''' return self.pre_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) def lowercase ( self: List[Any] , __A: int ): '''simple docstring''' with torch.no_grad(): return self.model(**_SCREAMING_SNAKE_CASE ).logits def lowercase ( self: Dict , __A: int ): '''simple docstring''' a__ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
709
"""simple docstring""" __a : Union[str, Any] = range(2, 20 + 1) __a : Any = [10**k for k in range(ks[-1] + 1)] __a : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): a__ = sum(a_i[j] for j in range(lowerCamelCase_ , len(lowerCamelCase_))) a__ = sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase_) , lowerCamelCase_))) a__ ,a__ = 0, 0 a__ = n - i a__ = memo.get(lowerCamelCase_) if sub_memo is not None: a__ = sub_memo.get(lowerCamelCase_) if jumps is not None and len(lowerCamelCase_) > 0: # find and make the largest jump without going over a__ = -1 for _k in range(len(lowerCamelCase_) - 1 , -1 , -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: a__ = _k break if max_jump >= 0: a__ ,a__ ,a__ = jumps[max_jump] # since the difference between jumps is cached, add c a__ = diff + c for j in range(min(lowerCamelCase_ , len(lowerCamelCase_))): a__ ,a__ = divmod(lowerCamelCase_ , 10) if new_c > 0: add(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: a__ = [] else: a__ = {c: []} a__ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps a__ ,a__ = next_term(lowerCamelCase_ , k - 1 , i + dn , lowerCamelCase_) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead a__ ,a__ = compute(lowerCamelCase_ , lowerCamelCase_ , i + dn , lowerCamelCase_) diff += _diff dn += terms_jumped a__ = sub_memo[c] # keep jumps sorted by # of terms skipped a__ = 0 while j < len(lowerCamelCase_): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase_ , (diff, dn, k)) return (diff, dn) def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if i >= n: return 0, i if k > len(lowerCamelCase_): a_i.extend([0 for _ in range(k - len(lowerCamelCase_))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) a__ = i a__ ,a__ ,a__ = 0, 0, 0 for j in range(len(lowerCamelCase_)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 a__ = ds_c + ds_b diff += addend a__ = 0 for j in range(lowerCamelCase_): a__ = a_i[j] + addend a__ ,a__ = divmod(lowerCamelCase_ , 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) return diff, i - start_i def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): for j in range(lowerCamelCase_ , len(lowerCamelCase_)): a__ = digits[j] + addend if s >= 10: a__ ,a__ = divmod(lowerCamelCase_ , 10) a__ = addend // 10 + quotient else: a__ = s a__ = addend // 10 if addend == 0: break while addend > 0: a__ ,a__ = divmod(lowerCamelCase_ , 10) digits.append(lowerCamelCase_) def SCREAMING_SNAKE_CASE ( lowerCamelCase_ = 10**15): a__ = [1] a__ = 1 a__ = 0 while True: a__ ,a__ = next_term(lowerCamelCase_ , 20 , i + dn , lowerCamelCase_) dn += terms_jumped if dn == n - i: break a__ = 0 for j in range(len(lowerCamelCase_)): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
200
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase : int =ksize + 1 lowercase : str =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__magic_name__ ): for x in range(__magic_name__ ): # distance from center lowercase : Optional[Any] =x - ksize // 2 lowercase : List[str] =y - ksize // 2 # degree to radiant lowercase : Optional[int] =theta / 180 * np.pi lowercase : Union[str, Any] =np.cos(_theta ) lowercase : Optional[int] =np.sin(_theta ) # get kernel x lowercase : Tuple =cos_theta * px + sin_theta * py # get kernel y lowercase : Dict =-sin_theta * px + cos_theta * py # fill kernel lowercase : str =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image UpperCamelCase_ = imread("""../image_data/lena.jpg""") # turn image in gray scale value UpperCamelCase_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges UpperCamelCase_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: UpperCamelCase_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) UpperCamelCase_ = out / out.max() * 255 UpperCamelCase_ = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
92
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = '''xlm-prophetnet''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self :List[str] , _lowerCamelCase :Optional[float] = 0.1 , _lowerCamelCase :Optional[Union[str, Callable]] = "gelu" , _lowerCamelCase :Optional[int] = 3_0_5_2_2 , _lowerCamelCase :Optional[int] = 1_0_2_4 , _lowerCamelCase :Optional[int] = 4_0_9_6 , _lowerCamelCase :Optional[int] = 1_2 , _lowerCamelCase :Optional[int] = 1_6 , _lowerCamelCase :Optional[int] = 4_0_9_6 , _lowerCamelCase :Optional[int] = 1_2 , _lowerCamelCase :Optional[int] = 1_6 , _lowerCamelCase :Optional[float] = 0.1 , _lowerCamelCase :Optional[float] = 0.1 , _lowerCamelCase :Optional[int] = 5_1_2 , _lowerCamelCase :Optional[float] = 0.0_2 , _lowerCamelCase :Optional[bool] = True , _lowerCamelCase :Optional[bool] = True , _lowerCamelCase :Optional[int] = 0 , _lowerCamelCase :Optional[int] = 2 , _lowerCamelCase :Optional[int] = 3_2 , _lowerCamelCase :Optional[int] = 1_2_8 , _lowerCamelCase :Optional[bool] = False , _lowerCamelCase :Optional[float] = 0.0 , _lowerCamelCase :Optional[bool] = True , _lowerCamelCase :Optional[int] = 0 , _lowerCamelCase :Optional[int] = 1 , _lowerCamelCase :Optional[int] = 2 , **_lowerCamelCase :int , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : str = num_encoder_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_encoder_attention_heads __SCREAMING_SNAKE_CASE : str = decoder_ffn_dim __SCREAMING_SNAKE_CASE : List[Any] = num_decoder_layers __SCREAMING_SNAKE_CASE : List[str] = num_decoder_attention_heads __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : Any = init_std # Normal(0, this parameter) __SCREAMING_SNAKE_CASE : Any = activation_function # parameters for xlmprophetnet __SCREAMING_SNAKE_CASE : List[Any] = ngram __SCREAMING_SNAKE_CASE : int = num_buckets __SCREAMING_SNAKE_CASE : List[str] = relative_max_distance __SCREAMING_SNAKE_CASE : str = disable_ngram_loss __SCREAMING_SNAKE_CASE : Optional[int] = eps # 3 Types of Dropout __SCREAMING_SNAKE_CASE : int = attention_dropout __SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout __SCREAMING_SNAKE_CASE : Dict = dropout __SCREAMING_SNAKE_CASE : Any = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , add_cross_attention=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) @property def SCREAMING_SNAKE_CASE_ ( self :int ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def SCREAMING_SNAKE_CASE_ ( self :Dict , _lowerCamelCase :List[Any] ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
674
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed A__ = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _lowercase ( a_ : Optional[int] ) -> str: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _lowercase ( a_ : List[str] ,a_ : List[Any] ) -> int: '''simple docstring''' if args.student_type == "roberta": __magic_name__ = False elif args.student_type == "gpt2": __magic_name__ = False def _lowercase ( a_ : Union[str, Any] ,a_ : str ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": __magic_name__ = False def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' ,action='store_true' ,help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' ,type=a_ ,required=a_ ,help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' ,type=a_ ,required=a_ ,help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' ,) parser.add_argument( '--student_type' ,type=a_ ,choices=['distilbert', 'roberta', 'gpt2'] ,required=a_ ,help='The student type (DistilBERT, RoBERTa).' ,) parser.add_argument('--student_config' ,type=a_ ,required=a_ ,help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' ,default=a_ ,type=a_ ,help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' ,choices=['bert', 'roberta', 'gpt2'] ,required=a_ ,help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' ,type=a_ ,required=a_ ,help='The teacher model.' ) parser.add_argument('--temperature' ,default=2.0 ,type=a_ ,help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' ,default=0.5 ,type=a_ ,help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' ,default=0.0 ,type=a_ ,help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' ,) parser.add_argument('--alpha_clm' ,default=0.5 ,type=a_ ,help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' ,default=0.0 ,type=a_ ,help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' ,default=0.0 ,type=a_ ,help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' ,action='store_true' ,help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' ,default=0.15 ,type=a_ ,help='Proportion of tokens for which we need to make a prediction.' ,) parser.add_argument('--word_mask' ,default=0.8 ,type=a_ ,help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' ,default=0.1 ,type=a_ ,help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' ,default=0.1 ,type=a_ ,help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' ,default=0.7 ,type=a_ ,help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' ,) parser.add_argument('--token_counts' ,type=a_ ,help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' ,action='store_true' ,help='If true, compute the distillation loss only the [MLM] prediction distribution.' ,) parser.add_argument( '--freeze_pos_embs' ,action='store_true' ,help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' ,) parser.add_argument( '--freeze_token_type_embds' ,action='store_true' ,help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' ,) parser.add_argument('--n_epoch' ,type=a_ ,default=3 ,help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' ,type=a_ ,default=5 ,help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' ,action='store_false' ,help='If true, group sequences that have similar length into the same batch. Default is true.' ,) parser.add_argument( '--gradient_accumulation_steps' ,type=a_ ,default=5_0 ,help='Gradient accumulation for larger training batches.' ,) parser.add_argument('--warmup_prop' ,default=0.05 ,type=a_ ,help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' ,default=0.0 ,type=a_ ,help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' ,default=5e-4 ,type=a_ ,help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' ,default=1e-6 ,type=a_ ,help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' ,default=5.0 ,type=a_ ,help='Max gradient norm.' ) parser.add_argument('--initializer_range' ,default=0.02 ,type=a_ ,help='Random initialization range.' ) parser.add_argument( '--fp16' ,action='store_true' ,help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' ,) parser.add_argument( '--fp16_opt_level' ,type=a_ ,default='O1' ,help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) ,) parser.add_argument('--n_gpu' ,type=a_ ,default=1 ,help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' ,type=a_ ,default=-1 ,help='Distributed training - Local rank' ) parser.add_argument('--seed' ,type=a_ ,default=5_6 ,help='Random seed' ) parser.add_argument('--log_interval' ,type=a_ ,default=5_0_0 ,help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' ,type=a_ ,default=4_0_0_0 ,help='Checkpoint interval.' ) __magic_name__ = parser.parse_args() sanity_checks(a_ ) # ARGS # init_gpu_params(a_ ) set_seed(a_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(F'Param: {args}' ) with open(os.path.join(args.dump_path ,'parameters.json' ) ,'w' ) as f: json.dump(vars(a_ ) ,a_ ,indent=4 ) git_log(args.dump_path ) __magic_name__ = MODEL_CLASSES[args.student_type] __magic_name__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __magic_name__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __magic_name__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __magic_name__ = tokenizer.all_special_tokens.index(a_ ) __magic_name__ = tokenizer.all_special_ids[idx] logger.info(F'Special tokens {special_tok_ids}' ) __magic_name__ = special_tok_ids __magic_name__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'Loading data from {args.data_file}' ) with open(args.data_file ,'rb' ) as fp: __magic_name__ = pickle.load(a_ ) if args.mlm: logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts ,'rb' ) as fp: __magic_name__ = pickle.load(a_ ) __magic_name__ = np.maximum(a_ ,1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __magic_name__ = 0.0 # do not predict special tokens __magic_name__ = torch.from_numpy(a_ ) else: __magic_name__ = None __magic_name__ = LmSeqsDataset(params=a_ ,data=a_ ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'Loading student config from {args.student_config}' ) __magic_name__ = student_config_class.from_pretrained(args.student_config ) __magic_name__ = True if args.student_pretrained_weights is not None: logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' ) __magic_name__ = student_model_class.from_pretrained(args.student_pretrained_weights ,config=a_ ) else: __magic_name__ = student_model_class(a_ ) if args.n_gpu > 0: student.to(F'cuda:{args.local_rank}' ) logger.info('Student loaded.' ) # TEACHER # __magic_name__ = teacher_model_class.from_pretrained(args.teacher_name ,output_hidden_states=a_ ) if args.n_gpu > 0: teacher.to(F'cuda:{args.local_rank}' ) logger.info(F'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(a_ ,a_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(a_ ,a_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __magic_name__ = Distiller( params=a_ ,dataset=a_ ,token_probs=a_ ,student=a_ ,teacher=a_ ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
707
import os A__ = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def _lowercase ( a_ : str ) -> int: '''simple docstring''' __magic_name__ = 0 __magic_name__ = 0 while index < len(a_ ) - 1: __magic_name__ = SYMBOLS[numerals[index]] __magic_name__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowercase ( a_ : int ) -> str: '''simple docstring''' __magic_name__ = '' __magic_name__ = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 __magic_name__ = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 __magic_name__ = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowercase ( a_ : str = "/p089_roman.txt" ) -> int: '''simple docstring''' __magic_name__ = 0 with open(os.path.dirname(a_ ) + roman_numerals_filename ) as filea: __magic_name__ = filea.readlines() for line in lines: __magic_name__ = line.strip() __magic_name__ = parse_roman_numerals(a_ ) __magic_name__ = generate_roman_numerals(a_ ) savings += len(a_ ) - len(a_ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
184
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Tuple=13 , snake_case_ : Any=32 , snake_case_ : List[Any]=3 , snake_case_ : int=4 , snake_case_ : Any=[10, 20, 30, 40] , snake_case_ : List[str]=[2, 2, 3, 2] , snake_case_ : Union[str, Any]=True , snake_case_ : str=True , snake_case_ : List[str]=37 , snake_case_ : Dict="gelu" , snake_case_ : int=10 , snake_case_ : Dict=0.02 , snake_case_ : List[Any]=["stage2", "stage3", "stage4"] , snake_case_ : Optional[int]=3 , snake_case_ : Optional[int]=None , ): snake_case__ : int = parent snake_case__ : Any = batch_size snake_case__ : Any = image_size snake_case__ : int = num_channels snake_case__ : Any = num_stages snake_case__ : List[Any] = hidden_sizes snake_case__ : str = depths snake_case__ : List[str] = is_training snake_case__ : Dict = use_labels snake_case__ : Tuple = intermediate_size snake_case__ : int = hidden_act snake_case__ : Tuple = type_sequence_label_size snake_case__ : List[Any] = initializer_range snake_case__ : Tuple = out_features snake_case__ : List[str] = num_labels snake_case__ : Dict = scope snake_case__ : Optional[int] = num_stages def lowerCamelCase ( self : Dict ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Union[str, Any] ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowerCamelCase ( self : Union[str, Any] ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : int ): snake_case__ : int = UperNetForSemanticSegmentation(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[int] = model(__lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : List[str] = config_and_inputs snake_case__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : int ): snake_case__ : str = UperNetModelTester(self ) snake_case__ : List[Any] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def lowerCamelCase ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str] ): return def lowerCamelCase ( self : Any ): snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__lowercase ) snake_case__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[int] = [*signature.parameters.keys()] snake_case__ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowerCamelCase ( self : Any ): pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowerCamelCase ( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Union[str, Any] ): def check_hidden_states_output(snake_case_ : int , snake_case_ : Dict , snake_case_ : Dict ): snake_case__ : Union[str, Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): snake_case__ : int = model(**self._prepare_for_class(__lowercase , __lowercase ) ) snake_case__ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : int = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = _config_zero_init(__lowercase ) snake_case__ : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: snake_case__ : int = model_class(config=__lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowerCamelCase ( self : Optional[int] ): pass @slow def lowerCamelCase ( self : Tuple ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Dict = UperNetForSemanticSegmentation.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __snake_case( ) -> Union[str, Any]: snake_case__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) snake_case__ : str = Image.open(_A ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) snake_case__ : Dict = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(__lowercase ) snake_case__ : Tuple = prepare_img() snake_case__ : Any = processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) with torch.no_grad(): snake_case__ : List[Any] = model(**__lowercase ) snake_case__ : List[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __lowercase ) snake_case__ : str = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1E-4 ) ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) snake_case__ : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(__lowercase ) snake_case__ : Any = prepare_img() snake_case__ : List[Any] = processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__lowercase ) snake_case__ : str = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __lowercase ) snake_case__ : List[str] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1E-4 ) )
374
def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _validate_point(_A ) _validate_point(_A ) if len(_A ) != len(_A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_A , _A ) ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' if point: if isinstance(_A , _A ): for item in point: if not isinstance(_A , (int, float) ): snake_case_ = ( "Expected a list of numbers as input, found " f"{type(_A ).__name__}" ) raise TypeError(_A ) else: snake_case_ = f"Expected a list of numbers as input, found {type(_A ).__name__}" raise TypeError(_A ) else: raise ValueError("Missing an input" ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _validate_point(_A ) _validate_point(_A ) if len(_A ) != len(_A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_A , _A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
376
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case_ ( __a , unittest.TestCase ): '''simple docstring''' lowerCamelCase = KandinskyInpaintPipeline lowerCamelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] lowerCamelCase = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] lowerCamelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase = False @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return 32 @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return 32 @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: return self.time_input_dim @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: return self.time_input_dim * 4 @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 100 @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: lowerCamelCase_ : str = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCamelCase_ : List[Any] = MultilingualCLIP(snake_case__ ) lowerCamelCase_ : Any = text_encoder.eval() return text_encoder @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(**snake_case__ ) return model @property def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: torch.manual_seed(0 ) lowerCamelCase_ : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : int = self.dummy_tokenizer lowerCamelCase_ : Tuple = self.dummy_unet lowerCamelCase_ : List[Any] = self.dummy_movq lowerCamelCase_ : Dict = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="epsilon" , thresholding=snake_case__ , ) lowerCamelCase_ : Union[str, Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any=0 ) -> Any: lowerCamelCase_ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCamelCase_ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case__ ) # create init_image lowerCamelCase_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCamelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : Optional[Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCamelCase_ : List[str] = np.ones((64, 64) , dtype=np.floataa ) lowerCamelCase_ : Any = 0 if str(snake_case__ ).startswith("mps" ): lowerCamelCase_ : Optional[Any] = torch.manual_seed(snake_case__ ) else: lowerCamelCase_ : Any = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCamelCase_ : str = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: lowerCamelCase_ : Optional[Any] = "cpu" lowerCamelCase_ : Tuple = self.get_dummy_components() lowerCamelCase_ : Any = self.pipeline_class(**snake_case__ ) lowerCamelCase_ : List[str] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCamelCase_ : Optional[Any] = output.images lowerCamelCase_ : Any = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCamelCase_ : List[Any] = image[0, -3:, -3:, -1] lowerCamelCase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCamelCase_ : List[str] = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: lowerCamelCase_ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowerCamelCase_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCamelCase_ : Any = np.ones((768, 768) , dtype=np.floataa ) lowerCamelCase_ : Any = 0 lowerCamelCase_ : Optional[Any] = "a hat" lowerCamelCase_ : Dict = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCamelCase_ : int = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowerCamelCase_ : List[str] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCamelCase_ : List[str] = pipeline( snake_case__ , image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCamelCase_ : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
706
from collections.abc import Generator from math import sin def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" if len(__UpperCAmelCase ) != 32: raise ValueError("Input must be of length 32" ) lowerCamelCase_ : Optional[Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __a ( __UpperCAmelCase : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Tuple = format(__UpperCAmelCase , "08x" )[-8:] lowerCamelCase_ : int = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = b"" for char in message: bit_string += format(__UpperCAmelCase , "08b" ).encode("utf-8" ) lowerCamelCase_ : Optional[int] = format(len(__UpperCAmelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __a ( __UpperCAmelCase : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__UpperCAmelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCAmelCase ) , 512 ): lowerCamelCase_ : Union[str, Any] = bit_string[pos : pos + 512] lowerCamelCase_ : Any = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __a ( __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Dict = format(__UpperCAmelCase , "032b" ) lowerCamelCase_ : Dict = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCAmelCase , 2 ) def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" return (a + b) % 2**32 def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = preprocess(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCamelCase_ : List[str] = 0X67_452_301 lowerCamelCase_ : Optional[int] = 0XEF_CDA_B89 lowerCamelCase_ : str = 0X98_BAD_CFE lowerCamelCase_ : Optional[int] = 0X10_325_476 lowerCamelCase_ : Union[str, Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCAmelCase ): lowerCamelCase_ : Optional[int] = aa lowerCamelCase_ : List[str] = ba lowerCamelCase_ : Optional[int] = ca lowerCamelCase_ : List[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCamelCase_ : Dict = d ^ (b & (c ^ d)) lowerCamelCase_ : Any = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCamelCase_ : Any = c ^ (d & (b ^ c)) lowerCamelCase_ : List[Any] = (5 * i + 1) % 16 elif i <= 47: lowerCamelCase_ : List[Any] = b ^ c ^ d lowerCamelCase_ : int = (3 * i + 5) % 16 else: lowerCamelCase_ : str = c ^ (b | not_aa(__UpperCAmelCase )) lowerCamelCase_ : int = (7 * i) % 16 lowerCamelCase_ : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCamelCase_ : Union[str, Any] = d lowerCamelCase_ : Optional[int] = c lowerCamelCase_ : Union[str, Any] = b lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCamelCase_ : Tuple = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
253
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a_ = ["""gpt2"""] a_ = """gpt2""" if is_tf_available(): class UpperCAmelCase__ ( tf.Module ): """simple docstring""" def __init__( self: Optional[Any] , __lowerCAmelCase: List[str] ) -> List[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase = tokenizer __UpperCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = TFGPTaLMHeadModel.from_config(__lowerCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _UpperCAmelCase ( self: str , __lowerCAmelCase: int ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = self.tokenizer(__lowerCAmelCase ) __UpperCAmelCase = tokenized["input_ids"].to_tensor() __UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __UpperCAmelCase = self.model(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase )["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self: Optional[int] ) -> List[Any]: '''simple docstring''' super().setUp() __UpperCAmelCase = [GPTaTokenizer.from_pretrained(__lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(__lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCAmelCase = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] __UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _UpperCAmelCase ( self: Any ) -> Tuple: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __UpperCAmelCase = tokenizer([test_inputs] , return_tensors="tf" ) __UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __UpperCAmelCase = python_outputs[key].numpy() __UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__lowerCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def _UpperCAmelCase ( self: Optional[int] ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.function(__lowerCAmelCase ) for test_inputs in self.test_sentences: __UpperCAmelCase = tf.constant(__lowerCAmelCase ) __UpperCAmelCase = compiled_tokenizer(__lowerCAmelCase ) __UpperCAmelCase = tf_tokenizer(__lowerCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _UpperCAmelCase ( self: Tuple ) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = ModelToSave(tokenizer=__lowerCAmelCase ) __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = model.serving(__lowerCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCAmelCase = Path(__lowerCAmelCase ) / "saved.model" tf.saved_model.save(__lowerCAmelCase , __lowerCAmelCase , signatures={"serving_default": model.serving} ) __UpperCAmelCase = tf.saved_model.load(__lowerCAmelCase ) __UpperCAmelCase = loaded_model.signatures["serving_default"](__lowerCAmelCase )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _UpperCAmelCase ( self: int ) -> List[str]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(__lowerCAmelCase ) # Build model with some sample inputs __UpperCAmelCase = tf_tokenizer.get_config() __UpperCAmelCase = TFGPTaTokenizer.from_config(__lowerCAmelCase ) __UpperCAmelCase = model_from_config(__lowerCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _UpperCAmelCase ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run __UpperCAmelCase = 123_123 for max_length in [3, 5, 1_024]: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase ) __UpperCAmelCase = out["input_ids"].numpy().shape[1] assert out_length == max_length
221
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowerCAmelCase ( A_ : Optional[int] ) -> Optional[int]: return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowerCAmelCase ( ) -> Dict: __UpperCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=A_ ) __UpperCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(A_ ) EnvironmentCommand.register_subcommand(A_ ) TestCommand.register_subcommand(A_ ) RunBeamCommand.register_subcommand(A_ ) DummyDataCommand.register_subcommand(A_ ) # Parse args __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if not hasattr(A_ , "func" ): parser.print_help() exit(1 ) __UpperCAmelCase = parse_unknown_args(A_ ) # Run __UpperCAmelCase = args.func(A_ , **A_ ) service.run() if __name__ == "__main__": main()
221
1
"""simple docstring""" def UpperCAmelCase ( ): """simple docstring""" return 1 def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ = 200 ): """simple docstring""" return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
536
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ , A__ = [], [] while len(UpperCamelCase__ ) > 1: A__ , A__ = min(UpperCamelCase__ ), max(UpperCamelCase__ ) start.append(UpperCamelCase__ ) end.append(UpperCamelCase__ ) collection.remove(UpperCamelCase__ ) collection.remove(UpperCamelCase__ ) end.reverse() return start + collection + end if __name__ == "__main__": __lowerCamelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCamelCase = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
536
1
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCAmelCase__ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( a__ ): """simple docstring""" def __init__( self , snake_case__=-1 ): """simple docstring""" lowerCAmelCase : Any = label_idx def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = mode.value lowerCAmelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{mode}.txt""" ) lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[str] = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Optional[int] = [] else: lowerCAmelCase : List[Any] = line.split(" " ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE__ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) return examples def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase : str = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(SCREAMING_SNAKE_CASE__ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: lowerCAmelCase : Optional[int] = f.read().splitlines() if "O" not in labels: lowerCAmelCase : str = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class SCREAMING_SNAKE_CASE__ ( a__ ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__(label_idx=-2 ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: lowerCAmelCase : List[Any] = f.read().splitlines() if "O" not in labels: lowerCAmelCase : int = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class SCREAMING_SNAKE_CASE__ ( a__ ): """simple docstring""" def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[int] = mode.value lowerCAmelCase : int = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{mode}.txt""" ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Union[str, Any] = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = [] lowerCAmelCase : Optional[Any] = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 return examples def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[Any] = preds_list[example_id] lowerCAmelCase : Dict = """""" for token in sentence: out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(SCREAMING_SNAKE_CASE__ ) example_id += 1 def lowercase__ ( self , snake_case__ ): """simple docstring""" if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
645
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCAmelCase__ : List[str] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase_ ( _snake_case ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase_ ( _snake_case ,_snake_case ): if args.student_type == "roberta": SCREAMING_SNAKE_CASE__ : Optional[Any] = False elif args.student_type == "gpt2": SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def lowercase_ ( _snake_case ,_snake_case ): if args.student_type == "roberta": SCREAMING_SNAKE_CASE__ : List[str] = False def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" ,action="""store_true""" ,help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" ,type=_snake_case ,required=_snake_case ,help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" ,type=_snake_case ,required=_snake_case ,help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" ,) parser.add_argument( """--student_type""" ,type=_snake_case ,choices=["""distilbert""", """roberta""", """gpt2"""] ,required=_snake_case ,help="""The student type (DistilBERT, RoBERTa).""" ,) parser.add_argument("""--student_config""" ,type=_snake_case ,required=_snake_case ,help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" ,default=_snake_case ,type=_snake_case ,help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" ,choices=["""bert""", """roberta""", """gpt2"""] ,required=_snake_case ,help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" ,type=_snake_case ,required=_snake_case ,help="""The teacher model.""" ) parser.add_argument("""--temperature""" ,default=2.0 ,type=_snake_case ,help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" ,default=0.5 ,type=_snake_case ,help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" ,default=0.0 ,type=_snake_case ,help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" ,) parser.add_argument("""--alpha_clm""" ,default=0.5 ,type=_snake_case ,help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" ,default=0.0 ,type=_snake_case ,help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" ,default=0.0 ,type=_snake_case ,help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" ,action="""store_true""" ,help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" ,default=0.15 ,type=_snake_case ,help="""Proportion of tokens for which we need to make a prediction.""" ,) parser.add_argument("""--word_mask""" ,default=0.8 ,type=_snake_case ,help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" ,default=0.1 ,type=_snake_case ,help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" ,default=0.1 ,type=_snake_case ,help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" ,default=0.7 ,type=_snake_case ,help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" ,) parser.add_argument("""--token_counts""" ,type=_snake_case ,help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" ,action="""store_true""" ,help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" ,) parser.add_argument( """--freeze_pos_embs""" ,action="""store_true""" ,help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" ,) parser.add_argument( """--freeze_token_type_embds""" ,action="""store_true""" ,help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" ,) parser.add_argument("""--n_epoch""" ,type=_snake_case ,default=3 ,help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" ,type=_snake_case ,default=5 ,help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" ,action="""store_false""" ,help="""If true, group sequences that have similar length into the same batch. Default is true.""" ,) parser.add_argument( """--gradient_accumulation_steps""" ,type=_snake_case ,default=50 ,help="""Gradient accumulation for larger training batches.""" ,) parser.add_argument("""--warmup_prop""" ,default=0.05 ,type=_snake_case ,help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" ,default=0.0 ,type=_snake_case ,help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" ,default=5E-4 ,type=_snake_case ,help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" ,default=1E-6 ,type=_snake_case ,help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" ,default=5.0 ,type=_snake_case ,help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" ,default=0.02 ,type=_snake_case ,help="""Random initialization range.""" ) parser.add_argument( """--fp16""" ,action="""store_true""" ,help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" ,) parser.add_argument( """--fp16_opt_level""" ,type=_snake_case ,default="""O1""" ,help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) ,) parser.add_argument("""--n_gpu""" ,type=_snake_case ,default=1 ,help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" ,type=_snake_case ,default=-1 ,help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" ,type=_snake_case ,default=56 ,help="""Random seed""" ) parser.add_argument("""--log_interval""" ,type=_snake_case ,default=500 ,help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" ,type=_snake_case ,default=4_000 ,help="""Checkpoint interval.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path ,"""parameters.json""" ) ,"""w""" ) as f: json.dump(vars(_snake_case ) ,_snake_case ,indent=4 ) git_log(args.dump_path ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = MODEL_CLASSES[args.student_type] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # SCREAMING_SNAKE_CASE__ : str = teacher_tokenizer_class.from_pretrained(args.teacher_name ) SCREAMING_SNAKE_CASE__ : int = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): SCREAMING_SNAKE_CASE__ : str = tokenizer.all_special_tokens.index(_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) SCREAMING_SNAKE_CASE__ : List[Any] = special_tok_ids SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file ,"""rb""" ) as fp: SCREAMING_SNAKE_CASE__ : Union[str, Any] = pickle.load(_snake_case ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts ,"""rb""" ) as fp: SCREAMING_SNAKE_CASE__ : List[Any] = pickle.load(_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = np.maximum(_snake_case ,1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0 # do not predict special tokens SCREAMING_SNAKE_CASE__ : int = torch.from_numpy(_snake_case ) else: SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : Any = LmSeqsDataset(params=_snake_case ,data=_snake_case ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) SCREAMING_SNAKE_CASE__ : Tuple = student_config_class.from_pretrained(args.student_config ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = student_model_class.from_pretrained(args.student_pretrained_weights ,config=_snake_case ) else: SCREAMING_SNAKE_CASE__ : Tuple = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # SCREAMING_SNAKE_CASE__ : str = teacher_model_class.from_pretrained(args.teacher_name ,output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case ,_snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case ,_snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() SCREAMING_SNAKE_CASE__ : int = Distiller( params=_snake_case ,dataset=_snake_case ,token_probs=_snake_case ,student=_snake_case ,teacher=_snake_case ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
223
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Optional[int] , A : Optional[NestedDataStructureLike[PathLike]] = None , A : Optional[NamedSplit] = None , A : Optional[Features] = None , A : str = None , A : bool = False , A : bool = False , A : Optional[int] = None , **A : Dict , ) ->str: lowerCamelCase__ : Tuple = path_or_paths lowerCamelCase__ : int = split if split or isinstance(A , A ) else '''train''' lowerCamelCase__ : Union[str, Any] = features lowerCamelCase__ : List[Any] = cache_dir lowerCamelCase__ : str = keep_in_memory lowerCamelCase__ : Any = streaming lowerCamelCase__ : Optional[int] = num_proc lowerCamelCase__ : int = kwargs @abstractmethod def __lowerCamelCase ( self : Any ) ->Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : int , A : Optional[Features] = None , A : str = None , A : bool = False , A : bool = False , A : Optional[int] = None , **A : str , ) ->Union[str, Any]: lowerCamelCase__ : Any = features lowerCamelCase__ : List[Any] = cache_dir lowerCamelCase__ : Dict = keep_in_memory lowerCamelCase__ : List[str] = streaming lowerCamelCase__ : Any = num_proc lowerCamelCase__ : List[str] = kwargs @abstractmethod def __lowerCamelCase ( self : Tuple ) ->Union[Dataset, IterableDataset]: pass
712
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _A : List[Any] = logging.get_logger(__name__) def _a ( UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Optional[Any] = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowerCamelCase__ : Union[str, Any] = MaskFormerConfig(backbone_config=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok lowerCamelCase__ : int = 847 lowerCamelCase__ : Dict = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok lowerCamelCase__ : Dict = 150 lowerCamelCase__ : Optional[int] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok lowerCamelCase__ : List[str] = 171 lowerCamelCase__ : Dict = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO lowerCamelCase__ : Dict = 133 lowerCamelCase__ : Tuple = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok lowerCamelCase__ : int = 19 lowerCamelCase__ : Dict = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok lowerCamelCase__ : List[Any] = 65 lowerCamelCase__ : Optional[int] = '''mapillary-vistas-id2label.json''' lowerCamelCase__ : Optional[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase__ : List[Any] = {int(UpperCAmelCase ): v for k, v in idalabel.items()} return config def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight") ) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : str = dct.pop(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = val def _a ( UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase__ : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ : Any = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : int = in_proj_weight[:dim, :] lowerCamelCase__ : Optional[Any] = in_proj_bias[: dim] lowerCamelCase__ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ : str = in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ : Optional[int] = in_proj_weight[ -dim :, : ] lowerCamelCase__ : Optional[int] = in_proj_bias[-dim :] # fmt: on def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" # fmt: off lowerCamelCase__ : Union[str, Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ : List[str] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) lowerCamelCase__ : str = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Union[str, Any] = in_proj_weight[: hidden_size, :] lowerCamelCase__ : str = in_proj_bias[:config.hidden_size] lowerCamelCase__ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Dict = in_proj_weight[-hidden_size :, :] lowerCamelCase__ : str = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ : int = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) lowerCamelCase__ : Optional[int] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : int = in_proj_weight[: hidden_size, :] lowerCamelCase__ : str = in_proj_bias[:config.hidden_size] lowerCamelCase__ : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ : int = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Any = in_proj_weight[-hidden_size :, :] lowerCamelCase__ : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def _a ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Optional[int] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[str] = get_maskformer_config(UpperCAmelCase ) # load original state_dict with open(UpperCAmelCase , '''rb''' ) as f: lowerCamelCase__ : Tuple = pickle.load(UpperCAmelCase ) lowerCamelCase__ : Tuple = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase__ : Tuple = create_rename_keys(UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_swin_q_k_v(UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(UpperCAmelCase , UpperCAmelCase ) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase__ : Tuple = torch.from_numpy(UpperCAmelCase ) # load 🤗 model lowerCamelCase__ : Any = MaskFormerForInstanceSegmentation(UpperCAmelCase ) model.eval() for name, param in model.named_parameters(): print(UpperCAmelCase , param.shape ) lowerCamelCase__ , lowerCamelCase__ : Any = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCAmelCase ) == 0, f"Unexpected keys: {unexpected_keys}" # verify results lowerCamelCase__ : List[str] = prepare_img() if "vistas" in model_name: lowerCamelCase__ : Any = 65 elif "cityscapes" in model_name: lowerCamelCase__ : Optional[Any] = 65535 else: lowerCamelCase__ : List[Any] = 255 lowerCamelCase__ : int = True if '''ade''' in model_name else False lowerCamelCase__ : str = MaskFormerImageProcessor(ignore_index=UpperCAmelCase , reduce_labels=UpperCAmelCase ) lowerCamelCase__ : List[str] = image_processor(UpperCAmelCase , return_tensors='''pt''' ) lowerCamelCase__ : Dict = model(**UpperCAmelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase__ : Any = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f"nielsr/{model_name}" ) image_processor.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A : Union[str, Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
130
0
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase_ = 1.0_54_57_18_17e-34 # unit of ℏ : J * s lowercase_ = 3e8 # unit of c : m * s^-1 def lowerCAmelCase (__A , __A , __A): """simple docstring""" if (force, area, distance).count(0) != 1: raise ValueError('''One and only one argument must be 0''') if force < 0: raise ValueError('''Magnitude of force can not be negative''') if distance < 0: raise ValueError('''Distance can not be negative''') if area < 0: raise ValueError('''Area can not be negative''') if force == 0: _a = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _a = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _a = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''') # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' from collections.abc import Callable class A : def __init__( self : List[Any] , lowerCAmelCase_ : Callable | None = None ) -> None: """simple docstring""" _a = [] # Stores indexes of each item for supporting updates and deletion. _a = {} # Stores current size of heap. _a = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _a = key or (lambda lowerCAmelCase_ : x) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int ) -> int | None: """simple docstring""" return int((i - 1) / 2 ) if i > 0 else None def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int ) -> int | None: """simple docstring""" _a = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : int ) -> int | None: """simple docstring""" _a = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: """simple docstring""" _a , _a = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _a , _a = self.arr[j], self.arr[i] def __lowerCAmelCase ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> bool: """simple docstring""" return self.arr[i][1] < self.arr[j][1] def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int ) -> int: """simple docstring""" _a = self._left(lowerCAmelCase_ ) _a = self._right(lowerCAmelCase_ ) _a = i if left is not None and not self._cmp(lowerCAmelCase_ , lowerCAmelCase_ ): _a = left if right is not None and not self._cmp(lowerCAmelCase_ , lowerCAmelCase_ ): _a = right return valid_parent def __lowerCAmelCase ( self : str , lowerCAmelCase_ : int ) -> None: """simple docstring""" _a = self._parent(lowerCAmelCase_ ) while parent is not None and not self._cmp(lowerCAmelCase_ , lowerCAmelCase_ ): self._swap(lowerCAmelCase_ , lowerCAmelCase_ ) _a , _a = parent, self._parent(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int ) -> None: """simple docstring""" _a = self._get_valid_parent(lowerCAmelCase_ ) while valid_parent != index: self._swap(lowerCAmelCase_ , lowerCAmelCase_ ) _a , _a = valid_parent, self._get_valid_parent(lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: """simple docstring""" if item not in self.pos_map: return _a = self.pos_map[item] _a = [item, self.key(lowerCAmelCase_ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase_ ) self._heapify_down(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : int ) -> None: """simple docstring""" if item not in self.pos_map: return _a = self.pos_map[item] del self.pos_map[item] _a = self.arr[self.size - 1] _a = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase_ ) self._heapify_down(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: """simple docstring""" _a = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase_ )] ) else: _a = [item, self.key(lowerCAmelCase_ )] _a = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCAmelCase ( self : int ) -> tuple | None: """simple docstring""" return self.arr[0] if self.size else None def __lowerCAmelCase ( self : Union[str, Any] ) -> tuple | None: """simple docstring""" _a = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def snake_case_ (): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
377
'''simple docstring''' import math import unittest def snake_case_ (UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
377
1
from functools import reduce UpperCAmelCase_ : Optional[int] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( lowerCamelCase = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase , lowerCamelCase : str(int(lowerCamelCase ) * int(lowerCamelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
21
from math import loga def UpperCAmelCase__ ( __magic_name__ : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__magic_name__ , __magic_name__ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
348
0
'''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE : List[Any] = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
238
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) SCREAMING_SNAKE_CASE : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _UpperCamelCase ( lowerCAmelCase__: str ) -> Tuple: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE_ = model_type_to_module_name(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = importlib.import_module(F""".{module_name}""" ,'transformers.models' ) try: return getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase__ ,'__name__' ,lowerCAmelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE_ = importlib.import_module('transformers' ) if hasattr(lowerCAmelCase__ ,lowerCAmelCase__ ): return getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) return None def _UpperCamelCase ( lowerCAmelCase__: Union[str, os.PathLike] ,lowerCAmelCase__: Optional[Union[str, os.PathLike]] = None ,lowerCAmelCase__: bool = False ,lowerCAmelCase__: bool = False ,lowerCAmelCase__: Optional[Dict[str, str]] = None ,lowerCAmelCase__: Optional[Union[bool, str]] = None ,lowerCAmelCase__: Optional[str] = None ,lowerCAmelCase__: bool = False ,**lowerCAmelCase__: int ,) -> str: SCREAMING_SNAKE_CASE_ = get_file_from_repo( lowerCAmelCase__ ,lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,use_auth_token=lowerCAmelCase__ ,revision=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(lowerCAmelCase__ ,encoding='utf-8' ) as reader: return json.load(lowerCAmelCase__ ) class snake_case : """simple docstring""" def __init__( self ) -> str: raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def a__ ( cls, _lowercase, **_lowercase ) -> List[str]: SCREAMING_SNAKE_CASE_ = kwargs.pop('config', _lowercase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('trust_remote_code', _lowercase ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = FeatureExtractionMixin.get_feature_extractor_dict(_lowercase, **_lowercase ) SCREAMING_SNAKE_CASE_ = config_dict.get('feature_extractor_type', _lowercase ) SCREAMING_SNAKE_CASE_ = None if "AutoFeatureExtractor" in config_dict.get('auto_map', {} ): SCREAMING_SNAKE_CASE_ = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_lowercase, _lowercase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowercase, **_lowercase ) # It could be in `config.feature_extractor_type`` SCREAMING_SNAKE_CASE_ = getattr(_lowercase, 'feature_extractor_type', _lowercase ) if hasattr(_lowercase, 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: SCREAMING_SNAKE_CASE_ = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: SCREAMING_SNAKE_CASE_ = feature_extractor_class_from_name(_lowercase ) SCREAMING_SNAKE_CASE_ = feature_extractor_auto_map is not None SCREAMING_SNAKE_CASE_ = feature_extractor_class is not None or type(_lowercase ) in FEATURE_EXTRACTOR_MAPPING SCREAMING_SNAKE_CASE_ = resolve_trust_remote_code( _lowercase, _lowercase, _lowercase, _lowercase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE_ = get_class_from_dynamic_module( _lowercase, _lowercase, **_lowercase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('code_revision', _lowercase ) if os.path.isdir(_lowercase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_lowercase, **_lowercase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_lowercase, **_lowercase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_lowercase ) in FEATURE_EXTRACTOR_MAPPING: SCREAMING_SNAKE_CASE_ = FEATURE_EXTRACTOR_MAPPING[type(_lowercase )] return feature_extractor_class.from_dict(_lowercase, **_lowercase ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def a__ ( _lowercase, _lowercase ) -> Tuple: FEATURE_EXTRACTOR_MAPPING.register(_lowercase, _lowercase )
238
1
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class a_ ( unittest.TestCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_12 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_attention_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_choices def lowerCAmelCase__ ( self ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_attention_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase , ) return config, input_ids, attention_mask def lowerCAmelCase__ ( self ): a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : List[str] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self ): a_ = FlaxDistilBertModelTester(self ) @slow def lowerCAmelCase__ ( self ): for model_class_name in self.all_model_classes: a_ = model_class_name.from_pretrained("""distilbert-base-uncased""" ) a_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class a_ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self ): a_ = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) a_ = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) a_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] a_ = (1, 11, 7_68) self.assertEqual(output.shape , UpperCAmelCase ) a_ = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1e-4 ) )
263
'''simple docstring''' import math def UpperCamelCase_ ( A__ ): return math.sqrt(A__ ) * math.sqrt(A__ ) == num def UpperCamelCase_ ( A__ ): a_ = 0 a_ = n while left <= right: a_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: a_ = mid - 1 else: a_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
263
1
"""simple docstring""" import itertools import math def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( ) -> List[Any]: '''simple docstring''' lowercase = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0_1 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase__ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
197
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Optional[int]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] ) -> str: '''simple docstring''' lowercase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase = value.float() for key, value in codebook_state_dict.items(): lowercase = value return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :str=None ) -> int: '''simple docstring''' if config_path is not None: lowercase = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaConfig() lowercase = FlavaForPreTraining(lowerCAmelCase__ ).eval() lowercase = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" ) lowercase = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : List[str] =parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
197
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ : List[Any] = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _a ( __lowerCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlbertTokenizer SCREAMING_SNAKE_CASE_ : List[Any] = AlbertTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = True def _lowercase ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _snake_case = AlbertTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _snake_case = "this is a test" _snake_case = "this is a test" return input_text, output_text def _lowercase ( self ) -> Optional[int]: _snake_case = "<pad>" _snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Union[str, Any]: _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<pad>" ) self.assertEqual(vocab_keys[1] ,"<unk>" ) self.assertEqual(vocab_keys[-1] ,"▁eloquent" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,30_000 ) def _lowercase ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size ,30_000 ) def _lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = "I was born in 92000, and this is falsé." _snake_case = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) _snake_case = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) _snake_case = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(_SCREAMING_SNAKE_CASE ) _snake_case = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Union[str, Any]: _snake_case = AlbertTokenizer(_SCREAMING_SNAKE_CASE ,keep_accents=_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer.tokenize("This is a test" ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) ,[48, 25, 21, 1_289] ) _snake_case = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _SCREAMING_SNAKE_CASE ,["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) _snake_case = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,[31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) _snake_case = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE ,["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] ,) def _lowercase ( self ) -> Tuple: _snake_case = AlbertTokenizer(_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer.encode("sequence builders" ) _snake_case = tokenizer.encode("multi-sequence build" ) _snake_case = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase ( self ) -> List[Any]: # fmt: off _snake_case = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE ,model_name="albert-base-v2" ,revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" ,)
185
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase_ : Any = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = """unispeech-sat""" def __init__( self ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0_2 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE="group" ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) ,_SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) ,_SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=0.0_5 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=320 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE="mean" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1_500) ,_SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=504 ,**_SCREAMING_SNAKE_CASE ,) -> Any: super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ) _snake_case = hidden_size _snake_case = feat_extract_norm _snake_case = feat_extract_activation _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = conv_bias _snake_case = num_conv_pos_embeddings _snake_case = num_conv_pos_embedding_groups _snake_case = len(self.conv_dim ) _snake_case = num_hidden_layers _snake_case = intermediate_size _snake_case = hidden_act _snake_case = num_attention_heads _snake_case = hidden_dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = feat_proj_dropout _snake_case = final_dropout _snake_case = layerdrop _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = vocab_size _snake_case = num_clusters _snake_case = do_stable_layer_norm _snake_case = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case = apply_spec_augment _snake_case = mask_time_prob _snake_case = mask_time_length _snake_case = mask_time_min_masks _snake_case = mask_feature_prob _snake_case = mask_feature_length _snake_case = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _snake_case = num_codevectors_per_group _snake_case = num_codevector_groups _snake_case = contrastive_logits_temperature _snake_case = feat_quantizer_dropout _snake_case = num_negatives _snake_case = codevector_dim _snake_case = proj_codevector_dim _snake_case = diversity_loss_weight # ctc loss _snake_case = ctc_loss_reduction _snake_case = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _snake_case = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = list(_SCREAMING_SNAKE_CASE ) _snake_case = xvector_output_dim @property def _lowercase ( self ) -> List[str]: return functools.reduce(operator.mul ,self.conv_stride ,1 )
185
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = StableUnCLIPPipeline lowerCAmelCase_ : int = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : str = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCAmelCase_ : Optional[Any] = False def A_ ( self : List[Any] ) -> List[str]: '''simple docstring''' A = 32 A = embedder_hidden_size # prior components torch.manual_seed(0 ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case , projection_dim=snake_case , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) A = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=snake_case , num_layers=1 , ) torch.manual_seed(0 ) A = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=snake_case , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) A = StableUnCLIPImageNormalizer(embedding_dim=snake_case ) A = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) A = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case , layers_per_block=1 , upcast_attention=snake_case , use_linear_projection=snake_case , ) torch.manual_seed(0 ) A = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=snake_case , steps_offset=1 , ) torch.manual_seed(0 ) A = AutoencoderKL() A = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def A_ ( self : Dict , snake_case : Tuple , snake_case : Tuple=0 ) -> List[Any]: '''simple docstring''' if str(snake_case ).startswith('mps' ): A = torch.manual_seed(snake_case ) else: A = torch.Generator(device=snake_case ).manual_seed(snake_case ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def A_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' A = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=snake_case ) def A_ ( self : int ) -> List[str]: '''simple docstring''' A = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=snake_case ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : List[str] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Tuple ) -> int: '''simple docstring''' A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A = torch.Generator(device='cpu' ).manual_seed(0 ) A = pipe('anime turle' , generator=snake_case , output_type='np' ) A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case , snake_case ) def A_ ( self : str ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) A = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) A = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
715
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} A = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } A = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: A = json.loads(f.read() ) A = collections.OrderedDict() A = collections.OrderedDict() A = collections.OrderedDict() with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: A = f.readlines() A = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase__ ): A = b A = idx for wd in b: A = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : str = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Optional[Any]="<|endoftext|>" , snake_case : List[str]="<|endoftext|>" , snake_case : Any="<|startoftext|>" , snake_case : Any="<|endoftext|>" , snake_case : Tuple=False , **snake_case : List[str] , ) -> Optional[Any]: '''simple docstring''' super().__init__( unk_token=snake_case , pad_token=snake_case , bos_token=snake_case , eos_token=snake_case , do_clean_text=snake_case , **snake_case , ) if not os.path.isfile(snake_case ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) A = do_clean_text A , A , A , A = load_vocab_and_emoji(snake_case , snake_case ) A = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def A_ ( self : Any ) -> List[str]: '''simple docstring''' return len(self.raw_vocab ) def A_ ( self : str ) -> str: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def A_ ( self : List[str] , snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return self.subword_tokenizer.tokenize(snake_case , clean=self.do_clean_text ) def A_ ( self : int , snake_case : Optional[int] ) -> Dict: '''simple docstring''' return self.vocab.get(snake_case , self.vocab.get(self.unk_token ) ) def A_ ( self : int , snake_case : List[Any] ) -> Tuple: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(snake_case ) def A_ ( self : str , snake_case : int ) -> Optional[Any]: '''simple docstring''' A = ''.join(snake_case ).strip() return out_string def A_ ( self : Optional[int] , snake_case : "Conversation" ) -> List[int]: '''simple docstring''' A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case , add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: A = input_ids[-self.model_max_length :] return input_ids def A_ ( self : int , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' A = 0 if os.path.isdir(snake_case ): A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: A = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) A = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) A = token_index writer.write(','.join(snake_case ) + '\n' ) index += 1 with open(snake_case , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , snake_case ) return vocab_file, emoji_file class UpperCAmelCase__ ( UpperCamelCase ): def __init__( self : str , snake_case : Dict , snake_case : Optional[Any] , snake_case : List[Any] ) -> int: '''simple docstring''' A = vocab # same as swe A = ids_to_tokens # same as bpe A = emoji A = np.max([len(snake_case ) for w in self.vocab.keys()] ) A = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) A = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) A = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) A = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) A = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) A = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) A = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' A = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' A = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : List[str] ) -> List[str]: '''simple docstring''' return len(self.ids_to_tokens ) def A_ ( self : Tuple , snake_case : Any ) -> Optional[int]: '''simple docstring''' A = self.content_repattera.sub('<URL>' , snake_case ) A = self.content_repattera.sub('<EMAIL>' , snake_case ) A = self.content_repattera.sub('<TEL>' , snake_case ) A = self.content_repattera.sub('<DATE>' , snake_case ) A = self.content_repattera.sub('<DATE>' , snake_case ) A = self.content_repattera.sub('<PRICE>' , snake_case ) A = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: A = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def A_ ( self : Any , snake_case : int , snake_case : Any=False ) -> Any: '''simple docstring''' A = text.replace(' ' , '<SP>' ) A = text.replace(' ' , '<SP>' ) A = text.replace('\r\n' , '<BR>' ) A = text.replace('\n' , '<BR>' ) A = text.replace('\r' , '<BR>' ) A = text.replace('\t' , '<TAB>' ) A = text.replace('—' , 'ー' ) A = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: A = text.replace(snake_case , snake_case ) if clean: A = self.clean_text(snake_case ) def check_simbol(snake_case : Union[str, Any] ): A = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 2: A = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(snake_case : List[Any] ): A = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 3: A = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False A = 0 A = [] while pos < len(snake_case ): A = min(len(snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 A = [] # (token_id, token, pos) for e in range(snake_case , snake_case , -1 ): A = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case ) > 2: A = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case ) > 0: # the smallest token_id is adopted A , A , A = sorted(snake_case , key=lambda snake_case : x[0] )[0] result.append(snake_case ) A = e else: A = pos + 1 A = text[pos:end] if check_simbol(snake_case ): result.append('<KIGOU>' ) elif checkuae(snake_case ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) A = end return result def A_ ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any]="\n" ) -> List[Any]: '''simple docstring''' A = [] A = [] A = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) A = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case ) if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) A = ''.join(snake_case ) return text
109
0
def __snake_case ( _UpperCamelCase = 10 , _UpperCamelCase = 10_00 , _UpperCamelCase = True ) -> int: assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return int((number_a + number_a) / 2 ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> None: assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(_UpperCamelCase ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) _a = lower _a = higher _a = [] while True: _a = get_avg(_UpperCamelCase , _UpperCamelCase ) last_numbers.append(_UpperCamelCase ) if answer(_UpperCamelCase ) == "low": _a = number elif answer(_UpperCamelCase ) == "high": _a = number else: break print(f"guess the number : {last_numbers[-1]}" ) print(f"details : {last_numbers!s}" ) def __snake_case ( ) -> None: _a = int(input('''Enter lower value : ''' ).strip() ) _a = int(input('''Enter high value : ''' ).strip() ) _a = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
487
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( __snake_case , unittest.TestCase ): a: Tuple = KandinskyInpaintPipeline a: Union[str, Any] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] a: Any = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] a: str = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a: Dict = False @property def _A ( self: Dict ): return 32 @property def _A ( self: Any ): return 32 @property def _A ( self: Optional[Any] ): return self.time_input_dim @property def _A ( self: Tuple ): return self.time_input_dim * 4 @property def _A ( self: Dict ): return 100 @property def _A ( self: Optional[int] ): _a = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _A ( self: str ): torch.manual_seed(0 ) _a = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _a = MultilingualCLIP(__UpperCamelCase ) _a = text_encoder.eval() return text_encoder @property def _A ( self: Tuple ): torch.manual_seed(0 ) _a = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a = UNetaDConditionModel(**__UpperCamelCase ) return model @property def _A ( self: str ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A ( self: Dict ): torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self: Dict ): _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_unet _a = self.dummy_movq _a = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCamelCase , ) _a = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _A ( self: Dict , __UpperCamelCase: List[Any] , __UpperCamelCase: List[Any]=0 ): _a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCamelCase ) # create init_image _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask _a = np.ones((64, 64) , dtype=np.floataa ) _a = 0 if str(__UpperCamelCase ).startswith('''mps''' ): _a = torch.manual_seed(__UpperCamelCase ) else: _a = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _a = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _A ( self: int ): _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**__UpperCamelCase ) _a = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) _a = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _A ( self: Tuple ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _A ( self: int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self: int ): _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a = np.ones((768, 768) , dtype=np.floataa ) _a = 0 _a = '''a hat''' _a = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) _a = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a = pipeline( __UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) _a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
487
1
"""simple docstring""" from collections import defaultdict def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> bool: __SCREAMING_SNAKE_CASE = first_str.lower().strip() __SCREAMING_SNAKE_CASE = second_str.lower().strip() # Remove whitespace __SCREAMING_SNAKE_CASE = first_str.replace(''' ''' , '''''' ) __SCREAMING_SNAKE_CASE = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): return False # Default values for count should be 0 __SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCAmelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase__ =input("Enter the first string ").strip() lowerCAmelCase__ =input("Enter the second string ").strip() lowerCAmelCase__ =check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
690
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """spiece.model"""} __lowerCamelCase = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } __lowerCamelCase = { """google/reformer-crime-and-punishment""": 52_42_88, } class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple = ["input_ids", "attention_mask"] def __init__(self : List[Any] , snake_case__ : int , snake_case__ : Dict="</s>" , snake_case__ : List[str]="<unk>" , snake_case__ : Tuple=[] , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Optional[Any] = vocab_file snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict[str, int]: '''simple docstring''' snake_case : int = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : Optional[Any] ) -> int: '''simple docstring''' snake_case : int = self.__dict__.copy() snake_case : int = None return state def __setstate__(self : int , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.piece_to_id(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : int ) -> Union[str, Any]: '''simple docstring''' if index < self.sp_model.get_piece_size(): snake_case : Tuple = self.sp_model.IdToPiece(snake_case__ ) return token def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = [] snake_case : str = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token snake_case : List[Any] = [] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
204
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__(self : int , snake_case__ : Optional[int] , snake_case__ : Optional[int]=13 , snake_case__ : Tuple=32 , snake_case__ : Optional[Any]=3 , snake_case__ : Tuple=4 , snake_case__ : List[Any]=[10, 20, 30, 40] , snake_case__ : Dict=[2, 2, 3, 2] , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : List[str]=37 , snake_case__ : List[Any]="gelu" , snake_case__ : Union[str, Any]=10 , snake_case__ : int=0.02 , snake_case__ : str=["stage2", "stage3", "stage4"] , snake_case__ : int=[2, 3, 4] , snake_case__ : List[Any]=None , ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = parent snake_case : Optional[int] = batch_size snake_case : Optional[Any] = image_size snake_case : Union[str, Any] = num_channels snake_case : Tuple = num_stages snake_case : Union[str, Any] = hidden_sizes snake_case : List[Any] = depths snake_case : Dict = is_training snake_case : List[Any] = use_labels snake_case : str = intermediate_size snake_case : Dict = hidden_act snake_case : Optional[int] = num_labels snake_case : Dict = initializer_range snake_case : List[Any] = out_features snake_case : int = out_indices snake_case : List[Any] = scope def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : List[Any] = None if self.use_labels: snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case : str = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = ConvNextVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Any = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' snake_case : str = ConvNextVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Tuple = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] ) -> int: '''simple docstring''' snake_case : int = ConvNextVaBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Union[str, Any] = model(snake_case__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case : Dict = None snake_case : Tuple = ConvNextVaBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : int = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Union[str, Any] = config_and_inputs snake_case : int = {"pixel_values": pixel_values} return config, inputs_dict def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : str = config_and_inputs snake_case : Optional[int] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : Tuple = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A__ : int = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) A__ : str = False A__ : Dict = False A__ : Optional[int] = False A__ : List[Any] = False A__ : str = False def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = ConvNextVaModelTester(self ) snake_case : int = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case , snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() snake_case : Tuple = True if model_class.__name__ in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ]: continue snake_case : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() snake_case : str = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : List[str] = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_with_labels() snake_case : List[Any] = False snake_case : Any = True if ( model_class.__name__ in [*get_values(snake_case__ ), *get_values(snake_case__ )] or not model_class.supports_gradient_checkpointing ): continue snake_case : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.gradient_checkpointing_enable() model.train() snake_case : List[str] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : Any = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(snake_case__ ) snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : str = [*signature.parameters.keys()] snake_case : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' def check_hidden_states_output(snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Dict ): snake_case : List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): snake_case : Any = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : Dict = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : int = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[int] = ConvNextVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase ( ): snake_case : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(snake_case__ ) snake_case : List[str] = self.default_image_processor snake_case : str = prepare_img() snake_case : List[str] = preprocessor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): snake_case : str = model(**snake_case__ ) # verify the logits snake_case : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) snake_case : str = torch.tensor([0.9996, 0.1966, -0.4386] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
204
1
import os from typing import Dict, List, Tuple, TypeVar, Union __SCREAMING_SNAKE_CASE : Any = TypeVar('''T''') __SCREAMING_SNAKE_CASE : Any = Union[List[T], Tuple[T, ...]] __SCREAMING_SNAKE_CASE : str = Union[T, List[T], Dict[str, T]] __SCREAMING_SNAKE_CASE : Optional[int] = Union[str, bytes, os.PathLike]
720
def snake_case_ ( lowercase__ : int ): '''simple docstring''' _lowerCAmelCase =n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
149
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) _lowerCamelCase : Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _lowerCamelCase : Any = 1 if upper_limit > 0: _lowerCamelCase : List[str] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(_lowerCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: UpperCAmelCase_ : Optional[Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
def _SCREAMING_SNAKE_CASE ( snake_case ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(snake_case , snake_case ): raise TypeError("""Input value must be a 'int' type""" ) return bin(snake_case ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
175
from __future__ import annotations from scipy.special import comb # type: ignore class _A : def __init__( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) - 1 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _SCREAMING_SNAKE_CASE ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_SCREAMING_SNAKE_CASE ) , 5 ) == 1 return output_values def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCAmelCase = self.basis_function(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = 0.01 ): from matplotlib import pyplot as plt # type: ignore _UpperCAmelCase = [] # x coordinates of points to plot _UpperCAmelCase = [] # y coordinates of points to plot _UpperCAmelCase = 0.0 while t <= 1: _UpperCAmelCase = self.bezier_curve_function(_SCREAMING_SNAKE_CASE ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _UpperCAmelCase = [i[0] for i in self.list_of_points] _UpperCAmelCase = [i[1] for i in self.list_of_points] plt.plot( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
175
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class lowercase_ : """simple docstring""" def __init__( self : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : Tuple=None ) -> Any: _A = start _A = end _A = val _A = (start + end) // 2 _A = left _A = right def __repr__( self : str ) -> Optional[int]: return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class lowercase_ : """simple docstring""" def __init__( self : Dict, UpperCamelCase__ : Sequence, UpperCamelCase__ : Any ) -> Optional[Any]: _A = collection _A = function if self.collection: _A = self._build_tree(0, len(UpperCamelCase__ ) - 1 ) def __UpperCAmelCase ( self : Any, UpperCamelCase__ : str, UpperCamelCase__ : Dict ) -> int: self._update_tree(self.root, UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: return self._query_range(self.root, UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any] ) -> str: if start == end: return SegmentTreeNode(UpperCamelCase__, UpperCamelCase__, self.collection[start] ) _A = (start + end) // 2 _A = self._build_tree(UpperCamelCase__, UpperCamelCase__ ) _A = self._build_tree(mid + 1, UpperCamelCase__ ) return SegmentTreeNode(UpperCamelCase__, UpperCamelCase__, self.fn(left.val, right.val ), UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int] ) -> Tuple: if node.start == i and node.end == i: _A = val return if i <= node.mid: self._update_tree(node.left, UpperCamelCase__, UpperCamelCase__ ) else: self._update_tree(node.right, UpperCamelCase__, UpperCamelCase__ ) _A = self.fn(node.left.val, node.right.val ) def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : List[str], UpperCamelCase__ : Tuple, UpperCamelCase__ : int ) -> Tuple: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left, UpperCamelCase__, UpperCamelCase__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left, UpperCamelCase__, node.mid ), self._query_range(node.right, node.mid + 1, UpperCamelCase__ ), ) else: # range in right child tree return self._query_range(node.right, UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: if self.root is not None: _A = Queue() queue.put(self.root ) while not queue.empty(): _A = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) _UpperCAmelCase : Tuple = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
107
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __magic_name__ : List[Any] =logging.getLogger(__name__) __magic_name__ : int ='Hello world! cécé herlolip' __magic_name__ : List[Any] =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def __snake_case ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ): '''simple docstring''' __magic_name__ = BertAbsConfig( temp_dir="." , finetune_bert=lowerCamelCase_ , large=lowerCamelCase_ , share_emb=lowerCamelCase_ , use_bert_emb=lowerCamelCase_ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __magic_name__ = torch.load(lowerCamelCase_ , lambda lowerCamelCase_ , lowerCamelCase_ : storage ) __magic_name__ = AbsSummarizer(lowerCamelCase_ , torch.device("cpu" ) , lowerCamelCase_ ) original.eval() __magic_name__ = BertAbsSummarizer(lowerCamelCase_ , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) __magic_name__ = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs __magic_name__ = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowerCamelCase_ )) ) __magic_name__ = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) __magic_name__ = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowerCamelCase_ )) ) __magic_name__ = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __magic_name__ = encoder_input_ids __magic_name__ = decoder_input_ids __magic_name__ = __magic_name__ = None __magic_name__ = None __magic_name__ = __magic_name__ = None __magic_name__ = __magic_name__ = None __magic_name__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __magic_name__ = original(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )[0] __magic_name__ = original.generator(lowerCamelCase_ ) __magic_name__ = new_model( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )[0] __magic_name__ = new_model.generator(lowerCamelCase_ ) __magic_name__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowerCamelCase_ ) ) __magic_name__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowerCamelCase_ ) ) __magic_name__ = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": __magic_name__ : Dict =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) __magic_name__ : Any =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
664
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.txt'''} lowercase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } lowercase = { '''openbmb/cpm-ant-10b''': 1_0_2_4, } def __lowerCAmelCase ( UpperCAmelCase__ : List[str] ) -> Dict: lowerCamelCase_ = collections.OrderedDict() with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as reader: lowerCamelCase_ = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): lowerCamelCase_ = token.rstrip("""\n""" ) lowerCamelCase_ = index return vocab class __A( UpperCAmelCase ): def __init__( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str]="<unk>" , __UpperCamelCase : List[str]=2_0_0 ): lowerCamelCase_ = vocab lowerCamelCase_ = unk_token lowerCamelCase_ = max_input_chars_per_word def lowercase__ ( self : int , __UpperCamelCase : int ): lowerCamelCase_ = list(__UpperCamelCase ) if len(__UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] lowerCamelCase_ = 0 lowerCamelCase_ = [] while start < len(__UpperCamelCase ): lowerCamelCase_ = len(__UpperCamelCase ) lowerCamelCase_ = None while start < end: lowerCamelCase_ = """""".join(chars[start:end] ) if substr in self.vocab: lowerCamelCase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__UpperCamelCase ) lowerCamelCase_ = end return sub_tokens class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE = False def __init__( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]="<d>" , __UpperCamelCase : List[str]="</d>" , __UpperCamelCase : Optional[Any]="<s>" , __UpperCamelCase : Union[str, Any]="</s>" , __UpperCamelCase : List[str]="<pad>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : List[Any]="</n>" , __UpperCamelCase : Tuple="</_>" , __UpperCamelCase : Optional[Any]="left" , **__UpperCamelCase : List[str] , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__UpperCamelCase , eod_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , pad_token=__UpperCamelCase , unk_token=__UpperCamelCase , line_token=__UpperCamelCase , space_token=__UpperCamelCase , padding_side=__UpperCamelCase , **__UpperCamelCase , ) lowerCamelCase_ = bod_token lowerCamelCase_ = eod_token lowerCamelCase_ = load_vocab(__UpperCamelCase ) lowerCamelCase_ = self.encoder[space_token] lowerCamelCase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowercase__ ( self : Any ): return self.encoder[self.bod_token] @property def lowercase__ ( self : Any ): return self.encoder[self.eod_token] @property def lowercase__ ( self : int ): return self.encoder["\n"] @property def lowercase__ ( self : str ): return len(self.encoder ) def lowercase__ ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = [] for x in jieba.cut(__UpperCamelCase , cut_all=__UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__UpperCamelCase ) ) return output_tokens def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict , **__UpperCamelCase : str ): lowerCamelCase_ = [i for i in token_ids if i >= 0] lowerCamelCase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Any] ): return token in self.encoder def lowercase__ ( self : int , __UpperCamelCase : List[str] ): return "".join(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : int ): return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Any , __UpperCamelCase : Union[str, Any] ): return self.decoder.get(__UpperCamelCase , self.unk_token ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if os.path.isdir(__UpperCamelCase ): lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: lowerCamelCase_ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory lowerCamelCase_ = 0 if " " in self.encoder: lowerCamelCase_ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: lowerCamelCase_ = self.encoder["""\n"""] del self.encoder["\n"] lowerCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) lowerCamelCase_ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowercase__ ( self : Any , __UpperCamelCase : List[int] , __UpperCamelCase : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowercase__ ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase ))
713
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __A( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCamelCase_ = [[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids , __UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowercase__ ( self : List[Any] ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCamelCase_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = [[1, 2, 3], [1, 2, 4]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) lowerCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) lowerCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(3 ) lowerCamelCase_ = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
103
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case : List[Any] = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase__ ,id=UpperCAmelCase__ )
605
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] _SCREAMING_SNAKE_CASE = TensorFlowBenchmark(args=UpperCAmelCase__ ) try: _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] except ValueError as e: _SCREAMING_SNAKE_CASE = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' _SCREAMING_SNAKE_CASE = ' '.join(str(UpperCAmelCase__ ).split(' ' )[:-1] ) _SCREAMING_SNAKE_CASE = '' _SCREAMING_SNAKE_CASE = eval(str(UpperCAmelCase__ ).split(' ' )[-1] ) _SCREAMING_SNAKE_CASE = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: _SCREAMING_SNAKE_CASE = full_error_msg + begin_error_msg + str(UpperCAmelCase__ ) raise ValueError(UpperCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
605
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCamelCase__ : int = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def A_( A ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase_ = list(s_dict.keys() ) for key in keys: UpperCAmelCase_ = R""".*/layers_(\d+)""" UpperCAmelCase_ = key if re.match(A , A ): UpperCAmelCase_ = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , A ) UpperCAmelCase_ = R"""(encoder|decoder)\/""" if re.match(A , A ): UpperCAmelCase_ = re.match(A , A ).groups() if groups[0] == "encoder": UpperCAmelCase_ = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , A ) UpperCAmelCase_ = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , A ) elif groups[0] == "decoder": UpperCAmelCase_ = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , A ) UpperCAmelCase_ = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , A ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase_ = new_key.replace(A , A ) print(f"""{key} -> {new_key}""" ) UpperCAmelCase_ = s_dict.pop(A ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase_ = s_dict[key].shape[0] UpperCAmelCase_ = s_dict[key] for idx in range(A ): UpperCAmelCase_ = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(A ) return s_dict UpperCamelCase__ : Optional[int] = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def A_( A , A ): # Convert a google style config to the hugging face fromat import regex as re with open(A , """r""" ) as f: UpperCAmelCase_ = f.read() UpperCAmelCase_ = re.findall(R"""(.*) = ([0-9.]*)""" , A ) UpperCAmelCase_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase_ = float(A ) if """.""" in value else int(A ) UpperCAmelCase_ = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , A )[0] UpperCAmelCase_ = str(activation[1] ) UpperCAmelCase_ = num_experts UpperCAmelCase_ = SwitchTransformersConfig(**A ) return config def A_( A , A , A=None , A="./" , A=8 ): # Initialise PyTorch model print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase_ = checkpoints.load_tax_checkpoint(A ) if gin_file is not None: UpperCAmelCase_ = convert_gin_to_config(A , A ) else: UpperCAmelCase_ = SwitchTransformersConfig.from_pretrained(A ) UpperCAmelCase_ = SwitchTransformersForConditionalGeneration(A ) UpperCAmelCase_ = flax_params["""target"""] UpperCAmelCase_ = flatten_dict(A , sep="""/""" ) UpperCAmelCase_ = rename_keys(A ) UpperCAmelCase_ = unflatten_dict(A , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(A , A ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(A ) if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") UpperCamelCase__ : Union[str, Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
486
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def A_( ): UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=A , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=A , default=5 ) parser.add_argument("""--batch_size""" , type=A , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=A , default=1 ) parser.add_argument("""--freeze""" , type=A , default=A ) parser.add_argument("""--learning_rate""" , type=A , default=5E-4 ) parser.add_argument("""--seed""" , type=A , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=A , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=A , default=10 ) parser.add_argument("""--weight_decay""" , type=A , default=0.01 ) parser.add_argument("""--output_dir""" , type=A , default="""./results""" ) return parser.parse_args() UpperCamelCase__ : Any = load("""accuracy""") def A_( A ): UpperCAmelCase_ , UpperCAmelCase_ = eval_pred UpperCAmelCase_ = np.argmax(A , axis=1 ) return metric.compute(predictions=A , references=A ) class _UpperCamelCase ( A_ ): '''simple docstring''' def __init__( self : str , __lowercase : Any ): '''simple docstring''' super().__init__() UpperCAmelCase_ = trainer def SCREAMING_SNAKE_CASE ( self : Tuple , __lowercase : int , __lowercase : Tuple , __lowercase : Dict , **__lowercase : Dict ): '''simple docstring''' if control.should_evaluate: UpperCAmelCase_ = deepcopy(__lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def A_( ): UpperCAmelCase_ = get_args() set_seed(args.seed ) UpperCAmelCase_ = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) UpperCAmelCase_ = dataset.train_test_split(test_size=0.2 ) UpperCAmelCase_ = train_test["""test"""].train_test_split(test_size=0.5 ) UpperCAmelCase_ = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ = tokenizer.eos_token UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCAmelCase_ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCAmelCase_ = False UpperCAmelCase_ = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(A ): UpperCAmelCase_ = tokenizer(example["""src"""] , truncation=A , max_length=1024 ) UpperCAmelCase_ = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCAmelCase_ = train_test_validation.map( A , batched=A , remove_columns=train_test_validation["""train"""].column_names , ) UpperCAmelCase_ = DataCollatorWithPadding(tokenizer=A ) UpperCAmelCase_ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) UpperCAmelCase_ = Trainer( model=A , args=A , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=A , data_collator=A , compute_metrics=A , ) print("""Training...""" ) trainer.add_callback(CustomCallback(A ) ) trainer.train() if __name__ == "__main__": main()
486
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 100 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , ): if audio_length_in_s is None: __snake_case : List[str] = self.unet.config.sample_size / self.unet.config.sample_rate __snake_case : List[Any] = audio_length_in_s * self.unet.config.sample_rate __snake_case : List[str] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __snake_case : str = int(_UpperCAmelCase ) if sample_size % down_scale_factor != 0: __snake_case : Tuple = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) __snake_case : str = int(_UpperCAmelCase ) __snake_case : Optional[Any] = next(iter(self.unet.parameters() ) ).dtype __snake_case : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __snake_case : str = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device ) __snake_case : List[Any] = self.scheduler.timesteps.to(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case : Union[str, Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 __snake_case : Optional[int] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample __snake_case : Dict = audio.clamp(-1 , 1 ).float().cpu().numpy() __snake_case : Optional[Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_UpperCAmelCase )
576
def UpperCAmelCase__( __UpperCAmelCase : int ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case : str = 4 __snake_case : List[str] = (1 << p) - 1 for _ in range(p - 2 ): __snake_case : List[str] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
576
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Optional[int] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class _snake_case ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : List[Any] = AlbertTokenizer SCREAMING_SNAKE_CASE : Optional[Any] = AlbertTokenizerFast SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = AlbertTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = 'this is a test' lowerCAmelCase = 'this is a test' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = '<pad>' lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 3_00_00 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = 'I was born in 92000, and this is falsé.' lowerCAmelCase = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = AlbertTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [48, 25, 21, 12_89] ) lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = AlbertTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.encode('sequence builders' ) lowerCAmelCase = tokenizer.encode('multi-sequence build' ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
514
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(snake_case , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def snake_case ( snake_case : Optional[int] , snake_case : str ) -> str: """simple docstring""" lowerCAmelCase = _distribute_shards(**snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def snake_case ( snake_case : Optional[int] , snake_case : int , snake_case : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = _split_gen_kwargs(snake_case , snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def snake_case ( snake_case : Union[str, Any] , snake_case : Optional[int] ) -> int: """simple docstring""" if expected is RuntimeError: with pytest.raises(snake_case ): _number_of_shards_in_gen_kwargs(snake_case ) else: lowerCAmelCase = _number_of_shards_in_gen_kwargs(snake_case ) assert out == expected
514
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowercase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
402
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = IFImgaImgSuperResolutionPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCamelCase ( self ): return self._get_superresolution_dummy_components() def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __UpperCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase ( self ): self._test_save_load_local() def __UpperCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
38
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __magic_name__ : List[Any] = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[str] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __magic_name__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
410
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __magic_name__ : Union[str, Any] = get_logger() __magic_name__ : Optional[dict] = None class A__ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self : Dict , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" super().__init__(features=_SCREAMING_SNAKE_CASE ) import jax from jaxlib.xla_client import Device if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'Expected {device} to be a `str` not {type(_SCREAMING_SNAKE_CASE )}, as `jaxlib.xla_extension.Device` ' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) UpperCamelCase = device if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) UpperCamelCase = str(jax.devices()[0] ) UpperCamelCase = jnp_array_kwargs @staticmethod def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" import jax return {str(_SCREAMING_SNAKE_CASE ): device for device in jax.devices()} def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and column: if all( isinstance(_SCREAMING_SNAKE_CASE , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_SCREAMING_SNAKE_CASE , axis=0 ) return column def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_SCREAMING_SNAKE_CASE , (str, bytes, type(_SCREAMING_SNAKE_CASE )) ): return value elif isinstance(_SCREAMING_SNAKE_CASE , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase = {} if isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase = {'dtype': jnp.intaa} else: UpperCamelCase = {'dtype': jnp.intaa} elif isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_SCREAMING_SNAKE_CASE , **{**default_dtype, **self.jnp_array_kwargs} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_SCREAMING_SNAKE_CASE , '__array__' ) and not isinstance(_SCREAMING_SNAKE_CASE , jax.Array ): UpperCamelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) return self._tensorize(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , _SCREAMING_SNAKE_CASE , map_list=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Dict , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_row(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_row(_SCREAMING_SNAKE_CASE ) return self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_column(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_column(_SCREAMING_SNAKE_CASE , pa_table.column_names[0] ) UpperCamelCase = self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._consolidate(_SCREAMING_SNAKE_CASE ) return column def _SCREAMING_SNAKE_CASE ( self : List[str] , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_batch(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_batch(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for column_name in batch: UpperCamelCase = self._consolidate(batch[column_name] ) return batch
410
1
import numpy as np from transformers import Pipeline def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase =np.max(__lowerCamelCase , axis=-1 , keepdims=__lowerCamelCase ) __lowerCAmelCase =np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowerCamelCase ) class __a ( SCREAMING_SNAKE_CASE ): def UpperCamelCase ( self : Any , **snake_case_ : List[Any])-> Dict: __lowerCAmelCase ={} if "second_text" in kwargs: __lowerCAmelCase =kwargs["""second_text"""] return preprocess_kwargs, {}, {} def UpperCamelCase ( self : Any , snake_case_ : List[Any] , snake_case_ : List[Any]=None)-> List[Any]: return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework) def UpperCamelCase ( self : List[str] , snake_case_ : Any)-> Dict: return self.model(**snake_case_) def UpperCamelCase ( self : List[Any] , snake_case_ : Tuple)-> Union[str, Any]: __lowerCAmelCase =model_outputs.logits[0].numpy() __lowerCAmelCase =softmax(snake_case_) __lowerCAmelCase =np.argmax(snake_case_) __lowerCAmelCase =self.model.config.idalabel[best_class] __lowerCAmelCase =probabilities[best_class].item() __lowerCAmelCase =logits.tolist() return {"label": label, "score": score, "logits": logits}
354
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __lowerCAmelCase ( __lowerCamelCase : str ) -> None: __lowerCAmelCase , __lowerCAmelCase =analyze_text(__lowerCamelCase ) __lowerCAmelCase =list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __lowerCAmelCase =sum(single_char_strings.values() ) # one length string __lowerCAmelCase =0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowerCAmelCase =single_char_strings[ch] __lowerCAmelCase =my_str / all_sum my_fir_sum += prob * math.loga(__lowerCamelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __lowerCAmelCase =sum(two_char_strings.values() ) __lowerCAmelCase =0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowerCAmelCase =cha + cha if sequence in two_char_strings: __lowerCAmelCase =two_char_strings[sequence] __lowerCAmelCase =int(__lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCamelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __lowerCAmelCase ( __lowerCamelCase : str ) -> tuple[dict, dict]: __lowerCAmelCase =Counter() # type: ignore __lowerCAmelCase =Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __lowerCAmelCase ( ) -> str: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
354
1
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: __lowerCAmelCase = os.path.abspath(_lowerCAmelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location="""cpu""" ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) __lowerCAmelCase = convert_pytorch_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __lowerCAmelCase = convert_pytorch_sharded_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase ) return flax_state_dict def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): def is_key_or_prefix_key_in_dict(_lowerCAmelCase ) -> bool: return len(set(_lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __lowerCAmelCase = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __lowerCAmelCase = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __lowerCAmelCase = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): __lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): __lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __lowerCAmelCase = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __lowerCAmelCase = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __lowerCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __lowerCAmelCase = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __lowerCAmelCase = pt_tuple_key[-2] + """_v""" if name is not None: __lowerCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase (_lowerCAmelCase , _lowerCAmelCase ): # convert pytorch tensor to numpy __lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __lowerCAmelCase = flax_model.params["""params"""] else: __lowerCAmelCase = flax_model.params __lowerCAmelCase = flatten_dict(_lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCAmelCase = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCAmelCase = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCAmelCase , __lowerCAmelCase = rename_key_and_reshape_tensor( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # add model prefix if necessary __lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): import torch # Load the index __lowerCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils __lowerCAmelCase = torch.load(_lowerCAmelCase ) __lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCAmelCase = flax_model.params["""params"""] __lowerCAmelCase = flatten_dict(_lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: __lowerCAmelCase = flax_model.params __lowerCAmelCase = flatten_dict(_lowerCAmelCase ) __lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCAmelCase = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCAmelCase , __lowerCAmelCase = rename_key_and_reshape_tensor( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # add model prefix if necessary __lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) continue if "var" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = os.path.abspath(_lowerCAmelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class __lowerCAmelCase = getattr(_lowerCAmelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(_lowerCAmelCase , """rb""" ) as state_f: try: __lowerCAmelCase = from_bytes(_lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_lowerCAmelCase , _lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights __lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa , _lowerCAmelCase ) ).values() if any(_lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) __lowerCAmelCase = jax.tree_util.tree_map( lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCAmelCase ) __lowerCAmelCase = flatten_dict(_lowerCAmelCase ) __lowerCAmelCase = pt_model.state_dict() __lowerCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) __lowerCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __lowerCAmelCase = [] __lowerCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowerCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix __lowerCAmelCase = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCAmelCase ) not in pt_model_dict: # conv layer __lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) __lowerCAmelCase = jnp.transpose(_lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ) not in pt_model_dict: # linear layer __lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) __lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __lowerCAmelCase = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: __lowerCAmelCase = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: __lowerCAmelCase = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __lowerCAmelCase = """.""".join(_lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __lowerCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: __lowerCAmelCase = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: __lowerCAmelCase = key_components[-2] + """_v""" if name is not None: __lowerCAmelCase = key_components[:-3] + [name] __lowerCAmelCase = """.""".join(_lowerCAmelCase ) __lowerCAmelCase = key if flax_key in special_pt_names: __lowerCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __lowerCAmelCase = np.asarray(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase , np.ndarray ) else flax_tensor __lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ) # remove from missing keys missing_keys.remove(_lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCAmelCase ) pt_model.load_state_dict(_lowerCAmelCase ) # re-transform missing_keys to list __lowerCAmelCase = list(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_lowerCAmelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" """If your task is similar to the task the model of the checkpoint was trained on, """ f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
573
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''pegasus''' _snake_case = ['''past_key_values'''] _snake_case = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , snake_case_=50_265 , snake_case_=1_024 , snake_case_=12 , snake_case_=4_096 , snake_case_=16 , snake_case_=12 , snake_case_=4_096 , snake_case_=16 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=True , snake_case_=True , snake_case_="gelu" , snake_case_=1_024 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=1 , **snake_case_ , ) -> List[str]: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) @property def A__ ( self ) -> int: return self.encoder_attention_heads @property def A__ ( self ) -> int: return self.d_model
573
1
import os def _snake_case ( __snake_case = "input.txt" ): with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as input_file: _UpperCamelCase = [ [int(__snake_case ) for element in line.split(''',''' )] for line in input_file.readlines() ] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(matrix[0] ) _UpperCamelCase = [[-1 for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): _UpperCamelCase = matrix[i][0] for j in range(1 , __snake_case ): for i in range(__snake_case ): _UpperCamelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __snake_case ): _UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase__ ( lowercase_ ): """simple docstring""" @require_torch def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ SCREAMING_SNAKE_CASE : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ SCREAMING_SNAKE_CASE : Tuple = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE : List[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCamelCase_ ) BertModel.from_pretrained(lowerCamelCase_ ) BertTokenizer.from_pretrained(lowerCamelCase_ ) pipeline(task="""fill-mask""" , model=lowerCamelCase_ ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE : List[Any] = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE : List[Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE : Optional[Any] = """1""" SCREAMING_SNAKE_CASE : List[str] = subprocess.run(lowerCamelCase_ , env=lowerCamelCase_ , check=lowerCamelCase_ , capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ SCREAMING_SNAKE_CASE : int = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ SCREAMING_SNAKE_CASE : Any = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE : Any = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCamelCase_ ) BertModel.from_pretrained(lowerCamelCase_ ) BertTokenizer.from_pretrained(lowerCamelCase_ ) pipeline(task="""fill-mask""" , model=lowerCamelCase_ ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE : str = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE : List[Any] = self.get_env() SCREAMING_SNAKE_CASE : Optional[Any] = subprocess.run(lowerCamelCase_ , env=lowerCamelCase_ , check=lowerCamelCase_ , capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = """ from transformers import BertConfig, BertModel, BertTokenizer """ SCREAMING_SNAKE_CASE : Any = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ SCREAMING_SNAKE_CASE : Optional[Any] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_env() SCREAMING_SNAKE_CASE : Any = subprocess.run(lowerCamelCase_ , env=lowerCamelCase_ , check=lowerCamelCase_ , capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE : Tuple = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE : Tuple = """1""" SCREAMING_SNAKE_CASE : Optional[int] = subprocess.run(lowerCamelCase_ , env=lowerCamelCase_ , check=lowerCamelCase_ , capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = """ from transformers import pipeline """ SCREAMING_SNAKE_CASE : Union[str, Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ SCREAMING_SNAKE_CASE : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ SCREAMING_SNAKE_CASE : List[Any] = self.get_env() SCREAMING_SNAKE_CASE : Union[str, Any] = """1""" SCREAMING_SNAKE_CASE : Union[str, Any] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] SCREAMING_SNAKE_CASE : List[Any] = subprocess.run(lowerCamelCase_ , env=lowerCamelCase_ , check=lowerCamelCase_ , capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = """ from transformers import AutoModel """ SCREAMING_SNAKE_CASE : Dict = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE : str = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed SCREAMING_SNAKE_CASE : Optional[int] = self.get_env() SCREAMING_SNAKE_CASE : int = subprocess.run(lowerCamelCase_ , env=lowerCamelCase_ , check=lowerCamelCase_ , capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE : str = """1""" SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.run(lowerCamelCase_ , env=lowerCamelCase_ , check=lowerCamelCase_ , capture_output=lowerCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
703
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None # Automatically constructed SCREAMING_SNAKE_CASE__ = "dict" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = field(default='''Translation''' , init=lowercase_ , repr=lowercase_ ) def __call__( self : int ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # Automatically constructed SCREAMING_SNAKE_CASE__ = "dict" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = field(default='''TranslationVariableLanguages''' , init=lowercase_ , repr=lowercase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE : str = len(self.languages ) if self.languages else None def __call__( self : Tuple ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = set(self.languages ) if self.languages and set(lowerCamelCase_ ) - lang_set: raise ValueError( f'''Some languages in example ({", ".join(sorted(set(lowerCamelCase_ ) - lang_set ) )}) are not in valid set ({", ".join(lowerCamelCase_ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE : List[Any] = [] for lang, text in translation_dict.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = zip(*sorted(lowerCamelCase_ ) ) return {"language": languages, "translation": translations} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
79
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCamelCase = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
453
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> list[list[int]]: A_ : list[list[int]] = [] A_ : list[int] = [] A_ : Dict = 0 A_ : str = sum(_lowerCAmelCase ) create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return result def __snake_case ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int , ) -> None: if sum(_lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCAmelCase )) < max_sum: return if sum(_lowerCAmelCase ) == max_sum: result.append(_lowerCAmelCase ) return for index in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): create_state_space_tree( _lowerCAmelCase , _lowerCAmelCase , index + 1 , [*path, nums[index]] , _lowerCAmelCase , remaining_nums_sum - nums[index] , ) _lowerCAmelCase : List[Any] = [3, 34, 4, 12, 5, 2] _lowerCAmelCase : Dict = 9 _lowerCAmelCase : Dict = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
454
0
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Tuple = text, pattern UpperCAmelCase , UpperCAmelCase : Dict = len(_SCREAMING_SNAKE_CASE ), len(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE ( self ) -> list[int]: '''simple docstring''' UpperCAmelCase : List[str] = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase : Optional[int] = self.mismatch_in_text(_SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase : Dict = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A: int = "ABAABA" A: List[Any] = "AB" A: List[str] = BoyerMooreSearch(text, pattern) A: Dict = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
359
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A: Optional[Any] = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A: Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A: Optional[int] = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Dict = compute_bleu( reference_corpus=_SCREAMING_SNAKE_CASE , translation_corpus=_SCREAMING_SNAKE_CASE , max_order=_SCREAMING_SNAKE_CASE , smooth=_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
359
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Any = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
348
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Dict = logging.get_logger(__name__) __a : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "gpt_bigcode" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , UpperCamelCase_ : Dict=50_257 , UpperCamelCase_ : int=1_024 , UpperCamelCase_ : List[Any]=768 , UpperCamelCase_ : str=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple="gelu_pytorch_tanh" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : int=1e-5 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Dict=50_256 , UpperCamelCase_ : Optional[Any]=50_256 , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : List[Any]=True , **UpperCamelCase_ : int , ): """simple docstring""" __A = vocab_size __A = n_positions __A = n_embd __A = n_layer __A = n_head __A = n_inner __A = activation_function __A = resid_pdrop __A = embd_pdrop __A = attn_pdrop __A = layer_norm_epsilon __A = initializer_range __A = scale_attn_weights __A = use_cache __A = attention_softmax_in_fpaa __A = scale_attention_softmax_in_fpaa __A = multi_query __A = bos_token_id __A = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
637
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''image''': Image()} ) UpperCamelCase = Features({'''labels''': ClassLabel} ) UpperCamelCase = "image" UpperCamelCase = "labels" def lowercase__ ( self : int , _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _UpperCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase_ = copy.deepcopy(self ) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def lowercase__ ( self : Tuple ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
14
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
0
import argparse import struct import unittest class lowercase__ : def __init__( self , __UpperCAmelCase )-> Any: '''simple docstring''' lowerCAmelCase__ = data # Initialize hash values lowerCAmelCase__ = [ 0X6A_09_E6_67, 0XBB_67_AE_85, 0X3C_6E_F3_72, 0XA5_4F_F5_3A, 0X51_0E_52_7F, 0X9B_05_68_8C, 0X1F_83_D9_AB, 0X5B_E0_CD_19, ] # Initialize round constants lowerCAmelCase__ = [ 0X42_8A_2F_98, 0X71_37_44_91, 0XB5_C0_FB_CF, 0XE9_B5_DB_A5, 0X39_56_C2_5B, 0X59_F1_11_F1, 0X92_3F_82_A4, 0XAB_1C_5E_D5, 0XD8_07_AA_98, 0X12_83_5B_01, 0X24_31_85_BE, 0X55_0C_7D_C3, 0X72_BE_5D_74, 0X80_DE_B1_FE, 0X9B_DC_06_A7, 0XC1_9B_F1_74, 0XE4_9B_69_C1, 0XEF_BE_47_86, 0X0F_C1_9D_C6, 0X24_0C_A1_CC, 0X2D_E9_2C_6F, 0X4A_74_84_AA, 0X5C_B0_A9_DC, 0X76_F9_88_DA, 0X98_3E_51_52, 0XA8_31_C6_6D, 0XB0_03_27_C8, 0XBF_59_7F_C7, 0XC6_E0_0B_F3, 0XD5_A7_91_47, 0X06_CA_63_51, 0X14_29_29_67, 0X27_B7_0A_85, 0X2E_1B_21_38, 0X4D_2C_6D_FC, 0X53_38_0D_13, 0X65_0A_73_54, 0X76_6A_0A_BB, 0X81_C2_C9_2E, 0X92_72_2C_85, 0XA2_BF_E8_A1, 0XA8_1A_66_4B, 0XC2_4B_8B_70, 0XC7_6C_51_A3, 0XD1_92_E8_19, 0XD6_99_06_24, 0XF4_0E_35_85, 0X10_6A_A0_70, 0X19_A4_C1_16, 0X1E_37_6C_08, 0X27_48_77_4C, 0X34_B0_BC_B5, 0X39_1C_0C_B3, 0X4E_D8_AA_4A, 0X5B_9C_CA_4F, 0X68_2E_6F_F3, 0X74_8F_82_EE, 0X78_A5_63_6F, 0X84_C8_78_14, 0X8C_C7_02_08, 0X90_BE_FF_FA, 0XA4_50_6C_EB, 0XBE_F9_A3_F7, 0XC6_71_78_F2, ] lowerCAmelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase ( __UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_ ) + 8) % 64)) lowerCAmelCase__ = struct.pack(">Q" , (len(UpperCAmelCase_ ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCAmelCase__ = list(struct.unpack(">16L" , UpperCAmelCase_ ) ) # add 48 0-ed integers words += [0] * 48 lowerCAmelCase__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCAmelCase__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCAmelCase__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCAmelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression lowerCAmelCase__ = self.ror(UpperCAmelCase_ , 6 ) ^ self.ror(UpperCAmelCase_ , 11 ) ^ self.ror(UpperCAmelCase_ , 25 ) lowerCAmelCase__ = (e & f) ^ ((~e & 0XFF_FF_FF_FF) & g) lowerCAmelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 lowerCAmelCase__ = self.ror(UpperCAmelCase_ , 2 ) ^ self.ror(UpperCAmelCase_ , 13 ) ^ self.ror(UpperCAmelCase_ , 22 ) lowerCAmelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCAmelCase__ = (sa + maj) % 0X1_00_00_00_00 lowerCAmelCase__ = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) lowerCAmelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCAmelCase__ = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCAmelCase__ = ''.join([hex(UpperCAmelCase_ )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' return 0XFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' import hashlib lowerCAmelCase__ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(UpperCAmelCase_ ).hash , hashlib.shaaaa(UpperCAmelCase_ ).hexdigest() ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: lowerCAmelCase__ = f.read() else: lowerCAmelCase__ = bytes(lowerCamelCase_ , "utf-8" ) print(SHAaaa(lowerCamelCase_ ).hash ) if __name__ == "__main__": main()
706
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a_ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') a_ = subprocess.check_output(F"git diff --name-only {fork_point_sha}".split()).decode('''utf-8''').split() a_ = '''|'''.join(sys.argv[1:]) a_ = re.compile(rF"^({joined_dirs}).*?\.py$") a_ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
115
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="sew" def __init__( self , UpperCamelCase_=32 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_=2 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_="group" , UpperCamelCase_="gelu" , UpperCamelCase_=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase_=False , UpperCamelCase_=1_28 , UpperCamelCase_=16 , UpperCamelCase_=True , UpperCamelCase_=0.0_5 , UpperCamelCase_=10 , UpperCamelCase_=2 , UpperCamelCase_=0.0 , UpperCamelCase_=10 , UpperCamelCase_=0 , UpperCamelCase_="mean" , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2_56 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , **UpperCamelCase_ , ) -> Dict: super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) __lowercase : Any = hidden_size __lowercase : str = feat_extract_norm __lowercase : List[str] = feat_extract_activation __lowercase : Optional[int] = list(UpperCamelCase_ ) __lowercase : Optional[Any] = list(UpperCamelCase_ ) __lowercase : Tuple = list(UpperCamelCase_ ) __lowercase : List[Any] = conv_bias __lowercase : Dict = num_conv_pos_embeddings __lowercase : Optional[int] = num_conv_pos_embedding_groups __lowercase : str = len(self.conv_dim ) __lowercase : Union[str, Any] = num_hidden_layers __lowercase : List[Any] = intermediate_size __lowercase : List[Any] = squeeze_factor __lowercase : int = hidden_act __lowercase : Optional[Any] = num_attention_heads __lowercase : List[Any] = hidden_dropout __lowercase : int = attention_dropout __lowercase : str = activation_dropout __lowercase : Union[str, Any] = feat_proj_dropout __lowercase : Tuple = final_dropout __lowercase : Union[str, Any] = layerdrop __lowercase : Dict = layer_norm_eps __lowercase : Tuple = initializer_range __lowercase : Union[str, Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase : Any = apply_spec_augment __lowercase : Optional[int] = mask_time_prob __lowercase : int = mask_time_length __lowercase : Dict = mask_time_min_masks __lowercase : Any = mask_feature_prob __lowercase : Tuple = mask_feature_length __lowercase : List[str] = mask_feature_min_masks # ctc loss __lowercase : int = ctc_loss_reduction __lowercase : str = ctc_zero_infinity # sequence classification __lowercase : str = use_weighted_layer_sum __lowercase : Tuple = classifier_proj_size @property def _lowerCamelCase ( self ) -> str: return functools.reduce(operator.mul , self.conv_stride , 1 )
76
def lowercase ( a = 50 ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
631
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A : Dict = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model A : str = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def snake_case__ ( _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any]=None ): """simple docstring""" if rng is None: UpperCamelCase__ = random.Random() UpperCamelCase__ = 1 for dim in shape: total_dims *= dim UpperCamelCase__ = [] for _ in range(_snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCamelCase__ = np.array(_snake_case , dtype=jnp.intaa ).reshape(_snake_case ) return output def snake_case__ ( _snake_case : Optional[Any] , _snake_case : List[str]=None ): """simple docstring""" UpperCamelCase__ = ids_tensor(_snake_case , vocab_size=2 , rng=_snake_case ) # make sure that at least one token is attended to for each batch UpperCamelCase__ = 1 return attn_mask @require_flax class lowerCAmelCase : '''simple docstring''' A = None A = () def lowerCamelCase__ ( self :Any ) -> int: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCamelCase__ = 2 UpperCamelCase__ = inputs["input_ids"].shape[-1] // 2 UpperCamelCase__ = inputs["input_ids"][:max_batch_size, :sequence_length] UpperCamelCase__ = jnp.ones_like(lowerCamelCase_ ) UpperCamelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCamelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCamelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def lowerCamelCase__ ( self :Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = False UpperCamelCase__ = max_length UpperCamelCase__ = 0 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ = getattr(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = pt_model_class(lowerCamelCase_ ).eval() UpperCamelCase__ = load_flax_weights_in_pytorch_model(lowerCamelCase_ , flax_model.params ) UpperCamelCase__ = flax_model.generate(lowerCamelCase_ ).sequences UpperCamelCase__ = pt_model.generate(torch.tensor(lowerCamelCase_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCamelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def lowerCamelCase__ ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = False UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self :List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = True UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self :Tuple ) -> int: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = False UpperCamelCase__ = max_length UpperCamelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self :Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = False UpperCamelCase__ = max_length UpperCamelCase__ = 2 UpperCamelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def lowerCamelCase__ ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = True UpperCamelCase__ = max_length UpperCamelCase__ = 0.8 UpperCamelCase__ = 1_0 UpperCamelCase__ = 0.3 UpperCamelCase__ = 1 UpperCamelCase__ = 8 UpperCamelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self :Any ) -> str: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = max_length UpperCamelCase__ = 1 UpperCamelCase__ = 8 UpperCamelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self :int ) -> Tuple: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = max_length UpperCamelCase__ = 2 UpperCamelCase__ = 1 UpperCamelCase__ = 8 UpperCamelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self :Tuple ) -> int: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase__ = False UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self :Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase__ = True UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self :List[Any] ) -> Any: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase__ = 2 UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(lowerCamelCase_ ) UpperCamelCase__ = model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCamelCase_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ ( self :Tuple ) -> Any: """simple docstring""" UpperCamelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) UpperCamelCase__ = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) UpperCamelCase__ = "Hello world" UpperCamelCase__ = tokenizer(lowerCamelCase_ , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCamelCase_ , "do_samples" ): model.generate(lowerCamelCase_ , do_samples=lowerCamelCase_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCamelCase_ , "foo" ): UpperCamelCase__ = {"foo": "bar"} model.generate(lowerCamelCase_ , **lowerCamelCase_ )
304
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase :Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase :str = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : int = "segformer" def __init__( self , lowercase__=3 , lowercase__=4 , lowercase__=[2, 2, 2, 2] , lowercase__=[8, 4, 2, 1] , lowercase__=[32, 64, 160, 256] , lowercase__=[7, 3, 3, 3] , lowercase__=[4, 2, 2, 2] , lowercase__=[1, 2, 5, 8] , lowercase__=[4, 4, 4, 4] , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=0.1 , lowercase__=1E-6 , lowercase__=256 , lowercase__=255 , **lowercase__ , ) -> str: super().__init__(**lowercase__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowercase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = num_encoder_blocks SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Optional[int] = sr_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : Union[str, Any] = patch_sizes SCREAMING_SNAKE_CASE : str = strides SCREAMING_SNAKE_CASE : List[Any] = mlp_ratios SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = classifier_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = decoder_hidden_size SCREAMING_SNAKE_CASE : Optional[int] = kwargs.get('reshape_last_stage' , lowercase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = semantic_loss_ignore_index class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Any = version.parse("1.11" ) @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCamelCase ( self ) -> float: return 1E-4 @property def _UpperCamelCase ( self ) -> int: return 12
251
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _lowerCAmelCase :Any = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _lowerCAmelCase :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") _lowerCAmelCase :Optional[int] = [file for file in filepaths if """ """ in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") _lowerCAmelCase :List[str] = [file for file in filepaths if """-""" in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") _lowerCAmelCase :Optional[int] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") _lowerCAmelCase :str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
251
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _A ( ): """simple docstring""" lowerCamelCase__ = HfArgumentParser(__lowercase ) lowerCamelCase__ = parser.parse_args_into_dataclasses()[0] lowerCamelCase__ = TensorFlowBenchmark(args=__lowercase ) try: lowerCamelCase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCamelCase__ = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowerCamelCase__ = """ """.join(str(__lowercase ).split(""" """ )[:-1] ) lowerCamelCase__ = """""" lowerCamelCase__ = eval(str(__lowercase ).split(""" """ )[-1] ) lowerCamelCase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: lowerCamelCase__ = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
258
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
258
1
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __UpperCAmelCase = quote(lowerCAmelCase ) return hfh.hf_hub_url(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' , revision=lowerCAmelCase )
396
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = ['''image_processor''', '''tokenizer'''] __lowerCamelCase = '''ViTImageProcessor''' __lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self: Union[str, Any] ,a: List[str]=None ,a: Union[str, Any]=None ,**a: List[str] ): __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,a ,) __UpperCAmelCase = kwargs.pop('feature_extractor' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(a ,a ) def __call__( self: Dict ,a: Optional[int]=None ,a: int=None ,a: Union[str, Any]=None ,a: Optional[Any]=None ,**a: str ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: __UpperCAmelCase = self.tokenizer(a ,return_tensors=a ,**a ) if visual_prompt is not None: __UpperCAmelCase = self.image_processor(a ,return_tensors=a ,**a ) if images is not None: __UpperCAmelCase = self.image_processor(a ,return_tensors=a ,**a ) if visual_prompt is not None and images is not None: __UpperCAmelCase = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __UpperCAmelCase = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a ) ,tensor_type=a ) def snake_case ( self: Dict ,*a: List[str] ,**a: Any ): return self.tokenizer.batch_decode(*a ,**a ) def snake_case ( self: List[str] ,*a: str ,**a: Optional[int] ): return self.tokenizer.decode(*a ,**a ) @property def snake_case ( self: Any ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,a ,) return self.image_processor_class @property def snake_case ( self: Union[str, Any] ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,a ,) return self.image_processor
396
1
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a__( snake_case__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase ) -> str: snake_case__ =parent snake_case__ =config_class snake_case__ =has_text_modality snake_case__ =kwargs snake_case__ =common_properties def _lowercase ( self ) -> str: snake_case__ =self.config_class(**self.inputs_dict ) snake_case__ =( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(_UpperCAmelCase ): try: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.parent.assertEqual( getattr(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , msg=f"""`{name} value {idx} expected, but was {getattr(_UpperCAmelCase , _UpperCAmelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_UpperCAmelCase ): try: snake_case__ =self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , msg=f"""`{name} value {idx} expected, but was {getattr(_UpperCAmelCase , _UpperCAmelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self ) -> Optional[Any]: snake_case__ =self.config_class(**self.inputs_dict ) snake_case__ =json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _UpperCAmelCase ) def _lowercase ( self ) -> Tuple: snake_case__ =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ =os.path.join(_UpperCAmelCase , 'config.json' ) config_first.to_json_file(_UpperCAmelCase ) snake_case__ =self.config_class.from_json_file(_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self ) -> List[Any]: snake_case__ =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_UpperCAmelCase ) snake_case__ =self.config_class.from_pretrained(_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self ) -> List[str]: snake_case__ =self.config_class(**self.inputs_dict ) snake_case__ ='test' with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) config_first.save_pretrained(_UpperCAmelCase ) snake_case__ =self.config_class.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) snake_case__ =3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self ) -> Dict: if self.config_class.is_composition: return snake_case__ =self.config_class() self.parent.assertIsNotNone(_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =copy.deepcopy(_UpperCAmelCase ) snake_case__ =self.config_class(**_UpperCAmelCase ) snake_case__ =[] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(_UpperCAmelCase , _UpperCAmelCase ) != value: wrong_values.append((key, getattr(_UpperCAmelCase , _UpperCAmelCase ), value) ) if len(_UpperCAmelCase ) > 0: snake_case__ ='\n'.join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self ) -> int: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
581
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ) -> Any: assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ =JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] ) -> Optional[int]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =features.copy() if features else default_expected_features snake_case__ =( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ =JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> List[str]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} snake_case__ =features.copy() if features else default_expected_features snake_case__ =( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ =JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] ) -> str: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} snake_case__ ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} snake_case__ =features.copy() snake_case__ =( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ =tmp_path / 'cache' snake_case__ =JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ) -> Any: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ , split=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> str: if issubclass(UpperCamelCase_ , UpperCamelCase_ ): snake_case__ =jsonl_path elif issubclass(UpperCamelCase_ , UpperCamelCase_ ): snake_case__ =[jsonl_path] snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) def a ( UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : str=("train",) ) -> str: assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) for split in splits: snake_case__ =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str ) -> List[Any]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ =JsonDatasetReader({'train': jsonl_path} , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> Optional[int]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =features.copy() if features else default_expected_features snake_case__ =( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ =JsonDatasetReader({'train': jsonl_path} , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any ) -> Any: if split: snake_case__ ={split: jsonl_path} else: snake_case__ ='train' snake_case__ ={'train': jsonl_path, 'test': jsonl_path} snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a ( UpperCamelCase_ : Union[str, Any] ) -> int: return json.load(UpperCamelCase_ ) def a ( UpperCamelCase_ : str ) -> Union[str, Any]: return [json.loads(UpperCamelCase_ ) for line in buffer] class a__: @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase ).write() buffer.seek(0 ) snake_case__ =load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase ).write() buffer.seek(0 ) snake_case__ =load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) snake_case__ =load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) snake_case__ =load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 def _lowercase ( self , _UpperCAmelCase ) -> List[str]: with pytest.raises(_UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: snake_case__ =tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" snake_case__ =str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , compression=_UpperCAmelCase ).write() with fsspec.open(_UpperCAmelCase , 'rb' , compression='infer' ) as f: snake_case__ =f.read() with fsspec.open(_UpperCAmelCase , 'rb' , compression='infer' ) as f: snake_case__ =f.read() assert exported_content == original_content
581
1
UpperCamelCase_ = { "km/h": 1.0, "m/s": 3.6, "mph": 1.6_0_9_3_4_4, "knot": 1.8_5_2, } UpperCamelCase_ = { "km/h": 1.0, "m/s": 0.2_7_7_7_7_7_7_7_8, "mph": 0.6_2_1_3_7_1_1_9_2, "knot": 0.5_3_9_9_5_6_8_0_3, } def _UpperCAmelCase ( UpperCamelCase: float , UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __lowerCAmelCase = ( F"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" F"Valid values are: {', '.join(UpperCamelCase )}" ) raise ValueError(UpperCamelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
611
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class a ( unittest.TestCase , __UpperCAmelCase ): def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = load_tool("text-to-speech" ) self.tool.setup() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = self.tool("hey" ) __lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = self.tool("hey" ) __lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
611
1
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case__ ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowerCamelCase ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def snake_case__ ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def snake_case__ ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowerCamelCase ): http_head('''https://huggingface.co''' )
717
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' _a = BlenderbotSmallConfig _a = {} _a = 'gelu' def __init__( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Dict=13, lowerCamelCase : Optional[Any]=7, lowerCamelCase : Optional[int]=True, lowerCamelCase : int=False, lowerCamelCase : Union[str, Any]=99, lowerCamelCase : str=32, lowerCamelCase : List[Any]=2, lowerCamelCase : Optional[int]=4, lowerCamelCase : Union[str, Any]=37, lowerCamelCase : str=0.1, lowerCamelCase : Optional[int]=0.1, lowerCamelCase : Optional[Any]=20, lowerCamelCase : int=2, lowerCamelCase : Any=1, lowerCamelCase : Optional[Any]=0, )-> List[str]: lowerCamelCase__ : Any =parent lowerCamelCase__ : Dict =batch_size lowerCamelCase__ : Optional[int] =seq_length lowerCamelCase__ : Tuple =is_training lowerCamelCase__ : Dict =use_labels lowerCamelCase__ : List[Any] =vocab_size lowerCamelCase__ : str =hidden_size lowerCamelCase__ : str =num_hidden_layers lowerCamelCase__ : Union[str, Any] =num_attention_heads lowerCamelCase__ : Any =intermediate_size lowerCamelCase__ : Dict =hidden_dropout_prob lowerCamelCase__ : List[Any] =attention_probs_dropout_prob lowerCamelCase__ : str =max_position_embeddings lowerCamelCase__ : Optional[int] =eos_token_id lowerCamelCase__ : str =pad_token_id lowerCamelCase__ : Union[str, Any] =bos_token_id def snake_case ( self : Any )-> Any: lowerCamelCase__ : Any =ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowerCamelCase__ : Tuple =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowerCamelCase__ : Any =tf.concat([input_ids, eos_tensor], axis=1 ) lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : int =self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowerCamelCase__ : Optional[int] =prepare_blenderbot_small_inputs_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return config, inputs_dict def snake_case ( self : Any, lowerCamelCase : str, lowerCamelCase : Any )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =TFBlenderbotSmallModel(config=lowerCamelCase ).get_decoder() lowerCamelCase__ : List[Any] =inputs_dict['''input_ids'''] lowerCamelCase__ : Optional[int] =input_ids[:1, :] lowerCamelCase__ : str =inputs_dict['''attention_mask'''][:1, :] lowerCamelCase__ : Union[str, Any] =inputs_dict['''head_mask'''] lowerCamelCase__ : Optional[Any] =1 # first forward pass lowerCamelCase__ : Dict =model(lowerCamelCase, attention_mask=lowerCamelCase, head_mask=lowerCamelCase, use_cache=lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : List[str] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Union[str, Any] =ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : Tuple =tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and lowerCamelCase__ : List[str] =tf.concat([input_ids, next_tokens], axis=-1 ) lowerCamelCase__ : str =tf.concat([attention_mask, next_attn_mask], axis=-1 ) lowerCamelCase__ : Optional[int] =model(lowerCamelCase, attention_mask=lowerCamelCase )[0] lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase, attention_mask=lowerCamelCase, past_key_values=lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice lowerCamelCase__ : Tuple =int(ids_tensor((1,), output_from_past.shape[-1] ) ) lowerCamelCase__ : int =output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : List[str] =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase, lowerCamelCase, rtol=1E-3 ) def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[int]=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : List[str] =tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : str =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : int =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _a = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _a = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _a = True _a = False _a = False def snake_case ( self : Any )-> str: lowerCamelCase__ : Tuple =TFBlenderbotSmallModelTester(self ) lowerCamelCase__ : Union[str, Any] =ConfigTester(self, config_class=lowerCamelCase ) def snake_case ( self : Any )-> Optional[int]: self.config_tester.run_common_tests() def snake_case ( self : int )-> str: lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) @require_tokenizers @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' _a = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] _a = 'facebook/blenderbot_small-90M' @cached_property def snake_case ( self : Any )-> List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def snake_case ( self : int )-> List[Any]: lowerCamelCase__ : str =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def snake_case ( self : Tuple )-> int: lowerCamelCase__ : Dict =self.tokenizer(self.src_text, return_tensors='''tf''' ) lowerCamelCase__ : Any =self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=lowerCamelCase, ) lowerCamelCase__ : Any =self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
625
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" torch.manual_seed(0) lowercase_ = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.dummy_uncond_unet lowercase_ = KarrasVeScheduler() lowercase_ = KarrasVePipeline(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_) pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) lowercase_ = torch.manual_seed(0) lowercase_ = pipe(num_inference_steps=2 , generator=lowerCAmelCase_ , output_type="""numpy""").images lowercase_ = torch.manual_seed(0) lowercase_ = pipe(num_inference_steps=2 , generator=lowerCAmelCase_ , output_type="""numpy""" , return_dict=lowerCAmelCase_)[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = """google/ncsnpp-celebahq-256""" lowercase_ = UNetaDModel.from_pretrained(lowerCAmelCase_) lowercase_ = KarrasVeScheduler() lowercase_ = KarrasVePipeline(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_) pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) lowercase_ = torch.manual_seed(0) lowercase_ = pipe(num_inference_steps=2_0 , generator=lowerCAmelCase_ , output_type="""numpy""").images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowercase_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
567
"""simple docstring""" UpperCAmelCase : int = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} lowercase_ = 0 lowercase_ = 0 while place < len(__lowerCAmelCase ): if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for arabic, roman in ROMAN: ((lowercase_) , (lowercase_)) = divmod(__lowerCAmelCase , __lowerCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
567
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline UpperCamelCase = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": UpperCamelCase = "hopper-medium-v2" UpperCamelCase = gym.make(env_name) UpperCamelCase = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) UpperCamelCase = env.reset() UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 1_000 UpperCamelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy UpperCamelCase = pipeline(obs, planning_horizon=32) # execute action in environment UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = env.step(denorm_actions) UpperCamelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) UpperCamelCase = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
714
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" _snake_case : List[str] = """convnextv2""" def __init__( self :Tuple , lowerCamelCase__ :Tuple=3 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :List[Any]=4 , lowerCamelCase__ :Any=None , lowerCamelCase__ :List[Any]=None , lowerCamelCase__ :Dict="gelu" , lowerCamelCase__ :Tuple=0.02 , lowerCamelCase__ :Optional[int]=1e-12 , lowerCamelCase__ :Union[str, Any]=0.0 , lowerCamelCase__ :str=2_24 , lowerCamelCase__ :List[Any]=None , lowerCamelCase__ :Tuple=None , **lowerCamelCase__ :Tuple , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = num_channels UpperCamelCase__ :Dict = patch_size UpperCamelCase__ :Optional[Any] = num_stages UpperCamelCase__ :Tuple = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes UpperCamelCase__ :Optional[int] = [3, 3, 9, 3] if depths is None else depths UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :List[str] = initializer_range UpperCamelCase__ :Union[str, Any] = layer_norm_eps UpperCamelCase__ :Any = drop_path_rate UpperCamelCase__ :Optional[int] = image_size UpperCamelCase__ :Optional[Any] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase__ , UpperCamelCase__ :Optional[int] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
383
0
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : List[str] = checkpoints.load_tax_checkpoint(__UpperCamelCase ) __lowercase : Any = flatten_dict(__UpperCamelCase ) return flax_params def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : int = {} __lowercase : Optional[int] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } __lowercase : List[str] = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __lowercase : Dict = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __lowercase : List[Any] = new_key.replace(__UpperCamelCase , __UpperCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __lowercase : str = new_key.replace(__UpperCamelCase , __UpperCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __lowercase : int = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __UpperCamelCase ) __lowercase : List[Any] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __lowercase : int = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __UpperCamelCase ) __lowercase : Optional[int] = flax_dict[key] __lowercase : Dict = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __lowercase : Optional[int] = torch.from_numpy(converted_dict[key].T ) else: __lowercase : Dict = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ): __lowercase : Optional[int] = get_flax_param(__UpperCamelCase ) if not use_large: __lowercase : int = PixaStructVisionConfig() __lowercase : str = PixaStructTextConfig() else: __lowercase : str = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __lowercase : Dict = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __lowercase : List[str] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__UpperCamelCase ) __lowercase : Dict = PixaStructForConditionalGeneration(__UpperCamelCase ) __lowercase : List[Any] = rename_and_convert_flax_params(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) __lowercase : int = PixaStructImageProcessor() __lowercase : str = PixaStructProcessor(image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase ) if use_large: __lowercase : List[Any] = 40_96 __lowercase : Tuple = True # mkdir if needed os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) print('''Model saved in {}'''.format(__UpperCamelCase ) ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') a_ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
76
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def _A (UpperCamelCase : SplitDict ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ : List[Any] = split_dict._to_yaml_list() assert len(UpperCamelCase ) == len(UpperCamelCase ) lowerCamelCase__ : Dict = SplitDict._from_yaml_list(UpperCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCamelCase__ : Tuple = None # the split name of split_dict takes over the name of the split info object lowerCamelCase__ : str = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase ), SplitInfo(dataset_name="""my_dataset""" )] ) def _A (UpperCamelCase : List[str] ) ->Tuple: '''simple docstring''' lowerCamelCase__ : Any = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
157
0
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger() def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True ): print(f"Converting {name}..." ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __SCREAMING_SNAKE_CASE = timm.create_model("""levit_128s""" , pretrained=__lowercase ) else: __SCREAMING_SNAKE_CASE = timm.create_model("""levit_128""" , pretrained=__lowercase ) if hidden_sizes == 192: __SCREAMING_SNAKE_CASE = timm.create_model("""levit_192""" , pretrained=__lowercase ) if hidden_sizes == 256: __SCREAMING_SNAKE_CASE = timm.create_model("""levit_256""" , pretrained=__lowercase ) if hidden_sizes == 384: __SCREAMING_SNAKE_CASE = timm.create_model("""levit_384""" , pretrained=__lowercase ) from_model.eval() __SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher(__lowercase ).eval() __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = from_model.state_dict() __SCREAMING_SNAKE_CASE = list(from_model.state_dict().keys() ) __SCREAMING_SNAKE_CASE = list(our_model.state_dict().keys() ) print(len(__lowercase ) , len(__lowercase ) ) for i in range(len(__lowercase ) ): __SCREAMING_SNAKE_CASE = weights[og_keys[i]] our_model.load_state_dict(__lowercase ) __SCREAMING_SNAKE_CASE = torch.randn((2, 3, 224, 224) ) __SCREAMING_SNAKE_CASE = from_model(__lowercase ) __SCREAMING_SNAKE_CASE = our_model(__lowercase ).logits assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." __SCREAMING_SNAKE_CASE = name print(__lowercase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __SCREAMING_SNAKE_CASE = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"Pushed {checkpoint_name}" ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = True ): __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = (1, num_labels) __SCREAMING_SNAKE_CASE = 'huggingface/label-files' __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(__lowercase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) __SCREAMING_SNAKE_CASE = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } __SCREAMING_SNAKE_CASE = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) __magic_name__ = parser.parse_args() __magic_name__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
704
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCamelCase_ , int(b / 2 ) ) * actual_power(UpperCamelCase_ , int(b / 2 ) ) else: return a * actual_power(UpperCamelCase_ , int(b / 2 ) ) * actual_power(UpperCamelCase_ , int(b / 2 ) ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if b < 0: return 1 / actual_power(UpperCamelCase_ , UpperCamelCase_ ) return actual_power(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
248
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function SCREAMING_SNAKE_CASE : Union[str, Any] = 1.0_5457_1817E-34 # unit of ℏ : J * s SCREAMING_SNAKE_CASE : int = 3E8 # unit of c : m * s^-1 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: _lowercase : int = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowercase : List[Any] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowercase : List[Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' import math def SCREAMING_SNAKE_CASE ( a_ : float , a_ : float ): if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(a_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
539
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : Optional[int] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __magic_name__ ( __UpperCAmelCase ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: snake_case_ = k.replace(__UpperCAmelCase, __UpperCAmelCase ) if k.startswith('''encoder''' ): snake_case_ = k.replace('''.attn''', '''.self_attn''' ) snake_case_ = k.replace('''norm1''', '''self_attn_layer_norm''' ) snake_case_ = k.replace('''norm2''', '''final_layer_norm''' ) elif k.startswith('''decoder''' ): snake_case_ = k.replace('''norm1''', '''self_attn_layer_norm''' ) snake_case_ = k.replace('''norm2''', '''encoder_attn_layer_norm''' ) snake_case_ = k.replace('''norm3''', '''final_layer_norm''' ) return k def __magic_name__ ( __UpperCAmelCase ): '''simple docstring''' snake_case_ = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: snake_case_ = sd.pop(__UpperCAmelCase ) snake_case_ = k.replace('''layernorm_embedding''', '''layer_norm''' ) assert new_k not in sd snake_case_ = v a : Optional[Any] = ['START'] @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ): '''simple docstring''' snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' ) snake_case_ = model['model'] snake_case_ = BlenderbotConfig.from_json_file(__UpperCAmelCase ) snake_case_ = BlenderbotForConditionalGeneration(__UpperCAmelCase ) snake_case_ = m.model.state_dict().keys() snake_case_ = [] snake_case_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue snake_case_ = rename_state_dict_key(__UpperCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: snake_case_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__UpperCAmelCase ) m.model.load_state_dict(__UpperCAmelCase, strict=__UpperCAmelCase ) m.half() m.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) a : List[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
717
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __magic_name__ ( ) -> List[str]: '''simple docstring''' snake_case_ = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } snake_case_ = Dataset.from_dict(__UpperCAmelCase ) return dataset class a ( _lowerCamelCase ): def A_ ( self : Optional[int] ): snake_case_ = get_dataset() snake_case_ = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A_ ( self : Tuple ): snake_case_ = get_dataset() snake_case_ ,snake_case_ = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowercase_ )
593
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _UpperCamelCase (_lowerCamelCase : Union[dict, list, tuple, torch.Tensor] )-> List[Tuple[int, ...]]: '''simple docstring''' __snake_case = [] if isinstance(_lowerCamelCase , _lowerCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_lowerCamelCase ) ) elif isinstance(_lowerCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : Tuple[int, ...] )-> Tuple[int, ...]: '''simple docstring''' __snake_case = [] for d in reversed(_lowerCamelCase ): idx.append(flat_idx % d ) __snake_case = flat_idx // d return tuple(reversed(_lowerCamelCase ) ) @torch.jit.ignore def _UpperCamelCase (_lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Optional[Sequence[bool]] = None , _lowerCamelCase : Optional[Sequence[bool]] = None , )-> List[Tuple[slice, ...]]: '''simple docstring''' def reduce_edge_list(_lowerCamelCase : List[bool] ) -> None: __snake_case = True for i in range(len(_lowerCamelCase ) ): __snake_case = -1 * (i + 1) l[reversed_idx] &= tally __snake_case = l[reversed_idx] if start_edges is None: __snake_case = [s == 0 for s in start] reduce_edge_list(_lowerCamelCase ) if end_edges is None: __snake_case = [e == (d - 1) for e, d in zip(_lowerCamelCase , _lowerCamelCase )] reduce_edge_list(_lowerCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_lowerCamelCase ) == 0: return [()] elif len(_lowerCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __snake_case = [] __snake_case = [] # Dimensions common to start and end can be selected directly for s, e in zip(_lowerCamelCase , _lowerCamelCase ): if s == e: path_list.append(slice(_lowerCamelCase , s + 1 ) ) else: break __snake_case = tuple(_lowerCamelCase ) __snake_case = len(_lowerCamelCase ) # start == end, and we're done if divergence_idx == len(_lowerCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = start[divergence_idx] return tuple( path + (slice(_lowerCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = end[divergence_idx] return tuple( path + (slice(_lowerCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __snake_case = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _UpperCamelCase (_lowerCamelCase : torch.Tensor , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int )-> torch.Tensor: '''simple docstring''' __snake_case = t.shape[:no_batch_dims] __snake_case = list(_flat_idx_to_idx(_lowerCamelCase , _lowerCamelCase ) ) # _get_minimal_slice_set is inclusive __snake_case = list(_flat_idx_to_idx(flat_end - 1 , _lowerCamelCase ) ) # Get an ordered list of slices to perform __snake_case = _get_minimal_slice_set( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) __snake_case = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _UpperCamelCase (_lowerCamelCase : Callable , _lowerCamelCase : Dict[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool = False , _lowerCamelCase : Any = None , _lowerCamelCase : bool = False , )-> Any: '''simple docstring''' if not (len(_lowerCamelCase ) > 0): raise ValueError('''Must provide at least one input''' ) __snake_case = [shape[:no_batch_dims] for shape in _fetch_dims(_lowerCamelCase )] __snake_case = tuple([max(_lowerCamelCase ) for s in zip(*_lowerCamelCase )] ) def _prep_inputs(_lowerCamelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __snake_case = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __snake_case = tensor_tree_map(_prep_inputs , _lowerCamelCase ) __snake_case = None if _out is not None: __snake_case = tensor_tree_map(lambda _lowerCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __snake_case = 1 for d in orig_batch_dims: flat_batch_dim *= d __snake_case = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCamelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __snake_case = 0 __snake_case = prepped_outputs for _ in range(_lowerCamelCase ): # Chunk the input if not low_mem: __snake_case = _select_chunk else: __snake_case = partial( _chunk_slice , flat_start=_lowerCamelCase , flat_end=min(_lowerCamelCase , i + chunk_size ) , no_batch_dims=len(_lowerCamelCase ) , ) __snake_case = tensor_tree_map(_lowerCamelCase , _lowerCamelCase ) # Run the layer on the chunk __snake_case = layer(**_lowerCamelCase ) # Allocate space for the output if out is None: __snake_case = tensor_tree_map(lambda _lowerCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _lowerCamelCase ) # Put the chunk in its pre-allocated space if isinstance(_lowerCamelCase , _lowerCamelCase ): def assign(_lowerCamelCase : dict , _lowerCamelCase : dict ) -> None: for k, v in da.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): assign(_lowerCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __snake_case = da[k] assign(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for xa, xa in zip(_lowerCamelCase , _lowerCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: __snake_case = xa elif isinstance(_lowerCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __snake_case = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __snake_case = tensor_tree_map(lambda _lowerCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , _lowerCamelCase ) return out class lowerCAmelCase : def __init__( self , __SCREAMING_SNAKE_CASE = 512 , ) -> List[Any]: '''simple docstring''' __snake_case = max_chunk_size __snake_case = None __snake_case = None def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __snake_case = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __snake_case = [c for c in candidates if c > min_chunk_size] __snake_case = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__SCREAMING_SNAKE_CASE ) -> bool: try: with torch.no_grad(): fn(*__SCREAMING_SNAKE_CASE , chunk_size=__SCREAMING_SNAKE_CASE ) return True except RuntimeError: return False __snake_case = 0 __snake_case = len(__SCREAMING_SNAKE_CASE ) - 1 while i > min_viable_chunk_size_index: __snake_case = test_chunk_size(candidates[i] ) if not viable: __snake_case = (min_viable_chunk_size_index + i) // 2 else: __snake_case = i __snake_case = (i + len(__SCREAMING_SNAKE_CASE ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' __snake_case = True for aa, aa in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert type(__SCREAMING_SNAKE_CASE ) == type(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): consistent &= self._compare_arg_caches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = [v for _, v in sorted(aa.items() , key=lambda __SCREAMING_SNAKE_CASE : x[0] )] __snake_case = [v for _, v in sorted(aa.items() , key=lambda __SCREAMING_SNAKE_CASE : x[0] )] consistent &= self._compare_arg_caches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: consistent &= aa == aa return consistent def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> int: '''simple docstring''' __snake_case = True __snake_case = tree_map(lambda __SCREAMING_SNAKE_CASE : a.shape if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) else a , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__SCREAMING_SNAKE_CASE ) __snake_case = self._compare_arg_caches(self.cached_arg_data , __SCREAMING_SNAKE_CASE ) else: # Otherwise, we can reuse the precomputed value __snake_case = False if not consistent: __snake_case = self._determine_favorable_chunk_size( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) __snake_case = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
24
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __lowerCAmelCase : List[str] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
197
"""simple docstring""" from scipy.stats import pearsonr import datasets __lowerCAmelCase : Any =""" Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ __lowerCAmelCase : Optional[int] =""" Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ __lowerCAmelCase : Optional[int] =""" @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" if return_pvalue: lowercase = pearsonr(__lowerCAmelCase , __lowerCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] )}
197
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 1.5 SCREAMING_SNAKE_CASE = int(factor * num_class_images) SCREAMING_SNAKE_CASE = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_UpperCAmelCase , aesthetic_weight=0.1) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=_UpperCAmelCase) if len(list(Path(F'''{class_data_dir}/images''').iterdir())) >= num_class_images: return while True: SCREAMING_SNAKE_CASE = client.query(text=_UpperCAmelCase) if len(_UpperCAmelCase) >= factor * num_class_images or num_images > 1e4: break else: SCREAMING_SNAKE_CASE = int(factor * num_images) SCREAMING_SNAKE_CASE = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_UpperCAmelCase , aesthetic_weight=0.1 , ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = tqdm(desc='downloading real regularization images' , total=_UpperCAmelCase) with open(F'''{class_data_dir}/caption.txt''' , 'w') as fa, open(F'''{class_data_dir}/urls.txt''' , 'w') as fa, open( F'''{class_data_dir}/images.txt''' , 'w') as fa: while total < num_class_images: SCREAMING_SNAKE_CASE = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE = requests.get(images['url']) if img.status_code == 200: SCREAMING_SNAKE_CASE = Image.open(BytesIO(img.content)) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb') as f: f.write(img.content) fa.write(images['caption'] + '\n') fa.write(images['url'] + '\n') fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n') total += 1 pbar.update(1) else: continue except Exception: continue return def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser('' , add_help=_UpperCAmelCase) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=_UpperCAmelCase , type=_UpperCAmelCase) parser.add_argument('--class_data_dir' , help='path to save images' , required=_UpperCAmelCase , type=_UpperCAmelCase) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=_UpperCAmelCase) return parser.parse_args() if __name__ == "__main__": a_ : int = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
73
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor a_ : Dict = logging.get_logger(__name__) class _snake_case ( A__ ): def __init__( self , *a , **a) -> None: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , a , ) super().__init__(*a , **a)
73
1
'''simple docstring''' import os from pathlib import Path def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase_ : Any = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase_ : Dict = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } lowerCamelCase_ : Any = F"""{src_lang}-{tgt_lang}""" lowerCamelCase_ : Any = F"""\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n""" model_card_dir.mkdir(parents=a_ , exist_ok=a_ ) lowerCamelCase_ : Optional[int] = os.path.join(a_ , '''README.md''' ) print(F"""Generating {path}""" ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(a_ ) # make sure we are under the root of the project __lowerCamelCase : Tuple = Path(__file__).resolve().parent.parent.parent __lowerCamelCase : Union[str, Any] = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __lowerCamelCase : str = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
718
'''simple docstring''' def __snake_case (__UpperCAmelCase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
418
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : float | Decimal , SCREAMING_SNAKE_CASE : float = 10**-10 ): UpperCAmelCase = a while True: UpperCAmelCase = Decimal(SCREAMING_SNAKE_CASE ) - ( Decimal(eval(SCREAMING_SNAKE_CASE ) ) / Decimal(eval(str(diff(SCREAMING_SNAKE_CASE ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(SCREAMING_SNAKE_CASE ) ) < precision: # noqa: S307 return float(SCREAMING_SNAKE_CASE ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
447
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowercase_ ( a ): '''simple docstring''' @require_torch def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' UpperCAmelCase = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' UpperCAmelCase = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache UpperCAmelCase = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(a_ ) BertModel.from_pretrained(a_ ) BertTokenizer.from_pretrained(a_ ) pipeline(task='fill-mask' , model=a_ ) # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed UpperCAmelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = '1' UpperCAmelCase = subprocess.run(a_ , env=a_ , check=a_ , capture_output=a_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' UpperCAmelCase = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' UpperCAmelCase = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache UpperCAmelCase = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(a_ ) BertModel.from_pretrained(a_ ) BertTokenizer.from_pretrained(a_ ) pipeline(task='fill-mask' , model=a_ ) # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(a_ , env=a_ , check=a_ , capture_output=a_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> List[str]: """simple docstring""" # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' UpperCAmelCase = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' UpperCAmelCase = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(a_ , env=a_ , check=a_ , capture_output=a_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network UpperCAmelCase = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = '1' UpperCAmelCase = subprocess.run(a_ , env=a_ , check=a_ , capture_output=a_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = '\nfrom transformers import pipeline\n ' UpperCAmelCase = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' UpperCAmelCase = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' UpperCAmelCase = self.get_env() UpperCAmelCase = '1' UpperCAmelCase = [sys.executable, '-c', '\n'.join([load, mock, run] )] UpperCAmelCase = subprocess.run(a_ , env=a_ , check=a_ , capture_output=a_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = '\nfrom transformers import AutoModel\n ' UpperCAmelCase = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(a_ , env=a_ , check=a_ , capture_output=a_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = '1' UpperCAmelCase = subprocess.run(a_ , env=a_ , check=a_ , capture_output=a_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
447
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=6 , lowerCamelCase__=17 , lowerCamelCase__=23 , lowerCamelCase__=11 , lowerCamelCase__=True , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = act_dim __lowercase = state_dim __lowercase = hidden_size __lowercase = max_length __lowercase = is_training def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __lowercase = random_attention_mask((self.batch_size, self.seq_length) ) __lowercase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Tuple: """simple docstring""" __lowercase = DecisionTransformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowercase = model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): snake_case_ : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else () snake_case_ : Union[str, Any] = () snake_case_ : int = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids snake_case_ : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features snake_case_ : Tuple = False snake_case_ : Optional[int] = False snake_case_ : Optional[int] = False snake_case_ : Tuple = False snake_case_ : Union[str, Any] = False snake_case_ : Union[str, Any] = False snake_case_ : str = False snake_case_ : List[Any] = False snake_case_ : int = False def snake_case__ ( self ) -> List[str]: """simple docstring""" __lowercase = DecisionTransformerModelTester(self ) __lowercase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def snake_case__ ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @slow def snake_case__ ( self ) -> Tuple: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DecisionTransformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def snake_case__ ( self ) -> int: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(__UpperCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(__UpperCamelCase )] , __UpperCamelCase ) @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def snake_case__ ( self ) -> int: """simple docstring""" __lowercase = 2 # number of steps of autoregressive prediction we will perform __lowercase = 10 # defined by the RL environment, may be normalized __lowercase = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) __lowercase = model.to(__UpperCamelCase ) __lowercase = model.config torch.manual_seed(0 ) __lowercase = torch.randn(1 , 1 , config.state_dim ).to(device=__UpperCamelCase , dtype=torch.floataa ) # env.reset() __lowercase = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=__UpperCamelCase ) __lowercase = torch.tensor(__UpperCamelCase , device=__UpperCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowercase = state __lowercase = torch.zeros(1 , 0 , config.act_dim , device=__UpperCamelCase , dtype=torch.floataa ) __lowercase = torch.zeros(1 , 0 , device=__UpperCamelCase , dtype=torch.floataa ) __lowercase = torch.tensor(0 , device=__UpperCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(__UpperCamelCase ): __lowercase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__UpperCamelCase )] , dim=1 ) __lowercase = torch.cat([rewards, torch.zeros(1 , 1 , device=__UpperCamelCase )] , dim=1 ) __lowercase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowercase ,__lowercase ,__lowercase = model( states=__UpperCamelCase , actions=__UpperCamelCase , rewards=__UpperCamelCase , returns_to_go=__UpperCamelCase , timesteps=__UpperCamelCase , attention_mask=__UpperCamelCase , return_dict=__UpperCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) __lowercase ,__lowercase ,__lowercase ,__lowercase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__UpperCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) __lowercase = action_pred[0, -1] __lowercase = torch.cat([states, state] , dim=1 ) __lowercase = returns_to_go[0, -1] - reward __lowercase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowercase = torch.cat( [timesteps, torch.ones((1, 1) , device=__UpperCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
719
'''simple docstring''' from statistics import mean, stdev def snake_case_ ( a__ : list ,a__ : int = 3 ): """simple docstring""" __lowercase = min(a__ ) __lowercase = max(a__ ) # normalize data return [round((x - x_min) / (x_max - x_min) ,a__ ) for x in data] def snake_case_ ( a__ : list ,a__ : int = 3 ): """simple docstring""" __lowercase = mean(a__ ) __lowercase = stdev(a__ ) # standardize data return [round((x - mu) / (sigma) ,a__ ) for x in data]
163
0
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(__lowerCamelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __lowerCamelCase ): for j in range(0 , __lowerCamelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(__lowerCamelCase , __lowerCamelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(__lowerCamelCase , __lowerCamelCase ) __snake_case = np.multiply(__lowerCamelCase , __lowerCamelCase ) __snake_case = np.multiply(__lowerCamelCase , __lowerCamelCase ) __snake_case = np.sum(__lowerCamelCase ) / np.sum(__lowerCamelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : int ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a : Optional[int] = parse_args(sys.argv) a : Union[str, Any] = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Any = img / 255 a : Dict = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Any = out * 255 a : Optional[int] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
69
import os def __A ( ) -> Dict: with open(os.path.dirname(__lowerCamelCase ) + """/p022_names.txt""" ) as file: a = str(file.readlines()[0] ) a = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() a = 0 a = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score a = 0 return total_score if __name__ == "__main__": print(solution())
468
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _A (UpperCamelCase : Any ) ->Any: '''simple docstring''' lowerCamelCase__ : List[str] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def _A (UpperCamelCase : List[Any] ) ->int: '''simple docstring''' lowerCamelCase__ : Tuple = emb.weight.shape lowerCamelCase__ : int = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) lowerCamelCase__ : str = emb.weight.data return lin_layer def _A (UpperCamelCase : Union[str, Any] ) ->List[Any]: '''simple docstring''' lowerCamelCase__ : Any = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Tuple = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowerCamelCase__ : Optional[Any] = checkpoint["""model"""] remove_ignore_keys_(UpperCamelCase ) lowerCamelCase__ : Dict = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ : Union[str, Any] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} lowerCamelCase__ : int = XGLMConfig( vocab_size=UpperCamelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCamelCase__ : List[str] = XGLMForCausalLM(UpperCamelCase ) lowerCamelCase__ : Optional[int] = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) print(UpperCamelCase ) lowerCamelCase__ : Optional[int] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowercase = parser.parse_args() _lowercase = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
720
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class __A ( A_ ): UpperCamelCase :str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase :ClassVar[Features] = Features({'''audio''': Audio()} ) UpperCamelCase :ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) UpperCamelCase :str = "audio" UpperCamelCase :str = "transcription" def _snake_case (self , __magic_name__ ): if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , __magic_name__ ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) lowerCamelCase__ : int = copy.deepcopy(self ) lowerCamelCase__ : Tuple = self.input_schema.copy() lowerCamelCase__ : Tuple = features[self.audio_column] lowerCamelCase__ : List[str] = input_schema return task_template @property def _snake_case (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
96
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __A ( A_ ): '''simple docstring''' def __lt__( self : List[Any] ,_snake_case : Any ) -> Any: """simple docstring""" return self[-1] < other[-1] def __eq__( self : str ,_snake_case : Optional[int] ) -> List[str]: """simple docstring""" return self[-1] == other[-1] def __UpperCAmelCase ( __lowerCamelCase ) -> list: lowercase__ : list[Stack] = [] # sort into stacks for element in collection: lowercase__ : List[str] = Stack([element] ) lowercase__ : Any = bisect_left(__lowerCamelCase , __lowerCamelCase ) if i != len(__lowerCamelCase ): stacks[i].append(__lowerCamelCase ) else: stacks.append(__lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowercase__ : str = merge(*(reversed(__lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase_ = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
560
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "encoder-decoder" lowerCAmelCase : int = True def __init__( self : Optional[int] ,**_snake_case : Tuple ) -> Tuple: """simple docstring""" super().__init__(**_snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase__ : Tuple = kwargs.pop('''encoder''' ) lowercase__ : Dict = encoder_config.pop('''model_type''' ) lowercase__ : Union[str, Any] = kwargs.pop('''decoder''' ) lowercase__ : Any = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__ : Optional[int] = AutoConfig.for_model(_snake_case ,**_snake_case ) lowercase__ : Dict = AutoConfig.for_model(_snake_case ,**_snake_case ) lowercase__ : List[str] = True @classmethod def UpperCAmelCase ( cls : str ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Optional[Any] ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase__ : Dict = True lowercase__ : Any = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : List[Any] = self.encoder.to_dict() lowercase__ : List[Any] = self.decoder.to_dict() lowercase__ : Optional[int] = self.__class__.model_type return output
560
1
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __snake_case = logging.getLogger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'sequence-classification' def __init__( self , __UpperCAmelCase ) -> Tuple: if type(__UpperCAmelCase ) == dict: _a = Namespace(**__UpperCAmelCase ) _a = glue_output_modes[hparams.task] _a = glue_tasks_num_labels[hparams.task] super().__init__(__UpperCAmelCase , __UpperCAmelCase , self.mode ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> List[Any]: return self.model(**__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _a = self(**__UpperCAmelCase ) _a = outputs[0] _a = self.trainer.lr_schedulers[0]['''scheduler'''] _a = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.hparams _a = processors[args.task]() _a = processor.get_labels() for mode in ["train", "dev"]: _a = self._feature_file(__UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __UpperCAmelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) _a = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) _a = convert_examples_to_features( __UpperCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __UpperCAmelCase ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ) -> DataLoader: _a = '''dev''' if mode == '''test''' else mode _a = self._feature_file(__UpperCAmelCase ) logger.info('''Loading features from cached file %s''' , __UpperCAmelCase ) _a = torch.load(__UpperCAmelCase ) _a = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _a = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _a = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _a = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _a = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , batch_size=__UpperCAmelCase , shuffle=__UpperCAmelCase , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: _a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _a = self(**__UpperCAmelCase ) _a , _a = outputs[:2] _a = logits.detach().cpu().numpy() _a = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCAmelCase ( self , __UpperCAmelCase ) -> tuple: _a = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() _a = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _a = np.argmax(__UpperCAmelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _a = np.squeeze(__UpperCAmelCase ) _a = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) _a = [[] for _ in range(out_label_ids.shape[0] )] _a = [[] for _ in range(out_label_ids.shape[0] )] _a = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , __UpperCAmelCase , __UpperCAmelCase )} _a = dict(results.items() ) _a = results return ret, preds_list, out_label_list def _UpperCAmelCase ( self , __UpperCAmelCase ) -> dict: _a , _a , _a = self._eval_end(__UpperCAmelCase ) _a = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCAmelCase ( self , __UpperCAmelCase ) -> dict: _a , _a , _a = self._eval_end(__UpperCAmelCase ) _a = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: BaseTransformer.add_model_specific_args(__UpperCAmelCase , __UpperCAmelCase ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__UpperCAmelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__UpperCAmelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def A_ ( ): """simple docstring""" _a = argparse.ArgumentParser() add_generic_args(_lowerCAmelCase, os.getcwd() ) _a = GLUETransformer.add_model_specific_args(_lowerCAmelCase, os.getcwd() ) _a = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _a = os.path.join( '''./results''', f'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}', ) os.makedirs(args.output_dir ) _a = GLUETransformer(_lowerCAmelCase ) _a = generic_train(_lowerCAmelCase, _lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _a = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt''' ), recursive=_lowerCAmelCase ) ) _a = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_lowerCAmelCase ) if __name__ == "__main__": main()
285
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
285
1