code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(A__ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple ): _lowerCAmelCase = _distribute_shards(**A__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :List[str] ): _lowerCAmelCase = _split_gen_kwargs(A__ , A__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def A (__lowerCamelCase :str , __lowerCamelCase :List[str] ): if expected is RuntimeError: with pytest.raises(A__ ): _number_of_shards_in_gen_kwargs(A__ ) else: _lowerCAmelCase = _number_of_shards_in_gen_kwargs(A__ ) assert out == expected
5
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ , A__ , A__ , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
430
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A (__magic_name__ , unittest.TestCase ): snake_case :Any = ShapEPipeline snake_case :Tuple = ["prompt"] snake_case :Dict = ["prompt"] snake_case :Tuple = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] snake_case :Any = False @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return self.time_input_dim * 4 @property def _snake_case ( self ): return 8 @property def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(UpperCamelCase_ ) @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __UpperCAmelCase : int = PriorTransformer(**UpperCamelCase_ ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : int = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __UpperCAmelCase : Optional[Any] = ShapERenderer(**UpperCamelCase_ ) return model def _snake_case ( self ): __UpperCAmelCase : Any = self.dummy_prior __UpperCAmelCase : Tuple = self.dummy_text_encoder __UpperCAmelCase : List[Any] = self.dummy_tokenizer __UpperCAmelCase : Dict = self.dummy_renderer __UpperCAmelCase : Optional[Any] = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __UpperCAmelCase : Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Optional[int] = self.pipeline_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __UpperCAmelCase : Any = output.images[0] __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __UpperCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): __UpperCAmelCase : int = torch_device == "cpu" __UpperCAmelCase : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def _snake_case ( self ): __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**UpperCamelCase_ ) __UpperCAmelCase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __UpperCAmelCase : Dict = batch_size * [inputs[key]] __UpperCAmelCase : Any = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A (unittest.TestCase ): def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) __UpperCAmelCase : Tuple = ShapEPipeline.from_pretrained("openai/shap-e" ) __UpperCAmelCase : Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = pipe( "a shark" , generator=UpperCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''LayoutLMv2FeatureExtractor'''] _SCREAMING_SNAKE_CASE = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
502
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : list[int | str] ): create_state_space_tree(lowerCamelCase_ , [] , 0 , [0 for i in range(len(lowerCamelCase_ ) )] ) def _lowerCAmelCase ( lowerCamelCase_ : list[int | str] , lowerCamelCase_ : list[int | str] , lowerCamelCase_ : int , lowerCamelCase_ : list[int] , ): if index == len(lowerCamelCase_ ): print(lowerCamelCase_ ) return for i in range(len(lowerCamelCase_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __lowercase = True create_state_space_tree(lowerCamelCase_ , lowerCamelCase_ , index + 1 , lowerCamelCase_ ) current_sequence.pop() __lowercase = False _SCREAMING_SNAKE_CASE = [3, 1, 2, 4] generate_all_permutations(sequence) _SCREAMING_SNAKE_CASE = ["A", "B", "C"] generate_all_permutations(sequence_a)
502
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE = "AutoImageProcessor" SCREAMING_SNAKE_CASE = "AutoTokenizer" def __init__( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : str ): """simple docstring""" super().__init__(UpperCamelCase_ , UpperCamelCase_ ) __A = self.image_processor def __call__( self : Optional[Any] , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : int ): """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __A = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if images is not None: __A = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None and images is not None: __A = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ ) def lowerCAmelCase_ ( self : List[str] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any , *UpperCamelCase_ : int , **UpperCamelCase_ : Tuple ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
702
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __lowercase : list[int] , __lowercase : int ) -> list[list[int]]: """simple docstring""" __A = [] __A = [] __A = 0 __A = sum(__lowercase ) create_state_space_tree(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) return result def _SCREAMING_SNAKE_CASE ( __lowercase : list[int] , __lowercase : int , __lowercase : int , __lowercase : list[int] , __lowercase : list[list[int]] , __lowercase : int , ) -> None: """simple docstring""" if sum(__lowercase ) > max_sum or (remaining_nums_sum + sum(__lowercase )) < max_sum: return if sum(__lowercase ) == max_sum: result.append(__lowercase ) return for index in range(__lowercase , len(__lowercase ) ): create_state_space_tree( __lowercase , __lowercase , index + 1 , [*path, nums[index]] , __lowercase , remaining_nums_sum - nums[index] , ) __a : str = [3, 34, 4, 12, 5, 2] __a : Optional[Any] = 9 __a : List[str] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
199
0
'''simple docstring''' import random from typing import Any def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) _lowerCAmelCase = random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) _lowerCAmelCase , _lowerCAmelCase = data[b], data[a] return data if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [0, 1, 2, 3, 4, 5, 6, 7] _SCREAMING_SNAKE_CASE = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
18
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
296
0
def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[Any] = 0 lowerCamelCase_ : Dict = len(lowerCAmelCase_) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCamelCase_ : str = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase_): return None lowerCamelCase_ : Tuple = sorted_collection[point] if current_item == item: return point else: if point < left: lowerCamelCase_ : str = left lowerCamelCase_ : List[str] = point elif point > right: lowerCamelCase_ : Any = right lowerCamelCase_ : Union[str, Any] = point else: if item < current_item: lowerCamelCase_ : Optional[int] = point - 1 else: lowerCamelCase_ : int = point + 1 return None def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCamelCase_ : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase_): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , point - 1) else: return interpolation_search_by_recursion( lowerCAmelCase_ , lowerCAmelCase_ , point + 1 , lowerCAmelCase_) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' if collection != sorted(lowerCAmelCase_): raise ValueError("Collection must be ascending sorted") return True if __name__ == "__main__": import sys __magic_name__ = 0 if debug == 1: __magic_name__ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') __magic_name__ = 6_7 __magic_name__ = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print('''Not found''')
73
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : List[str] = '''cvt''' def __init__( self , a_=3 , a_=[7, 3, 3] , a_=[4, 2, 2] , a_=[2, 1, 1] , a_=[64, 192, 384] , a_=[1, 3, 6] , a_=[1, 2, 10] , a_=[4.0, 4.0, 4.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.1] , a_=[True, True, True] , a_=[False, False, True] , a_=["dw_bn", "dw_bn", "dw_bn"] , a_=[3, 3, 3] , a_=[1, 1, 1] , a_=[2, 2, 2] , a_=[1, 1, 1] , a_=[1, 1, 1] , a_=0.02 , a_=1E-12 , **a_ , ): super().__init__(**a_ ) lowerCamelCase_ : Optional[Any] = num_channels lowerCamelCase_ : str = patch_sizes lowerCamelCase_ : List[Any] = patch_stride lowerCamelCase_ : str = patch_padding lowerCamelCase_ : str = embed_dim lowerCamelCase_ : Union[str, Any] = num_heads lowerCamelCase_ : Optional[Any] = depth lowerCamelCase_ : int = mlp_ratio lowerCamelCase_ : Union[str, Any] = attention_drop_rate lowerCamelCase_ : Optional[Any] = drop_rate lowerCamelCase_ : Optional[int] = drop_path_rate lowerCamelCase_ : Union[str, Any] = qkv_bias lowerCamelCase_ : int = cls_token lowerCamelCase_ : int = qkv_projection_method lowerCamelCase_ : int = kernel_qkv lowerCamelCase_ : Optional[Any] = padding_kv lowerCamelCase_ : Optional[int] = stride_kv lowerCamelCase_ : Optional[int] = padding_q lowerCamelCase_ : List[Any] = stride_q lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : int = layer_norm_eps
73
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = "x", UpperCAmelCase = 10**-10, UpperCAmelCase = 1, )-> complex: """simple docstring""" lowercase = symbols(UpperCAmelCase ) lowercase = lambdify(UpperCAmelCase, UpperCAmelCase ) lowercase = lambdify(UpperCAmelCase, diff(UpperCAmelCase, UpperCAmelCase ) ) lowercase = starting_point while True: if diff_function(UpperCAmelCase ) != 0: lowercase = prev_guess - multiplicity * func(UpperCAmelCase ) / diff_function( UpperCAmelCase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"{newton_raphson('exp(x) - 1', 10, precision=0.005)}", ) # Find root of cos(x) print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
604
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( _A , _A , _A , unittest.TestCase ): lowercase = StableUnCLIPImgaImgPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase = frozenset([] ) def __a ( self : Optional[Any] ) -> str: '''simple docstring''' lowercase = 32 lowercase = embedder_hidden_size # image encoding components lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__lowerCamelCase , projection_dim=__lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCamelCase ) lowercase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCamelCase , layers_per_block=1 , upcast_attention=__lowerCamelCase , use_linear_projection=__lowerCamelCase , ) torch.manual_seed(0 ) lowercase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase = AutoencoderKL() lowercase = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __a ( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Dict=0 , __lowerCamelCase : str=True ) -> Tuple: '''simple docstring''' if str(__lowerCamelCase ).startswith('''mps''' ): lowercase = torch.manual_seed(__lowerCamelCase ) else: lowercase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if pil_image: lowercase = input_image * 0.5 + 0.5 lowercase = input_image.clamp(0 , 1 ) lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase = DiffusionPipeline.numpy_to_pil(__lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __a ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableUnCLIPImgaImgPipeline(**__lowerCamelCase ) lowercase = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase = self.get_dummy_inputs(__lowerCamelCase ) inputs.update({'''image_embeds''': None} ) lowercase = sd_pipe(**__lowerCamelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : Tuple ) -> Any: '''simple docstring''' lowercase = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__lowerCamelCase ) def __a ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __a ( self : Any ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__lowerCamelCase ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def __a ( self : Union[str, Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase = pipe(__lowerCamelCase , '''anime turle''' , generator=__lowerCamelCase , output_type='''np''' ) lowercase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) def __a ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase = pipe(__lowerCamelCase , '''anime turle''' , generator=__lowerCamelCase , output_type='''np''' ) lowercase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) def __a ( self : Tuple ) -> Dict: '''simple docstring''' lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) lowercase = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase = pipe( __lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
604
1
'''simple docstring''' def _lowerCAmelCase ( __a , __a ) -> list: '''simple docstring''' _UpperCamelCase :List[Any] =word.split() def justify(__a , __a , __a ) -> str: _UpperCamelCase :Any =max_width - width _UpperCamelCase :str =len(__a ) if len(__a ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _UpperCamelCase :int =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _UpperCamelCase :List[Any] =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _UpperCamelCase :Any =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__a ): num_spaces_between_words_list[i] += 1 _UpperCamelCase :int =[] for i in range(__a ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__a ) _UpperCamelCase :List[str] =[] _UpperCamelCase :list[str] =[] _UpperCamelCase :int =0 for word in words: if width + len(__a ) + len(__a ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__a ) width += len(__a ) else: # justify the line and add it to result answer.append(justify(__a , __a , __a ) ) # reset new line and new width _UpperCamelCase , _UpperCamelCase :Optional[int] =[word], len(__a ) _UpperCamelCase :Union[str, Any] =max_width - width - len(__a ) answer.append(""" """.join(__a ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
512
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCamelCase : Optional[int] = HfApi() _lowerCamelCase : Union[str, Any] = {} # fmt: off _lowerCamelCase : List[Any] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _lowerCamelCase : Tuple = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _lowerCamelCase : str = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _lowerCamelCase : List[str] = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _lowerCamelCase : Tuple = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _lowerCamelCase : List[Any] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _lowerCamelCase : str = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _lowerCamelCase : List[Any] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _lowerCamelCase : Dict = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _lowerCamelCase : List[str] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _lowerCamelCase : int = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _lowerCamelCase : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _lowerCamelCase : Union[str, Any] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _lowerCamelCase : Dict = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _lowerCamelCase : int = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _lowerCamelCase : List[str] = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCamelCase : Union[str, Any] = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(f"Started running {mod.modelId}!!!") if mod.modelId.startswith("""CompVis"""): _lowerCamelCase : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: _lowerCamelCase : List[str] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCamelCase : Union[str, Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCamelCase : List[str] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCamelCase : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(f"{mod.modelId} has passed successfully!!!")
512
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase__ : List[str] = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Tuple: if isinstance(lowercase__ , torch.Tensor ): return image elif isinstance(lowercase__ , PIL.Image.Image ): lowerCAmelCase = [image] lowerCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] lowerCAmelCase = torch.stack(lowercase__ ) return image class lowercase_ ( __lowercase ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->List[str]: super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str: if strength < 0 or strength > 1: raise ValueError(F"The value of strength should in [0.0, 1.0] but is {strength}" ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->str: # get the original timestep using init_timestep lowerCAmelCase = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->List[str]: if not isinstance(SCREAMING_SNAKE_CASE_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) lowerCAmelCase = init_latents.shape lowerCAmelCase = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents print('''add noise to latents at timestep''' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = init_latents return latents @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0.8 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ) ->Union[ImagePipelineOutput, Tuple]: self.check_inputs(SCREAMING_SNAKE_CASE_ ) # 2. Preprocess image lowerCAmelCase = preprocess(SCREAMING_SNAKE_CASE_ ) # 3. set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device ) lowerCAmelCase , lowerCAmelCase = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) lowerCAmelCase = timesteps[:1].repeat(SCREAMING_SNAKE_CASE_ ) # 4. Prepare latent variables lowerCAmelCase = self.prepare_latents(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.unet.dtype , self.device , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ): # 1. predict noise model_output lowerCAmelCase = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , use_clipped_model_output=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ).prev_sample lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
312
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCamelCase__ : UpperCamelCase__ =BlenderbotConfig UpperCamelCase__ ={} UpperCamelCase__ ="gelu" def __init__( self : Any , lowercase__ : str , lowercase__ : str=13 , lowercase__ : List[str]=7 , lowercase__ : List[Any]=True , lowercase__ : Union[str, Any]=False , lowercase__ : Optional[Any]=99 , lowercase__ : str=32 , lowercase__ : Optional[Any]=2 , lowercase__ : str=4 , lowercase__ : int=37 , lowercase__ : Optional[int]=0.1 , lowercase__ : List[str]=0.1 , lowercase__ : Tuple=20 , lowercase__ : str=2 , lowercase__ : Optional[Any]=1 , lowercase__ : Any=0 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCAmelCase = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ): _lowerCAmelCase = TFBlenderbotModel(config=_lowercase ).get_decoder() _lowerCAmelCase = inputs_dict["""input_ids"""] _lowerCAmelCase = input_ids[:1, :] _lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] _lowerCAmelCase = inputs_dict["""head_mask"""] _lowerCAmelCase = 1 # first forward pass _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase ) _lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase )[0] _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase , past_key_values=_lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowercase , _lowercase , rtol=1e-3 ) def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ): if attention_mask is None: _lowerCAmelCase = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase__ ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,unittest.TestCase ): UpperCamelCase__ =(TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCamelCase__ =(TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ =( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ =True UpperCamelCase__ =False UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = TFBlenderbotModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase ) def SCREAMING_SNAKE_CASE__ ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowercase ) @require_tokenizers @require_tf class lowerCamelCase__ ( unittest.TestCase ): UpperCamelCase__ =["My friends are cool but they eat too many carbs."] UpperCamelCase__ ="facebook/blenderbot-400M-distill" @cached_property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.tokenizer(self.src_text , return_tensors='tf' ) _lowerCAmelCase = self.model.generate( model_inputs.input_ids , ) _lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowercase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase: Any = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Tuple = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _lowercase: Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
225
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class snake_case__ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _SCREAMING_SNAKE_CASE : Tuple = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : List[str] = Features({"question": Value("string" ), "context": Value("string" )} ) _SCREAMING_SNAKE_CASE : Optional[int] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) _SCREAMING_SNAKE_CASE : Union[str, Any] = "question" _SCREAMING_SNAKE_CASE : Optional[int] = "context" _SCREAMING_SNAKE_CASE : str = "answers" @property def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
666
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : Tuple = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['ConvNextFeatureExtractor'] _SCREAMING_SNAKE_CASE : Dict = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : int = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
710
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : Optional[int] = """data2vec-text""" def __init__( self : List[str] , _UpperCamelCase : List[str]=30_522 , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : Dict=12 , _UpperCamelCase : Optional[Any]=12 , _UpperCamelCase : Optional[Any]=3_072 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Dict=512 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Any=0.0_2 , _UpperCamelCase : Dict=1e-12 , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : Dict=2 , _UpperCamelCase : Optional[Any]="absolute" , _UpperCamelCase : Any=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : Tuple , ): super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase) _lowercase: str = vocab_size _lowercase: Tuple = hidden_size _lowercase: Optional[int] = num_hidden_layers _lowercase: Optional[Any] = num_attention_heads _lowercase: Any = hidden_act _lowercase: Any = intermediate_size _lowercase: List[Any] = hidden_dropout_prob _lowercase: Optional[int] = attention_probs_dropout_prob _lowercase: Optional[Any] = max_position_embeddings _lowercase: str = type_vocab_size _lowercase: List[Any] = initializer_range _lowercase: List[str] = layer_norm_eps _lowercase: int = position_embedding_type _lowercase: Union[str, Any] = use_cache _lowercase: Any = classifier_dropout class A ( lowerCamelCase_ ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Optional[Any]): if self.task == "multiple-choice": _lowercase: str = {0: "batch", 1: "choice", 2: "sequence"} else: _lowercase: Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
206
0
def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: assert x is not None assert y is not None _UpperCAmelCase = len(_lowerCAmelCase ) _UpperCAmelCase = len(_lowerCAmelCase ) # declaring the array for storing the dp values _UpperCAmelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _UpperCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 _UpperCAmelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _UpperCAmelCase = "" _UpperCAmelCase , _UpperCAmelCase = m, n while i > 0 and j > 0: _UpperCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _UpperCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __lowerCAmelCase = "AGGTAB" __lowerCAmelCase = "GXTXAYB" __lowerCAmelCase = 4 __lowerCAmelCase = "GTAB" __lowerCAmelCase , __lowerCAmelCase = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
684
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCAmelCase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 1_3_1_0_7_2, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, } def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return torch.atana(_lowerCAmelCase , _lowerCAmelCase ) / math.pi * 2 def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 _UpperCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): pass class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : str , __UpperCamelCase : Optional[int] ): super().__init__() _UpperCAmelCase = DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) _UpperCAmelCase = deepcopy(self.diffusion ) _UpperCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def __lowerCamelCase ( _lowerCAmelCase ) -> int: _UpperCAmelCase = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __lowerCAmelCase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __lowerCAmelCase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __lowerCAmelCase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __lowerCAmelCase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[Any]: for key, value in ATTN_MAP.items(): if name.startswith(_lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return name.replace(_lowerCAmelCase , _lowerCAmelCase ) elif name.startswith(_lowerCAmelCase ): return [name.replace(_lowerCAmelCase , _lowerCAmelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=13 ) -> List[Any]: _UpperCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _UpperCAmelCase = 0 if string.startswith("net.3." ): depth += 1 _UpperCAmelCase = string[6:] elif string.startswith("net." ): _UpperCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 _UpperCAmelCase = string[7:] if string.startswith("main." ): _UpperCAmelCase = string[5:] # mid block if string[:2].isdigit(): _UpperCAmelCase = string[:2] _UpperCAmelCase = string[2:] else: _UpperCAmelCase = string[0] _UpperCAmelCase = string[1:] if depth == max_depth: _UpperCAmelCase = MID_NUM_TO_LAYER[layer_num] _UpperCAmelCase = "mid_block" elif depth > 0 and int(_lowerCAmelCase ) < 7: _UpperCAmelCase = DOWN_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''down_blocks.{depth}''' elif depth > 0 and int(_lowerCAmelCase ) > 7: _UpperCAmelCase = UP_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: _UpperCAmelCase = DEPTH_0_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - 1}''' if int(_lowerCAmelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) _UpperCAmelCase = string_left[1:] if "resnets" in new_layer: _UpperCAmelCase = convert_resconv_naming(_lowerCAmelCase ) elif "attentions" in new_layer: _UpperCAmelCase = convert_attn_naming(_lowerCAmelCase ) _UpperCAmelCase = new_string_left if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = prefix + "." + new_layer + "." + string_left else: _UpperCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[int]: _UpperCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _UpperCAmelCase = rename(_lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = transform_conv_attns(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _UpperCAmelCase = v return new_state_dict def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if len(_lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight _UpperCAmelCase = v[:, :, 0] else: # bias _UpperCAmelCase = v else: # qkv matrices _UpperCAmelCase = v.shape[0] _UpperCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _UpperCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' _UpperCAmelCase = download(_lowerCAmelCase ) _UpperCAmelCase = MODELS_MAP[model_name]["sample_rate"] _UpperCAmelCase = MODELS_MAP[model_name]["sample_size"] _UpperCAmelCase = Object() _UpperCAmelCase = sample_size _UpperCAmelCase = sample_rate _UpperCAmelCase = 0 _UpperCAmelCase = UNetaDModel(sample_size=_lowerCAmelCase , sample_rate=_lowerCAmelCase ) _UpperCAmelCase = diffusers_model.state_dict() _UpperCAmelCase = DiffusionUncond(_lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_lowerCAmelCase )["state_dict"] ) _UpperCAmelCase = orig_model.diffusion_ema.eval() _UpperCAmelCase = orig_model.state_dict() _UpperCAmelCase = rename_orig_weights(_lowerCAmelCase ) _UpperCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _UpperCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_lowerCAmelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(_lowerCAmelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": _UpperCAmelCase = value.squeeze() _UpperCAmelCase = value diffusers_model.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase = 100 _UpperCAmelCase = 33 _UpperCAmelCase = IPNDMScheduler(num_train_timesteps=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(_lowerCAmelCase ) _UpperCAmelCase = torch.randn([1, 2, config.sample_size] , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) _UpperCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=_lowerCAmelCase )[:-1] _UpperCAmelCase = get_crash_schedule(_lowerCAmelCase ) _UpperCAmelCase = DanceDiffusionPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = pipe(num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase ).audios _UpperCAmelCase = sampling.iplms_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {} ) _UpperCAmelCase = generated.clamp(-1 , 1 ) _UpperCAmelCase = (generated - audio).abs().sum() _UpperCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , _lowerCAmelCase ) print("Diff max" , _lowerCAmelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase = parser.parse_args() main(args)
684
1
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase_ : Tuple = None UpperCamelCase_ : List[str] = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase_ : List[str] = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = '''PIL.Image.Image''' UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCamelCase__ = field(default='''Image''' , init=lowercase_ , repr=lowercase_ ) def __call__( self : List[str] ): return self.pa_type def lowerCAmelCase_ ( self : Dict ,a__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): a__ = np.array(lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCamelCase_ ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCamelCase_ ) elif isinstance(lowerCamelCase_ ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCamelCase_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCAmelCase_ ( self : Any ,a__ : dict ,a__ : Any=None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: a__ = {} a__ = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(lowerCamelCase_ ): a__ = PIL.Image.open(lowerCamelCase_ ) else: a__ = path.split("::" )[-1] try: a__ = string_to_dict(lowerCamelCase_ ,config.HUB_DATASETS_URL )["""repo_id"""] a__ = token_per_repo_id.get(lowerCamelCase_ ) except ValueError: a__ = None with xopen(lowerCamelCase_ ,"rb" ,use_auth_token=lowerCamelCase_ ) as f: a__ = BytesIO(f.read() ) a__ = PIL.Image.open(bytes_ ) else: a__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase_ ( self : List[Any] ): from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowerCAmelCase_ ( self : List[Any] ,a__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): a__ = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.binary() ) a__ = pa.StructArray.from_arrays([bytes_array, storage] ,["bytes", "path"] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): a__ = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.string() ) a__ = pa.StructArray.from_arrays([storage, path_array] ,["bytes", "path"] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: a__ = storage.field("bytes" ) else: a__ = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: a__ = storage.field("path" ) else: a__ = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.string() ) a__ = pa.StructArray.from_arrays([bytes_array, path_array] ,["bytes", "path"] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): a__ = pa.array( [encode_np_array(np.array(lowerCamelCase_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) a__ = pa.array([None] * len(lowerCamelCase_ ) ,type=pa.string() ) a__ = pa.StructArray.from_arrays( [bytes_array, path_array] ,["bytes", "path"] ,mask=bytes_array.is_null() ) return array_cast(lowerCamelCase_ ,self.pa_type ) def lowerCAmelCase_ ( self : str ,a__ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(a__ : Tuple ): with xopen(lowerCamelCase_ ,"rb" ) as f: a__ = f.read() return bytes_ a__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) a__ = pa.array( [os.path.basename(lowerCamelCase_ ) if path is not None else None for path in storage.field("path" ).to_pylist()] ,type=pa.string() ,) a__ = pa.StructArray.from_arrays([bytes_array, path_array] ,["bytes", "path"] ,mask=bytes_array.is_null() ) return array_cast(lowerCamelCase_ ,self.pa_type ) def _lowerCAmelCase (): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() a__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = BytesIO() if image.format in list_image_compression_formats(): a__ = image.format else: a__ = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(lowerCamelCase_ , format=lowerCamelCase_ ) return buffer.getvalue() def _lowerCAmelCase (_lowercase ): """simple docstring""" if hasattr(lowerCamelCase_ , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCamelCase_ )} def _lowerCAmelCase (_lowercase ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) a__ = array.dtype a__ = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER a__ = dtype.kind a__ = dtype.itemsize a__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: a__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: a__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: a__ = dtype_byteorder + dtype_kind + str(lowerCamelCase_ ) a__ = np.dtype(lowerCamelCase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) a__ = PIL.Image.fromarray(array.astype(lowerCamelCase_ ) ) return {"path": None, "bytes": image_to_bytes(lowerCamelCase_ )} def _lowerCAmelCase (_lowercase ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: a__ = first_non_null_value(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCamelCase_ , np.ndarray ): a__ = no_op_if_value_is_null(lowerCamelCase_ ) return [obj_to_image_dict_func(lowerCamelCase_ ) for obj in objs] elif isinstance(lowerCamelCase_ , PIL.Image.Image ): a__ = no_op_if_value_is_null(lowerCamelCase_ ) return [obj_to_image_dict_func(lowerCamelCase_ ) for obj in objs] else: return objs else: return objs
713
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def _lowerCAmelCase (_lowercase ): """simple docstring""" if "model" in orig_key: a__ = orig_key.replace("model." , "" ) if "norm1" in orig_key: a__ = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: a__ = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: a__ = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: a__ = orig_key.split("." )[0].split("_" )[-1] a__ = orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: a__ = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: a__ = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: a__ = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: a__ = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: a__ = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: a__ = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: a__ = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: a__ = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: a__ = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: a__ = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: a__ = "yoso." + orig_key return orig_key def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): a__ = orig_state_dict.pop(_lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: a__ = val a__ = orig_state_dict["cls.predictions.decoder.bias"] a__ = torch.arange(_lowercase ).expand((1, -1) ) + 2 return orig_state_dict def _lowerCAmelCase (_lowercase , _lowercase , _lowercase ): """simple docstring""" a__ = torch.load(_lowercase , map_location="cpu" )["model_state_dict"] a__ = YosoConfig.from_json_file(_lowercase ) a__ = YosoForMaskedLM(_lowercase ) a__ = convert_checkpoint_helper(config.max_position_embeddings , _lowercase ) print(model.load_state_dict(_lowercase ) ) model.eval() model.save_pretrained(_lowercase ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": UpperCamelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase_ : Any = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
394
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCAmelCase ( __snake_case ): lowercase = 42 class UpperCAmelCase ( nn.Module ): def __init__( self : Any , __magic_name__ : List[Any]=3 , __magic_name__ : int=3 , __magic_name__ : int=("DownEncoderBlock2D",) , __magic_name__ : int=(6_4,) , __magic_name__ : Optional[Any]=2 , __magic_name__ : List[Any]=3_2 , __magic_name__ : Tuple="silu" , __magic_name__ : Union[str, Any]=True , ): """simple docstring""" super().__init__() UpperCamelCase = layers_per_block UpperCamelCase = torch.nn.Convad( SCREAMING_SNAKE_CASE__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase = None UpperCamelCase = nn.ModuleList([] ) # down UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase = output_channel UpperCamelCase = block_out_channels[i] UpperCamelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1 UpperCamelCase = get_down_block( SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , resnet_groups=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) self.down_blocks.append(SCREAMING_SNAKE_CASE__ ) # mid UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) # out UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=SCREAMING_SNAKE_CASE__ , eps=1e-6 ) UpperCamelCase = nn.SiLU() UpperCamelCase = 2 * out_channels if double_z else out_channels UpperCamelCase = nn.Convad(block_out_channels[-1] , SCREAMING_SNAKE_CASE__ , 3 , padding=1 ) UpperCamelCase = False def lowerCamelCase_ ( self : Any , __magic_name__ : Tuple ): """simple docstring""" UpperCamelCase = x UpperCamelCase = self.conv_in(SCREAMING_SNAKE_CASE__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(__magic_name__ : List[str] ): def custom_forward(*__magic_name__ : int ): return module(*SCREAMING_SNAKE_CASE__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) else: for down_block in self.down_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # middle UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ ) else: # down for down_block in self.down_blocks: UpperCamelCase = down_block(SCREAMING_SNAKE_CASE__ ) # middle UpperCamelCase = self.mid_block(SCREAMING_SNAKE_CASE__ ) # post-process UpperCamelCase = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.conv_act(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.conv_out(SCREAMING_SNAKE_CASE__ ) return sample class UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=3 , __magic_name__ : str=3 , __magic_name__ : Tuple=("UpDecoderBlock2D",) , __magic_name__ : Optional[int]=(6_4,) , __magic_name__ : str=2 , __magic_name__ : Tuple=3_2 , __magic_name__ : List[Any]="silu" , __magic_name__ : Union[str, Any]="group" , ): """simple docstring""" super().__init__() UpperCamelCase = layers_per_block UpperCamelCase = nn.Convad( SCREAMING_SNAKE_CASE__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase = None UpperCamelCase = nn.ModuleList([] ) UpperCamelCase = in_channels if norm_type == """spatial""" else None # mid UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , ) # up UpperCamelCase = list(reversed(SCREAMING_SNAKE_CASE__ ) ) UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase = output_channel UpperCamelCase = reversed_block_out_channels[i] UpperCamelCase = i == len(SCREAMING_SNAKE_CASE__ ) - 1 UpperCamelCase = get_up_block( SCREAMING_SNAKE_CASE__ , num_layers=self.layers_per_block + 1 , in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , prev_output_channel=SCREAMING_SNAKE_CASE__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=SCREAMING_SNAKE_CASE__ , resnet_groups=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , temb_channels=SCREAMING_SNAKE_CASE__ , resnet_time_scale_shift=SCREAMING_SNAKE_CASE__ , ) self.up_blocks.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = output_channel # out if norm_type == "spatial": UpperCamelCase = SpatialNorm(block_out_channels[0] , SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=SCREAMING_SNAKE_CASE__ , eps=1e-6 ) UpperCamelCase = nn.SiLU() UpperCamelCase = nn.Convad(block_out_channels[0] , SCREAMING_SNAKE_CASE__ , 3 , padding=1 ) UpperCamelCase = False def lowerCamelCase_ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=None ): """simple docstring""" UpperCamelCase = z UpperCamelCase = self.conv_in(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__magic_name__ : Optional[int] ): def custom_forward(*__magic_name__ : List[str] ): return module(*SCREAMING_SNAKE_CASE__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , use_reentrant=SCREAMING_SNAKE_CASE__ ) else: # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # middle UpperCamelCase = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = sample.to(SCREAMING_SNAKE_CASE__ ) # up for up_block in self.up_blocks: UpperCamelCase = up_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # post-process if latent_embeds is None: UpperCamelCase = self.conv_norm_out(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = self.conv_norm_out(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.conv_act(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.conv_out(SCREAMING_SNAKE_CASE__ ) return sample class UpperCAmelCase ( nn.Module ): def __init__( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[Any]=None , __magic_name__ : str="random" , __magic_name__ : Union[str, Any]=False , __magic_name__ : Union[str, Any]=True ): """simple docstring""" super().__init__() UpperCamelCase = n_e UpperCamelCase = vq_embed_dim UpperCamelCase = beta UpperCamelCase = legacy UpperCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCamelCase = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) UpperCamelCase = self.used.shape[0] UpperCamelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCamelCase = self.re_embed UpperCamelCase = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: UpperCamelCase = n_e UpperCamelCase = sane_index_shape def lowerCamelCase_ ( self : List[Any] , __magic_name__ : Optional[int] ): """simple docstring""" UpperCamelCase = inds.shape assert len(SCREAMING_SNAKE_CASE__ ) > 1 UpperCamelCase = inds.reshape(ishape[0] , -1 ) UpperCamelCase = self.used.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = (inds[:, :, None] == used[None, None, ...]).long() UpperCamelCase = match.argmax(-1 ) UpperCamelCase = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCamelCase = self.unknown_index return new.reshape(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( self : List[str] , __magic_name__ : str ): """simple docstring""" UpperCamelCase = inds.shape assert len(SCREAMING_SNAKE_CASE__ ) > 1 UpperCamelCase = inds.reshape(ishape[0] , -1 ) UpperCamelCase = self.used.to(SCREAMING_SNAKE_CASE__ ) if self.re_embed > self.used.shape[0]: # extra token UpperCamelCase = 0 # simply set to zero UpperCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , SCREAMING_SNAKE_CASE__ ) return back.reshape(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( self : Any , __magic_name__ : Optional[int] ): """simple docstring""" UpperCamelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCamelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCamelCase = torch.argmin(torch.cdist(SCREAMING_SNAKE_CASE__ , self.embedding.weight ) , dim=1 ) UpperCamelCase = self.embedding(SCREAMING_SNAKE_CASE__ ).view(z.shape ) UpperCamelCase = None UpperCamelCase = None # compute loss for embedding if not self.legacy: UpperCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCamelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCamelCase = z + (z_q - z).detach() # reshape back to match original input shape UpperCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCamelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCamelCase = self.remap_to_used(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase_ ( self : Dict , __magic_name__ : Any , __magic_name__ : List[Any] ): """simple docstring""" if self.remap is not None: UpperCamelCase = indices.reshape(shape[0] , -1 ) # add batch axis UpperCamelCase = self.unmap_to_all(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCamelCase = self.embedding(SCREAMING_SNAKE_CASE__ ) if shape is not None: UpperCamelCase = z_q.view(SCREAMING_SNAKE_CASE__ ) # reshape back to match original input shape UpperCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCAmelCase ( __snake_case ): def __init__( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : Optional[int]=False ): """simple docstring""" UpperCamelCase = parameters UpperCamelCase , UpperCamelCase = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 , dim=1 ) UpperCamelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCamelCase = deterministic UpperCamelCase = torch.exp(0.5 * self.logvar ) UpperCamelCase = torch.exp(self.logvar ) if self.deterministic: UpperCamelCase = UpperCamelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase_ ( self : Any , __magic_name__ : Optional[torch.Generator] = None ): """simple docstring""" UpperCamelCase = randn_tensor( self.mean.shape , generator=SCREAMING_SNAKE_CASE__ , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCamelCase = self.mean + self.std * sample return x def lowerCamelCase_ ( self : str , __magic_name__ : List[str]=None ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase_ ( self : int , __magic_name__ : int , __magic_name__ : Union[str, Any]=[1, 2, 3] ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCamelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( self : int ): """simple docstring""" return self.mean
386
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict ="roberta" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=5_02_65 , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : Tuple=30_72 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : int=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
282
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
545
"""simple docstring""" UpperCAmelCase__ : Dict = [ (1_0_0_0, 'M'), (9_0_0, 'CM'), (5_0_0, 'D'), (4_0_0, 'CD'), (1_0_0, 'C'), (9_0, 'XC'), (5_0, 'L'), (4_0, 'XL'), (1_0, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 while place < len(_snake_case ): if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[Any] = divmod(_snake_case ,_snake_case ) result.append(roman * factor ) if number == 0: break return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
545
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __a :int = logging.get_logger(__name__) def __snake_case ( ): """simple docstring""" A_ = os.getenv("SM_HP_MP_PARAMETERS" ,"{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. A_ = json.loads(__UpperCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. A_ = os.getenv("SM_FRAMEWORK_PARAMS" ,"{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". A_ = json.loads(__UpperCamelCase ) if not mpi_options.get("sagemaker_mpi_enabled" ,__UpperCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _a ( UpperCamelCase__ ): """simple docstring""" _lowerCamelCase : str = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def __A ( self : Tuple ): super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowerCAmelCase__ , ) @cached_property def __A ( self : Union[str, Any] ): logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: A_ = torch.device("cpu" ) A_ = 0 elif is_sagemaker_model_parallel_available(): A_ = smp.local_rank() A_ = torch.device("cuda" , lowerCAmelCase__ ) A_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) A_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) A_ = torch.device("cuda" , self.local_rank ) A_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 A_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. A_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) A_ = torch.device("cuda" , self.local_rank ) A_ = 1 if device.type == "cuda": torch.cuda.set_device(lowerCAmelCase__ ) return device @property def __A ( self : str ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __A ( self : Any ): return not is_sagemaker_model_parallel_available() @property def __A ( self : List[str] ): return False
86
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30522, type=int) UpperCAmelCase : str = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: UpperCAmelCase : Union[str, Any] = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") UpperCAmelCase : List[str] = Counter() for tk_ids in data: counter.update(tk_ids) UpperCAmelCase : Tuple = [0] * args.vocab_size for k, v in counter.items(): UpperCAmelCase : Optional[int] = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
563
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Any: """simple docstring""" UpperCamelCase :int = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) UpperCamelCase :int = MaskFormerConfig(backbone_config=__magic_name__ ) UpperCamelCase :Any = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok UpperCamelCase :str = 847 UpperCamelCase :Union[str, Any] = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok UpperCamelCase :Union[str, Any] = 150 UpperCamelCase :str = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok UpperCamelCase :List[Any] = 171 UpperCamelCase :Optional[Any] = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO UpperCamelCase :Dict = 133 UpperCamelCase :int = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok UpperCamelCase :Optional[int] = 19 UpperCamelCase :Dict = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok UpperCamelCase :Union[str, Any] = 65 UpperCamelCase :Any = """mapillary-vistas-id2label.json""" UpperCamelCase :Optional[int] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase :List[str] = {int(__magic_name__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict ) -> str: """simple docstring""" UpperCamelCase :Union[str, Any] = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any ) -> int: """simple docstring""" UpperCamelCase :int = dct.pop(__magic_name__ ) UpperCamelCase :int = val def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Tuple: """simple docstring""" UpperCamelCase :List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase :str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase :str = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCamelCase :List[Any] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase :str = in_proj_weight[:dim, :] UpperCamelCase :int = in_proj_bias[: dim] UpperCamelCase :List[str] = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase :Any = in_proj_bias[ dim : dim * 2 ] UpperCamelCase :str = in_proj_weight[ -dim :, : ] UpperCamelCase :Union[str, Any] = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase :str = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase :Tuple = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCamelCase :Optional[Any] = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase :int = in_proj_weight[: hidden_size, :] UpperCamelCase :Optional[int] = in_proj_bias[:config.hidden_size] UpperCamelCase :str = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase :Tuple = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase :Optional[Any] = in_proj_weight[-hidden_size :, :] UpperCamelCase :Tuple = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase :int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCamelCase :Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase :Union[str, Any] = in_proj_weight[: hidden_size, :] UpperCamelCase :Any = in_proj_bias[:config.hidden_size] UpperCamelCase :Any = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase :str = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase :Tuple = in_proj_weight[-hidden_size :, :] UpperCamelCase :int = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE_ ( ) -> torch.Tensor: """simple docstring""" UpperCamelCase :List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase :Optional[Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : str , __magic_name__ : bool = False ) -> Any: """simple docstring""" UpperCamelCase :Optional[int] = get_maskformer_config(__magic_name__ ) # load original state_dict with open(__magic_name__ , """rb""" ) as f: UpperCamelCase :List[Any] = pickle.load(__magic_name__ ) UpperCamelCase :Dict = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCamelCase :Tuple = create_rename_keys(__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_swin_q_k_v(__magic_name__ , config.backbone_config ) read_in_decoder_q_k_v(__magic_name__ , __magic_name__ ) # update to torch tensors for key, value in state_dict.items(): UpperCamelCase :Union[str, Any] = torch.from_numpy(__magic_name__ ) # load 🤗 model UpperCamelCase :Optional[int] = MaskFormerForInstanceSegmentation(__magic_name__ ) model.eval() for name, param in model.named_parameters(): print(__magic_name__ , param.shape ) UpperCamelCase :List[str] = model.load_state_dict(__magic_name__ , strict=__magic_name__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__magic_name__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCamelCase :List[str] = prepare_img() if "vistas" in model_name: UpperCamelCase :List[str] = 65 elif "cityscapes" in model_name: UpperCamelCase :Union[str, Any] = 6_5535 else: UpperCamelCase :Optional[int] = 255 UpperCamelCase :Optional[int] = True if """ade""" in model_name else False UpperCamelCase :Dict = MaskFormerImageProcessor(ignore_index=__magic_name__ , reduce_labels=__magic_name__ ) UpperCamelCase :Tuple = image_processor(__magic_name__ , return_tensors="""pt""" ) UpperCamelCase :int = model(**__magic_name__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCamelCase :Union[str, Any] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __magic_name__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
712
import random from typing import Any def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list ) -> list[Any]: """simple docstring""" for _ in range(len(__magic_name__ ) ): UpperCamelCase :Dict = random.randint(0 , len(__magic_name__ ) - 1 ) UpperCamelCase :List[str] = random.randint(0 , len(__magic_name__ ) - 1 ) UpperCamelCase , UpperCamelCase :List[Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : str = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
590
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } __A = {'bert_for_seq_generation': 512} class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = [] A_ = ["input_ids", "attention_mask"] def __init__( self: List[Any] , __A: Optional[int] , __A: List[str]="<s>" , __A: Dict="</s>" , __A: List[Any]="<unk>" , __A: List[str]="<pad>" , __A: int="<::::>" , __A: Optional[Dict[str, Any]] = None , **__A: Tuple , ) -> None: _A = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , pad_token=__A , sep_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) @property def __A ( self: str ) -> Dict: return self.sp_model.get_piece_size() def __A ( self: List[str] ) -> Union[str, Any]: _A = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: int ) -> List[Any]: _A = self.__dict__.copy() _A = None return state def __setstate__( self: List[Any] , __A: Union[str, Any] ) -> Dict: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self: List[str] , __A: str ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def __A ( self: Union[str, Any] , __A: Dict ) -> List[Any]: return self.sp_model.piece_to_id(__A ) def __A ( self: Any , __A: Union[str, Any] ) -> Optional[int]: _A = self.sp_model.IdToPiece(__A ) return token def __A ( self: Tuple , __A: int ) -> Dict: _A = [] _A = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__A ) + token _A = [] else: current_sub_tokens.append(__A ) out_string += self.sp_model.decode(__A ) return out_string.strip() def __A ( self: Any , __A: str , __A: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _A = os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
484
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __A ( _lowercase ): '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _A = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) _A = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) _A = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) _A = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) _A = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) _A = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) _A = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) _A = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) _A = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) _A = key.replace('''image_encoder.module''' , '''flava.image_model''' ) _A = key.replace('''text_encoder.module''' , '''flava.text_model''' ) _A = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) _A = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) _A = key.replace('''text_projection''' , '''flava.text_projection''' ) _A = key.replace('''image_projection''' , '''flava.image_projection''' ) _A = value.float() for key, value in codebook_state_dict.items(): _A = value return upgrade @torch.no_grad() def __A ( _lowercase , _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' if config_path is not None: _A = FlavaConfig.from_pretrained(_lowercase ) else: _A = FlavaConfig() _A = FlavaForPreTraining(_lowercase ).eval() _A = convert_dalle_checkpoint(_lowercase , _lowercase , save_checkpoint=_lowercase ) if os.path.exists(_lowercase ): _A = torch.load(_lowercase , map_location='''cpu''' ) else: _A = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' ) _A = upgrade_state_dict(_lowercase , _lowercase ) hf_model.load_state_dict(_lowercase ) _A = hf_model.state_dict() _A = count_parameters(_lowercase ) _A = count_parameters(_lowercase ) + count_parameters(_lowercase ) assert torch.allclose(_lowercase , _lowercase , atol=1e-3 ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __A = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
484
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , lowercase : Union[str, Any] , lowercase : Dict=1_3 , lowercase : Optional[int]=3_0 , lowercase : Optional[Any]=2 , lowercase : Optional[int]=3 , lowercase : str=True , lowercase : Optional[int]=True , lowercase : Union[str, Any]=3_2 , lowercase : Dict=5 , lowercase : str=4 , lowercase : Tuple=3_7 , lowercase : List[str]="gelu" , lowercase : Optional[int]=0.1 , lowercase : int=0.1 , lowercase : Optional[Any]=1_0 , lowercase : Union[str, Any]=0.0_2 , lowercase : Optional[Any]=3 , lowercase : str=0.6 , lowercase : str=None , ) -> int: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = mask_ratio UpperCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def A ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Any , lowercase : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ = ViTMAEModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : Dict , lowercase : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ = ViTMAEForPreTraining(lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase ) UpperCamelCase__ = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = ViTMAEForPreTraining(lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(lowercase ) UpperCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' __a : Optional[int] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __a : Union[str, Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} __a : Any = False __a : str = False __a : List[str] = False __a : int = False def A ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = ViTMAEModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=3_7 ) def A ( self : Dict ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def A ( self : Dict ) -> Optional[int]: '''simple docstring''' pass def A ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(lowercase ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : str ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : str , lowercase : str ) -> Optional[Any]: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ = torch.from_numpy(lowercase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ = pt_noise super().check_pt_tf_models(lowercase , lowercase , lowercase ) def A ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(lowercase ) model.to(lowercase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(lowercase , lowercase ) ) UpperCamelCase__ = outputs[0].cpu().numpy() UpperCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) UpperCamelCase__ = model_class.from_pretrained(lowercase ) model.to(lowercase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(lowercase , lowercase ) ) # Make sure we don't have nans UpperCamelCase__ = after_outputs[0].cpu().numpy() UpperCamelCase__ = 0 UpperCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase , 1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def A ( self : Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def A ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def A ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def A ( self : List[str] ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A ( self : int ) -> Tuple: '''simple docstring''' pass @slow def A ( self : Tuple ) -> Optional[Any]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = ViTMAEModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def A ( self : Optional[int] ) -> str: '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowercase ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ = ViTMAEConfig() UpperCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**lowercase , noise=torch.from_numpy(lowercase ).to(device=lowercase ) ) # verify the logits UpperCamelCase__ = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , lowercase ) UpperCamelCase__ = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowercase ) , atol=1e-4 ) )
265
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Optional[Any] = ["pixel_values"] def __init__( self : str , lowercase : bool = True , lowercase : int = 3_2 , lowercase : List[Any]=PILImageResampling.BILINEAR , lowercase : bool = True , **lowercase : str , ) -> None: '''simple docstring''' UpperCamelCase__ = do_resize UpperCamelCase__ = do_rescale UpperCamelCase__ = size_divisor UpperCamelCase__ = resample super().__init__(**lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : int , lowercase : List[Any] , lowercase : Optional[ChannelDimension] = None , **lowercase : Any ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = get_image_size(lowercase ) # Rounds the height and width down to the closest multiple of size_divisor UpperCamelCase__ = height // size_divisor * size_divisor UpperCamelCase__ = width // size_divisor * size_divisor UpperCamelCase__ = resize(lowercase , (new_h, new_w) , resample=lowercase , data_format=lowercase , **lowercase ) return image def A ( self : int , lowercase : np.ndarray , lowercase : float , lowercase : Optional[ChannelDimension] = None , **lowercase : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(image=lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : int , lowercase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , lowercase : Optional[bool] = None , lowercase : Optional[int] = None , lowercase : Optional[Any]=None , lowercase : Optional[bool] = None , lowercase : Optional[Union[TensorType, str]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : str , ) -> BatchFeature: '''simple docstring''' UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = size_divisor if size_divisor is not None else self.size_divisor UpperCamelCase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) UpperCamelCase__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(lowercase ) for img in images] if do_resize: UpperCamelCase__ = [self.resize(lowercase , size_divisor=lowercase , resample=lowercase ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(lowercase , scale=1 / 2_5_5 ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCamelCase__ = {"""pixel_values""": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
265
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class __UpperCamelCase ( unittest.TestCase ): def __A ( self : Dict ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=lowerCAmelCase , ) assert hasattr(self , "env" ) def __A ( self : Union[str, Any] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = { "enabled": True, "processes_per_host": 8, } UpperCAmelCase_ = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } UpperCAmelCase_ = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} UpperCAmelCase_ = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase , py_version="py36" , ) def __A ( self : Optional[int] , lowerCAmelCase : List[Any] ): '''simple docstring''' TrainingJobAnalytics(lowerCAmelCase ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(1,)] ) def __A ( self : str , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase_ = self.create_estimator(lowerCAmelCase ) # run training estimator.fit() # result dataframe UpperCAmelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , lowerCAmelCase )
162
from copy import deepcopy class __UpperCamelCase : def __init__( self : List[str] , lowerCAmelCase : list[int] | None = None , lowerCAmelCase : int | None = None ): '''simple docstring''' if arr is None and size is not None: UpperCAmelCase_ = size UpperCAmelCase_ = [0] * size elif arr is not None: self.init(lowerCAmelCase ) else: raise ValueError("Either arr or size must be specified" ) def __A ( self : Tuple , lowerCAmelCase : list[int] ): '''simple docstring''' UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = deepcopy(lowerCAmelCase ) for i in range(1 , self.size ): UpperCAmelCase_ = self.next_(lowerCAmelCase ) if j < self.size: self.tree[j] += self.tree[i] def __A ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCAmelCase_ = self.next_(lowerCAmelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __A ( lowerCAmelCase : int ): '''simple docstring''' return index + (index & (-index)) @staticmethod def __A ( lowerCAmelCase : int ): '''simple docstring''' return index - (index & (-index)) def __A ( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCAmelCase_ = self.next_(lowerCAmelCase ) def __A ( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' self.add(lowerCAmelCase , value - self.get(lowerCAmelCase ) ) def __A ( self : Tuple , lowerCAmelCase : int ): '''simple docstring''' if right == 0: return 0 UpperCAmelCase_ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCAmelCase_ = self.prev(lowerCAmelCase ) return result def __A ( self : Any , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' return self.prefix(lowerCAmelCase ) - self.prefix(lowerCAmelCase ) def __A ( self : Any , lowerCAmelCase : int ): '''simple docstring''' return self.query(lowerCAmelCase , index + 1 ) def __A ( self : List[str] , lowerCAmelCase : int ): '''simple docstring''' value -= self.tree[0] if value < 0: return -1 UpperCAmelCase_ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCAmelCase_ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
162
1
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCAmelCase__ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCAmelCase__ : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCAmelCase__ : set[int] = {ord(char) for char in VALID_CHARS} UpperCAmelCase__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int for keychar, cipherchar in zip(cycle(__UpperCamelCase ) ,__UpperCamelCase ): SCREAMING_SNAKE_CASE__ : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCamelCase ) return decoded def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : list[str] = [] for key in product(__UpperCamelCase ,repeat=3 ): SCREAMING_SNAKE_CASE__ : Dict = try_key(__UpperCamelCase ,__UpperCamelCase ) if encoded is not None: possibles.append(__UpperCamelCase ) return possibles def lowercase_ ( _snake_case ,_snake_case ): return [possible for possible in possibles if common_word in possible.lower()] def lowercase_ ( _snake_case = "p059_cipher.txt" ): SCREAMING_SNAKE_CASE__ : list[int] SCREAMING_SNAKE_CASE__ : list[str] SCREAMING_SNAKE_CASE__ : str SCREAMING_SNAKE_CASE__ : str SCREAMING_SNAKE_CASE__ : str = Path(__UpperCamelCase ).parent.joinpath(__UpperCamelCase ).read_text(encoding="""utf-8""" ) SCREAMING_SNAKE_CASE__ : int = [int(__UpperCamelCase ) for number in data.strip().split(""",""" )] SCREAMING_SNAKE_CASE__ : Tuple = filter_valid_chars(__UpperCamelCase ) for common_word in COMMON_WORDS: SCREAMING_SNAKE_CASE__ : Optional[int] = filter_common_word(__UpperCamelCase ,__UpperCamelCase ) if len(__UpperCamelCase ) == 1: break SCREAMING_SNAKE_CASE__ : Optional[int] = possibles[0] return sum(ord(__UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
721
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = '''detr''' __UpperCamelCase : List[Any] = ['''past_key_values'''] __UpperCamelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__="resnet50" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE__ : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE__ : int = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ : str = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # set timm attributes to None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = None, None, None SCREAMING_SNAKE_CASE__ : Optional[int] = use_timm_backbone SCREAMING_SNAKE_CASE__ : Tuple = backbone_config SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : Tuple = num_queries SCREAMING_SNAKE_CASE__ : Optional[int] = d_model SCREAMING_SNAKE_CASE__ : str = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : str = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE__ : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = dropout SCREAMING_SNAKE_CASE__ : Tuple = attention_dropout SCREAMING_SNAKE_CASE__ : Tuple = activation_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE__ : Any = init_std SCREAMING_SNAKE_CASE__ : Dict = init_xavier_std SCREAMING_SNAKE_CASE__ : Any = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Dict = encoder_layers SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss SCREAMING_SNAKE_CASE__ : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE__ : List[str] = backbone SCREAMING_SNAKE_CASE__ : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE__ : Any = dilation # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : Tuple = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[int] = mask_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[int] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Any = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __magic_name__ (self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def __magic_name__ (self ) -> int: """simple docstring""" return self.d_model @classmethod def __magic_name__ (cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" return cls(backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict[str, any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE__ : Any = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ : Dict = self.__class__.model_type return output class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Any = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-5 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
545
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _UpperCamelCase : str = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _UpperCamelCase : int = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" _UpperCamelCase : Tuple = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = CHRF.CHAR_ORDER , _SCREAMING_SNAKE_CASE = CHRF.WORD_ORDER , _SCREAMING_SNAKE_CASE = CHRF.BETA , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , ): '''simple docstring''' lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] lowerCAmelCase = CHRF(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = sb_chrf.corpus_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
284
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase : str = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
284
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
719
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
"""simple docstring""" from __future__ import annotations class lowercase__ : """simple docstring""" def __init__( self , _A ): '''simple docstring''' UpperCamelCase : Union[str, Any] = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(__SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase : Dict = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__SCREAMING_SNAKE_CASE ) != cols: raise error for value in row: if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise error UpperCamelCase : int = rows else: UpperCamelCase : Optional[int] = [] def _a ( self ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _a ( self ): '''simple docstring''' return len(self.rows ) @property def _a ( self ): '''simple docstring''' return len(self.rows[0] ) @property def _a ( self ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def _a ( self ): '''simple docstring''' return self.order[0] == self.order[1] def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__SCREAMING_SNAKE_CASE ) def _a ( self ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _a ( self ): '''simple docstring''' return bool(self.determinant() ) def _a ( self , _A , _A ): '''simple docstring''' UpperCamelCase : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__SCREAMING_SNAKE_CASE ).determinant() def _a ( self , _A , _A ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return -1 * self.get_minor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self ): '''simple docstring''' return Matrix( [ [self.get_minor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _a ( self ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__SCREAMING_SNAKE_CASE ) def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self ): '''simple docstring''' return str(self.rows ) def __str__( self ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(__SCREAMING_SNAKE_CASE ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def _a ( self , _A , _A = None ): '''simple docstring''' UpperCamelCase : Dict = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise type_error for value in row: if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise type_error if len(__SCREAMING_SNAKE_CASE ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.rows[0:position] + [row] + self.rows[position:] def _a ( self , _A , _A = None ): '''simple docstring''' UpperCamelCase : Optional[int] = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise type_error for value in column: if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise type_error if len(__SCREAMING_SNAKE_CASE ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: UpperCamelCase : List[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCamelCase : List[str] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , _A ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return NotImplemented return self.rows == other.rows def __ne__( self , _A ): '''simple docstring''' return not self == other def __neg__( self ): '''simple docstring''' return self * -1 def __add__( self , _A ): '''simple docstring''' if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , _A ): '''simple docstring''' if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , _A ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self , _A ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) UpperCamelCase : Dict = self for _ in range(other - 1 ): result *= self return result @classmethod def _a ( cls , _A , _A ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(__SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True ) -> int: assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: return int((number_a + number_a) / 2 ) def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ) -> None: assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(_lowerCamelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) lowerCamelCase_ = lower lowerCamelCase_ = higher lowerCamelCase_ = [] while True: lowerCamelCase_ = get_avg(_lowerCamelCase , _lowerCamelCase ) last_numbers.append(_lowerCamelCase ) if answer(_lowerCamelCase ) == "low": lowerCamelCase_ = number elif answer(_lowerCamelCase ) == "high": lowerCamelCase_ = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = int(input('Enter lower value : ' ).strip() ) lowerCamelCase_ = int(input('Enter high value : ' ).strip() ) lowerCamelCase_ = int(input('Enter value to guess : ' ).strip() ) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
549
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate _UpperCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _UpperCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _UpperCAmelCase = test_metrics @require_cpu def lowercase__ ( self : Any )->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self : List[str] )->List[str]: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self : List[Any] )->Dict: self.test_metrics.main() @require_multi_gpu def lowercase__ ( self : str )->int: print(F'Found {torch.cuda.device_count()} devices.' ) _UpperCAmelCase = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase , env=os.environ.copy() )
95
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : str =logging.get_logger(__name__) class snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] ='''maskformer-swin''' SCREAMING_SNAKE_CASE_ : List[str] ={ '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , __A : List[str]=2_2_4 , __A : Union[str, Any]=4 , __A : Any=3 , __A : List[Any]=9_6 , __A : List[Any]=[2, 2, 6, 2] , __A : Dict=[3, 6, 1_2, 2_4] , __A : str=7 , __A : int=4.0 , __A : Union[str, Any]=True , __A : Dict=0.0 , __A : Any=0.0 , __A : List[str]=0.1 , __A : Union[str, Any]="gelu" , __A : Tuple=False , __A : Union[str, Any]=0.02 , __A : List[Any]=1e-5 , __A : int=None , __A : List[str]=None , **__A : Tuple , ): super().__init__(**A_ ) __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = embed_dim __UpperCamelCase = depths __UpperCamelCase = len(A_ ) __UpperCamelCase = num_heads __UpperCamelCase = window_size __UpperCamelCase = mlp_ratio __UpperCamelCase = qkv_bias __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = drop_path_rate __UpperCamelCase = hidden_act __UpperCamelCase = use_absolute_embeddings __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCamelCase = int(embed_dim * 2 ** (len(A_ ) - 1) ) __UpperCamelCase = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(A_ ) + 1 )] __UpperCamelCase , __UpperCamelCase = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
399
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowercase : Optional[Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowercase : str = concatenate_datasets __lowercase : Tuple = DownloadConfig __lowercase : Dict = DownloadManager __lowercase : Dict = DownloadMode __lowercase : Any = DownloadConfig __lowercase : Optional[int] = DownloadMode __lowercase : Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
564
0
from __future__ import annotations from dataclasses import dataclass @dataclass class _lowerCamelCase: lowercase_ : float lowercase_ : TreeNode | None = None lowercase_ : TreeNode | None = None def UpperCamelCase_( lowerCamelCase_ ) -> bool: # Validation def is_valid_tree(lowerCamelCase_ ) -> bool: if node is None: return True if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowerCamelCase_ ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , lowerCamelCase_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , lowerCamelCase_ ) ) return is_binary_search_tree_recursive_check(lowerCamelCase_ , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
354
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = parent def UpperCamelCase ( self) -> str: """simple docstring""" return {} def UpperCamelCase_( ) -> List[str]: _lowercase : int = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' _lowercase : List[Any] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Tuple = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = MarkupLMFeatureExtractionTester(self) @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.feature_extraction_class() # Test not batched input _lowercase : List[Any] = get_html_strings()[0] _lowercase : Optional[Any] = feature_extractor(lowerCamelCase) # fmt: off _lowercase : str = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] _lowercase : Dict = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes, lowerCamelCase) self.assertEqual(encoding.xpaths, lowerCamelCase) # Test batched _lowercase : Optional[int] = get_html_strings() _lowercase : Tuple = feature_extractor(lowerCamelCase) # fmt: off _lowercase : List[Any] = expected_nodes + [['My First Heading', 'My first paragraph.']] _lowercase : List[str] = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes), 2) self.assertEqual(len(encoding.xpaths), 2) self.assertEqual(encoding.nodes, lowerCamelCase) self.assertEqual(encoding.xpaths, lowerCamelCase)
354
1
from __future__ import annotations def _UpperCAmelCase ( A , A = None , A = None ): '''simple docstring''' if start is None: UpperCAmelCase__ =0 if end is None: UpperCAmelCase__ =len(snake_case__ ) - 1 if start >= end: return UpperCAmelCase__ =(start + end) // 2 slowsort(snake_case__ , snake_case__ , snake_case__ ) slowsort(snake_case__ , mid + 1 , snake_case__ ) if sequence[end] < sequence[mid]: UpperCAmelCase__ =sequence[mid], sequence[end] slowsort(snake_case__ , snake_case__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
625
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _A : str = LEDTokenizer _A : List[Any] = LEDTokenizerFast _A : Dict = True def lowerCamelCase(self ): super().setUp() A_ : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A_ : Any = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A_ : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A_ : List[str] = {"""unk_token""": """<unk>"""} A_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) def lowerCamelCase(self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase(self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase(self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase(self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase(self ): A_ : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] A_ : Any = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[int] = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) A_ : int = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCamelCase(self ): A_ : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Tuple = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIn("""input_ids""" , lowerCAmelCase_ ) self.assertIn("""attention_mask""" , lowerCAmelCase_ ) self.assertNotIn("""labels""" , lowerCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" , lowerCAmelCase_ ) @require_torch def lowerCamelCase(self ): A_ : Tuple = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[int] = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase(self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[Any] = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCamelCase(self ): A_ : Dict = ["""A long paragraph for summarization."""] A_ : Any = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : int = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ) A_ : Optional[int] = tokenizer(text_target=lowerCAmelCase_ , return_tensors="""pt""" ) A_ : str = inputs["""input_ids"""] A_ : Tuple = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase(self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : str = ["""Summary of the text.""", """Another summary."""] A_ : Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] A_ : Optional[Any] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) A_ : Any = [[0] * len(lowerCAmelCase_ ) for x in encoded_output["""input_ids"""]] A_ : Tuple = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , lowerCAmelCase_ ) def lowerCamelCase(self ): pass def lowerCamelCase(self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : Optional[Any] = """A, <mask> AllenNLP sentence.""" A_ : List[Any] = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) A_ : Any = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) A_ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) A_ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowerCAmelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
180
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCAmelCase_ : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCAmelCase_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def _lowerCamelCase ( lowercase : Vector , lowercase : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(_snake_case ) - np.asarray(_snake_case )) ** 2 ) ) def _lowerCamelCase ( lowercase : Vector , lowercase : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(_snake_case , _snake_case ) ) ** (1 / 2) if __name__ == "__main__": def _lowerCamelCase ( ) -> None: from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) ) benchmark()
692
import requests def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> None: '''simple docstring''' __magic_name__ : Any = {"Content-Type": "application/json"} __magic_name__ : Optional[int] = requests.post(_snake_case , json={"text": message_body} , headers=_snake_case ) if response.status_code != 200: __magic_name__ : List[str] = ( "Request to slack returned an error " F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(_snake_case ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
124
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , __snake_case : int , __snake_case : Dict ) -> Optional[Any]: super().__init__() # make sure scheduler can always be converted to DDIM __magic_name__: str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Dict , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 5_0 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __snake_case ): __magic_name__: Tuple = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __magic_name__: Any = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __magic_name__: str = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __magic_name__: Tuple = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __magic_name__: str = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case ).prev_sample __magic_name__: List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__: List[str] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
213
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "ClapFeatureExtractor" UpperCAmelCase__ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : int , __snake_case : Any , __snake_case : Union[str, Any] ) -> Optional[Any]: super().__init__(__snake_case , __snake_case ) def __call__( self : str , __snake_case : int=None , __snake_case : Any=None , __snake_case : str=None , **__snake_case : Any ) -> int: __magic_name__: Any = kwargs.pop("""sampling_rate""" , __snake_case ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: __magic_name__: List[str] = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if audios is not None: __magic_name__: Dict = self.feature_extractor( __snake_case , sampling_rate=__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and audios is not None: __magic_name__: int = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def lowerCamelCase__ ( self : Optional[Any] , *__snake_case : Optional[int] , **__snake_case : Optional[int] ) -> Optional[int]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCamelCase__ ( self : List[str] , *__snake_case : Tuple , **__snake_case : List[str] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: __magic_name__: List[str] = self.tokenizer.model_input_names __magic_name__: List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
213
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __lowercase : Any =datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): _snake_case =None _snake_case ="utf-8" _snake_case =None _snake_case =None _snake_case =True # deprecated _snake_case =None # deprecated _snake_case =10 << 20 # 10MB _snake_case =None class A ( datasets.ArrowBasedBuilder ): _snake_case =JsonConfig def lowerCAmelCase__ ( self: Any ) -> Union[str, Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) UpperCAmelCase_ =self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: int ) -> str: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) UpperCAmelCase_ =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): UpperCAmelCase_ =data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =[files] UpperCAmelCase_ =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase_ =[] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =[files] UpperCAmelCase_ =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCAmelCase_ =self.config.features.arrow_schema.field(_lowerCAmelCase ).type UpperCAmelCase_ =pa_table.append_column(_lowerCAmelCase , pa.array([None] * len(_lowerCAmelCase ) , type=_lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ =table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: int ) -> Tuple: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # We keep only the field we are interested in UpperCAmelCase_ =dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCAmelCase , (list, tuple) ): UpperCAmelCase_ =set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ ={col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} else: UpperCAmelCase_ =dataset UpperCAmelCase_ =pa.Table.from_pydict(_lowerCAmelCase ) yield file_idx, self._cast_table(_lowerCAmelCase ) # If the file has one json object per line else: with open(_lowerCAmelCase , "rb" ) as f: UpperCAmelCase_ =0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase_ =max(self.config.chunksize // 32 , 16 << 10 ) UpperCAmelCase_ =( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: UpperCAmelCase_ =f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase_ =batch.decode(self.config.encoding , errors=_lowerCAmelCase ).encode("utf-8" ) try: while True: try: UpperCAmelCase_ =paj.read_json( io.BytesIO(_lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=_lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCAmelCase ) or block_size > len(_lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(_lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ =json.load(_lowerCAmelCase ) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # list is the only sequence type supported in JSON try: UpperCAmelCase_ =set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ ={col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} UpperCAmelCase_ =pa.Table.from_pydict(_lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}' ) raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCAmelCase ) break else: logger.error(F'Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}' ) raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) batch_idx += 1
54
from importlib import import_module from .logging import get_logger UpperCAmelCase : Union[str, Any] = get_logger(__name__) class _A: """simple docstring""" def __init__( self , _A , _A=None ): __A : Union[str, Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , _A , getattr(_A , _A ) ) __A : Optional[int] = module._original_module if isinstance(_A , _PatchedModuleObj ) else module class _A: """simple docstring""" UpperCamelCase : Union[str, Any] = [] def __init__( self , _A , _A , _A , _A=None ): __A : List[Any] = obj __A : Dict = target __A : Optional[int] = new __A : Optional[Any] = target.split('.' )[0] __A : Tuple = {} __A : Dict = attrs or [] def __enter__( self ): *__A , __A : str = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_A ) ): try: __A : Union[str, Any] = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __A : Union[str, Any] = getattr(self.obj , _A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_A , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __A : Optional[Any] = obj_attr # patch at top level setattr(self.obj , _A , _PatchedModuleObj(_A , attrs=self.attrs ) ) __A : List[str] = getattr(self.obj , _A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_A , _A , _PatchedModuleObj(getattr(_A , _A , _A ) , attrs=self.attrs ) ) __A : str = getattr(_A , _A ) # finally set the target attribute setattr(_A , _A , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __A : Union[str, Any] = getattr(import_module('.'.join(_A ) ) , _A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _A ) is attr_value: __A : Union[str, Any] = getattr(self.obj , _A ) setattr(self.obj , _A , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __A : Tuple = globals()['__builtins__'][target_attr] setattr(self.obj , _A , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self , *_A ): for attr in list(self.original ): setattr(self.obj , _A , self.original.pop(_A ) ) def UpperCAmelCase_ ( self ): self.__enter__() self._active_patches.append(self ) def UpperCAmelCase_ ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
239
0
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : str ): return "".join(chr(ord(_lowerCAmelCase ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
173
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __A = logging.get_logger(__name__) # General docstring __A = """RegNetConfig""" # Base docstring __A = """facebook/regnet-y-040""" __A = [1, 10_88, 7, 7] # Image classification docstring __A = """facebook/regnet-y-040""" __A = """tabby, tabby cat""" __A = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( tf.keras.layers.Layer ): def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[str] = "relu" , **lowerCamelCase_ : Union[str, Any] , ) -> Tuple: super().__init__(**lowerCamelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __a = tf.keras.layers.ConvaD( filters=lowerCamelCase_ , kernel_size=lowerCamelCase_ , strides=lowerCamelCase_ , padding="""VALID""" , groups=lowerCamelCase_ , use_bias=lowerCamelCase_ , name="""convolution""" , ) __a = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) __a = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] ) -> Optional[Any]: __a = self.convolution(self.padding(lowerCamelCase_ ) ) __a = self.normalization(lowerCamelCase_ ) __a = self.activation(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , lowerCamelCase_ : RegNetConfig , **lowerCamelCase_ : Tuple ) -> List[Any]: super().__init__(**lowerCamelCase_ ) __a = config.num_channels __a = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCAmelCase_ ( self : Dict , lowerCamelCase_ : Tuple ) -> List[str]: __a = shape_list(lowerCamelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __a = tf.transpose(lowerCamelCase_ , perm=(0, 2, 3, 1) ) __a = self.embedder(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int = 2 , **lowerCamelCase_ : Optional[int] ) -> Any: super().__init__(**lowerCamelCase_ ) __a = tf.keras.layers.ConvaD( filters=lowerCamelCase_ , kernel_size=1 , strides=lowerCamelCase_ , use_bias=lowerCamelCase_ , name="""convolution""" ) __a = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def lowerCAmelCase_ ( self : Optional[Any] , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(lowerCamelCase_ ) , training=lowerCamelCase_ ) class a ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , **lowerCamelCase_ : List[Any] ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) __a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase_ , name="""pooler""" ) __a = [ tf.keras.layers.ConvaD(filters=lowerCamelCase_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=lowerCamelCase_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCAmelCase_ ( self : int , lowerCamelCase_ : Dict ) -> int: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __a = self.pooler(lowerCamelCase_ ) for layer_module in self.attention: __a = layer_module(lowerCamelCase_ ) __a = hidden_state * pooled return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Optional[int] ) -> Optional[int]: super().__init__(**lowerCamelCase_ ) __a = in_channels != out_channels or stride != 1 __a = max(1 , out_channels // config.groups_width ) __a = ( TFRegNetShortCut(lowerCamelCase_ , stride=lowerCamelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __a = [ TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ , name="""layer.2""" ), ] __a = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Dict , lowerCamelCase_ : List[str] ) -> Tuple: __a = hidden_state for layer_module in self.layers: __a = layer_module(lowerCamelCase_ ) __a = self.shortcut(lowerCamelCase_ ) hidden_state += residual __a = self.activation(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Optional[Any] ) -> Dict: super().__init__(**lowerCamelCase_ ) __a = in_channels != out_channels or stride != 1 __a = max(1 , out_channels // config.groups_width ) __a = ( TFRegNetShortCut(lowerCamelCase_ , stride=lowerCamelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __a = [ TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(lowerCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ , name="""layer.3""" ), ] __a = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] ) -> Optional[Any]: __a = hidden_state for layer_module in self.layers: __a = layer_module(lowerCamelCase_ ) __a = self.shortcut(lowerCamelCase_ ) hidden_state += residual __a = self.activation(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : List[str] , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 2 , lowerCamelCase_ : int = 2 , **lowerCamelCase_ : List[Any] ) -> Optional[int]: super().__init__(**lowerCamelCase_ ) __a = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __a = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , name="""layers.0""" ), *[layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self : Dict , lowerCamelCase_ : List[str] ) -> int: for layer_module in self.layers: __a = layer_module(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase_ : RegNetConfig , **lowerCamelCase_ : Any ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) __a = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __a = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , depth=lowerCamelCase_ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True ) -> TFBaseModelOutputWithNoAttention: __a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __a = hidden_states + (hidden_state,) __a = stage_module(lowerCamelCase_ ) if output_hidden_states: __a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase_ , hidden_states=lowerCamelCase_ ) @keras_serializable class a ( tf.keras.layers.Layer ): A_ : str = RegNetConfig def __init__( self : List[str] , lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ) -> Tuple: super().__init__(**lowerCamelCase_ ) __a = config __a = TFRegNetEmbeddings(lowerCamelCase_ , name="""embedder""" ) __a = TFRegNetEncoder(lowerCamelCase_ , name="""encoder""" ) __a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase_ , name="""pooler""" ) @unpack_inputs def lowerCAmelCase_ ( self : Union[str, Any] , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.embedder(lowerCamelCase_ , training=lowerCamelCase_ ) __a = self.encoder( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ ) __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase_ ) # Change to NCHW output format have uniformity in the modules __a = tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) __a = tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __a = tuple([tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class a ( A_ ): A_ : str = RegNetConfig A_ : Tuple = '''regnet''' A_ : Tuple = '''pixel_values''' @property def lowerCAmelCase_ ( self : Union[str, Any] ) -> Dict: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} __A = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ __A = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , A_ , ) class a ( A_ ): def __init__( self : Tuple , lowerCamelCase_ : RegNetConfig , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[Any] ) -> List[str]: super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) __a = TFRegNetMainLayer(lowerCamelCase_ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self : str , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Any=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.regnet( pixel_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A_ , ) class a ( A_ , A_ ): def __init__( self : int , lowerCamelCase_ : RegNetConfig , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Tuple ) -> Union[str, Any]: super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) __a = config.num_labels __a = TFRegNetMainLayer(lowerCamelCase_ , name="""regnet""" ) # classification head __a = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self : int , lowerCamelCase_ : tf.Tensor = None , lowerCamelCase_ : tf.Tensor = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[int]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.regnet( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ ) __a = outputs.pooler_output if return_dict else outputs[1] __a = self.classifier[0](lowerCamelCase_ ) __a = self.classifier[1](lowerCamelCase_ ) __a = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase_ , logits=lowerCamelCase_ ) if not return_dict: __a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states )
173
1
from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase__ ( lowerCamelCase_ : int = 1_0_0_0_0_0_0 , lowerCamelCase_ : int = 1_0 ): __a : Optional[Any] = defaultdict(a__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __a : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __a : Union[str, Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(a__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F"{solution() = }")
47
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase = 6_37_81_37.0 UpperCAmelCase = 6_35_67_52.31_42_45 UpperCAmelCase = 6_378_137 def lowercase ( a__ : float , a__ : float , a__ : float , a__ : float ) -> float: _UpperCamelCase = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCamelCase = atan((1 - flattening) * tan(radians(a__ ) ) ) _UpperCamelCase = atan((1 - flattening) * tan(radians(a__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCamelCase = haversine_distance(a__ , a__ , a__ , a__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCamelCase = (b_lata + b_lata) / 2 _UpperCamelCase = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCamelCase = (sin(a__ ) ** 2) * (cos(a__ ) ** 2) _UpperCamelCase = cos(sigma / 2 ) ** 2 _UpperCamelCase = (sigma - sin(a__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCamelCase = (cos(a__ ) ** 2) * (sin(a__ ) ** 2) _UpperCamelCase = sin(sigma / 2 ) ** 2 _UpperCamelCase = (sigma + sin(a__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
420
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A : Tuple = "sshleifer/bart-tiny-random" A : List[str] = "patrickvonplaten/t5-tiny-random" @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): return AutoConfig.from_pretrained(_lowercase ) def snake_case ( self ): __lowerCAmelCase = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def snake_case ( self ): __lowerCAmelCase = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=_lowercase ) def snake_case ( self ): __lowerCAmelCase = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=_lowercase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def snake_case ( self ): __lowerCAmelCase = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def snake_case ( self ): with self.assertRaises(_lowercase ): create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=_lowercase , d=_lowercase )
719
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging A : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a=7_68 ): super().__init__(__a ) __lowerCAmelCase = proj_size __lowerCAmelCase = CLIPVisionModel(__a ) __lowerCAmelCase = PaintByExampleMapper(__a ) __lowerCAmelCase = nn.LayerNorm(config.hidden_size ) __lowerCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __lowerCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def snake_case ( self , __a , __a=False ): __lowerCAmelCase = self.model(pixel_values=__a ) __lowerCAmelCase = clip_output.pooler_output __lowerCAmelCase = self.mapper(latent_states[:, None] ) __lowerCAmelCase = self.final_layer_norm(__a ) __lowerCAmelCase = self.proj_out(__a ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCAmelCase = (config.num_hidden_layers + 1) // 5 __lowerCAmelCase = config.hidden_size __lowerCAmelCase = 1 __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock(__a , __a , __a , activation_fn="gelu" , attention_bias=__a ) for _ in range(__a ) ] ) def snake_case ( self , __a ): for block in self.blocks: __lowerCAmelCase = block(__a ) return hidden_states
282
0
'''simple docstring''' _lowerCAmelCase :List[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCAmelCase :Tuple = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCAmelCase :List[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
251
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Tuple = FlaxAutoencoderKL @property def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : str = (32, 32) SCREAMING_SNAKE_CASE : Optional[Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Dict = jax.random.uniform(lowercase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_input return init_dict, inputs_dict
251
1
'''simple docstring''' import os import sys import transformers _SCREAMING_SNAKE_CASE = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
706
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "LayoutLMv3ImageProcessor" snake_case_ = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : str , __snake_case : int=None , __snake_case : List[Any]=None , **__snake_case : Optional[Any] )-> List[Any]: snake_case = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) snake_case = kwargs.pop("""feature_extractor""" ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) def __call__( self : Any , __snake_case : int , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : List[Any] , )-> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor snake_case = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): snake_case = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case = features["""words"""] snake_case = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values snake_case = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: snake_case = self.get_overflowing_images(__snake_case , encoded_inputs["""overflow_to_sample_mapping"""] ) snake_case = images return encoded_inputs def lowerCAmelCase ( self : Any , __snake_case : int , __snake_case : Tuple )-> List[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def lowerCAmelCase ( self : Optional[int] , *__snake_case : Optional[int] , **__snake_case : Optional[Any] )-> Tuple: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , *__snake_case : Any , **__snake_case : Optional[Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowerCAmelCase ( self : Union[str, Any] )-> Tuple: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCAmelCase ( self : Any )-> Any: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def lowerCAmelCase ( self : int )-> Optional[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
517
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _snake_case ( __snake_case : float , __snake_case : float , __snake_case : float ): """simple docstring""" _lowerCamelCase : Optional[Any] = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
88
import os import sys import unittest __UpperCamelCase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCamelCase : List[Any] = os.path.join(git_repo_path, """src""", """diffusers""") class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Tuple ) -> Dict: snake_case__ = find_backend(' if not is_torch_available():' ) self.assertEqual(UpperCamelCase , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(UpperCamelCase , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(UpperCamelCase , 'torch_and_transformers_and_onnx' ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , UpperCamelCase ) self.assertIn('torch_and_transformers' , UpperCamelCase ) self.assertIn('flax_and_transformers' , UpperCamelCase ) self.assertIn('torch_and_transformers_and_onnx' , UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def lowerCAmelCase_ ( self: int ) -> str: snake_case__ = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(UpperCamelCase , '\nCONSTANT = None\n' ) snake_case__ = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( UpperCamelCase , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case__ = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' snake_case__ = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> int: snake_case__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' snake_case__ = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , UpperCamelCase )
328
0
import numpy as np from PIL import Image def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = np.array(_SCREAMING_SNAKE_CASE ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE_ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE_ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE_ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 return updated_arr def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = np.array(_SCREAMING_SNAKE_CASE ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE_ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE_ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE_ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image UpperCamelCase__ : Any = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
620
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( lowerCAmelCase__ ): def __init__( self , _A , _A , _A , _A = None , ): super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A) # create a imagenet -> id dictionary for easier use SCREAMING_SNAKE_CASE_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(','): SCREAMING_SNAKE_CASE_ = int(_A) SCREAMING_SNAKE_CASE_ = dict(sorted(self.labels.items())) def lowerCAmelCase__ ( self , _A): if not isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = list(_A) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _A , _A = 4.0 , _A = None , _A = 50 , _A = "pil" , _A = True , ): SCREAMING_SNAKE_CASE_ = len(_A) SCREAMING_SNAKE_CASE_ = self.transformer.config.sample_size SCREAMING_SNAKE_CASE_ = self.transformer.config.in_channels SCREAMING_SNAKE_CASE_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2) if guidance_scale > 1 else latents SCREAMING_SNAKE_CASE_ = torch.tensor(_A , device=self.device).reshape(-1) SCREAMING_SNAKE_CASE_ = torch.tensor([1000] * batch_size , device=self.device) SCREAMING_SNAKE_CASE_ = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: SCREAMING_SNAKE_CASE_ = latent_model_input[: len(_A) // 2] SCREAMING_SNAKE_CASE_ = torch.cat([half, half] , dim=0) SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(_A , _A) SCREAMING_SNAKE_CASE_ = t if not torch.is_tensor(_A): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) SCREAMING_SNAKE_CASE_ = latent_model_input.device.type == 'mps' if isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = torch.floataa if is_mps else torch.floataa else: SCREAMING_SNAKE_CASE_ = torch.intaa if is_mps else torch.intaa SCREAMING_SNAKE_CASE_ = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device) elif len(timesteps.shape) == 0: SCREAMING_SNAKE_CASE_ = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE_ = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output SCREAMING_SNAKE_CASE_ = self.transformer( _A , timestep=_A , class_labels=_A).sample # perform guidance if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(_A , len(_A) // 2 , dim=0) SCREAMING_SNAKE_CASE_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) SCREAMING_SNAKE_CASE_ = torch.cat([half_eps, half_eps] , dim=0) SCREAMING_SNAKE_CASE_ = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(_A , _A , dim=1) else: SCREAMING_SNAKE_CASE_ = noise_pred # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , _A , _A).prev_sample if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = latent_model_input.chunk(2 , dim=0) else: SCREAMING_SNAKE_CASE_ = latent_model_input SCREAMING_SNAKE_CASE_ = 1 / self.vae.config.scaling_factor * latents SCREAMING_SNAKE_CASE_ = self.vae.decode(_A).sample SCREAMING_SNAKE_CASE_ = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE_ = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A)
620
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class UpperCAmelCase ( __lowerCamelCase ): a__: Union[str, Any] = """open-llama""" def __init__( self : Any , lowerCAmelCase : Optional[Any]=10_0000 , lowerCAmelCase : Optional[Any]=4096 , lowerCAmelCase : Union[str, Any]=1_1008 , lowerCAmelCase : Any=32 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : str="silu" , lowerCAmelCase : int=2048 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : str=1E-6 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : int=1 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[str]=False , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Dict , ): lowercase : Any = vocab_size lowercase : Optional[Any] = max_position_embeddings lowercase : int = hidden_size lowercase : Optional[Any] = intermediate_size lowercase : Union[str, Any] = num_hidden_layers lowercase : Union[str, Any] = num_attention_heads lowercase : Optional[Any] = hidden_act lowercase : Union[str, Any] = initializer_range lowercase : List[str] = rms_norm_eps lowercase : List[str] = use_cache lowercase : Optional[int] = kwargs.pop( '''use_memorry_efficient_attention''' , lowerCAmelCase ) lowercase : List[Any] = hidden_dropout_prob lowercase : Optional[Any] = attention_dropout_prob lowercase : Any = use_stable_embedding lowercase : Optional[int] = shared_input_output_embedding lowercase : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase , ) def _lowerCAmelCase ( self : Optional[int] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) lowercase : Optional[Any] = self.rope_scaling.get('''type''' , lowerCAmelCase ) lowercase : List[str] = self.rope_scaling.get('''factor''' , lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase , lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
583
def lowerCamelCase_ ( UpperCAmelCase_ : list[int] ): lowercase : Union[str, Any] = len(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ): for j in range(i + 1 , UpperCAmelCase_ ): if numbers[j] < numbers[i]: lowercase , lowercase : int = numbers[j], numbers[i] return numbers if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
583
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''xlm-prophetnet''' lowerCamelCase_ = ['''past_key_values'''] lowerCamelCase_ = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self , lowercase = 0.1 , lowercase = "gelu" , lowercase = 3_0_5_2_2 , lowercase = 1_0_2_4 , lowercase = 4_0_9_6 , lowercase = 1_2 , lowercase = 1_6 , lowercase = 4_0_9_6 , lowercase = 1_2 , lowercase = 1_6 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 5_1_2 , lowercase = 0.02 , lowercase = True , lowercase = True , lowercase = 0 , lowercase = 2 , lowercase = 3_2 , lowercase = 1_2_8 , lowercase = False , lowercase = 0.0 , lowercase = True , lowercase = 0 , lowercase = 1 , lowercase = 2 , **lowercase , ): """simple docstring""" A_ : List[str] = vocab_size A_ : Union[str, Any] = hidden_size A_ : int = encoder_ffn_dim A_ : Dict = num_encoder_layers A_ : Dict = num_encoder_attention_heads A_ : str = decoder_ffn_dim A_ : str = num_decoder_layers A_ : Any = num_decoder_attention_heads A_ : List[Any] = max_position_embeddings A_ : int = init_std # Normal(0, this parameter) A_ : Optional[int] = activation_function # parameters for xlmprophetnet A_ : Optional[Any] = ngram A_ : Optional[int] = num_buckets A_ : List[Any] = relative_max_distance A_ : str = disable_ngram_loss A_ : int = eps # 3 Types of Dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : Tuple = dropout A_ : Optional[int] = use_cache super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , add_cross_attention=lowercase , decoder_start_token_id=lowercase , **lowercase , ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
70
def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if length <= 0 or not isinstance(__lowercase ,__lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
70
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __a : Any = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __a : int = F'''https://www.google.com/search?q={query}&num=100''' __a : Optional[Any] = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __a : Tuple = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __a : List[str] = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
534
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = len(lowercase ) __lowercase = len(lowercase ) __lowercase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase = True for i in range(lowercase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase = True if a[i].islower(): __lowercase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
534
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers A_ = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
28
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
1
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return x if y == 0 else greatest_common_divisor(lowerCAmelCase__ , x % y ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return (x * y) // greatest_common_divisor(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ = 20 ): UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(lowerCAmelCase__ , lowerCAmelCase__ ) return g if __name__ == "__main__": print(F"{solution() = }")
82
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'gpt_bigcode' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = attention_softmax_in_fpaa lowerCamelCase__ = scale_attention_softmax_in_fpaa lowerCamelCase__ = multi_query lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
from math import sqrt def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ = 10_001 ): __lowerCamelCase : Tuple = 0 __lowerCamelCase : Dict = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE__ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE__ ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
230
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
230
1
def __snake_case ( _UpperCamelCase=2_81_23 ) -> Optional[Any]: _a = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _a = set() _a = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_UpperCamelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
487
def __snake_case ( _UpperCamelCase ) -> int: _a = len(_UpperCamelCase ) _a = sum(_UpperCamelCase ) _a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _a = True for i in range(1 , s + 1 ): _a = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _a = dp[i][j - 1] if arr[i - 1] <= j: _a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _a = s - 2 * j break return diff
487
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Dict = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
import requests snake_case : int = '' # <-- Put your OpenWeatherMap appid here! snake_case : int = 'https://api.openweathermap.org/data/2.5/' def snake_case__ ( __lowercase = "Chicago" , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "weather" , params=locals() ).json() def snake_case__ ( __lowercase = "Kolkata, India" , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "forecast" , params=locals() ).json() def snake_case__ ( __lowercase = 55.68 , __lowercase = 12.57 , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: snake_case : int = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
182
0
import math import sys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): if number != int(UpperCamelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 SCREAMING_SNAKE_CASE__ = [-1] * (number + 1) SCREAMING_SNAKE_CASE__ = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE__ = sys.maxsize SCREAMING_SNAKE_CASE__ = int(math.sqrt(UpperCamelCase__ ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE__ = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
6
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A__ : Union[str, Any] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") A__ : int = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() A__ : Tuple = """|""".join(sys.argv[1:]) A__ : Tuple = re.compile(rf"""^({joined_dirs}).*?\.py$""") A__ : List[Any] = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
233
0
import baseaa def __UpperCAmelCase ( __a : str ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode('''utf-8''' ) ) def __UpperCAmelCase ( __a : bytes ) -> str: """simple docstring""" return baseaa.aaadecode(__a ).decode('''utf-8''' ) if __name__ == "__main__": import doctest doctest.testmod()
715
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Union[str, Any]: super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _a : List[Any] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def __lowercase ( self ) -> List[str]: _a : List[str] = None _a : Optional[int] = None _a : Dict = None _a : List[Any] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _a : int = self.builder.as_dataset( split='''train''' , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Any: if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _a : Tuple = dataset _a : Tuple = name _a : List[str] = con _a : Optional[int] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a : int = num_proc _a : Union[str, Any] = to_sql_kwargs def __lowercase ( self ) -> int: _a : Dict = self.to_sql_kwargs.pop('''sql''' , _a ) _a : List[Any] = self.to_sql_kwargs.pop('''con''' , _a ) _a : int = self.to_sql_kwargs.pop('''index''' , _a ) _a : Tuple = self._write(index=_a , **self.to_sql_kwargs ) return written def __lowercase ( self , _a ) -> Any: _a , _a , _a : Any = args _a : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs _a : List[Any] = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _a : int = batch.to_pandas() _a : Any = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def __lowercase ( self , _a , **_a ) -> int: _a : List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _a , _a : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
578
0
class _A ( __UpperCamelCase ): pass class _A ( __UpperCamelCase ): pass class _A : def __init__(self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = [ [], [], [], ] def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(SCREAMING_SNAKE_CASE_ ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def _a (self ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__(self ) -> str: '''simple docstring''' return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class _A : def __init__(self ) -> str: '''simple docstring''' UpperCamelCase__ = [] def _a (self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(SCREAMING_SNAKE_CASE_ ) def _a (self ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: UpperCamelCase__ = min(self.queue ) self.queue.remove(SCREAMING_SNAKE_CASE_ ) return data def __str__(self ) -> str: '''simple docstring''' return str(self.queue ) def __UpperCamelCase ( ): UpperCamelCase__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCamelCase ( ): UpperCamelCase__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
415
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __magic_name__ =True except ImportError: __magic_name__ =False __magic_name__ =logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( A ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _A ( __UpperCamelCase ): @staticmethod def _a (SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=SCREAMING_SNAKE_CASE_ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=SCREAMING_SNAKE_CASE_ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , *SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = testing UpperCamelCase__ = testing_file UpperCamelCase__ = path def _a (self ) -> Any: '''simple docstring''' warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase__ = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase__ = ( Path(SCREAMING_SNAKE_CASE_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase__ = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(SCREAMING_SNAKE_CASE_ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase__ = json.load(SCREAMING_SNAKE_CASE_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=SCREAMING_SNAKE_CASE_ , extra_context=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase__ = json.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = configuration['''lowercase_modelname'''] UpperCamelCase__ = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(F"{directory}/configuration.json" ) UpperCamelCase__ = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ = F"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) os.makedirs(F"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=SCREAMING_SNAKE_CASE_ ) # Tests require submodules as they have parent imports with open(F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , '''w''' ): pass shutil.move( F"{directory}/__init__.py" , F"{model_dir}/__init__.py" , ) shutil.move( F"{directory}/configuration_{lowercase_model_name}.py" , F"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: UpperCamelCase__ = f.readlines() with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(SCREAMING_SNAKE_CASE_ ) if output_pytorch: if not self._testing: remove_copy_lines(F"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_{lowercase_model_name}.py" , F"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_tf_{lowercase_model_name}.py" , F"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_tf_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(F"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_flax_{lowercase_model_name}.py" , F"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_flax_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( F"{directory}/{lowercase_model_name}.md" , F"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( F"{directory}/tokenization_{lowercase_model_name}.py" , F"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/tokenization_fast_{lowercase_model_name}.py" , F"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Create temp file UpperCamelCase__ , UpperCamelCase__ = mkstemp() UpperCamelCase__ = False with fdopen(SCREAMING_SNAKE_CASE_ , '''w''' ) as new_file: with open(SCREAMING_SNAKE_CASE_ ) as old_file: for line in old_file: new_file.write(SCREAMING_SNAKE_CASE_ ) if line_to_copy_below in line: UpperCamelCase__ = True for line_to_copy in lines_to_copy: new_file.write(SCREAMING_SNAKE_CASE_ ) if not line_found: raise ValueError(F"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Remove original file remove(SCREAMING_SNAKE_CASE_ ) # Move new file move(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def skip_units(SCREAMING_SNAKE_CASE_ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ ) as datafile: UpperCamelCase__ = [] UpperCamelCase__ = False UpperCamelCase__ = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase__ = line.split('''"''' )[1] UpperCamelCase__ = skip_units(SCREAMING_SNAKE_CASE_ ) elif "# Below: " in line and "##" not in line: UpperCamelCase__ = line.split('''"''' )[1] UpperCamelCase__ = skip_units(SCREAMING_SNAKE_CASE_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase__ = [] elif "##" not in line: lines_to_copy.append(SCREAMING_SNAKE_CASE_ ) remove(SCREAMING_SNAKE_CASE_ ) replace_in_files(F"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(SCREAMING_SNAKE_CASE_ )
415
1
def A_ ( __a : int , __a : int ): """simple docstring""" return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
351
import os from datetime import datetime as dt from github import Github UpperCAmelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A_ ( ): """simple docstring""" a__ = Github(os.environ["""GITHUB_TOKEN"""] ) a__ = g.get_repo("""huggingface/diffusers""" ) a__ = repo.get_issues(state="""open""" ) for issue in open_issues: a__ = sorted(issue.get_comments() , key=lambda __a : i.created_at , reverse=__a ) a__ = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
351
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TextToVideoSDPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __magic_name__ = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _A = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _A = CLIPTextModel(snake_case_ ) _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith('mps' ): _A = torch.manual_seed(snake_case_ ) else: _A = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def lowerCAmelCase__ ( self ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = TextToVideoSDPipeline(**snake_case_ ) _A = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _A = self.get_dummy_inputs(snake_case_ ) _A = 'np' _A = sd_pipe(**snake_case_ ).frames _A = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _A = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCAmelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) _A = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _A = pipe.to('cuda' ) _A = 'Spiderman is surfing' _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=25 , output_type='pt' ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCAmelCase__ ( self ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) _A = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _A = pipe.to('cuda' ) _A = 'Spiderman is surfing' _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type='pt' ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
27
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __magic_name__ = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Dict = VOCAB_FILES_NAMES _A : List[str] = PRETRAINED_VOCAB_FILES_MAP _A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : str = ['input_ids', 'attention_mask'] _A : Dict = RobertaTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="replace" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=False , lowerCamelCase=True , **lowerCamelCase , ): super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase , **lowerCamelCase , ) snake_case__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase ) != add_prefix_space: snake_case__ = getattr(lowerCamelCase , pre_tok_state.pop("type" ) ) snake_case__ = add_prefix_space snake_case__ = pre_tok_class(**lowerCamelCase ) snake_case__ = add_prefix_space snake_case__ = "post_processor" snake_case__ = getattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) if tokenizer_component_instance: snake_case__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ = tuple(state["sep"] ) if "cls" in state: snake_case__ = tuple(state["cls"] ) snake_case__ = False if state.get("add_prefix_space" , lowerCamelCase ) != add_prefix_space: snake_case__ = add_prefix_space snake_case__ = True if state.get("trim_offsets" , lowerCamelCase ) != trim_offsets: snake_case__ = trim_offsets snake_case__ = True if changes_to_apply: snake_case__ = getattr(lowerCamelCase , state.pop("type" ) ) snake_case__ = component_class(**lowerCamelCase ) setattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) @property def A_ ( self ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self , lowerCamelCase ): snake_case__ = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else value snake_case__ = value def A_ ( self , *lowerCamelCase , **lowerCamelCase ): snake_case__ = kwargs.get("is_split_into_words" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def A_ ( self , *lowerCamelCase , **lowerCamelCase ): snake_case__ = kwargs.get("is_split_into_words" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase = None ): snake_case__ = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase=None ): snake_case__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self , lowerCamelCase , lowerCamelCase = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
276
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __lowercase = '''src/diffusers''' # Matches is_xxx_available() __lowercase = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __lowercase = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __lowercase = ''' {0} = None ''' __lowercase = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __lowercase = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =_re_backend.findall(__UpperCamelCase ) if len(__UpperCamelCase ) == 0: return None return "_and_".join(__UpperCamelCase ) def lowerCAmelCase (): """simple docstring""" with open(os.path.join(__UpperCamelCase , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase =f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase =0 __UpperCamelCase ={} # Go through the end of the file while line_index < len(__UpperCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 __UpperCamelCase =[] # Until we unindent, add backend objects to the list while line_index < len(__UpperCamelCase ) and len(lines[line_index] ) > 1: __UpperCamelCase =lines[line_index] __UpperCamelCase =_re_single_line_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__UpperCamelCase ) > 0: __UpperCamelCase =objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__UpperCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__UpperCamelCase , __UpperCamelCase ) else: return DUMMY_CLASS.format(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : List[str]=None ): """simple docstring""" if backend_specific_objects is None: __UpperCamelCase =read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase ={} for backend, objects in backend_specific_objects.items(): __UpperCamelCase ='''[''' + ''', '''.join(F"""\"{b}\"""" for b in backend.split('''_and_''' ) ) + ''']''' __UpperCamelCase ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__UpperCamelCase , __UpperCamelCase ) for o in objects] ) __UpperCamelCase =dummy_file return dummy_files def lowerCAmelCase (__UpperCamelCase : str=False ): """simple docstring""" __UpperCamelCase =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. __UpperCamelCase =os.path.join(__UpperCamelCase , '''utils''' ) __UpperCamelCase ={ backend: os.path.join(__UpperCamelCase , F"""dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py""" ) for backend in dummy_files.keys() } __UpperCamelCase ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase =f.read() else: __UpperCamelCase ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py as the main """ '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F"""diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py. Run `make fix-copies` """ '''to fix this.''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __lowercase = parser.parse_args() check_dummies(args.fix_and_overwrite)
296
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ): """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase ={'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCamelCase =features.copy() __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple ): """simple docstring""" if issubclass(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase =jsonl_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase =[jsonl_path] __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict=("train",) ): """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: __UpperCamelCase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader({'''train''': jsonl_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ): """simple docstring""" if split: __UpperCamelCase ={split: jsonl_path} else: __UpperCamelCase ='''train''' __UpperCamelCase ={'''train''': jsonl_path, '''test''': jsonl_path} __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase (__UpperCamelCase : Dict ): """simple docstring""" return json.load(__UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Optional[Any] ): """simple docstring""" return [json.loads(__UpperCamelCase ) for line in buffer] class _lowercase : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ ).write() buffer.seek(0 ) __UpperCamelCase =load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ ).write() buffer.seek(0 ) __UpperCamelCase =load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCamelCase =load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCamelCase =load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : List[Any] ) -> Dict: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' __UpperCamelCase =tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" __UpperCamelCase =str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , compression=UpperCamelCase__ ).write() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''' ) as f: __UpperCamelCase =f.read() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''' ) as f: __UpperCamelCase =f.read() assert exported_content == original_content
296
1
import math def a ( ): '''simple docstring''' lowercase_ = input('''Enter message: ''' ) lowercase_ = int(input(F'''Enter key [2-{len(snake_case__ ) - 1}]: ''' ) ) lowercase_ = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase_ = encrypt_message(snake_case__ , snake_case__ ) elif mode.lower().startswith('''d''' ): lowercase_ = decrypt_message(snake_case__ , snake_case__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + '|'}''' ) def a ( snake_case__: int , snake_case__: str ): '''simple docstring''' lowercase_ = [''''''] * key for col in range(snake_case__ ): lowercase_ = col while pointer < len(snake_case__ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case__ ) def a ( snake_case__: int , snake_case__: str ): '''simple docstring''' lowercase_ = math.ceil(len(snake_case__ ) / key ) lowercase_ = key lowercase_ = (num_cols * num_rows) - len(snake_case__ ) lowercase_ = [''''''] * num_cols lowercase_ = 0 lowercase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowercase_ = 0 row += 1 return "".join(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
97
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowercase__( unittest.TestCase ): """simple docstring""" a :List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING a :Tuple = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowercase ( self : Tuple ) -> Dict: lowercase_ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowercase_ = text_generator('''This is a test''' , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowercase_ = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowercase_ = text_generator('''This is a test''' , do_sample=SCREAMING_SNAKE_CASE_ , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) lowercase_ = text_generator.model.config.eos_token_id lowercase_ = '''<pad>''' lowercase_ = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=SCREAMING_SNAKE_CASE_ , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, ], [ {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, ], ] , ) @require_tf def _lowercase ( self : str ) -> Optional[int]: lowercase_ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowercase_ = text_generator('''This is a test''' , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowercase_ = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: lowercase_ = TextGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) return text_generator, ["This is a test", "Another test"] def _lowercase ( self : List[Any] ) -> Optional[int]: lowercase_ = '''Hello I believe in''' lowercase_ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ , stop_sequence=''' fe''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: lowercase_ = text_generator.model lowercase_ = text_generator.tokenizer lowercase_ = text_generator('''This is a test''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowercase_ = text_generator('''This is a test''' , return_full_text=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowercase_ = pipeline(task='''text-generation''' , model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , return_full_text=SCREAMING_SNAKE_CASE_ ) lowercase_ = text_generator('''This is a test''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowercase_ = text_generator('''This is a test''' , return_full_text=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowercase_ = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}], [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowercase_ = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}], [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = text_generator('''test''' , return_full_text=SCREAMING_SNAKE_CASE_ , return_text=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = text_generator('''test''' , return_full_text=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = text_generator('''test''' , return_text=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowercase_ = text_generator('''''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowercase_ = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowercase_ = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_0_0 , max_new_tokens=2_0 ) lowercase_ = text_generator('''This is a test''' * 5_0_0 , handle_long_generation='''hole''' , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(SCREAMING_SNAKE_CASE_ ): text_generator( '''This is a test''' * 5_0_0 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def _lowercase ( self : Union[str, Any] ) -> Tuple: import torch # Classic `model_kwargs` lowercase_ = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowercase_ = pipe('''This is a test''' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowercase_ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowercase_ = pipe('''This is a test''' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowercase_ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowercase_ = pipe('''This is a test''' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def _lowercase ( self : Optional[int] ) -> List[Any]: import torch lowercase_ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def _lowercase ( self : int ) -> Dict: import torch lowercase_ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=SCREAMING_SNAKE_CASE_ , top_p=0.5 ) def _lowercase ( self : List[Any] ) -> int: lowercase_ = '''Hello world''' lowercase_ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowercase_ = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowercase_ = logging.get_logger('''transformers.generation.utils''' ) lowercase_ = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(SCREAMING_SNAKE_CASE_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ , max_new_tokens=1 ) self.assertNotIn(SCREAMING_SNAKE_CASE_ , cl.out ) with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ , max_length=1_0 ) self.assertNotIn(SCREAMING_SNAKE_CASE_ , cl.out )
97
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def SCREAMING_SNAKE_CASE__( a__): _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =tokenizer(example['''content'''] ,truncation=_UpperCamelCase)['''input_ids'''] _SCREAMING_SNAKE_CASE =len(example['''content''']) / len(output['''input_ids''']) return output snake_case_ : int = HfArgumentParser(PretokenizationArguments) snake_case_ : Optional[int] = parser.parse_args() if args.num_workers is None: snake_case_ : Optional[int] = multiprocessing.cpu_count() snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) snake_case_ : Optional[int] = time.time() snake_case_ : Optional[Any] = load_dataset(args.dataset_name, split='''train''') print(f"""Dataset loaded in {time.time()-t_start:.2f}s""") snake_case_ : Tuple = time.time() snake_case_ : Optional[Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f"""Dataset tokenized in {time.time()-t_start:.2f}s""") snake_case_ : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
721
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__ ( UpperCamelCase__ ): UpperCAmelCase = "naver-clova-ix/donut-base-finetuned-docvqa" UpperCAmelCase = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) UpperCAmelCase = "document_qa" UpperCAmelCase = AutoProcessor UpperCAmelCase = VisionEncoderDecoderModel UpperCAmelCase = ["image", "text"] UpperCAmelCase = ["text"] def __init__( self : Any , *_a : int , **_a : Dict ) -> int: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_a , **_a ) def __UpperCamelCase ( self : Optional[Any] , _a : "Image" , _a : str ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _SCREAMING_SNAKE_CASE =task_prompt.replace('''{user_input}''' , _a ) _SCREAMING_SNAKE_CASE =self.pre_processor.tokenizer( _a , add_special_tokens=_a , return_tensors='''pt''' ).input_ids _SCREAMING_SNAKE_CASE =self.pre_processor(_a , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __UpperCamelCase ( self : List[Any] , _a : Optional[Any] ) -> int: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_a , ).sequences def __UpperCamelCase ( self : Any , _a : int ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.pre_processor.batch_decode(_a )[0] _SCREAMING_SNAKE_CASE =sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _SCREAMING_SNAKE_CASE =sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _SCREAMING_SNAKE_CASE =re.sub(R'''<.*?>''' , '''''' , _a , count=1 ).strip() # remove first task start token _SCREAMING_SNAKE_CASE =self.pre_processor.tokenajson(_a ) return sequence["answer"]
191
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. A = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class a__ ( unittest.TestCase ): def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/")) __UpperCAmelCase : Dict = self.diffusers_dir shutil.copy( os.path.join(__a , "src/diffusers/schedulers/scheduling_ddpm.py") , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py") , ) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Optional[int] = """src/diffusers""" shutil.rmtree(self.diffusers_dir) def a_ ( self : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[str]=None): """simple docstring""" __UpperCAmelCase : List[Any] = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: __UpperCAmelCase : Union[str, Any] = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result __UpperCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119) __UpperCAmelCase : Dict = black.format_str(__a , mode=__a) __UpperCAmelCase : Tuple = os.path.join(self.diffusers_dir , "new_code.py") with open(__a , "w" , newline="\n") as f: f.write(__a) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__a)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=__a) with open(__a , "r") as f: self.assertTrue(f.read() , __a) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : int = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput") self.assertEqual(__a , __a) def a_ ( self : Union[str, Any]): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , __a , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , __a) , ) # Copy consistency with a really long name __UpperCAmelCase : Dict = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , F"{long_class_name}SchedulerOutput" , re.sub("Bert" , __a , __a) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , __a , overwrite_result=re.sub("DDPM" , "Test" , __a) , )
77
def _lowercase ( UpperCAmelCase_=28_123): """simple docstring""" snake_case__ : Dict = [1] * (limit + 1) for i in range(2 , int(limit**0.5) + 1): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1): sum_divs[k * i] += k + i snake_case__ : Union[str, Any] = set() snake_case__ : Union[str, Any] = 0 for n in range(1 , limit + 1): if sum_divs[n] > n: abundants.add(UpperCAmelCase_) if not any((n - a in abundants) for a in abundants): res += n return res if __name__ == "__main__": print(solution())
648
0
'''simple docstring''' def __lowercase (_lowercase = 10 ) -> int: """simple docstring""" if not isinstance(__snake_case, __snake_case ) or n < 0: raise ValueError("""Invalid input""" ) __lowerCamelCase : int = 10**n __lowerCamelCase : Union[str, Any] = 28_433 * (pow(2, 7_830_457, __snake_case )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
705
'''simple docstring''' UpperCAmelCase__ :List[Any] = 256 # Modulus to hash a string UpperCAmelCase__ :str = 1_000_003 def __lowercase (_lowercase, _lowercase ) -> bool: """simple docstring""" __lowerCamelCase : str = len(_lowercase ) __lowerCamelCase : List[str] = len(_lowercase ) if p_len > t_len: return False __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Dict = 1 # Calculating the hash of pattern and substring of text for i in range(_lowercase ): __lowerCamelCase : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __lowerCamelCase : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __lowerCamelCase : Dict = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __lowerCamelCase : Dict = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowercase () -> None: """simple docstring""" __lowerCamelCase : List[Any] = """abc1abc12""" __lowerCamelCase : Optional[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" __lowerCamelCase : List[Any] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_lowercase, _lowercase ) and not rabin_karp(_lowercase, _lowercase ) # Test 2) __lowerCamelCase : Optional[int] = """ABABX""" __lowerCamelCase : Dict = """ABABZABABYABABX""" assert rabin_karp(_lowercase, _lowercase ) # Test 3) __lowerCamelCase : Any = """AAAB""" __lowerCamelCase : int = """ABAAAAAB""" assert rabin_karp(_lowercase, _lowercase ) # Test 4) __lowerCamelCase : Any = """abcdabcy""" __lowerCamelCase : Dict = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_lowercase, _lowercase ) # Test 5) __lowerCamelCase : str = """Lü""" __lowerCamelCase : str = """Lüsai""" assert rabin_karp(_lowercase, _lowercase ) __lowerCamelCase : Tuple = """Lue""" assert not rabin_karp(_lowercase, _lowercase ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
483
0
'''simple docstring''' import re def _snake_case ( _SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" if len(re.findall("""[ATCG]""" , __UpperCamelCase ) ) != len(__UpperCamelCase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
433
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCAmelCase_ ( nn.Module ): __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =0.0 __UpperCAmelCase =1 __UpperCAmelCase =1 __UpperCAmelCase =True __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =jnp.floataa def UpperCamelCase ( self )-> int: _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCamelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCamelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True )-> Dict: _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) _A = attn(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCamelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase_ ( nn.Module ): __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =0.0 __UpperCAmelCase =1 __UpperCAmelCase =True __UpperCAmelCase =jnp.floataa def UpperCamelCase ( self )-> Optional[Any]: _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCamelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True )-> Union[str, Any]: _A = () for resnet in self.resnets: _A = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCamelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase_ ( nn.Module ): __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =0.0 __UpperCAmelCase =1 __UpperCAmelCase =1 __UpperCAmelCase =True __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =jnp.floataa def UpperCamelCase ( self )-> str: _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCamelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True )-> Dict: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) _A = attn(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCamelCase ) return hidden_states class lowerCAmelCase_ ( nn.Module ): __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =0.0 __UpperCAmelCase =1 __UpperCAmelCase =True __UpperCAmelCase =jnp.floataa def UpperCamelCase ( self )-> Optional[Any]: _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True )-> Dict: for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCamelCase ) return hidden_states class lowerCAmelCase_ ( nn.Module ): __UpperCAmelCase =42 __UpperCAmelCase =0.0 __UpperCAmelCase =1 __UpperCAmelCase =1 __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =jnp.floataa def UpperCamelCase ( self )-> Dict: # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCamelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _A = resnets _A = attentions def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True )-> List[Any]: _A = self.resnets[0](_UpperCamelCase , _UpperCamelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) _A = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) return hidden_states
292
0
def _A( UpperCamelCase__ : int = 6008_5147_5143 ) -> int: '''simple docstring''' try: __lowercase = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __lowercase = 2 __lowercase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowercase = i while n % i == 0: __lowercase = n // i i += 1 return int(UpperCamelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
721
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
362
0
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=A ): '''simple docstring''' _A : Union[str, Any] = ['''note_seq'''] def __init__( self : str , *_a : int , **_a : Any ): requires_backends(self , ['''note_seq'''] ) @classmethod def A_ ( cls : Optional[int] , *_a : Any , **_a : List[str] ): requires_backends(cls , ['''note_seq'''] ) @classmethod def A_ ( cls : Union[str, Any] , *_a : List[Any] , **_a : List[str] ): requires_backends(cls , ['''note_seq'''] )
240
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[str] ): UpperCamelCase__ = tempfile.mkdtemp() # fmt: off UpperCamelCase__ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ = dict(zip(_a , range(len(_a ) ) ) ) UpperCamelCase__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCamelCase__ = {'''unk_token''': '''<unk>'''} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) UpperCamelCase__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCamelCase__ = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def A_ ( self : Optional[Any] , **_a : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def A_ ( self : Dict , **_a : List[Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def A_ ( self : Union[str, Any] , **_a : Union[str, Any] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_a ) def A_ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def A_ ( self : List[str] ): UpperCamelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def A_ ( self : int ): UpperCamelCase__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) UpperCamelCase__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(_a , return_tensors='''np''' ) UpperCamelCase__ = processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = processor(text=_a ) UpperCamelCase__ = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : Any ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def A_ ( self : Dict ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(_a ) UpperCamelCase__ = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def A_ ( self : Optional[int] ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
240
1
class __lowerCAmelCase : # Public class to implement a graph """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = row __lowerCamelCase = col __lowerCamelCase = graph def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' # Checking all 8 elements surrounding nth element __lowerCamelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __lowerCamelCase = [-1, 0, 1, -1, 1, -1, 0, 1] __lowerCamelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , A_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , A_ ) def lowercase_ ( self ) -> int: # And finally, count all islands. '''simple docstring''' __lowerCamelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] __lowerCamelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(A_ , A_ , A_ ) count += 1 return count
705
__A = "Input must be a string of 8 numbers plus letter" __A = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = F"""Expected string as input, found {type(UpperCamelCase__ ).__name__}""" raise TypeError(UpperCamelCase__ ) __lowerCamelCase = spanish_id.replace('-' , '' ).upper() if len(UpperCamelCase__ ) != 9: raise ValueError(UpperCamelCase__ ) try: __lowerCamelCase = int(spanish_id_clean[0:8] ) __lowerCamelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCamelCase__ ) from ex if letter.isdigit(): raise ValueError(UpperCamelCase__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
167
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case = 'switch_transformers' snake_case = ['past_key_values'] snake_case = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any] , __snake_case : Dict=32128 , __snake_case : Any=768 , __snake_case : Optional[Any]=64 , __snake_case : Union[str, Any]=2048 , __snake_case : str=64 , __snake_case : Optional[int]=12 , __snake_case : int=3 , __snake_case : Dict=12 , __snake_case : Optional[Any]=3 , __snake_case : Any=12 , __snake_case : str=8 , __snake_case : Optional[Any]=False , __snake_case : List[Any]=0.01 , __snake_case : Dict="float32" , __snake_case : Optional[int]=False , __snake_case : str=32 , __snake_case : Optional[Any]=128 , __snake_case : Dict=0.1 , __snake_case : int=1e-6 , __snake_case : Dict=0.001 , __snake_case : Union[str, Any]=0.001 , __snake_case : List[Any]=1.0 , __snake_case : str="relu" , __snake_case : Tuple=True , __snake_case : List[Any]=False , __snake_case : Tuple=True , __snake_case : Optional[int]=0 , __snake_case : Tuple=1 , **__snake_case : Optional[Any] , ) -> int: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = d_model lowerCamelCase = d_kv lowerCamelCase = d_ff lowerCamelCase = num_sparse_encoder_layers lowerCamelCase = num_layers lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCamelCase = self.num_layers // self.num_sparse_encoder_layers else: lowerCamelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCamelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCamelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCamelCase = num_heads lowerCamelCase = num_experts lowerCamelCase = expert_capacity lowerCamelCase = router_bias lowerCamelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowerCamelCase = router_dtype lowerCamelCase = router_ignore_padding_tokens lowerCamelCase = relative_attention_num_buckets lowerCamelCase = relative_attention_max_distance lowerCamelCase = dropout_rate lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_factor lowerCamelCase = feed_forward_proj lowerCamelCase = use_cache lowerCamelCase = add_router_probs lowerCamelCase = router_z_loss_coef lowerCamelCase = router_aux_loss_coef lowerCamelCase = self.feed_forward_proj.split('-' ) lowerCamelCase = act_info[-1] lowerCamelCase = act_info[0] == """gated""" if len(__snake_case ) > 1 and act_info[0] != "gated" or len(__snake_case ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase = """gelu_new""" super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , **__snake_case , )
246
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __snake_case ( __A ) -> Any: def wrapper(*__A ,**__A ): lowercase : Tuple = timeit.default_timer() lowercase : List[Any] = func(*__A ,**__A ) lowercase : str = timeit.default_timer() - starttime return delta lowercase : Optional[int] = func.__name__ return wrapper def __snake_case ( __A ,__A=100 ,__A=None ) -> Optional[int]: lowercase : List[Any] = [] lowercase : Tuple = seq_shapes or {} for i in range(__A ): lowercase : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__A ,_ArrayXD ): lowercase : Optional[Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__A ,datasets.Value ): if v.dtype == "string": lowercase : Tuple = """The small grey turtle was surprisingly fast when challenged.""" else: lowercase : Optional[Any] = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__A ,datasets.Sequence ): while isinstance(__A ,datasets.Sequence ): lowercase : List[Any] = v.feature lowercase : Optional[int] = seq_shapes[k] lowercase : List[str] = np.random.rand(*__A ).astype(v.dtype ) lowercase : Any = data dummy_data.append((i, example) ) return dummy_data def __snake_case ( __A ,__A ,__A=100 ,__A=None ) -> Optional[Any]: lowercase : Tuple = generate_examples(__A ,num_examples=__A ,seq_shapes=__A ) with ArrowWriter(features=__A ,path=__A ) as writer: for key, record in dummy_data: lowercase : int = features.encode_example(__A ) writer.write(__A ) lowercase , lowercase : List[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) lowercase : Dict = datasets.Dataset.from_file(filename=__A ,info=datasets.DatasetInfo(features=__A ) ) return dataset
607
0
"""simple docstring""" import sys def snake_case__ ( _lowerCamelCase ) ->Union[str, Any]: """simple docstring""" __lowercase : Tuple = len(_lowerCamelCase ) __lowercase : str = [[0 for x in range(_lowerCamelCase )] for x in range(_lowerCamelCase )] __lowercase : List[str] = [[0 for x in range(_lowerCamelCase )] for x in range(_lowerCamelCase )] for chain_length in range(2, _lowerCamelCase ): for a in range(1, n - chain_length + 1 ): __lowercase : str = a + chain_length - 1 __lowercase : Any = sys.maxsize for c in range(_lowerCamelCase, _lowerCamelCase ): __lowercase : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowercase : Dict = cost __lowercase : Any = c return matrix, sol def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->Optional[Any]: """simple docstring""" if i == j: print("A" + str(_lowerCamelCase ), end=" " ) else: print("(", end=" " ) print_optiomal_solution(_lowerCamelCase, _lowerCamelCase, optimal_solution[i][j] ) print_optiomal_solution(_lowerCamelCase, optimal_solution[i][j] + 1, _lowerCamelCase ) print(")", end=" " ) def snake_case__ ( ) ->Optional[Any]: """simple docstring""" __lowercase : Optional[int] = [30, 35, 15, 5, 10, 20, 25] __lowercase : int = len(_lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowercase : List[Any] = matrix_chain_order(_lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(_lowerCamelCase, 1, n - 1 ) if __name__ == "__main__": main()
718
"""simple docstring""" from __future__ import annotations def snake_case__ ( _lowerCamelCase, _lowerCamelCase = None ) ->list[list[str]]: """simple docstring""" __lowercase : List[Any] = word_bank or [] # create a table __lowercase : int = len(_lowerCamelCase ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(_lowerCamelCase ): table.append([] ) # seed value __lowercase : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(_lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_lowerCamelCase )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_lowerCamelCase )]: combination.reverse() return table[len(_lowerCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
281
0
from __future__ import annotations def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) <= 1 or n <= 1: return insert_next(_SCREAMING_SNAKE_CASE , n - 1 ) rec_insertion_sort(_SCREAMING_SNAKE_CASE , n - 1 ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _A, _A = ( collection[index], collection[index - 1], ) insert_next(_SCREAMING_SNAKE_CASE , index + 1 ) if __name__ == "__main__": __A : str = input("Enter integers separated by spaces: ") __A : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _SCREAMING_SNAKE_CASE : str = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
493
0
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> list: lowercase__ : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE_ ) for i in range(1 ,len(SCREAMING_SNAKE_CASE_ ) ): # use last results for better performance - dynamic programming lowercase__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : List[Any] = j return prefix_result def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
703
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
298
0
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __lowerCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> Tuple: lowerCamelCase_ = AutoConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCamelCase_ = AutoModelForSeqaSeqLM.from_config(UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) AutoTokenizer.from_pretrained(UpperCAmelCase__ ).save_pretrained(UpperCAmelCase__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
272
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( a ): __A = ["""image_processor""", """tokenizer"""] __A = """LayoutLMv2ImageProcessor""" __A = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ): if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase_ , ) lowerCamelCase =kwargs.pop("""feature_extractor""" ) lowerCamelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = 0 , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = True , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor lowerCamelCase =self.image_processor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase =features["""words"""] lowerCamelCase =self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # add pixel values lowerCamelCase =features.pop("""pixel_values""" ) if return_overflowing_tokens is True: lowerCamelCase =self.get_overflowing_images(UpperCAmelCase_ , encoded_inputs["""overflow_to_sample_mapping"""] ) lowerCamelCase =images return encoded_inputs def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f""" {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}""" ) return images_with_overflow def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _snake_case ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def _snake_case ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase_ , ) return self.image_processor_class @property def _snake_case ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase_ , ) return self.image_processor
269
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : List[Any] ={'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict =['''YolosFeatureExtractor'''] UpperCAmelCase__ : List[Any] =['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] =[ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
269
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class __A ( __lowerCamelCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''canine''' def __init__(self , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=16_384 , A=16 , A=0.02 , A=1E-12 , A=0 , A=0xE_000 , A=0xE_001 , A=4 , A=4 , A=8 , A=16_384 , A=128 , **A , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) _a = max_position_embeddings _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = type_vocab_size _a = layer_norm_eps # Character config: _a = downsampling_rate _a = upsampling_kernel_size _a = num_hash_functions _a = num_hash_buckets _a = local_transformer_stride
11
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=16 , a_=2 , a_=0.02 , a_=4 , ): lowerCamelCase_ : List[str] = parent lowerCamelCase_ : Any = batch_size lowerCamelCase_ : List[str] = seq_length lowerCamelCase_ : Dict = is_training lowerCamelCase_ : List[Any] = use_attention_mask lowerCamelCase_ : Tuple = use_token_type_ids lowerCamelCase_ : Dict = use_labels lowerCamelCase_ : Optional[Any] = vocab_size lowerCamelCase_ : List[Any] = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : Dict = intermediate_size lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : Optional[Any] = hidden_dropout_prob lowerCamelCase_ : Tuple = attention_probs_dropout_prob lowerCamelCase_ : str = max_position_embeddings lowerCamelCase_ : str = type_vocab_size lowerCamelCase_ : Tuple = type_sequence_label_size lowerCamelCase_ : str = initializer_range lowerCamelCase_ : Optional[Any] = num_choices def _UpperCamelCase ( self ): lowerCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Any = None if self.use_attention_mask: lowerCamelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Dict = None if self.use_token_type_ids: lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ): lowerCamelCase_ : str = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = config_and_inputs lowerCamelCase_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = True __UpperCAmelCase : Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ): lowerCamelCase_ : Any = FlaxRoFormerModelTester(self ) @slow def _UpperCamelCase ( self ): for model_class_name in self.all_model_classes: lowerCamelCase_ : List[str] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=a_ ) lowerCamelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) lowerCamelCase_ : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ : Any = model(a_ )[0] lowerCamelCase_ : List[str] = 5_0000 lowerCamelCase_ : List[Any] = (1, 6, vocab_size) self.assertEqual(output.shape , a_ ) lowerCamelCase_ : Tuple = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a_ , atol=1E-4 ) )
250
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _A = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] _A = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] _A = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) _A = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) _A = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowercase_ ( A__ , A__ ) -> Optional[int]: """simple docstring""" for tf_name, hf_name in patterns: snake_case = k.replace(A__ , A__ ) return k def lowercase_ ( A__ , A__ ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" snake_case = BigBirdPegasusConfig(**A__ ) snake_case = BigBirdPegasusForConditionalGeneration(A__ ) snake_case = torch_model.state_dict() snake_case = {} # separating decoder weights snake_case = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} snake_case = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): snake_case = [k.endswith(A__ ) for ending in KEYS_TO_IGNORE] if any(A__ ): continue snake_case = DECODER_PATTERNS snake_case = rename_state_dict_key(A__ , A__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): snake_case = v.T snake_case = torch.from_numpy(A__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): snake_case = [k.endswith(A__ ) for ending in KEYS_TO_IGNORE] if any(A__ ): continue snake_case = REMAINING_PATTERNS snake_case = rename_state_dict_key(A__ , A__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): snake_case = v.T snake_case = torch.from_numpy(A__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' snake_case = mapping["model.embed_positions.weight"] snake_case = mapping.pop("model.embed_positions.weight" ) snake_case , snake_case = torch_model.load_state_dict(A__ , strict=A__ ) snake_case = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def lowercase_ ( A__ ) -> Dict: """simple docstring""" snake_case = tf.train.list_variables(A__ ) snake_case = {} snake_case = ["global_step"] for name, shape in tqdm(A__ , desc="converting tf checkpoint to dict" ): snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case = tf.train.load_variable(A__ , A__ ) snake_case = array return tf_weights def lowercase_ ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" snake_case = get_tf_weights_as_numpy(A__ ) snake_case = convert_bigbird_pegasus(A__ , A__ ) torch_model.save_pretrained(A__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") _A = parser.parse_args() _A = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
294
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : Any = KandinskyVaaControlnetImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] UpperCAmelCase__ : List[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] UpperCAmelCase__ : List[str] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : List[str] = False @property def UpperCAmelCase(self : Optional[int] ) -> Dict: return 3_2 @property def UpperCAmelCase(self : Union[str, Any] ) -> Optional[int]: return 3_2 @property def UpperCAmelCase(self : Optional[Any] ) -> Union[str, Any]: return self.time_input_dim @property def UpperCAmelCase(self : Union[str, Any] ) -> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCAmelCase(self : Optional[Any] ) -> int: return 1_0_0 @property def UpperCAmelCase(self : int ) -> Optional[Any]: torch.manual_seed(0 ) snake_case = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case = UNetaDConditionModel(**_A ) return model @property def UpperCAmelCase(self : Any ) -> List[str]: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase(self : Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase(self : Any ) -> Optional[Any]: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } snake_case = DDIMScheduler(**_A ) snake_case = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase(self : Any , _A : Any , _A : Optional[Any]=0 ) -> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(_A ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create hint snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith("mps" ): snake_case = torch.manual_seed(_A ) else: snake_case = torch.Generator(device=_A ).manual_seed(_A ) snake_case = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase(self : str ) -> Union[str, Any]: snake_case = "cpu" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**_A ) snake_case = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) snake_case = pipe(**self.get_dummy_inputs(_A ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : int ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase(self : int ) -> Tuple: snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case = init_image.resize((5_1_2, 5_1_2) ) snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) snake_case = torch.from_numpy(np.array(_A ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = "A robot, 4k photo" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_A ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) snake_case = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) snake_case = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( _A , image=_A , strength=0.85 , generator=_A , negative_prompt="" , ).to_tuple() snake_case = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , hint=_A , generator=_A , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="np" , ) snake_case = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_A , _A )
294
1
import baseaa def lowercase ( __A : str ) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("""utf-8""" ) ) def lowercase ( __A : bytes ) -> str: '''simple docstring''' return baseaa.baadecode(__A ).decode("""utf-8""" ) if __name__ == "__main__": __lowercase : int = '''Hello World!''' __lowercase : Union[str, Any] = baseaa_encode(test) print(encoded) __lowercase : Any = baseaa_decode(encoded) print(decoded)
36
"""simple docstring""" from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="SpeechT5FeatureExtractor" a : Any ="SpeechT5Tokenizer" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : str = kwargs.pop("audio" , snake_case__ ) lowerCAmelCase : Tuple = kwargs.pop("text" , snake_case__ ) lowerCAmelCase : str = kwargs.pop("text_target" , snake_case__ ) lowerCAmelCase : List[str] = kwargs.pop("audio_target" , snake_case__ ) lowerCAmelCase : Union[str, Any] = kwargs.pop("sampling_rate" , snake_case__ ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: lowerCAmelCase : int = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) elif text is not None: lowerCAmelCase : Optional[int] = self.tokenizer(snake_case__ , **snake_case__ ) else: lowerCAmelCase : Union[str, Any] = None if audio_target is not None: lowerCAmelCase : Optional[Any] = self.feature_extractor(audio_target=snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) lowerCAmelCase : Any = targets["input_values"] elif text_target is not None: lowerCAmelCase : Tuple = self.tokenizer(snake_case__ , **snake_case__ ) lowerCAmelCase : str = targets["input_ids"] else: lowerCAmelCase : str = None if inputs is None: return targets if targets is not None: lowerCAmelCase : List[str] = labels lowerCAmelCase : List[Any] = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCAmelCase : Union[str, Any] = decoder_attention_mask return inputs def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : int = kwargs.pop("input_values" , snake_case__ ) lowerCAmelCase : List[Any] = kwargs.pop("input_ids" , snake_case__ ) lowerCAmelCase : Dict = kwargs.pop("labels" , snake_case__ ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: lowerCAmelCase : int = self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) elif input_ids is not None: lowerCAmelCase : Optional[Any] = self.tokenizer.pad(snake_case__ , **snake_case__ ) else: lowerCAmelCase : Optional[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(snake_case__ , snake_case__ ) and "input_ids" in labels[0]): lowerCAmelCase : Tuple = self.tokenizer.pad(snake_case__ , **snake_case__ ) lowerCAmelCase : Any = targets["input_ids"] else: lowerCAmelCase : List[Any] = self.feature_extractor.feature_size lowerCAmelCase : Optional[int] = self.feature_extractor.num_mel_bins lowerCAmelCase : str = self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = feature_size_hack lowerCAmelCase : Optional[Any] = targets["input_values"] else: lowerCAmelCase : List[Any] = None if inputs is None: return targets if targets is not None: lowerCAmelCase : int = labels lowerCAmelCase : Optional[int] = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCAmelCase : List[Any] = decoder_attention_mask return inputs def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ )
645
0
"""simple docstring""" from __future__ import annotations import math def _a ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = u for i in range(1 , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = temp * (u - i) return temp def _a ( ): '''simple docstring''' _UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) _UpperCAmelCase = [] for _ in range(_SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): y[i].append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) _UpperCAmelCase = list(map(_SCREAMING_SNAKE_CASE , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = float(input() ) _UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) _UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _SCREAMING_SNAKE_CASE ): for j in range(n - i ): _UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] _UpperCAmelCase = y[0][0] for i in range(1 , _SCREAMING_SNAKE_CASE ): summ += (ucal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(_SCREAMING_SNAKE_CASE ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
700
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _UpperCAmelCase = test_metrics @require_cpu def lowercase__ ( self : Any )->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self : List[str] )->List[str]: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self : List[Any] )->Dict: self.test_metrics.main() @require_multi_gpu def lowercase__ ( self : str )->int: print(F'Found {torch.cuda.device_count()} devices.' ) _UpperCAmelCase = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase , env=os.environ.copy() )
95
0
from __future__ import annotations from typing import TypedDict class a ( lowercase__ ): """simple docstring""" a : str a : int def lowerCamelCase__ ( __lowerCamelCase : str ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__lowerCamelCase ) )] def lowerCamelCase__ ( __lowerCamelCase : str ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) __UpperCAmelCase : List[Any] = all_rotations(__lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __UpperCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__lowerCamelCase ), } return response def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: __UpperCAmelCase : Tuple = int(__lowerCamelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__lowerCamelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) __UpperCAmelCase : Tuple = [""""""] * len(__lowerCamelCase ) for _ in range(len(__lowerCamelCase ) ): for i in range(len(__lowerCamelCase ) ): __UpperCAmelCase : Optional[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a : int = "Provide a string that I will generate its BWT transform: " a : str = input(entry_msg).strip() a : List[Any] = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) a : Union[str, Any] = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
63
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Dict = b.T SCREAMING_SNAKE_CASE_ :str = np.sum(np.square(a ) , axis=1 ) SCREAMING_SNAKE_CASE_ :List[Any] = np.sum(np.square(a ) , axis=0 ) SCREAMING_SNAKE_CASE_ :Optional[int] = np.matmul(a , a ) SCREAMING_SNAKE_CASE_ :Any = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :str = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE_ :str = squared_euclidean_distance(a , a ) return np.argmin(a , axis=1 ) class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : List[str] = ["""pixel_values"""] def __init__( self : Dict , UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , **UpperCAmelCase : Union[str, Any] , ): super().__init__(**UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Union[str, Any] = size if size is not None else {"height": 2_56, "width": 2_56} SCREAMING_SNAKE_CASE_ :Optional[int] = get_size_dict(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :int = np.array(UpperCAmelCase) if clusters is not None else None SCREAMING_SNAKE_CASE_ :List[Any] = do_resize SCREAMING_SNAKE_CASE_ :Dict = size SCREAMING_SNAKE_CASE_ :Optional[Any] = resample SCREAMING_SNAKE_CASE_ :Dict = do_normalize SCREAMING_SNAKE_CASE_ :Tuple = do_color_quantize def _snake_case ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ): SCREAMING_SNAKE_CASE_ :str = get_size_dict(UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}") return resize( UpperCAmelCase , size=(size["height"], size["width"]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase) def _snake_case ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , ): SCREAMING_SNAKE_CASE_ :int = rescale(image=UpperCAmelCase , scale=1 / 127.5 , data_format=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[str] = image - 1 return image def _snake_case ( self : List[str] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ :Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ :Dict = size if size is not None else self.size SCREAMING_SNAKE_CASE_ :Union[str, Any] = get_size_dict(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ :Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ :List[str] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE_ :Tuple = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE_ :Tuple = np.array(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Dict = make_list_of_images(UpperCAmelCase) if not valid_images(UpperCAmelCase): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True.") # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ :Union[str, Any] = [to_numpy_array(UpperCAmelCase) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ :Tuple = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ :int = [self.normalize(image=UpperCAmelCase) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE_ :Optional[Any] = [to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE_ :Optional[int] = np.array(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = color_quantize(UpperCAmelCase , UpperCAmelCase).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE_ :Any = images.shape[0] SCREAMING_SNAKE_CASE_ :Dict = images.reshape(UpperCAmelCase , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE_ :Any = list(UpperCAmelCase) else: SCREAMING_SNAKE_CASE_ :List[Any] = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase) for image in images] SCREAMING_SNAKE_CASE_ :str = {"input_ids": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase)
631
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__( lowerCamelCase ): if "cls_token" in name: __lowerCAmelCase = name.replace('''cls_token''', '''vit.embeddings.cls_token''' ) if "mask_token" in name: __lowerCAmelCase = name.replace('''mask_token''', '''decoder.mask_token''' ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace('''decoder_pos_embed''', '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace('''pos_embed''', '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace('''patch_embed.proj''', '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace('''patch_embed.norm''', '''vit.embeddings.norm''' ) if "decoder_blocks" in name: __lowerCAmelCase = name.replace('''decoder_blocks''', '''decoder.decoder_layers''' ) if "blocks" in name: __lowerCAmelCase = name.replace('''blocks''', '''vit.encoder.layer''' ) if "attn.proj" in name: __lowerCAmelCase = name.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in name: __lowerCAmelCase = name.replace('''attn''', '''attention.self''' ) if "norm1" in name: __lowerCAmelCase = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: __lowerCAmelCase = name.replace('''norm2''', '''layernorm_after''' ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace('''mlp.fc2''', '''output.dense''' ) if "decoder_embed" in name: __lowerCAmelCase = name.replace('''decoder_embed''', '''decoder.decoder_embed''' ) if "decoder_norm" in name: __lowerCAmelCase = name.replace('''decoder_norm''', '''decoder.decoder_norm''' ) if "decoder_pred" in name: __lowerCAmelCase = name.replace('''decoder_pred''', '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: __lowerCAmelCase = name.replace('''norm.weight''', '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: __lowerCAmelCase = name.replace('''norm.bias''', '''vit.layernorm.bias''' ) return name def __magic_name__( lowerCamelCase, lowerCamelCase ): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowerCamelCase ) if "qkv" in key: __lowerCAmelCase = key.split('''.''' ) __lowerCAmelCase = int(key_split[1] ) if "decoder_blocks" in key: __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = '''decoder.decoder_layers.''' if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] elif "bias" in key: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = '''vit.encoder.layer.''' if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] elif "bias" in key: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = val return orig_state_dict def __magic_name__( lowerCamelCase, lowerCamelCase ): __lowerCAmelCase = ViTMAEConfig() if "large" in checkpoint_url: __lowerCAmelCase = 1_0_2_4 __lowerCAmelCase = 4_0_9_6 __lowerCAmelCase = 2_4 __lowerCAmelCase = 1_6 elif "huge" in checkpoint_url: __lowerCAmelCase = 1_4 __lowerCAmelCase = 1_2_8_0 __lowerCAmelCase = 5_1_2_0 __lowerCAmelCase = 3_2 __lowerCAmelCase = 1_6 __lowerCAmelCase = ViTMAEForPreTraining(lowerCamelCase ) __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase, map_location='''cpu''' )['''model'''] __lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) __lowerCAmelCase = convert_state_dict(lowerCamelCase, lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() __lowerCAmelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ) __lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) __lowerCAmelCase = image_processor(images=lowerCamelCase, return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) __lowerCAmelCase = model(**lowerCamelCase ) __lowerCAmelCase = outputs.logits if "large" in checkpoint_url: __lowerCAmelCase = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: __lowerCAmelCase = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: __lowerCAmelCase = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3], lowerCamelCase, atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : Tuple = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
710
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _UpperCAmelCase : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val def __magic_name__( lowerCamelCase): __lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCAmelCase = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''') __lowerCAmelCase = value else: __lowerCAmelCase = value return new_state_dict def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = '''''' if is_panoptic: __lowerCAmelCase = '''conditional_detr.''' # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""") __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""") # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:2_5_6, :] __lowerCAmelCase = in_proj_bias[:2_5_6] __lowerCAmelCase = in_proj_weight[2_5_6:5_1_2, :] __lowerCAmelCase = in_proj_bias[2_5_6:5_1_2] __lowerCAmelCase = in_proj_weight[-2_5_6:, :] __lowerCAmelCase = in_proj_bias[-2_5_6:] def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return im @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowerCAmelCase = '''resnet101''' if "dc5" in model_name: __lowerCAmelCase = True __lowerCAmelCase = '''panoptic''' in model_name if is_panoptic: __lowerCAmelCase = 2_5_0 else: __lowerCAmelCase = 9_1 __lowerCAmelCase = '''huggingface/label-files''' __lowerCAmelCase = '''coco-detection-id2label.json''' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r''')) __lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # load image processor __lowerCAmelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __lowerCAmelCase = ConditionalDetrImageProcessor(format=lowerCamelCase) # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCamelCase, return_tensors='''pt''') __lowerCAmelCase = encoding['''pixel_values'''] logger.info(F"""Converting model {model_name}...""") # load original model from torch hub __lowerCAmelCase = torch.hub.load('''DeppMeng/ConditionalDETR''', lowerCamelCase, pretrained=lowerCamelCase).eval() __lowerCAmelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowerCAmelCase = '''conditional_detr.''' + src rename_key(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase = rename_backbone_keys(lowerCamelCase) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase, is_panoptic=lowerCamelCase) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''') and not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor''') ): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val elif key.startswith('''bbox_attention''') or key.startswith('''mask_head'''): continue else: __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val else: if not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor'''): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val # finally, create HuggingFace model and load state dict __lowerCAmelCase = ConditionalDetrForSegmentation(lowerCamelCase) if is_panoptic else ConditionalDetrForObjectDetection(lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() model.push_to_hub(repo_id=lowerCamelCase, organization='''DepuMeng''', commit_message='''Add model''') # verify our conversion __lowerCAmelCase = conditional_detr(lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1E-4) assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1E-4) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1E-4) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""") Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) image_processor.save_pretrained(lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _UpperCAmelCase : Any = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
474
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A = random.Random() def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple=1.0 , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None) -> Optional[int]: '''simple docstring''' if rng is None: _lowercase : Any = global_rng _lowercase : Optional[int] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] ,UpperCamelCase : List[Any] ,UpperCamelCase : Dict=7 ,UpperCamelCase : str=400 ,UpperCamelCase : str=2000 ,UpperCamelCase : Tuple=1 ,UpperCamelCase : List[str]=0.0 ,UpperCamelCase : int=1_6000 ,UpperCamelCase : Any=True ,UpperCamelCase : Dict=80 ,UpperCamelCase : str=16 ,UpperCamelCase : List[Any]=64 ,UpperCamelCase : List[Any]="hann_window" ,UpperCamelCase : Optional[int]=80 ,UpperCamelCase : List[Any]=7600 ,UpperCamelCase : int=1e-10 ,UpperCamelCase : Optional[int]=True ,) -> Tuple: _lowercase : List[str] = parent _lowercase : Dict = batch_size _lowercase : Optional[Any] = min_seq_length _lowercase : Any = max_seq_length _lowercase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowercase : Tuple = feature_size _lowercase : Union[str, Any] = padding_value _lowercase : Any = sampling_rate _lowercase : Optional[Any] = do_normalize _lowercase : str = num_mel_bins _lowercase : List[Any] = hop_length _lowercase : List[str] = win_length _lowercase : List[str] = win_function _lowercase : List[str] = fmin _lowercase : List[str] = fmax _lowercase : int = mel_floor _lowercase : str = return_attention_mask def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowerCamelCase ( self : Optional[Any] ,UpperCamelCase : List[str]=False ,UpperCamelCase : Dict=False ) -> List[Any]: def _flatten(UpperCamelCase : List[Any] ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: _lowercase : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowercase : Tuple = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _lowercase : Optional[int] = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs def _lowerCamelCase ( self : int ,UpperCamelCase : List[Any]=False ,UpperCamelCase : Dict=False ) -> str: if equal_length: _lowercase : List[str] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowercase : int = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _lowercase : List[Any] = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Tuple = SpeechTaFeatureExtractor def _lowerCamelCase ( self : List[Any] ) -> Tuple: _lowercase : int = SpeechTaFeatureExtractionTester(self ) def _lowerCamelCase ( self : Any ,UpperCamelCase : Any ) -> Optional[int]: self.assertTrue(np.all(np.mean(UpperCamelCase ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase ,axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCamelCase ( self : Optional[int] ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus _lowercase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowercase : List[str] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _lowercase : str = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input _lowercase : Union[str, Any] = feat_extract(speech_inputs[0] ,return_tensors='np' ).input_values _lowercase : str = feat_extract(np_speech_inputs[0] ,return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1e-3 ) ) # Test batched _lowercase : int = feat_extract(UpperCamelCase ,return_tensors='np' ).input_values _lowercase : Tuple = feat_extract(UpperCamelCase ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase ,UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1e-3 ) ) def _lowerCamelCase ( self : Tuple ) -> Dict: _lowercase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase : int = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _lowercase : str = ['longest', 'max_length', 'do_not_pad'] _lowercase : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(UpperCamelCase ,UpperCamelCase ): _lowercase : List[str] = feat_extract(UpperCamelCase ,padding=UpperCamelCase ,max_length=UpperCamelCase ,return_tensors='np' ) _lowercase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCamelCase ( self : int ) -> Any: _lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase : Optional[int] = range(800 ,1400 ,200 ) _lowercase : Any = [floats_list((1, x) )[0] for x in lengths] _lowercase : Union[str, Any] = ['longest', 'max_length', 'do_not_pad'] _lowercase : List[Any] = [None, 1600, None] for max_length, padding in zip(UpperCamelCase ,UpperCamelCase ): _lowercase : Optional[Any] = feat_extract(UpperCamelCase ,max_length=UpperCamelCase ,padding=UpperCamelCase ) _lowercase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCamelCase ( self : List[str] ) -> Union[str, Any]: _lowercase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase : str = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _lowercase : Dict = feat_extract( UpperCamelCase ,truncation=UpperCamelCase ,max_length=1000 ,padding='max_length' ,return_tensors='np' ) _lowercase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCamelCase ( self : Optional[int] ) -> Optional[int]: _lowercase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase : int = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _lowercase : Optional[Any] = feat_extract( UpperCamelCase ,truncation=UpperCamelCase ,max_length=1000 ,padding='longest' ,return_tensors='np' ) _lowercase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _lowercase : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _lowercase : int = feat_extract( UpperCamelCase ,truncation=UpperCamelCase ,max_length=2000 ,padding='longest' ,return_tensors='np' ) _lowercase : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def _lowerCamelCase ( self : Dict ) -> Tuple: _lowercase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase : Tuple = np.random.rand(100 ).astype(np.floataa ) _lowercase : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowercase : Optional[int] = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowercase : List[str] = feature_extractor.pad([{'input_values': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowerCamelCase ( self : Optional[int] ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus _lowercase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowercase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] _lowercase : Any = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _lowercase : List[str] = feature_extractor(audio_target=UpperCamelCase ,padding=UpperCamelCase ,return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _lowercase : List[Any] = feature_extractor(speech_inputs[0] ,return_tensors='np' ).input_values _lowercase : Optional[int] = feature_extractor(np_speech_inputs[0] ,return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1e-3 ) ) # Test batched _lowercase : Optional[int] = feature_extractor(UpperCamelCase ,return_tensors='np' ).input_values _lowercase : int = feature_extractor(UpperCamelCase ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase ,UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowercase : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowercase : List[str] = np.asarray(UpperCamelCase ) _lowercase : Optional[Any] = feature_extractor(UpperCamelCase ,return_tensors='np' ).input_values _lowercase : Any = feature_extractor(UpperCamelCase ,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase ,UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1e-3 ) ) def _lowerCamelCase ( self : int ) -> str: _lowercase : Dict = self.feat_extract_tester.prepare_inputs_for_target() _lowercase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : Optional[Any] = feat_extract.model_input_names[0] _lowercase : Optional[Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(UpperCamelCase ) == len(UpperCamelCase ) for x, y in zip(UpperCamelCase ,processed_features[input_name] ) ) ) _lowercase : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=UpperCamelCase ) _lowercase : List[str] = BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) _lowercase : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowercase : Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self : List[Any] ) -> str: _lowercase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=UpperCamelCase ) _lowercase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : List[Any] = feat_extract.model_input_names[0] _lowercase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) _lowercase : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowercase : Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self : Any ) -> str: _lowercase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : str = self.feat_extract_tester.prepare_inputs_for_target() _lowercase : Dict = feat_extract.model_input_names[0] _lowercase : Any = BatchFeature({input_name: speech_inputs} ) _lowercase : Dict = feat_extract.num_mel_bins # hack! _lowercase : Optional[int] = feat_extract.pad(UpperCamelCase ,padding='longest' ,return_tensors='np' )[input_name] _lowercase : Optional[int] = feat_extract.pad(UpperCamelCase ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCamelCase ( self : Union[str, Any] ) -> str: _lowercase : Optional[Any] = self.feat_extract_dict _lowercase : str = True _lowercase : str = self.feature_extraction_class(**UpperCamelCase ) _lowercase : List[Any] = self.feat_extract_tester.prepare_inputs_for_target() _lowercase : List[Any] = [len(UpperCamelCase ) for x in speech_inputs] _lowercase : str = feat_extract.model_input_names[0] _lowercase : Tuple = BatchFeature({input_name: speech_inputs} ) _lowercase : Union[str, Any] = feat_extract.num_mel_bins # hack! _lowercase : Any = feat_extract.pad(UpperCamelCase ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,UpperCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,UpperCamelCase ) def _lowerCamelCase ( self : int ) -> int: _lowercase : Tuple = self.feat_extract_dict _lowercase : Any = True _lowercase : List[Any] = self.feature_extraction_class(**UpperCamelCase ) _lowercase : int = self.feat_extract_tester.prepare_inputs_for_target() _lowercase : Optional[int] = [len(UpperCamelCase ) for x in speech_inputs] _lowercase : Any = feat_extract.model_input_names[0] _lowercase : Any = BatchFeature({input_name: speech_inputs} ) _lowercase : Union[str, Any] = min(UpperCamelCase ) _lowercase : List[str] = feat_extract.num_mel_bins # hack! _lowercase : List[Any] = feat_extract.pad( UpperCamelCase ,padding='max_length' ,max_length=UpperCamelCase ,truncation=UpperCamelCase ,return_tensors='np' ) self.assertIn('attention_mask' ,UpperCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] ) def _lowerCamelCase ( self : Dict ,UpperCamelCase : List[str] ) -> Any: from datasets import load_dataset _lowercase : Dict = load_dataset('hf-internal-testing/librispeech_asr_dummy' ,'clean' ,split='validation' ) # automatic decoding with librispeech _lowercase : Dict = ds.sort('id' ).select(range(UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self : Dict ) -> List[str]: # fmt: off _lowercase : List[Any] = torch.tensor( [2.3_804e-03, 2.0_752e-03, 1.9_836e-03, 2.1_057e-03, 1.6_174e-03, 3.0_518e-04, 9.1_553e-05, 3.3_569e-04, 9.7_656e-04, 1.8_311e-03, 2.0_142e-03, 2.1_057e-03, 1.7_395e-03, 4.5_776e-04, -3.9_673e-04, 4.5_776e-04, 1.0_071e-03, 9.1_553e-05, 4.8_828e-04, 1.1_597e-03, 7.3_242e-04, 9.4_604e-04, 1.8_005e-03, 1.8_311e-03, 8.8_501e-04, 4.2_725e-04, 4.8_828e-04, 7.3_242e-04, 1.0_986e-03, 2.1_057e-03] ) # fmt: on _lowercase : int = self._load_datasamples(1 ) _lowercase : Optional[Any] = SpeechTaFeatureExtractor() _lowercase : Any = feature_extractor(UpperCamelCase ,return_tensors='pt' ).input_values self.assertEquals(input_values.shape ,(1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] ,UpperCamelCase ,atol=1e-6 ) ) def _lowerCamelCase ( self : List[Any] ) -> Any: # fmt: off _lowercase : Dict = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on _lowercase : str = self._load_datasamples(1 ) _lowercase : Union[str, Any] = SpeechTaFeatureExtractor() _lowercase : Union[str, Any] = feature_extractor(audio_target=UpperCamelCase ,return_tensors='pt' ).input_values self.assertEquals(input_values.shape ,(1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] ,UpperCamelCase ,atol=1e-4 ) )
125
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) A = '''hf-internal-testing/tiny-random-bert''' A = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') A = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: _lowercase : Tuple = cached_file(UpperCamelCase ,UpperCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase ,UpperCamelCase ) ) ) with open(os.path.join(UpperCamelCase ,'refs' ,'main' ) ) as f: _lowercase : Optional[Any] = f.read() self.assertEqual(UpperCamelCase ,os.path.join(UpperCamelCase ,'snapshots' ,UpperCamelCase ,UpperCamelCase ) ) self.assertTrue(os.path.isfile(UpperCamelCase ) ) # File is cached at the same place the second time. _lowercase : Optional[int] = cached_file(UpperCamelCase ,UpperCamelCase ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) # Using a specific revision to test the full commit hash. _lowercase : Tuple = cached_file(UpperCamelCase ,UpperCamelCase ,revision='9b8c223' ) self.assertEqual(UpperCamelCase ,os.path.join(UpperCamelCase ,'snapshots' ,UpperCamelCase ,UpperCamelCase ) ) def _lowerCamelCase ( self : Any ) -> Optional[int]: with self.assertRaisesRegex(UpperCamelCase ,'is not a valid model identifier' ): _lowercase : List[str] = cached_file('tiny-random-bert' ,UpperCamelCase ) with self.assertRaisesRegex(UpperCamelCase ,'is not a valid git identifier' ): _lowercase : Tuple = cached_file(UpperCamelCase ,UpperCamelCase ,revision='aaaa' ) with self.assertRaisesRegex(UpperCamelCase ,'does not appear to have a file named' ): _lowercase : Tuple = cached_file(UpperCamelCase ,'conf' ) def _lowerCamelCase ( self : Optional[Any] ) -> List[str]: with self.assertRaisesRegex(UpperCamelCase ,'does not appear to have a file named' ): _lowercase : Tuple = cached_file(UpperCamelCase ,'conf' ) with open(os.path.join(UpperCamelCase ,'refs' ,'main' ) ) as f: _lowercase : Union[str, Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase ,'.no_exist' ,UpperCamelCase ,'conf' ) ) ) _lowercase : Dict = cached_file(UpperCamelCase ,'conf' ,_raise_exceptions_for_missing_entries=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) _lowercase : Optional[Any] = cached_file(UpperCamelCase ,'conf' ,local_files_only=UpperCamelCase ,_raise_exceptions_for_missing_entries=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) _lowercase : List[Any] = mock.Mock() _lowercase : Dict = 500 _lowercase : List[Any] = {} _lowercase : List[Any] = HTTPError _lowercase : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=UpperCamelCase ) as mock_head: _lowercase : List[str] = cached_file(UpperCamelCase ,'conf' ,_raise_exceptions_for_connection_errors=UpperCamelCase ) self.assertIsNone(UpperCamelCase ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self : Any ) -> Optional[int]: self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' ,UpperCamelCase ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' ,UpperCamelCase ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' ,UpperCamelCase ) ) def _lowerCamelCase ( self : Any ) -> Any: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' ,'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase ,'is not a valid model identifier' ): get_file_from_repo('bert-base-case' ,UpperCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase ,'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' ,UpperCamelCase ,revision='ahaha' ) _lowercase : int = get_file_from_repo('bert-base-cased' ,UpperCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. _lowercase : List[str] = json.loads(open(UpperCamelCase ,'r' ).read() ) self.assertEqual(config['hidden_size'] ,768 ) def _lowerCamelCase ( self : Any ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : str = Path(UpperCamelCase ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase ,'a.txt' ) ,str(UpperCamelCase ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase ,'b.txt' ) )
125
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Optional[Any] , __a : List[str]=13 , __a : Dict=7 , __a : Optional[Any]=True , __a : Tuple=True , __a : Optional[Any]=True , __a : Dict=True , __a : Optional[int]=99 , __a : Tuple=64 , __a : Any=5 , __a : Dict=4 , __a : Union[str, Any]=37 , __a : List[str]="gelu" , __a : int=0.1 , __a : Any=0.1 , __a : int=512 , __a : Union[str, Any]=16 , __a : Optional[Any]=2 , __a : Optional[int]=0.02 , __a : Dict=3 , __a : List[str]=4 , __a : Any=None , ) -> int: """simple docstring""" __lowercase : str = parent __lowercase : Tuple = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Optional[Any] = is_training __lowercase : List[Any] = use_input_mask __lowercase : Union[str, Any] = use_token_type_ids __lowercase : List[str] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : List[Any] = hidden_act __lowercase : Dict = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : int = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : int = initializer_range __lowercase : Dict = num_labels __lowercase : Dict = num_choices __lowercase : Optional[int] = scope __lowercase : Optional[Any] = vocab_size - 1 def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Union[str, Any] = None if self.use_input_mask: __lowercase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : List[Any] = None if self.use_labels: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase : Tuple = True return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : Optional[int] , __a : int , __a : List[Any] , __a : Dict ) -> int: """simple docstring""" __lowercase : Tuple = GPTNeoXModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a ) __lowercase : Any = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , __a : Any , __a : Optional[int] , __a : str ) -> int: """simple docstring""" __lowercase : List[str] = True __lowercase : List[str] = GPTNeoXModel(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Tuple , __a : Any , __a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Any = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Any , __a : Optional[Any] , __a : List[str] , __a : str , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : List[str] = GPTNeoXForQuestionAnswering(__a ) model.to(__a ) model.eval() __lowercase : List[str] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] , __a : Any , __a : List[Any] , __a : Union[str, Any] , __a : Dict ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = self.num_labels __lowercase : Optional[Any] = GPTNeoXForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Dict = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] , __a : Union[str, Any] , __a : Any , __a : List[str] , __a : Any ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.num_labels __lowercase : Optional[int] = GPTNeoXForTokenClassification(__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __a : str , __a : Optional[int] , __a : Any ) -> Any: """simple docstring""" __lowercase : Any = True __lowercase : Tuple = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass __lowercase : int = model(__a , attention_mask=__a , use_cache=__a ) __lowercase : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase : Union[str, Any] = model(__a , attention_mask=__a , output_hidden_states=__a ) __lowercase : Optional[int] = output_from_no_past["""hidden_states"""][0] __lowercase : List[str] = model( __a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["""hidden_states"""][0] # select random slice __lowercase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = self.prepare_config_and_inputs() __lowercase : Optional[Any] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _A : Union[str, Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () _A : List[Any] = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _A : Tuple = False _A : Any = False _A : Optional[Any] = False _A : List[str] = False def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = GPTNeoXModelTester(self ) __lowercase : int = ConfigTester(self , config_class=__a , hidden_size=64 , num_attention_heads=8 ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase : Dict = None self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCAmelCase ( self : int , __a : int ) -> Any: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Tuple = ids_tensor([1, 10] , config.vocab_size ) __lowercase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase : List[Any] = GPTNeoXModel(__a ) original_model.to(__a ) original_model.eval() __lowercase : Union[str, Any] = original_model(__a ).last_hidden_state __lowercase : Tuple = original_model(__a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} __lowercase : str = GPTNeoXModel(__a ) scaled_model.to(__a ) scaled_model.eval() __lowercase : List[Any] = scaled_model(__a ).last_hidden_state __lowercase : List[str] = scaled_model(__a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__a , __a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__a , __a , atol=1E-5 ) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : int = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: __lowercase : List[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__a ) __lowercase : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowercase : Any = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" __lowercase : Tuple = model.generate(**__a , do_sample=__a , max_new_tokens=20 ) __lowercase : List[Any] = tokenizer.batch_decode(__a )[0] self.assertEqual(__a , __a )
719
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
0
from __future__ import annotations from statistics import mean def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list[int]: _UpperCAmelCase = [0] * no_of_processes _UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): _UpperCAmelCase = burst_time[i] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _UpperCAmelCase = [] _UpperCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 _UpperCAmelCase = 0 _UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list[int]: _UpperCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): _UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase = 4 __lowerCAmelCase = [2, 5, 3, 7] __lowerCAmelCase = [0, 0, 0, 0] __lowerCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
684
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = {} _UpperCAmelCase = job["started_at"] _UpperCAmelCase = job["completed_at"] _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = duration_in_min return job_info def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> str: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() _UpperCAmelCase = {} try: job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) _UpperCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCAmelCase ): _UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=_lowerCAmelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = get_job_time(args.workflow_run_id) __lowerCAmelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
684
1
'''simple docstring''' class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] ): _a = 0 _a = 0 _a = {} def UpperCamelCase__ ( self : Optional[Any] , __a : Union[str, Any] ): if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def UpperCamelCase__ ( self : Dict , __a : str , __a : List[Any] , __a : Union[str, Any] ): self.add_vertex(__a ) self.add_vertex(__a ) if head == tail: return _a = weight _a = weight def UpperCamelCase__ ( self : List[str] ): _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(__a ) ): _a = list(edges[i] ) edges.sort(key=lambda __a : e[2] ) for i in range(len(__a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self : Any ): _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip("\n" ) def UpperCamelCase__ ( self : int ): _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase__ ( self : Any ): return self.adjacency.keys() @staticmethod def UpperCamelCase__ ( __a : Any=None , __a : Optional[Any]=None ): _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(__a ) for edge in edges: g.add_edge(*__a ) return g class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int ): _a = {} _a = {} def __len__( self : Union[str, Any] ): return len(self.parent ) def UpperCamelCase__ ( self : Union[str, Any] , __a : List[str] ): if item in self.parent: return self.find(__a ) _a = item _a = 0 return item def UpperCamelCase__ ( self : int , __a : Optional[Any] ): if item not in self.parent: return self.make_set(__a ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : str ): _a = self.find(__a ) _a = self.find(__a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def UpperCamelCase__ ( __a : str ): _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(__a ) _a = union_find.find(__a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(__a ) != union_find.find(__a ): union_find.union(__a , __a ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=__a ) return mst
521
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCAmelCase_ : Dict = datasets.utils.logging.get_logger(__name__) lowerCAmelCase_ : str = ['names', 'prefix'] lowerCAmelCase_ : List[Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowerCAmelCase_ : Tuple = ['encoding_errors', 'on_bad_lines'] lowerCAmelCase_ : Dict = ['date_format'] @dataclass class __SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): """simple docstring""" __a ="," __a =None __a ="infer" __a =None __a =None __a =None __a =None __a =None __a =True __a =None __a =None __a =None __a =None __a =False __a =None __a =None __a =None __a =True __a =True __a =False __a =True __a =None __a ="." __a =None __a ='"' __a =0 __a =None __a =None __a =None __a =None __a =True __a =True __a =0 __a =True __a =False __a =None __a =1_0000 __a =None __a ="strict" __a ="error" __a =None def UpperCamelCase__ ( self : Dict ): if self.delimiter is not None: _a = self.delimiter if self.column_names is not None: _a = self.column_names @property def UpperCamelCase__ ( self : List[Any] ): _a = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): """simple docstring""" __a =CsvConfig def UpperCamelCase__ ( self : Dict ): return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self : int , __a : List[Any] ): if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) _a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): _a = data_files if isinstance(__a , __a ): _a = [files] _a = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _a = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): _a = [files] _a = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"files": files} ) ) return splits def UpperCamelCase__ ( self : Dict , __a : pa.Table ): if self.config.features is not None: _a = self.config.features.arrow_schema if all(not require_storage_cast(__a ) for feature in self.config.features.values() ): # cheaper cast _a = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _a = table_cast(__a , __a ) return pa_table def UpperCamelCase__ ( self : Tuple , __a : str ): _a = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _a = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): _a = pd.read_csv(__a , iterator=__a , dtype=__a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__a ): _a = pa.Table.from_pandas(__a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__a ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__a )}: {e}' ) raise
521
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() a :List[str] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] a :int = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :List[str] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] a :Optional[int] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} a :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = '''adapt act apte''' a :int = '''adapt act apte''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a :int = '''adapt act apte''' a :List[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] a :int = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] a :str = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] a :Tuple = '''I am a small frog.''' a :Optional[int] = tok([src_text] , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] a :List[Any] = tok.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) a :Optional[Any] = '''I am a small frog .''' a :int = '''.''' a :List[str] = tok(_lowerCamelCase )['''input_ids'''] a :Union[str, Any] = tok(_lowerCamelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
445
import qiskit def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" a :Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register a :str = qiskit.QuantumCircuit(UpperCAmelCase_ , UpperCAmelCase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator a :Optional[Any] = qiskit.execute(UpperCAmelCase_ , UpperCAmelCase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase_ ) if __name__ == "__main__": snake_case : Any = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
445
1
import os from collections.abc import Iterator def __lowerCamelCase ( __a :str = "." ) -> str: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): A__ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip("""./""" ) def __lowerCamelCase ( __a :Any ) -> Optional[int]: """simple docstring""" return F'{i * " "}*' if i else "\n##" def __lowerCamelCase ( __a :str , __a :str ) -> Any: """simple docstring""" A__ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}' ) return new_path def __lowerCamelCase ( __a :str = "." ) -> Dict: """simple docstring""" A__ = """""" for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): A__ , A__ = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: A__ = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A__ = (filepath.count(os.sep ) + 1) if filepath else 0 A__ = F'{filepath}/{filename}'.replace(""" """ , """%20""" ) A__ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
707
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class A (datasets.BuilderConfig ): '''simple docstring''' __lowerCamelCase : Optional[datasets.Features] = None class A (datasets.ArrowBasedBuilder ): '''simple docstring''' __lowerCamelCase : Optional[int] = PandasConfig def a_ ( self : str ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def a_ ( self : Dict , __lowerCAmelCase : Any ) -> Any: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): A__ = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def a_ ( self : Tuple , __lowerCAmelCase : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): with open(__lowerCAmelCase , """rb""" ) as f: A__ = pa.Table.from_pandas(pd.read_pickle(__lowerCAmelCase ) ) yield i, self._cast_table(__lowerCAmelCase )
247
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): SCREAMING_SNAKE_CASE_ = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging A__ = logging.get_logger(__name__) class a : __lowerCAmelCase : Optional[Any] = None @experimental def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return _map_with_joblib(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : List[str] = num_proc if num_proc <= len(__lowerCAmelCase ) else len(__lowerCAmelCase ) snake_case__ : int = [] # We organize the splits ourselve (contiguous splits) for index in range(__lowerCAmelCase ): snake_case__ : List[Any] = len(__lowerCAmelCase ) // num_proc snake_case__ : Tuple = len(__lowerCAmelCase ) % num_proc snake_case__ : Any = div * index + min(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : int = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__lowerCAmelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(__lowerCAmelCase )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(__lowerCAmelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) snake_case__ , snake_case__ : List[str] = None, None if not disable_tqdm: snake_case__ , snake_case__ : Any = (RLock(),), tqdm.set_lock with Pool(__lowerCAmelCase , initargs=__lowerCAmelCase , initializer=__lowerCAmelCase ) as pool: snake_case__ : Optional[int] = pool.map(__lowerCAmelCase , __lowerCAmelCase ) logger.info(f"""Finished {num_proc} processes""" ) snake_case__ : List[str] = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(__lowerCAmelCase )} objects""" ) return mapped def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__lowerCAmelCase ): return joblib.Parallel()( joblib.delayed(__lowerCAmelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Tuple = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: snake_case__ : int = None
252
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __magic_name__ =logging.get_logger(__name__) class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Any =["pixel_values"] def __init__(self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = size if size is not None else {'''shortest_edge''': 256} UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCamelCase__ = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase__ = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Dict: '''simple docstring''' UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
469
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __magic_name__ =logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __UpperCamelCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=768 ) -> Dict: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = proj_size UpperCamelCase__ = CLIPVisionModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = PaintByExampleMapper(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = nn.LayerNorm(config.hidden_size ) UpperCamelCase__ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCamelCase__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.model(pixel_values=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = clip_output.pooler_output UpperCamelCase__ = self.mapper(latent_states[:, None] ) UpperCamelCase__ = self.final_layer_norm(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.proj_out(SCREAMING_SNAKE_CASE_ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _A ( nn.Module ): def __init__(self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' super().__init__() UpperCamelCase__ = (config.num_hidden_layers + 1) // 5 UpperCamelCase__ = config.hidden_size UpperCamelCase__ = 1 UpperCamelCase__ = nn.ModuleList( [ BasicTransformerBlock(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , activation_fn='''gelu''' , attention_bias=SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ] ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' for block in self.blocks: UpperCamelCase__ = block(SCREAMING_SNAKE_CASE_ ) return hidden_states
469
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class _lowerCamelCase( _a ): def __init__( self, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['bs4']) super().__init__(**lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = [] _lowercase : List[str] = [] _lowercase : str = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _lowercase : Optional[int] = parent.find_all(child.name, recursive=lowerCamelCase) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(lowerCamelCase) else next(i for i, s in enumerate(lowerCamelCase, 1) if s is child)) _lowercase : str = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : int = BeautifulSoup(lowerCamelCase, 'html.parser') _lowercase : List[str] = [] _lowercase : Dict = [] _lowercase : Any = [] for element in html_code.descendants: if type(lowerCamelCase) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue _lowercase : str = html.unescape(lowerCamelCase).strip() if not text_in_this_tag: continue all_doc_strings.append(lowerCamelCase) _lowercase , _lowercase : Union[str, Any] = self.xpath_soup(lowerCamelCase) stringaxtag_seq.append(lowerCamelCase) stringaxsubs_seq.append(lowerCamelCase) if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError('Number of doc strings and xtags does not correspond') if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError('Number of doc strings and xsubs does not correspond') return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = '' for tagname, subs in zip(lowerCamelCase, lowerCamelCase): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self, lowerCamelCase) -> BatchFeature: """simple docstring""" _lowercase : Optional[int] = False # Check that strings has a valid type if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = True elif isinstance(lowerCamelCase, (list, tuple)): if len(lowerCamelCase) == 0 or isinstance(html_strings[0], lowerCamelCase): _lowercase : Dict = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F'''but is of type {type(lowerCamelCase)}.''') _lowercase : Optional[Any] = bool(isinstance(lowerCamelCase, (list, tuple)) and (isinstance(html_strings[0], lowerCamelCase))) if not is_batched: _lowercase : List[Any] = [html_strings] # Get nodes + xpaths _lowercase : Any = [] _lowercase : int = [] for html_string in html_strings: _lowercase , _lowercase , _lowercase : Optional[int] = self.get_three_from_single(lowerCamelCase) nodes.append(lowerCamelCase) _lowercase : Any = [] for node, tag_list, sub_list in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : int = self.construct_xpath(lowerCamelCase, lowerCamelCase) xpath_strings.append(lowerCamelCase) xpaths.append(lowerCamelCase) # return as Dict _lowercase : Union[str, Any] = {'nodes': nodes, 'xpaths': xpaths} _lowercase : Any = BatchFeature(data=lowerCamelCase, tensor_type=lowerCamelCase) return encoded_inputs
89
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __A ( self: Tuple ) -> Dict: _A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , '''width_multiplier''' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: Dict , __A: Optional[Any] , __A: Optional[int]=13 , __A: Union[str, Any]=64 , __A: Dict=2 , __A: str=3 , __A: Dict="swish" , __A: List[str]=3 , __A: Union[str, Any]=32 , __A: str=0.1 , __A: int=0.02 , __A: Optional[Any]=True , __A: str=True , __A: List[Any]=10 , __A: Dict=None , __A: Optional[Any]=0.25 , __A: Optional[int]=0.0 , __A: Tuple=0.0 , ) -> Optional[int]: _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = make_divisible(5_12 * width_multiplier , divisor=8 ) _A = hidden_act _A = conv_kernel_size _A = output_stride _A = classifier_dropout_prob _A = use_labels _A = is_training _A = num_labels _A = initializer_range _A = scope _A = width_multiplier _A = ffn_dropout _A = attn_dropout def __A ( self: Dict ) -> List[str]: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.num_labels ) _A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self: Tuple ) -> Optional[Any]: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __A ( self: Dict , __A: Union[str, Any] , __A: int , __A: Dict , __A: List[str] ) -> str: _A = MobileViTVaModel(config=__A ) model.to(__A ) model.eval() _A = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self: str , __A: int , __A: Optional[Any] , __A: int , __A: Tuple ) -> Any: _A = self.num_labels _A = MobileViTVaForImageClassification(__A ) model.to(__A ) model.eval() _A = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self: List[Any] , __A: Optional[Any] , __A: Tuple , __A: int , __A: List[Any] ) -> Optional[Any]: _A = self.num_labels _A = MobileViTVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() _A = model(__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _A = model(__A , labels=__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self: Dict ) -> List[Any]: _A = self.prepare_config_and_inputs() _A ,_A ,_A ,_A = config_and_inputs _A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" A_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) A_ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def __A ( self: str ) -> Optional[Any]: _A = MobileViTVaModelTester(self ) _A = MobileViTVaConfigTester(self , config_class=__A , has_text_modality=__A ) def __A ( self: Any ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __A ( self: Any ) -> List[str]: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __A ( self: int ) -> Any: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __A ( self: Optional[Any] ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __A ( self: Any ) -> Any: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self: Optional[int] ) -> List[str]: pass def __A ( self: List[Any] ) -> Optional[Any]: _A ,_A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__A ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def __A ( self: List[str] ) -> int: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __A ( self: str ) -> int: def check_hidden_states_output(__A: List[str] , __A: str , __A: Optional[int] ): _A = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(__A , __A ) ) _A = outputs.hidden_states _A = 5 self.assertEqual(len(__A ) , __A ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _A = 2 for i in range(len(__A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _A ,_A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(__A , __A , __A ) def __A ( self: str ) -> Any: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __A ( self: int ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __A ( self: Dict ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = MobileViTVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __A ( ): '''simple docstring''' _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self: int ) -> Optional[Any]: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __A ( self: Optional[Any] ) -> Optional[int]: _A = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __A ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): _A = model(**__A ) # verify the logits _A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __A ) _A = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) ) @slow def __A ( self: List[str] ) -> Tuple: _A = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _A = model.to(__A ) _A = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _A = prepare_img() _A = image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): _A = model(**__A ) _A = outputs.logits # verify the logits _A = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __A ) _A = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=__A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4 ) ) @slow def __A ( self: List[Any] ) -> Optional[int]: _A = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _A = model.to(__A ) _A = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _A = prepare_img() _A = image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): _A = model(**__A ) _A = outputs.logits.detach().cpu() _A = image_processor.post_process_semantic_segmentation(outputs=__A , target_sizes=[(50, 60)] ) _A = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __A ) _A = image_processor.post_process_semantic_segmentation(outputs=__A ) _A = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __A )
484
0
'''simple docstring''' import operator def A__ ( A : list , A : bool = False , A : list | None = None): '''simple docstring''' UpperCamelCase : List[Any] = operator.lt if reverse else operator.gt UpperCamelCase : Union[str, Any] = solution or [] if not arr: return solution UpperCamelCase : Optional[Any] = [arr.pop(0)] for i, item in enumerate(A): if _operator(A , sublist[-1]): sublist.append(A) arr.pop(A) # merging sublist into solution list if not solution: solution.extend(A) else: while sublist: UpperCamelCase : str = sublist.pop(0) for i, xx in enumerate(A): if not _operator(A , A): solution.insert(A , A) break else: solution.append(A) strand_sort(A , A , A) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
435
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
435
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any=13 , lowerCAmelCase : Any=32 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : Dict=4 , lowerCAmelCase : str=[10, 20, 30, 40] , lowerCAmelCase : List[Any]=[2, 2, 3, 2] , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Union[str, Any]=37 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[int]=10 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : Optional[Any]=["stage2", "stage3", "stage4"] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Any=None , ) -> int: """simple docstring""" _snake_case : str = parent _snake_case : Any = batch_size _snake_case : Union[str, Any] = image_size _snake_case : int = num_channels _snake_case : List[str] = num_stages _snake_case : List[str] = hidden_sizes _snake_case : int = depths _snake_case : List[str] = is_training _snake_case : Tuple = use_labels _snake_case : int = intermediate_size _snake_case : List[str] = hidden_act _snake_case : int = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Union[str, Any] = num_labels _snake_case : int = scope _snake_case : List[Any] = num_stages def UpperCamelCase_ ( self : List[str]) -> List[str]: """simple docstring""" _snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _snake_case : str = None if self.use_labels: _snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Any) -> List[str]: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCamelCase_ ( self : Any) -> List[str]: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[int] = UperNetForSemanticSegmentation(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Tuple = model(lowerCAmelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" _snake_case : str = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : int = (UperNetForSemanticSegmentation,) if is_torch_available() else () snake_case_ : List[Any] = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} snake_case_ : Any = False snake_case_ : int = False snake_case_ : str = False snake_case_ : List[Any] = False snake_case_ : Tuple = False snake_case_ : Union[str, Any] = False def UpperCamelCase_ ( self : Tuple) -> Union[str, Any]: """simple docstring""" _snake_case : List[str] = UperNetModelTester(self) _snake_case : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37) def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : str) -> Union[str, Any]: """simple docstring""" return def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Union[str, Any] = model_class(lowerCAmelCase) _snake_case : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : int = [*signature.parameters.keys()] _snake_case : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase) def UpperCamelCase_ ( self : int) -> str: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase) @unittest.skip(reason="""UperNet does not use inputs_embeds""") def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""") def UpperCamelCase_ ( self : List[str]) -> int: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""") def UpperCamelCase_ ( self : Tuple) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""") def UpperCamelCase_ ( self : str) -> str: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""") def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" pass def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any]): _snake_case : str = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) _snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : str = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Dict = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any]) -> int: """simple docstring""" _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[str] = _config_zero_init(lowerCAmelCase) _snake_case : int = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _snake_case : str = model_class(config=lowerCAmelCase) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""") def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" pass @slow def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Tuple = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) def lowercase ( ) -> Union[str, Any]: _snake_case : str = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : int = Image.open(SCREAMING_SNAKE_CASE__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any]) -> List[str]: """simple docstring""" _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""") _snake_case : List[str] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""").to(lowerCAmelCase) _snake_case : Optional[int] = prepare_img() _snake_case : Dict = processor(images=lowerCAmelCase , return_tensors="""pt""").to(lowerCAmelCase) with torch.no_grad(): _snake_case : List[str] = model(**lowerCAmelCase) _snake_case : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape , lowerCAmelCase) _snake_case : Any = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]]).to(lowerCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase , atol=1E-4)) def UpperCamelCase_ ( self : int) -> List[str]: """simple docstring""" _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""") _snake_case : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""").to(lowerCAmelCase) _snake_case : Tuple = prepare_img() _snake_case : Optional[Any] = processor(images=lowerCAmelCase , return_tensors="""pt""").to(lowerCAmelCase) with torch.no_grad(): _snake_case : int = model(**lowerCAmelCase) _snake_case : str = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape , lowerCAmelCase) _snake_case : Optional[int] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]]).to(lowerCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase , atol=1E-4))
477
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case ( enum.Enum ): '''simple docstring''' snake_case_ : Any = 0 snake_case_ : Tuple = 1 snake_case_ : int = 2 @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case : int = None if self.model.config.prefix is not None: _snake_case : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case : List[str] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case : Optional[int] = self._sanitize_parameters(prefix=lowerCAmelCase , **self._forward_params) _snake_case : Dict = {**self._preprocess_params, **preprocess_params} _snake_case : Optional[int] = {**self._forward_params, **forward_params} def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : int=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=None , **lowerCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = {} if prefix is not None: _snake_case : Tuple = prefix if prefix: _snake_case : Optional[int] = self.tokenizer( lowerCAmelCase , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework) _snake_case : Any = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' """ [None, 'hole']""") _snake_case : Tuple = handle_long_generation preprocess_params.update(lowerCAmelCase) _snake_case : str = generate_kwargs _snake_case : Optional[int] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""") if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""") _snake_case : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""") _snake_case : Tuple = ReturnType.TENSORS if return_type is not None: _snake_case : List[Any] = return_type if clean_up_tokenization_spaces is not None: _snake_case : List[str] = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case : str = self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) if len(lowerCAmelCase) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""") _snake_case : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase_ ( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True}) return super()._parse_and_tokenize(*lowerCAmelCase , **lowerCAmelCase) def __call__( self : Tuple , lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" return super().__call__(lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : str="" , lowerCAmelCase : Any=None , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" _snake_case : Dict = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework) _snake_case : Tuple = prompt_text if handle_long_generation == "hole": _snake_case : int = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case : Optional[int] = generate_kwargs["""max_new_tokens"""] else: _snake_case : Dict = generate_kwargs.get("""max_length""" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""") if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case : Optional[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""") _snake_case : List[Any] = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: _snake_case : Optional[int] = inputs["""attention_mask"""][:, -keep_length:] return inputs def UpperCamelCase_ ( self : int , lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = model_inputs["""input_ids"""] _snake_case : List[Any] = model_inputs.get("""attention_mask""" , lowerCAmelCase) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Any = 1 else: _snake_case : List[Any] = input_ids.shape[0] _snake_case : Tuple = model_inputs.pop("""prompt_text""") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case : Any = generate_kwargs.pop("""prefix_length""" , 0) if prefix_length > 0: _snake_case : Dict = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case : Optional[int] = generate_kwargs.get("""max_length""") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case : str = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case : Optional[int] = self.model.generate(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , **lowerCAmelCase) _snake_case : Tuple = generated_sequence.shape[0] if self.framework == "pt": _snake_case : List[Any] = generated_sequence.reshape(lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": _snake_case : Dict = tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase_ ( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]=ReturnType.FULL_TEXT , lowerCAmelCase : Union[str, Any]=True) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = model_outputs["""generated_sequence"""][0] _snake_case : List[str] = model_outputs["""input_ids"""] _snake_case : Optional[Any] = model_outputs["""prompt_text"""] _snake_case : str = generated_sequence.numpy().tolist() _snake_case : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case : Union[str, Any] = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case : int = self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case : str = 0 else: _snake_case : List[Any] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , )) if return_type == ReturnType.FULL_TEXT: _snake_case : Any = prompt_text + text[prompt_length:] else: _snake_case : Union[str, Any] = text[prompt_length:] _snake_case : List[str] = {"""generated_text""": all_text} records.append(lowerCAmelCase) return records
477
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
"""simple docstring""" def UpperCAmelCase ( snake_case : int , snake_case : int ): return x if y == 0 else greatest_common_divisor(snake_case , x % y ) def UpperCAmelCase ( snake_case : int , snake_case : int ): return (x * y) // greatest_common_divisor(snake_case , snake_case ) def UpperCAmelCase ( snake_case : int = 20 ): _lowerCAmelCase:List[Any] = 1 for i in range(1 , n + 1 ): _lowerCAmelCase:List[str] = lcm(snake_case , snake_case ) return g if __name__ == "__main__": print(F"{solution() = }")
439
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class a__ ( _snake_case ): __magic_name__ : int = "audio-spectrogram-transformer" def __init__(self : List[str], __UpperCAmelCase : List[str]=768, __UpperCAmelCase : Tuple=12, __UpperCAmelCase : Tuple=12, __UpperCAmelCase : str=3072, __UpperCAmelCase : int="gelu", __UpperCAmelCase : Optional[Any]=0.0, __UpperCAmelCase : Any=0.0, __UpperCAmelCase : int=0.02, __UpperCAmelCase : Tuple=1e-12, __UpperCAmelCase : Optional[int]=16, __UpperCAmelCase : Optional[Any]=True, __UpperCAmelCase : Dict=10, __UpperCAmelCase : Optional[Any]=10, __UpperCAmelCase : Union[str, Any]=1024, __UpperCAmelCase : List[Any]=128, **__UpperCAmelCase : Optional[int], ) -> List[Any]: """simple docstring""" super().__init__(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Tuple = qkv_bias SCREAMING_SNAKE_CASE : List[str] = frequency_stride SCREAMING_SNAKE_CASE : Optional[Any] = time_stride SCREAMING_SNAKE_CASE : int = max_length SCREAMING_SNAKE_CASE : int = num_mel_bins
507
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _snake_case ( datasets.BeamBasedBuilder ): def SCREAMING_SNAKE_CASE__ ( self ): return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=_lowerCamelCase , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCamelCase ) class _snake_case ( datasets.BeamBasedBuilder ): def SCREAMING_SNAKE_CASE__ ( self ): return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=_lowerCamelCase , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCamelCase ) def __lowerCamelCase ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def __lowerCamelCase ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class _snake_case ( _snake_case ): @require_beam def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a :Optional[Any] = DummyBeamDataset(cache_dir=_lowerCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) a :str = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _lowerCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _lowerCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def SCREAMING_SNAKE_CASE__ ( self ): import apache_beam as beam a :Any = beam.io.parquetio.WriteToParquet a :Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a :Union[str, Any] = DummyBeamDataset(cache_dir=_lowerCamelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: a :str = partial(_lowerCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( _lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) a :List[str] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _lowerCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _lowerCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def SCREAMING_SNAKE_CASE__ ( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: a :Dict = DummyBeamDataset(cache_dir=_lowerCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def SCREAMING_SNAKE_CASE__ ( self ): a :str = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: a :List[Any] = NestedBeamDataset(cache_dir=_lowerCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) a :Any = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _lowerCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _lowerCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
445
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) def __a ( __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None ) -> Any: '''simple docstring''' if "." in tensor_name: lowercase_ = tensor_name.split("." ) for split in splits[:-1]: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) lowercase_ = new_module lowercase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) lowercase_ = tensor_name in module._buffers lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) lowercase_ = False lowercase_ = False if is_buffer or not is_bitsandbytes_available(): lowercase_ = False lowercase_ = False else: lowercase_ = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase_ = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase_ = value.to("cpu" ) if value.dtype == torch.inta: lowercase_ = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: lowercase_ = torch.tensor(__lowerCamelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCamelCase ) and fpaa_statistics is None: lowercase_ = new_value.T lowercase_ = old_value.__dict__ if is_abit: lowercase_ = bnb.nn.IntaParams(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) elif is_abit: lowercase_ = bnb.nn.Paramsabit(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) lowercase_ = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(__lowerCamelCase ) ) else: if value is None: lowercase_ = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase_ = value.to(__lowerCamelCase ) else: lowercase_ = torch.tensor(__lowerCamelCase , device=__lowerCamelCase ) if is_buffer: lowercase_ = new_value else: lowercase_ = nn.Parameter(__lowerCamelCase , requires_grad=old_value.requires_grad ) lowercase_ = new_value def __a ( __lowerCamelCase : int , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=False ) -> Tuple: '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowercase_ = [] current_key_name.append(__lowerCamelCase ) if (isinstance(__lowerCamelCase , nn.Linear ) or isinstance(__lowerCamelCase , __lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(__lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ , lowercase_ = module.weight.shape else: lowercase_ = module.in_features lowercase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase_ = bnb.nn.LinearabitLt( __lowerCamelCase , __lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase_ = bnb.nn.Linearabit( __lowerCamelCase , __lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase_ = True # Store the module class in case we need to transpose the weight later lowercase_ = type(__lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCamelCase ) if len(list(module.children() ) ) > 0: lowercase_ , lowercase_ = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_been_replaced=__lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __a ( __lowerCamelCase : int , __lowerCamelCase : List[Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None ) -> Tuple: '''simple docstring''' lowercase_ = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert lowercase_ , lowercase_ = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def __a ( *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , __lowerCamelCase , ) return replace_with_bnb_linear(*__lowerCamelCase , **__lowerCamelCase ) def __a ( *__lowerCamelCase : int , **__lowerCamelCase : Any ) -> int: '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , __lowerCamelCase , ) return set_module_quantized_tensor_to_device(*__lowerCamelCase , **__lowerCamelCase ) def __a ( __lowerCamelCase : Dict ) -> str: '''simple docstring''' lowercase_ = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase_ = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase_ = sum(__lowerCamelCase , [] ) lowercase_ = len(__lowerCamelCase ) > 0 # Check if it is a base model lowercase_ = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase_ = list(model.named_children() ) lowercase_ = [list_modules[-1][0]] # add last module together with tied weights lowercase_ = set(__lowerCamelCase ) - set(__lowerCamelCase ) lowercase_ = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowercase_ = [".weight", ".bias"] lowercase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase_ = name.replace(__lowerCamelCase , "" ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names
461
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowerCAmelCase_ : Optional[Any] = "bert-base-cased" lowerCAmelCase_ : Any = "fp16" lowerCAmelCase_ : Union[str, Any] = "bf16" lowerCAmelCase_ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase ( __lowerCamelCase ): def __UpperCAmelCase ( self : str) -> Union[str, Any]: super().setUp() lowercase_ = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = F'{i + 1}' lowercase_ = strategy with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = prefetch_policy with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def __UpperCAmelCase ( self : Dict) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = state_dict_type with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: lowercase_ = AutoModel.from_pretrained(__lowerCAmelCase) for policy in FSDP_AUTO_WRAP_POLICY: lowercase_ = self.dist_env.copy() lowercase_ = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase_ = "BertLayer" elif policy == "SIZE_BASED_WRAP": lowercase_ = "2000" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) lowercase_ = self.dist_env.copy() lowercase_ = "TRANSFORMER_BASED_WRAP" lowercase_ = "T5Layer" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCAmelCase) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception)) lowercase_ = self.dist_env.copy() lowercase_ = "SIZE_BASED_WRAP" lowercase_ = "0" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def __UpperCAmelCase ( self : Union[str, Any]) -> int: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase_ = self.dist_env.copy() lowercase_ = mp_dtype with mockenv_context(**__lowerCAmelCase): lowercase_ = Accelerator() if mp_dtype == "fp16": lowercase_ = torch.floataa elif mp_dtype == "bf16": lowercase_ = torch.bfloataa lowercase_ = MixedPrecision(param_dtype=__lowerCAmelCase , reduce_dtype=__lowerCAmelCase , buffer_dtype=__lowerCAmelCase) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __lowerCAmelCase) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __lowerCAmelCase)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(__lowerCAmelCase) def __UpperCAmelCase ( self : List[str]) -> Dict: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase_ = self.dist_env.copy() lowercase_ = str(__lowerCAmelCase).lower() with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__lowerCAmelCase)) @require_fsdp @require_multi_gpu @slow class lowercase ( __lowerCamelCase ): def __UpperCAmelCase ( self : Optional[int]) -> str: super().setUp() lowercase_ = 0.82 lowercase_ = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] lowercase_ = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase_ = 160 lowercase_ = 160 lowercase_ = inspect.getfile(accelerate.test_utils) lowercase_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def __UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: lowercase_ = os.path.join(self.test_scripts_folder , "test_performance.py") lowercase_ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: lowercase_ = cmd.copy() for i, strategy in enumerate(__lowerCAmelCase): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "fp32" in config: cmd_config.append("--mixed_precision=no") else: cmd_config.append("--mixed_precision=fp16") if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) def __UpperCAmelCase ( self : Dict) -> Dict: lowercase_ = os.path.join(self.test_scripts_folder , "test_checkpointing.py") lowercase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__lowerCAmelCase): lowercase_ = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}') if strategy != "FULL_SHARD": continue lowercase_ = len(__lowerCAmelCase) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase_ = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', "--partial_train_epoch=1", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) lowercase_ = cmd_config[:-1] lowercase_ = os.path.join(self.tmpdir , "epoch_0") cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) def __UpperCAmelCase ( self : Optional[int]) -> int: lowercase_ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py") lowercase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase_ = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"]) else: cmd_config.extend(["--mixed_precision=no"]) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"]) for i, strategy in enumerate(__lowerCAmelCase): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy())
461
1
"""simple docstring""" _lowerCAmelCase : Union[str, Any] = "Input must be a string of 8 numbers plus letter" _lowerCAmelCase : List[str] = "TRWAGMYFPDXBNJZSQVHLCKE" def __snake_case ( SCREAMING_SNAKE_CASE__ : str ) -> bool: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : Dict = f'Expected string as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}' raise TypeError(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = spanish_id.replace("-" , "" ).upper() if len(SCREAMING_SNAKE_CASE__ ) != 9: raise ValueError(SCREAMING_SNAKE_CASE__ ) try: _UpperCAmelCase : List[str] = int(spanish_id_clean[0:8] ) _UpperCAmelCase : Dict = spanish_id_clean[8] except ValueError as ex: raise ValueError(SCREAMING_SNAKE_CASE__ ) from ex if letter.isdigit(): raise ValueError(SCREAMING_SNAKE_CASE__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( _UpperCamelCase ): def __lt__( self : int , A : Dict ): return self[-1] < other[-1] def __eq__( self : Union[str, Any] , A : Union[str, Any] ): return self[-1] == other[-1] def __snake_case ( SCREAMING_SNAKE_CASE__ : list ) -> list: '''simple docstring''' _UpperCAmelCase : list[Stack] = [] # sort into stacks for element in collection: _UpperCAmelCase : Any = Stack([element] ) _UpperCAmelCase : str = bisect_left(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if i != len(SCREAMING_SNAKE_CASE__ ): stacks[i].append(SCREAMING_SNAKE_CASE__ ) else: stacks.append(SCREAMING_SNAKE_CASE__ ) # use a heap-based merge to merge stack efficiently _UpperCAmelCase : Optional[Any] = merge(*(reversed(SCREAMING_SNAKE_CASE__ ) for stack in stacks) ) return collection if __name__ == "__main__": _lowerCAmelCase : Any = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : int = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
289
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = tempfile.mkdtemp() __magic_name__ = BlipImageProcessor() __magic_name__ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) __magic_name__ = BlipProcessor(A , A ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **A ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **A ).tokenizer def __A ( self , **A ) -> Tuple: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def __A ( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __magic_name__ = self.get_image_processor(do_normalize=A , padding_value=1.0 ) __magic_name__ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = image_processor(A , return_tensors='''np''' ) __magic_name__ = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = processor(text=A ) __magic_name__ = tokenizer(A , return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(A ) __magic_name__ = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=A , images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
678
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Union[str, Any] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowercase (_lowerCAmelCase ): def decorator(_lowerCAmelCase ): __lowerCAmelCase = getattr(_lowerCAmelCase , """handle_key""" , [] ) handle += [key] setattr(_lowerCAmelCase , """handle_key""" , _lowerCAmelCase ) return func return decorator def lowercase (*_lowerCAmelCase ): def decorator(_lowerCAmelCase ): __lowerCAmelCase = getattr(_lowerCAmelCase , """handle_key""" , [] ) handle += keys setattr(_lowerCAmelCase , """handle_key""" , _lowerCAmelCase ) return func return decorator class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __new__( cls , snake_case_ , snake_case_ , snake_case_ ) -> Any: __lowerCAmelCase = super().__new__(cls , snake_case_ , snake_case_ , snake_case_ ) if not hasattr(snake_case_ , """key_handler""" ): setattr(snake_case_ , """key_handler""" , {} ) setattr(snake_case_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __lowerCAmelCase = getattr(snake_case_ , """handle_key""" , [] ) for key in handled_keys: __lowerCAmelCase = value return new_cls @staticmethod def A__ ( cls ) -> Tuple: __lowerCAmelCase = get_character() if char != KEYMAP["undefined"]: __lowerCAmelCase = ord(snake_case_ ) __lowerCAmelCase = cls.key_handler.get(snake_case_ ) if handler: __lowerCAmelCase = char return handler(cls ) else: return None def lowercase (cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
465
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''mgp-str''' def __init__( self , snake_case_=[32, 128] , snake_case_=4 , snake_case_=3 , snake_case_=27 , snake_case_=38 , snake_case_=50_257 , snake_case_=30_522 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=4.0 , snake_case_=True , snake_case_=False , snake_case_=1e-5 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=False , snake_case_=0.02 , **snake_case_ , ) -> List[Any]: super().__init__(**snake_case_ ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = max_token_length __lowerCAmelCase = num_character_labels __lowerCAmelCase = num_bpe_labels __lowerCAmelCase = num_wordpiece_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = mlp_ratio __lowerCAmelCase = distilled __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = drop_rate __lowerCAmelCase = qkv_bias __lowerCAmelCase = attn_drop_rate __lowerCAmelCase = drop_path_rate __lowerCAmelCase = output_aa_attentions __lowerCAmelCase = initializer_range
465
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , lowerCamelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" assert _test_patching.open is open __UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , lowerCamelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , lowerCamelCase__ ): pass def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , lowerCamelCase__ ) is None with patch_submodule(_test_patching , '''len''' , lowerCamelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' __UpperCamelCase = patch_submodule(_test_patching , '''open''' , lowerCamelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __UpperCamelCase = '''__test_patch_submodule_successive_join__''' __UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' __UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , lowerCamelCase__ ): with patch_submodule(_test_patching , '''os.rename''' , lowerCamelCase__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , lowerCamelCase__ ): with patch_submodule(_test_patching , '''os.path.join''' , lowerCamelCase__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , lowerCamelCase__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , lowerCamelCase__ ): pass
721
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = ["model.decoder.embed_positions.weights"] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(lowercase_ ) __UpperCamelCase = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __UpperCamelCase = 10_24 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 15_36 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 20_48 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=lowercase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase_ , num_attention_heads=lowercase_ , ) return config @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_="cpu" ) -> List[Any]: """simple docstring""" __UpperCamelCase = MusicGen.get_pretrained(lowercase_ , device=lowercase_ ) __UpperCamelCase = decoder_config_from_checkpoint(lowercase_ ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( lowercase_ , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(lowercase_ , strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(lowercase_ ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=lowercase_ , audio_encoder=lowercase_ , decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 20_48): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) # set the appropriate bos/pad token ids __UpperCamelCase = 20_48 __UpperCamelCase = 20_48 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) a_ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
375
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Dict = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : Optional[Any] = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } lowerCAmelCase : Any = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : int = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __SCREAMING_SNAKE_CASE: Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCAmelCase ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE: List[Any] = getattr(_lowerCAmelCase , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE: Optional[Any] = do_lower_case __SCREAMING_SNAKE_CASE: int = strip_accents __SCREAMING_SNAKE_CASE: Optional[int] = tokenize_chinese_chars __SCREAMING_SNAKE_CASE: Optional[int] = normalizer_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = do_lower_case def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = [self.sep_token_id] __SCREAMING_SNAKE_CASE: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
202
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : str = logging.get_logger(__name__) class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Any = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = size if size is not None else {'''shortest_edge''': 384} __SCREAMING_SNAKE_CASE: List[str] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = do_resize __SCREAMING_SNAKE_CASE: Optional[Any] = size # Default value set here for backwards compatibility where the value in config is None __SCREAMING_SNAKE_CASE: List[str] = crop_pct if crop_pct is not None else 224 / 256 __SCREAMING_SNAKE_CASE: List[Any] = resample __SCREAMING_SNAKE_CASE: Any = do_rescale __SCREAMING_SNAKE_CASE: Optional[Any] = rescale_factor __SCREAMING_SNAKE_CASE: Any = do_normalize __SCREAMING_SNAKE_CASE: Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE: Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE: str = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __SCREAMING_SNAKE_CASE: Dict = int(shortest_edge / crop_pct ) __SCREAMING_SNAKE_CASE: Any = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE: Optional[Any] = crop_pct if crop_pct is not None else self.crop_pct __SCREAMING_SNAKE_CASE: Tuple = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE: Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE: Any = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE: Optional[int] = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE: str = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE: List[Any] = size if size is not None else self.size __SCREAMING_SNAKE_CASE: Dict = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE: Tuple = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE: str = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE: Any = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE: int = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] __SCREAMING_SNAKE_CASE: str = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] __SCREAMING_SNAKE_CASE: List[str] = {'''pixel_values''': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
202
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase__ = 5_00_03 lowerCamelCase__ = 5_00_02 @require_sentencepiece @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = PLBartTokenizer lowerCamelCase__ = None lowerCamelCase__ = False def __a ( self ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ = PLBartTokenizer(_a , language_codes="base" , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> Any: lowerCAmelCase_ = PLBartTokenizer(_a , language_codes="base" , keep_accents=_a ) lowerCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowerCAmelCase_ = tokenizer.vocab_size lowerCAmelCase_ = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 4 , _a )] self.assertListEqual(_a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowerCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowerCAmelCase_ = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = PLBartTokenizer(_a , language_codes="multi" , keep_accents=_a ) lowerCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowerCAmelCase_ = tokenizer.vocab_size lowerCAmelCase_ = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 7 , _a )] self.assertListEqual( _a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowerCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowerCAmelCase_ = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = '''uclanlp/plbart-python-en_XX''' lowerCamelCase__ = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] lowerCamelCase__ = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] lowerCamelCase__ = [ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def __a ( cls ) -> str: lowerCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowerCAmelCase_ = 1 return cls def __a ( self ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def __a ( self ) -> Any: lowerCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __a ( self ) -> int: self.assertIn(_a , self.tokenizer.all_special_ids ) lowerCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] lowerCAmelCase_ = self.tokenizer.decode(_a , skip_special_tokens=_a ) lowerCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __a ( self ) -> str: lowerCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _a ) lowerCAmelCase_ = 10 lowerCAmelCase_ = self.tokenizer(_a , max_length=_a , truncation=_a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _a ) self.assertEqual(len(_a ) , _a ) def __a ( self ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def __a ( self ) -> str: lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) lowerCAmelCase_ = PLBartTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _a ) @require_torch def __a ( self ) -> List[str]: lowerCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors="pt" ) lowerCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __a ( self ) -> int: lowerCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_a , truncation=_a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowerCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) lowerCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer(self.src_text , padding=_a , truncation=_a , max_length=3 , return_tensors="pt" ) lowerCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_a , truncation=_a , max_length=10 , return_tensors="pt" ) lowerCAmelCase_ = targets["input_ids"] lowerCAmelCase_ = shift_tokens_right(_a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_a ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
226
from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase__ = 1_00 lowerCamelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def A(__a: int ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase_ = set() lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A(__a: int = 5000 ): for number_to_partition in range(1 , __a ): if len(partition(__a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
226
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : List[Any] = '''▁''' __lowercase : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model'''} __lowercase : str = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __lowercase : Union[str, Any] = { '''facebook/xglm-564M''': 2048, } class __lowercase ( snake_case__ ): lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Dict = ["""input_ids""", """attention_mask"""] def __init__(self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A = None , **A , ): lowerCamelCase_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCamelCase_ : List[str] = 7 lowerCamelCase_ : int = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowerCamelCase_ : Optional[int] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) lowerCamelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) lowerCamelCase_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ : List[str] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowerCamelCase_ : int = len(self.sp_model ) lowerCamelCase_ : Dict = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__lowercase ) lowerCamelCase_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): lowerCamelCase_ : Optional[int] = self.__dict__.copy() lowerCamelCase_ : List[str] = None lowerCamelCase_ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__(self , A ): lowerCamelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ : List[Any] = {} lowerCamelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ (self , A , A = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCamelCase_ : int = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ (self ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ (self , A ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def UpperCAmelCase__ (self , A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ : Optional[Any] = self.sp_model.PieceToId(__lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ (self , A ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Tuple = ''''''.join(__lowercase ).replace(__lowercase , ''' ''' ).strip() return out_string def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Optional[Any] = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: lowerCamelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
422
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : int = LEDConfig __snake_case : int = {} __snake_case : Any = """gelu""" def __init__( self :Optional[Any] , __lowercase :List[Any] , __lowercase :int=13 , __lowercase :Union[str, Any]=7 , __lowercase :List[Any]=True , __lowercase :List[Any]=False , __lowercase :str=99 , __lowercase :Optional[int]=32 , __lowercase :List[Any]=2 , __lowercase :str=4 , __lowercase :str=37 , __lowercase :Any=0.1 , __lowercase :List[Any]=0.1 , __lowercase :Optional[Any]=20 , __lowercase :Union[str, Any]=2 , __lowercase :str=1 , __lowercase :List[str]=0 , __lowercase :List[Any]=4 , ): __lowerCamelCase : Union[str, Any] =parent __lowerCamelCase : List[Any] =batch_size __lowerCamelCase : str =seq_length __lowerCamelCase : List[str] =is_training __lowerCamelCase : Dict =use_labels __lowerCamelCase : int =vocab_size __lowerCamelCase : Union[str, Any] =hidden_size __lowerCamelCase : Any =num_hidden_layers __lowerCamelCase : List[Any] =num_attention_heads __lowerCamelCase : str =intermediate_size __lowerCamelCase : Optional[Any] =hidden_dropout_prob __lowerCamelCase : Optional[Any] =attention_probs_dropout_prob __lowerCamelCase : Optional[Any] =max_position_embeddings __lowerCamelCase : Optional[Any] =eos_token_id __lowerCamelCase : str =pad_token_id __lowerCamelCase : Any =bos_token_id __lowerCamelCase : Union[str, Any] =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __lowerCamelCase : List[Any] =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __lowerCamelCase : Optional[Any] =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowercase ( self :Tuple ): __lowerCamelCase : Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase : List[str] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : Optional[int] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __lowerCamelCase : int =prepare_led_inputs_dict(__lowercase , __lowercase , __lowercase ) __lowerCamelCase : Optional[Any] =tf.concat( [tf.zeros_like(__lowercase )[:, :-1], tf.ones_like(__lowercase )[:, -1:]] , axis=-1 , ) __lowerCamelCase : Any =global_attention_mask return config, inputs_dict def __lowercase ( self :Union[str, Any] , __lowercase :List[str] , __lowercase :List[str] ): __lowerCamelCase : int =TFLEDModel(config=__lowercase ).get_decoder() __lowerCamelCase : Dict =inputs_dict['''input_ids'''] __lowerCamelCase : Optional[Any] =input_ids[:1, :] __lowerCamelCase : List[Any] =inputs_dict['''attention_mask'''][:1, :] __lowerCamelCase : List[Any] =1 # first forward pass __lowerCamelCase : List[Any] =model(__lowercase , attention_mask=__lowercase , use_cache=__lowercase ) __lowerCamelCase , __lowerCamelCase : Any =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase : List[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase : Union[str, Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase : Dict =tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase : str =model(__lowercase , attention_mask=__lowercase )[0] __lowerCamelCase : List[str] =model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase : List[str] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase : Dict =output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase : int =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowercase , __lowercase , rtol=1e-3 ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Tuple=None , ): '''simple docstring''' if attention_mask is None: __lowerCamelCase : Optional[int] =tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCamelCase : str =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCamelCase : Dict =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __snake_case : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __snake_case : Tuple = (TFLEDForConditionalGeneration,) if is_tf_available() else () __snake_case : Optional[Any] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __snake_case : int = True __snake_case : int = False __snake_case : Optional[int] = False __snake_case : Optional[int] = False def __lowercase ( self :Optional[int] ): __lowerCamelCase : int =TFLEDModelTester(self ) __lowerCamelCase : Any =ConfigTester(self , config_class=__lowercase ) def __lowercase ( self :Dict ): self.config_tester.run_common_tests() def __lowercase ( self :str ): __lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowercase ) def __lowercase ( self :Optional[Any] ): __lowerCamelCase , __lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : int =tf.zeros_like(inputs_dict['''attention_mask'''] ) __lowerCamelCase : List[Any] =2 __lowerCamelCase : Optional[Any] =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) __lowerCamelCase : Tuple =True __lowerCamelCase : Optional[Any] =self.model_tester.seq_length __lowerCamelCase : List[str] =self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowercase :Any ): __lowerCamelCase : Union[str, Any] =outputs.decoder_attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__lowercase :List[str] ): __lowerCamelCase : Any =[t.numpy() for t in outputs.encoder_attentions] __lowerCamelCase : Optional[int] =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __lowerCamelCase : List[str] =True __lowerCamelCase : int =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : str =model_class(__lowercase ) __lowerCamelCase : Any =model(self._prepare_for_class(__lowercase , __lowercase ) ) __lowerCamelCase : int =len(__lowercase ) self.assertEqual(config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) if self.is_encoder_decoder: __lowerCamelCase : Optional[int] =model_class(__lowercase ) __lowerCamelCase : Union[str, Any] =model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(config.output_hidden_states , __lowercase ) check_decoder_attentions_output(__lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCamelCase : Any =True __lowerCamelCase : Union[str, Any] =model_class(__lowercase ) __lowerCamelCase : Tuple =model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) # Check attention is always last and order is fine __lowerCamelCase : Optional[Any] =True __lowerCamelCase : Optional[int] =True __lowerCamelCase : Dict =model_class(__lowercase ) __lowerCamelCase : Union[str, Any] =model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowercase ) ) self.assertEqual(model.config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __lowercase ( self :int ): pass def __lowercase ( self :int ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return tf.constant(SCREAMING_SNAKE_CASE , dtype=tf.intaa ) _UpperCamelCase = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :List[str] ): __lowerCamelCase : Dict =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here __lowerCamelCase : List[str] =_long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) __lowerCamelCase : Dict =_long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) __lowerCamelCase : Optional[int] =prepare_led_inputs_dict(model.config , __lowercase , __lowercase ) __lowerCamelCase : Dict =model(**__lowercase )[0] __lowerCamelCase : Optional[int] =(1, 1024, 768) self.assertEqual(output.shape , __lowercase ) # change to expected output here __lowerCamelCase : Dict =tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1e-3 ) def __lowercase ( self :Tuple ): __lowerCamelCase : Any =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here __lowerCamelCase : Union[str, Any] =_long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) __lowerCamelCase : Any =_long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) __lowerCamelCase : Tuple =prepare_led_inputs_dict(model.config , __lowercase , __lowercase ) __lowerCamelCase : List[Any] =model(**__lowercase )[0] __lowerCamelCase : str =(1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __lowercase ) # change to expected output here __lowerCamelCase : List[str] =tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1e-3 , rtol=1e-3 )
179
0
"""simple docstring""" def lowercase_ ( _snake_case ): if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE__ : List[Any] = grid[0] for row_n in range(1 ,len(_snake_case ) ): SCREAMING_SNAKE_CASE__ : int = grid[row_n] SCREAMING_SNAKE_CASE__ : Optional[int] = fill_row(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = grid[row_n] return grid[-1][-1] def lowercase_ ( _snake_case ,_snake_case ): current_row[0] += row_above[0] for cell_n in range(1 ,len(_snake_case ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
545
"""simple docstring""" import baseaa def lowercase_ ( _snake_case ): return baseaa.baaencode(string.encode("""utf-8""" ) ) def lowercase_ ( _snake_case ): return baseaa.baadecode(_snake_case ).decode("""utf-8""" ) if __name__ == "__main__": UpperCAmelCase__ : Dict = 'Hello World!' UpperCAmelCase__ : Tuple = baseaa_encode(test) print(encoded) UpperCAmelCase__ : Tuple = baseaa_decode(encoded) print(decoded)
545
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : Any = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 1_28, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 1_42, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } UpperCamelCase : Optional[Any] = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 1_28, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 1_42, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(lowerCamelCase ) , lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , x.transpose() ) ) UpperCamelCase : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCamelCase : Optional[int] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , transpose(lowerCamelCase ).numpy() ) ) UpperCamelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCamelCase : Tuple = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , transpose(lowerCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : int = np.random.randn(3 , 4 ) UpperCamelCase : Tuple = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , transpose(lowerCamelCase ).numpy() ) ) UpperCamelCase : str = np.random.randn(3 , 4 , 5 ) UpperCamelCase : Any = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , transpose(lowerCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCamelCase : List[Any] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase ) , np.asarray(transpose(lowerCamelCase ) ) ) ) UpperCamelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCamelCase : int = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(transpose(lowerCamelCase , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCamelCase , axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , np.reshape(lowerCamelCase , (4, 3) ) ) ) UpperCamelCase : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , np.reshape(lowerCamelCase , (12, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : List[Any] = np.random.randn(3 , 4 ) UpperCamelCase : int = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , reshape(lowerCamelCase , (4, 3) ).numpy() ) ) UpperCamelCase : str = np.random.randn(3 , 4 , 5 ) UpperCamelCase : List[Any] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , reshape(lowerCamelCase , (12, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : int = np.random.randn(3 , 4 ) UpperCamelCase : Optional[int] = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , reshape(lowerCamelCase , (4, 3) ).numpy() ) ) UpperCamelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCamelCase : Any = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , reshape(lowerCamelCase , (12, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' UpperCamelCase : List[Any] = np.random.randn(3 , 4 ) UpperCamelCase : str = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (4, 3) ) , np.asarray(reshape(lowerCamelCase , (4, 3) ) ) ) ) UpperCamelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCamelCase : Optional[int] = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(reshape(lowerCamelCase , (12, 5) ) , np.asarray(reshape(lowerCamelCase , (12, 5) ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' UpperCamelCase : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , np.squeeze(lowerCamelCase ) ) ) UpperCamelCase : Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , np.squeeze(lowerCamelCase , axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) UpperCamelCase : Any = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , squeeze(lowerCamelCase ).numpy() ) ) UpperCamelCase : Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase : List[Any] = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , squeeze(lowerCamelCase , axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' UpperCamelCase : int = np.random.randn(1 , 3 , 4 ) UpperCamelCase : Tuple = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , squeeze(lowerCamelCase ).numpy() ) ) UpperCamelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase : int = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , squeeze(lowerCamelCase , axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCamelCase : Tuple = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase ) , np.asarray(squeeze(lowerCamelCase ) ) ) ) UpperCamelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase : Any = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(squeeze(lowerCamelCase , axis=2 ) , np.asarray(squeeze(lowerCamelCase , axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , np.expand_dims(lowerCamelCase , axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCamelCase : int = torch.tensor(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , expand_dims(lowerCamelCase , axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Tuple = np.random.randn(3 , 4 ) UpperCamelCase : Optional[int] = tf.constant(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , expand_dims(lowerCamelCase , axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : Dict = np.random.randn(3 , 4 ) UpperCamelCase : int = jnp.array(lowerCamelCase ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase , axis=1 ) , np.asarray(expand_dims(lowerCamelCase , axis=1 ) ) ) )
173
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
173
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase__ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase__ = spec.loader.load_module() lowerCamelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase__ = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCamelCase__ = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def UpperCamelCase ( ): '''simple docstring''' __snake_case :Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): __snake_case :Optional[Any] = False # source code of `config_class` __snake_case :Dict = inspect.getsource(snake_case__ ) __snake_case :int = _re_checkpoint.findall(snake_case__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __snake_case :Union[str, Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link __snake_case :Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: __snake_case :Optional[int] = True break __snake_case :Tuple = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(snake_case__ ) if len(snake_case__ ) > 0: __snake_case :Dict = """\n""".join(sorted(snake_case__ ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
709
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class snake_case__ : '''simple docstring''' lowerCamelCase : int lowerCamelCase : int class snake_case__ : '''simple docstring''' def __init__( self , a__ ) -> Any: '''simple docstring''' __snake_case :list[list[Edge]] = [[] for _ in range(a__ )] __snake_case :List[str] = size def __getitem__( self , a__ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def __lowercase ( self ) -> str: '''simple docstring''' return self._size def __lowercase ( self , a__ , a__ , a__ ) -> List[Any]: '''simple docstring''' if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a__ , a__ ) ) def __lowercase ( self , a__ , a__ ) -> int | None: '''simple docstring''' __snake_case :Optional[Any] = deque([start_vertex] ) __snake_case :list[int | None] = [None] * self.size __snake_case :Tuple = 0 while queue: __snake_case :List[Any] = queue.popleft() __snake_case :Optional[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __snake_case :Optional[Any] = current_distance + edge.weight __snake_case :Dict = distances[edge.destination_vertex] if ( isinstance(a__ , a__ ) and new_distance >= dest_vertex_distance ): continue __snake_case :Dict = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
291
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _lowerCAmelCase: List[str] = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> str: a__ =[file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: a__ =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: a__ =[file for file in files if n_ not in file] else: a__ =[file for file in files if n_identifier not in file] a__ =ignore_files or [] ignore_files.append('__init__.py') a__ =[file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: a__ =file.split('.')[0] try: a__ =getattr(lowercase_ , lowercase_) a__ =doctest.DocTestSuite(lowercase_) a__ =unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"""{module_identifier} is not a module.""") else: a__ =doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =Path('src/transformers') a__ ='modeling' a__ =[ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =Path('src/transformers') a__ ='tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def __UpperCamelCase ( self) -> int: a__ =Path('src/transformers') a__ ='configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def __UpperCamelCase ( self) -> Tuple: a__ =Path('src/transformers') a__ =['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =Path('docs/source') a__ =['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
20
"""simple docstring""" from ...configuration_utils import PretrainedConfig class a ( lowercase ): UpperCamelCase : Union[str, Any] = """bert-generation""" def __init__( self , UpperCamelCase_=50_358 , UpperCamelCase_=1_024 , UpperCamelCase_=24 , UpperCamelCase_=16 , UpperCamelCase_=4_096 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_="absolute" , UpperCamelCase_=True , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Optional[int] = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : Dict = use_cache
110
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :int=1_3 , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :int=True , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :int=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=9_9 , lowerCamelCase_ :str=6_4 , lowerCamelCase_ :Tuple=3_2 , lowerCamelCase_ :Dict=5 , lowerCamelCase_ :Tuple=4 , lowerCamelCase_ :Union[str, Any]=3_7 , lowerCamelCase_ :List[Any]="gelu" , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :List[str]=5_1_2 , lowerCamelCase_ :List[Any]=1_6 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Dict=0.02 , lowerCamelCase_ :str=3 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Any=None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = embedding_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def lowerCamelCase__ ( self :str ) -> Any: """simple docstring""" UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self :Optional[int] ) -> List[Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self :int , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple ) -> Any: """simple docstring""" UpperCamelCase__ = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase__ = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str ) -> Dict: """simple docstring""" UpperCamelCase__ = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase__ = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self :Dict , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase__ = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase__ = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , next_sentence_label=lowerCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase__ = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase__ = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self :str , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str ) -> Dict: """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] ) -> str: """simple docstring""" UpperCamelCase__ = self.num_choices UpperCamelCase__ = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self :str ) -> str: """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) A = True def lowerCamelCase__ ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=False ) -> List[str]: """simple docstring""" UpperCamelCase__ = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ ) UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def lowerCamelCase__ ( self :Tuple ) -> Tuple: """simple docstring""" UpperCamelCase__ = MobileBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self :int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ ( self :str ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def lowerCamelCase__ ( self :int ) -> List[str]: """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def lowerCamelCase__ ( self :str ) -> List[Any]: """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def lowerCamelCase__ ( self :List[str] ) -> Any: """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def lowerCamelCase__ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase__ ( self :Any ) -> Any: """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def lowerCamelCase__ ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def lowerCamelCase__ ( self :Any ) -> List[Any]: """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def snake_case__ ( _snake_case : Optional[int] ): """simple docstring""" return torch.tensor( _snake_case , dtype=torch.long , device=_snake_case , ) A : List[Any] = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(lowerCamelCase_ ) UpperCamelCase__ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): UpperCamelCase__ = model(lowerCamelCase_ )[0] UpperCamelCase__ = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape , lowerCamelCase_ ) UpperCamelCase__ = torch.tensor( [ [ [-2.4736526e07, 8.2691656e04, 1.6521838e05], [-5.7541704e-01, 3.9056022e00, 4.4011507e00], [2.6047359e00, 1.5677652e00, -1.7324188e-01], ] ] , device=lowerCamelCase_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCamelCase__ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCamelCase__ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
706
"""simple docstring""" class lowerCAmelCase : '''simple docstring''' def __init__( self :Optional[Any] , lowerCamelCase_ :list ) -> None: """simple docstring""" UpperCamelCase__ = set_counts UpperCamelCase__ = max(lowerCamelCase_ ) UpperCamelCase__ = len(lowerCamelCase_ ) UpperCamelCase__ = [1] * num_sets UpperCamelCase__ = list(range(lowerCamelCase_ ) ) def lowerCamelCase__ ( self :str , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> bool: """simple docstring""" UpperCamelCase__ = self.get_parent(lowerCamelCase_ ) UpperCamelCase__ = self.get_parent(lowerCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCamelCase__ = 0 UpperCamelCase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCamelCase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCamelCase__ = 0 UpperCamelCase__ = src_parent UpperCamelCase__ = self.set_counts[src_parent] UpperCamelCase__ = max(self.max_set , lowerCamelCase_ ) return True def lowerCamelCase__ ( self :int , lowerCamelCase_ :int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set UpperCamelCase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
304
0