code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def A__ ( lowerCamelCase ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(lowerCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(lowerCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
548
lowerCamelCase_ : Tuple = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) lowerCamelCase_ : Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float: UpperCamelCase_: Any = from_type.lower().strip("""s""" ) UpperCamelCase_: int = to_type.lower().strip("""s""" ) UpperCamelCase_: Any = UNIT_SYMBOL.get(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: str = UNIT_SYMBOL.get(lowerCamelCase , lowerCamelCase ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase_: Optional[int] = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase_: Dict = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = METRIC_CONVERSION[from_sanitized] UpperCamelCase_: str = METRIC_CONVERSION[to_sanitized] UpperCamelCase_: Tuple = 1 if from_exponent > to_exponent: UpperCamelCase_: Union[str, Any] = from_exponent - to_exponent else: UpperCamelCase_: Dict = -(to_exponent - from_exponent) return value * pow(10 , lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
548
1
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : str = 10 def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = [1, 2, 3, 4] _lowerCamelCase : List[str] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCamelCase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCamelCase : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCamelCase , _lowerCamelCase : Optional[Any] = process_story(A ) self.assertEqual(A , [] ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = '' _lowerCamelCase , _lowerCamelCase : Dict = process_story(A ) self.assertEqual(A , [] ) self.assertEqual(A , [] ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCamelCase , _lowerCamelCase : Optional[int] = process_story(A ) _lowerCamelCase : str = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(A , A ) _lowerCamelCase : List[str] = ['It was the best of times.'] self.assertEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = torch.tensor([1, 2, 3, 4] ) _lowerCamelCase : Dict = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(A , 0 ).numpy() , expected.numpy() ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCamelCase : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 23 ).numpy() , expected.numpy() ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCamelCase : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 1 ).numpy() , expected.numpy() ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = 101 _lowerCamelCase : Tuple = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCamelCase : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCamelCase : List[Any] = compute_token_type_ids(A , A ) np.testing.assert_array_equal(A , A )
349
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : str = XLMRobertaTokenizer a_ : Tuple = XLMRobertaTokenizerFast a_ : List[str] = True a_ : Optional[Any] = True def _lowerCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Any = XLMRobertaTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = '<pad>' _lowerCamelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(A ) , 1002 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = XLMRobertaTokenizer(A , keep_accents=A ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _lowerCAmelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(A , **A ) _lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(A , **A ) _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : List[Any] = tokenizer_r.save_pretrained(A ) _lowerCamelCase : List[str] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCamelCase : Optional[int] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way _lowerCamelCase : str = tokenizer_r.from_pretrained(A ) _lowerCamelCase : Optional[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : int = tempfile.mkdtemp() _lowerCamelCase : int = tokenizer_r.save_pretrained(A , legacy_format=A ) _lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way _lowerCamelCase : Dict = tokenizer_r.from_pretrained(A ) _lowerCamelCase : Tuple = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : Dict = tempfile.mkdtemp() _lowerCamelCase : Any = tokenizer_r.save_pretrained(A , legacy_format=A ) _lowerCamelCase : str = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : int = tokenizer_r.from_pretrained(A ) _lowerCamelCase : str = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @cached_property def _lowerCAmelCase ( self ): return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def _lowerCAmelCase ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) _lowerCamelCase : Optional[int] = XLMRobertaTokenizer(f.name , keep_accents=A ) _lowerCamelCase : Optional[Any] = pickle.dumps(A ) pickle.loads(A ) def _lowerCAmelCase ( self ): if not self.test_rust_tokenizer: return _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = self.get_rust_tokenizer() _lowerCamelCase : List[str] = 'I was born in 92000, and this is falsé.' _lowerCamelCase : str = tokenizer.tokenize(A ) _lowerCamelCase : Optional[Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _lowerCamelCase : List[str] = tokenizer.encode(A , add_special_tokens=A ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _lowerCamelCase : Dict = self.get_rust_tokenizer() _lowerCamelCase : Tuple = tokenizer.encode(A ) _lowerCamelCase : Tuple = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Any = 'Hello World!' _lowerCamelCase : List[Any] = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _lowerCamelCase : Optional[int] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def _lowerCAmelCase ( self ): # fmt: off _lowerCamelCase : List[Any] = {'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
349
1
"""simple docstring""" import baseaa def _snake_case ( lowercase__ ): return baseaa.baaencode(string.encode('utf-8' ) ) def _snake_case ( lowercase__ ): return baseaa.baadecode(a_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = """Hello World!""" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
630
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCamelCase =models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCamelCase =tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCamelCase =tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) UpperCamelCase =train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) UpperCamelCase =test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions UpperCamelCase =tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) UpperCamelCase =tf.keras.preprocessing.image.img_to_array(test_image) UpperCamelCase =np.expand_dims(test_image, axis=0) UpperCamelCase =classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCamelCase ="Normal" if result[0][0] == 1: UpperCamelCase ="Abnormality detected"
208
0
from math import sqrt def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'status' must been from type bool" return status def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase__ ) ): for j in range(i + 1 , len(lowerCAmelCase__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase__ ): ans.append(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(lowerCAmelCase__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase__ ): while quotient != 1: if is_prime(lowerCAmelCase__ ) and (quotient % factor == 0): ans.append(lowerCAmelCase__ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(lowerCAmelCase__ ) __A = max(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type int" return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(lowerCAmelCase__ ) __A = min(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type int" return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase__ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase__ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (number > 2) and is_even(lowerCAmelCase__ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(lowerCAmelCase__ ) __A = len(lowerCAmelCase__ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (len(lowerCAmelCase__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(lowerCAmelCase__ ) __A = prime_factorization(lowerCAmelCase__ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(lowerCAmelCase__ , lowerCAmelCase__ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(lowerCAmelCase__ ) __A = prime_fac_a.count(lowerCAmelCase__ ) for _ in range(max(lowerCAmelCase__ , lowerCAmelCase__ ) ): ans *= n else: __A = prime_fac_a.count(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): ans *= n done.append(lowerCAmelCase__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): ans *= n done.append(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase__ ): ans += 1 # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and is_prime( lowerCAmelCase__ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert ( is_prime(lowerCAmelCase__ ) and is_prime(lowerCAmelCase__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase__ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase__ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase__ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase__ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(lowerCAmelCase__ ) # precondition assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(lowerCAmelCase__ ) , abs(lowerCAmelCase__ ) ) # precondition assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
205
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' return "".join(sorted(lowerCAmelCase__ ) ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' return word_by_signature[signature(lowerCAmelCase__ )] snake_case_ : str =Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') snake_case_ : List[str] =sorted({word.strip().lower() for word in data.splitlines()}) snake_case_ : str =collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case_ : List[str] ={word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
205
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __lowercase ( _lowercase , _lowercase ): @register_to_config def __init__(self , A = 1_2_8 , A = 2_5_6 , A = 20_00.0 , A = 7_6_8 , A = 1_2 , A = 1_2 , A = 6_4 , A = 2_0_4_8 , A = 0.1 , ): super().__init__() lowerCamelCase_ : Tuple = nn.Sequential( nn.Linear(A , d_model * 4 , bias=A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=A ) , nn.SiLU() , ) lowerCamelCase_ : List[str] = nn.Embedding(A , A ) lowerCamelCase_ : int = False lowerCamelCase_ : Dict = nn.Linear(A , A , bias=A ) lowerCamelCase_ : Optional[int] = nn.Dropout(p=A ) lowerCamelCase_ : Union[str, Any] = nn.ModuleList() for lyr_num in range(A ): # FiLM conditional T5 decoder lowerCamelCase_ : Tuple = DecoderLayer(d_model=A , d_kv=A , num_heads=A , d_ff=A , dropout_rate=A ) self.decoders.append(A ) lowerCamelCase_ : Optional[Any] = TaLayerNorm(A ) lowerCamelCase_ : Any = nn.Dropout(p=A ) lowerCamelCase_ : Union[str, Any] = nn.Linear(A , A , bias=A ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Union[str, Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCamelCase_ : Optional[int] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCamelCase_ : Any = self.conditioning_emb(A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCamelCase_ : Optional[Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCamelCase_ : Optional[Any] = torch.broadcast_to( torch.arange(A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCamelCase_ : Optional[Any] = self.position_encoding(A ) lowerCamelCase_ : str = self.continuous_inputs_projection(A ) inputs += position_encodings lowerCamelCase_ : str = self.dropout(A ) # decoder: No padding present. lowerCamelCase_ : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCamelCase_ : List[Any] = [(x, self.encoder_decoder_mask(A , A )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCamelCase_ : int = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCamelCase_ : Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCamelCase_ : List[Any] = lyr( A , conditioning_emb=A , encoder_hidden_states=A , encoder_attention_mask=A , )[0] lowerCamelCase_ : Dict = self.decoder_norm(A ) lowerCamelCase_ : Dict = self.post_dropout(A ) lowerCamelCase_ : Optional[int] = self.spec_out(A ) return spec_out class __lowercase ( nn.Module ): def __init__(self , A , A , A , A , A , A=1E-6 ): super().__init__() lowerCamelCase_ : str = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=A , d_kv=A , num_heads=A , dropout_rate=A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=A , d_kv=A , num_heads=A , dropout_rate=A , layer_norm_epsilon=A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=A , d_ff=A , dropout_rate=A , layer_norm_epsilon=A ) ) def UpperCAmelCase__ (self , A , A=None , A=None , A=None , A=None , A=None , ): lowerCamelCase_ : Any = self.layer[0]( A , conditioning_emb=A , attention_mask=A , ) if encoder_hidden_states is not None: lowerCamelCase_ : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) lowerCamelCase_ : Optional[Any] = self.layer[1]( A , key_value_states=A , attention_mask=A , ) # Apply Film Conditional Feed Forward layer lowerCamelCase_ : Dict = self.layer[-1](A , A ) return (hidden_states,) class __lowercase ( nn.Module ): def __init__(self , A , A , A , A ): super().__init__() lowerCamelCase_ : Union[str, Any] = TaLayerNorm(A ) lowerCamelCase_ : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=A ) lowerCamelCase_ : Union[str, Any] = Attention(query_dim=A , heads=A , dim_head=A , out_bias=A , scale_qk=A ) lowerCamelCase_ : Optional[int] = nn.Dropout(A ) def UpperCAmelCase__ (self , A , A=None , A=None , ): # pre_self_attention_layer_norm lowerCamelCase_ : Optional[Any] = self.layer_norm(A ) if conditioning_emb is not None: lowerCamelCase_ : str = self.FiLMLayer(A , A ) # Self-attention block lowerCamelCase_ : Optional[Any] = self.attention(A ) lowerCamelCase_ : Union[str, Any] = hidden_states + self.dropout(A ) return hidden_states class __lowercase ( nn.Module ): def __init__(self , A , A , A , A , A ): super().__init__() lowerCamelCase_ : Dict = Attention(query_dim=A , heads=A , dim_head=A , out_bias=A , scale_qk=A ) lowerCamelCase_ : int = TaLayerNorm(A , eps=A ) lowerCamelCase_ : Any = nn.Dropout(A ) def UpperCAmelCase__ (self , A , A=None , A=None , ): lowerCamelCase_ : Dict = self.layer_norm(A ) lowerCamelCase_ : Optional[int] = self.attention( A , encoder_hidden_states=A , attention_mask=attention_mask.squeeze(1 ) , ) lowerCamelCase_ : int = hidden_states + self.dropout(A ) return layer_output class __lowercase ( nn.Module ): def __init__(self , A , A , A , A ): super().__init__() lowerCamelCase_ : Optional[int] = TaDenseGatedActDense(d_model=A , d_ff=A , dropout_rate=A ) lowerCamelCase_ : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=A ) lowerCamelCase_ : Optional[int] = TaLayerNorm(A , eps=A ) lowerCamelCase_ : Dict = nn.Dropout(A ) def UpperCAmelCase__ (self , A , A=None ): lowerCamelCase_ : str = self.layer_norm(A ) if conditioning_emb is not None: lowerCamelCase_ : Tuple = self.film(A , A ) lowerCamelCase_ : Union[str, Any] = self.DenseReluDense(A ) lowerCamelCase_ : Any = hidden_states + self.dropout(A ) return hidden_states class __lowercase ( nn.Module ): def __init__(self , A , A , A ): super().__init__() lowerCamelCase_ : str = nn.Linear(A , A , bias=A ) lowerCamelCase_ : List[Any] = nn.Linear(A , A , bias=A ) lowerCamelCase_ : Optional[int] = nn.Linear(A , A , bias=A ) lowerCamelCase_ : Tuple = nn.Dropout(A ) lowerCamelCase_ : Optional[int] = NewGELUActivation() def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Tuple = self.act(self.wi_a(A ) ) lowerCamelCase_ : int = self.wi_a(A ) lowerCamelCase_ : Dict = hidden_gelu * hidden_linear lowerCamelCase_ : Optional[Any] = self.dropout(A ) lowerCamelCase_ : Dict = self.wo(A ) return hidden_states class __lowercase ( nn.Module ): def __init__(self , A , A=1E-6 ): super().__init__() lowerCamelCase_ : Optional[int] = nn.Parameter(torch.ones(A ) ) lowerCamelCase_ : Dict = eps def UpperCAmelCase__ (self , A ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowerCamelCase_ : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=A ) lowerCamelCase_ : str = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCamelCase_ : Any = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __lowercase ( nn.Module ): def UpperCAmelCase__ (self , A ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(A , 3.0 )) )) class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : str = nn.Linear(A , out_features * 2 , bias=A ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Union[str, Any] = self.scale_bias(A ) lowerCamelCase_, lowerCamelCase_ : List[Any] = torch.chunk(A , 2 , -1 ) lowerCamelCase_ : Optional[int] = x * (1 + scale) + shift return x
422
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase_ ( _lowercase , _lowercase=False ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = OmegaConf.load(_lowercase ) if display: print(yaml.dump(OmegaConf.to_container(_lowercase ) ) ) return config def lowercase_ ( _lowercase , _lowercase=None , _lowercase=None ) -> Optional[int]: '''simple docstring''' if conf_path is None: lowerCamelCase_ : int = '''./model_checkpoints/vqgan_only.yaml''' lowerCamelCase_ : Dict = load_config(_lowercase , display=_lowercase ) lowerCamelCase_ : List[str] = VQModel(**config.model.params ) if ckpt_path is None: lowerCamelCase_ : int = '''./model_checkpoints/vqgan_only.pt''' lowerCamelCase_ : Union[str, Any] = torch.load(_lowercase , map_location=_lowercase ) if ".ckpt" in ckpt_path: lowerCamelCase_ : str = sd['''state_dict'''] model.load_state_dict(_lowercase , strict=_lowercase ) model.to(_lowercase ) del sd return model def lowercase_ ( _lowercase , _lowercase ) -> List[str]: '''simple docstring''' lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Any = model.encode(_lowercase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowerCamelCase_ : Any = model.decode(_lowercase ) return xrec def lowercase_ ( _lowercase , _lowercase=False ) -> Any: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : Any = string.rsplit('''.''' , 1 ) if reload: lowerCamelCase_ : int = importlib.import_module(_lowercase ) importlib.reload(_lowercase ) return getattr(importlib.import_module(_lowercase , package=_lowercase ) , cls ) def lowercase_ ( _lowercase ) -> List[str]: '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def lowercase_ ( _lowercase , _lowercase , _lowercase=True , _lowercase=True ) -> Any: '''simple docstring''' lowerCamelCase_ : int = instantiate_from_config(_lowercase ) if sd is not None: model.load_state_dict(_lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' if ckpt: lowerCamelCase_ : List[Any] = torch.load(_lowercase , map_location='''cpu''' ) lowerCamelCase_ : int = pl_sd['''global_step'''] print(F"""loaded model from global step {global_step}.""" ) else: lowerCamelCase_ : Optional[int] = {'''state_dict''': None} lowerCamelCase_ : str = None lowerCamelCase_ : Any = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_lowercase , eval_mode=_lowercase )['''model'''] return model, global_step
422
1
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self: List[str], _lowercase: Optional[Any] = 6): '''simple docstring''' __lowerCAmelCase = None __lowerCAmelCase = None self.create_linked_list(lowerCAmelCase__) def _lowercase ( self: List[str], _lowercase: List[Any]): '''simple docstring''' __lowerCAmelCase = Node() __lowerCAmelCase = current_node __lowerCAmelCase = current_node __lowerCAmelCase = current_node for _ in range(1, lowerCAmelCase__): __lowerCAmelCase = Node() __lowerCAmelCase = current_node __lowerCAmelCase = previous_node __lowerCAmelCase = current_node __lowerCAmelCase = self.front __lowerCAmelCase = previous_node def _lowercase ( self: Optional[int]): '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _lowercase ( self: List[Any]): '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def _lowercase ( self: List[str], _lowercase: Tuple): '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): __lowerCAmelCase = self.rear.next if self.rear: __lowerCAmelCase = data def _lowercase ( self: Dict): '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __lowerCAmelCase = self.front.data __lowerCAmelCase = None return data __lowerCAmelCase = self.front __lowerCAmelCase = old_front.next __lowerCAmelCase = old_front.data __lowerCAmelCase = None return data def _lowercase ( self: Union[str, Any]): '''simple docstring''' if self.is_empty(): raise Exception("""Empty Queue""") def _lowercase ( self: Any): '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class lowercase_ : def __init__( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if __name__ == "__main__": import doctest doctest.testmod()
709
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCAmelCase : def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : Any=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : str=64 , lowerCAmelCase : Tuple=5 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Union[str, Any]=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Optional[int]=512 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : int=None , ): lowercase : int = parent lowercase : int = batch_size lowercase : str = seq_length lowercase : List[str] = is_training lowercase : str = use_input_mask lowercase : Any = use_token_type_ids lowercase : List[Any] = use_labels lowercase : str = vocab_size lowercase : Any = hidden_size lowercase : List[str] = num_hidden_layers lowercase : Tuple = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : List[str] = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Optional[int] = max_position_embeddings lowercase : Union[str, Any] = type_vocab_size lowercase : Optional[Any] = type_sequence_label_size lowercase : int = initializer_range lowercase : List[Any] = num_labels lowercase : Tuple = num_choices lowercase : Tuple = scope lowercase : Dict = vocab_size - 1 def _lowerCAmelCase ( self : Optional[Any] ): lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any = None if self.use_input_mask: lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCAmelCase ( self : List[Any] ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _lowerCAmelCase ( self : List[Any] ): lowercase , lowercase , lowercase , lowercase : Optional[int] = self.prepare_config_and_inputs() lowercase : Optional[int] = True return config, input_ids, input_mask, token_labels def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): lowercase : Optional[int] = GPTNeoXModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) lowercase : Dict = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Any ): lowercase : Optional[int] = True lowercase : int = GPTNeoXModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : int ): lowercase : Union[str, Any] = GPTNeoXForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : Optional[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ): lowercase : Dict = self.num_labels lowercase : Dict = GPTNeoXForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] ): lowercase : Tuple = self.num_labels lowercase : List[str] = GPTNeoXForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ): lowercase : int = self.num_labels lowercase : Optional[int] = GPTNeoXForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowercase : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : str ): lowercase : Any = True lowercase : Any = GPTNeoXForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # first forward pass lowercase : List[str] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) lowercase : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase : str = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase ) lowercase : Optional[int] = output_from_no_past['''hidden_states'''][0] lowercase : Optional[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )['''hidden_states'''][0] # select random slice lowercase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def _lowerCAmelCase ( self : Tuple ): lowercase : Optional[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Union[str, Any] = config_and_inputs lowercase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): a__: List[str] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) a__: int = (GPTNeoXForCausalLM,) if is_torch_available() else () a__: Optional[int] = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) a__: str = False a__: Tuple = False a__: List[Any] = False a__: Optional[int] = False def _lowerCAmelCase ( self : Union[str, Any] ): lowercase : Union[str, Any] = GPTNeoXModelTester(self ) lowercase : List[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=64 , num_attention_heads=8 ) def _lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Dict ): lowercase , lowercase , lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _lowerCAmelCase ( self : Any ): lowercase , lowercase , lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _lowerCAmelCase ( self : str ): # This regression test was failing with PyTorch < 1.3 lowercase , lowercase , lowercase , lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase : List[str] = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _lowerCAmelCase ( self : Tuple ): lowercase , lowercase , lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _lowerCAmelCase ( self : Any ): lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase ) def _lowerCAmelCase ( self : Tuple ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def _lowerCAmelCase ( self : str ): lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def _lowerCAmelCase ( self : Tuple ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def _lowerCAmelCase ( self : List[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase : List[str] ): lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : str = ids_tensor([1, 10] , config.vocab_size ) lowercase : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase : List[Any] = GPTNeoXModel(lowerCAmelCase ) original_model.to(lowerCAmelCase ) original_model.eval() lowercase : Union[str, Any] = original_model(lowerCAmelCase ).last_hidden_state lowercase : List[Any] = original_model(lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase : List[Any] = {'''type''': scaling_type, '''factor''': 10.0} lowercase : str = GPTNeoXModel(lowerCAmelCase ) scaled_model.to(lowerCAmelCase ) scaled_model.eval() lowercase : List[str] = scaled_model(lowerCAmelCase ).last_hidden_state lowercase : Any = scaled_model(lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def _lowerCAmelCase ( self : Any ): lowercase : Dict = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: lowercase : Dict = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase ) lowercase : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowerCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowercase : Union[str, Any] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' lowercase : Any = model.generate(**lowerCAmelCase , do_sample=lowerCAmelCase , max_new_tokens=20 ) lowercase : Optional[int] = tokenizer.batch_decode(lowerCAmelCase )[0] self.assertEqual(lowerCAmelCase , lowerCAmelCase )
583
from __future__ import annotations def UpperCamelCase__ ( _A: float , _A: float , _A: float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def UpperCamelCase__ ( _A: float , _A: float , _A: float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def UpperCamelCase__ ( _A: float , _A: float , _A: float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( _A , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
479
0
import argparse import os from accelerate.test_utils import execute_subprocess_async def __snake_case ( lowercase : Optional[int]=None ): if subparsers is not None: snake_case_ = subparsers.add_parser("test" ) else: snake_case_ = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=lowercase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=lowercase ) return parser def __snake_case ( lowercase : List[Any] ): snake_case_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ = script_name else: snake_case_ = f'''--config_file={args.config_file} {script_name}''' snake_case_ = ["accelerate-launch"] + test_args.split() snake_case_ = execute_subprocess_async(lowercase , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __snake_case ( ): snake_case_ = test_command_parser() snake_case_ = parser.parse_args() test_command(lowercase ) if __name__ == "__main__": main()
708
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( lowercase : str , lowercase : str , lowercase : str ): def get_masked_lm_array(lowercase : str ): snake_case_ = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case_ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: snake_case_ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_array(lowercase : str ): snake_case_ = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case_ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: snake_case_ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_layer_array(lowercase : int , lowercase : str ): snake_case_ = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case_ = tf.train.load_variable(lowercase , lowercase ) if "kernel" in name: snake_case_ = array.transpose() return torch.from_numpy(lowercase ) def get_encoder_attention_layer_array(lowercase : int , lowercase : str , lowercase : int ): snake_case_ = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case_ = tf.train.load_variable(lowercase , lowercase ) snake_case_ = array.reshape(lowercase ) if "kernel" in name: snake_case_ = array.transpose() return torch.from_numpy(lowercase ) print(f'''Loading model based on config from {config_path}...''' ) snake_case_ = BertConfig.from_json_file(lowercase ) snake_case_ = BertForMaskedLM(lowercase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): snake_case_ = model.bert.encoder.layer[layer_index] # Self-attention snake_case_ = layer.attention.self snake_case_ = get_encoder_attention_layer_array( lowercase , "_query_dense/kernel" , self_attn.query.weight.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_query_dense/bias" , self_attn.query.bias.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_key_dense/kernel" , self_attn.key.weight.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_key_dense/bias" , self_attn.key.bias.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_value_dense/kernel" , self_attn.value.weight.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output snake_case_ = layer.attention.output snake_case_ = get_encoder_attention_layer_array( lowercase , "_output_dense/kernel" , self_output.dense.weight.data.shape ) snake_case_ = get_encoder_attention_layer_array( lowercase , "_output_dense/bias" , self_output.dense.bias.data.shape ) snake_case_ = get_encoder_layer_array(lowercase , "_attention_layer_norm/gamma" ) snake_case_ = get_encoder_layer_array(lowercase , "_attention_layer_norm/beta" ) # Intermediate snake_case_ = layer.intermediate snake_case_ = get_encoder_layer_array(lowercase , "_intermediate_dense/kernel" ) snake_case_ = get_encoder_layer_array(lowercase , "_intermediate_dense/bias" ) # Output snake_case_ = layer.output snake_case_ = get_encoder_layer_array(lowercase , "_output_dense/kernel" ) snake_case_ = get_encoder_layer_array(lowercase , "_output_dense/bias" ) snake_case_ = get_encoder_layer_array(lowercase , "_output_layer_norm/gamma" ) snake_case_ = get_encoder_layer_array(lowercase , "_output_layer_norm/beta" ) # Embeddings snake_case_ = get_encoder_array("_position_embedding_layer/embeddings" ) snake_case_ = get_encoder_array("_type_embedding_layer/embeddings" ) snake_case_ = get_encoder_array("_embedding_norm_layer/gamma" ) snake_case_ = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head snake_case_ = model.cls.predictions.transform snake_case_ = get_masked_lm_array("dense/kernel" ) snake_case_ = get_masked_lm_array("dense/bias" ) snake_case_ = get_masked_lm_array("layer_norm/gamma" ) snake_case_ = get_masked_lm_array("layer_norm/beta" ) snake_case_ = get_masked_lm_array("embedding_table" ) # Pooling snake_case_ = BertPooler(config=lowercase ) snake_case_ = get_encoder_array("_pooler_layer/kernel" ) snake_case_ = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(lowercase ) # Integration test - should load without any errors ;) snake_case_ = BertForMaskedLM.from_pretrained(lowercase ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) lowercase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
420
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[Any] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 a_ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") a_ = get_tests_dir("""fixtures/vocab.json""") a_ = get_tests_dir("""fixtures""") class __snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = 0 def UpperCamelCase__( self ): '''simple docstring''' __A : str = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __A : str = WavaVecaConfig() __A : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) __A : List[str] = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) __A : Union[str, Any] = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __A : Union[str, Any] = WavaVecaFeatureExtractor() __A : Optional[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) __A : Union[str, Any] = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase ) # save in new folder processor.save_pretrained(__lowerCamelCase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''r''' ) as f: __A : Optional[int] = json.load(__lowerCamelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write(json.dumps(__lowerCamelCase ) ) __A : Tuple = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __A : Optional[int] = WavaVecaFeatureExtractor() __A : List[str] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) __A : List[Any] = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase ) # save in new folder processor.save_pretrained(__lowerCamelCase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''r''' ) as f: __A : int = json.load(__lowerCamelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write(json.dumps(__lowerCamelCase ) ) __A : Optional[int] = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __A : Optional[Any] = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(__lowerCamelCase ) # copy relevant files copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write('''{}''' ) __A : Union[str, Any] = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' with self.assertRaises(__lowerCamelCase ): __A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): __A : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) __A : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) __A : Union[str, Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) __A : Optional[int] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version __A : int = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) __A : Optional[int] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def UpperCamelCase__( self ): '''simple docstring''' try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __A : str = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: __A : Optional[Any] = os.path.join(__lowerCamelCase , '''vocab.txt''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __A : Dict = CustomTokenizer(__lowerCamelCase ) __A : Optional[Any] = CustomProcessor(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowerCamelCase ) __A : List[str] = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__( self ): '''simple docstring''' class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = False class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = False class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """AutoFeatureExtractor""" _lowerCamelCase = """AutoTokenizer""" _lowerCamelCase = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # If remote code is not set, the default is to use local classes. __A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __A : int = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __A : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__( self ): '''simple docstring''' __A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class __snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCamelCase__( cls ): '''simple docstring''' __A : Optional[int] = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def UpperCamelCase__( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = WavaVecaProcessor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCamelCase , '''test-processor''' ) , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) __A : Tuple = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = WavaVecaProcessor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCamelCase , '''test-processor-org''' ) , push_to_hub=__lowerCamelCase , use_auth_token=self._token , organization='''valid_org''' , ) __A : int = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCamelCase__( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __A : Any = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: __A : List[Any] = os.path.join(__lowerCamelCase , '''vocab.txt''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __A : Optional[int] = CustomTokenizer(__lowerCamelCase ) __A : Any = CustomProcessor(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) __A : Tuple = Repository(__lowerCamelCase , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(__lowerCamelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowerCamelCase , '''tokenizer_config.json''' ) ) as f: __A : Tuple = json.load(__lowerCamelCase ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_processing.py''' ) ) ) repo.push_to_hub() __A : Any = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
177
0
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __magic_name__( lowerCamelCase = ""): __lowerCAmelCase = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' __lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase).text, '''html.parser''') __lowerCAmelCase = soup.find_all('''td''', attrs='''titleColumn''') __lowerCAmelCase = soup.find_all('''td''', class_='''ratingColumn imdbRating''') return { title.a.text: float(rating.strong.text) for title, rating in zip(lowerCamelCase, lowerCamelCase) } def __magic_name__( lowerCamelCase = "IMDb_Top_250_Movies.csv"): __lowerCAmelCase = get_imdb_top_aaa_movies() with open(lowerCamelCase, '''w''', newline='''''') as out_file: __lowerCAmelCase = csv.writer(lowerCamelCase) writer.writerow(['''Movie title''', '''IMDb rating''']) for title, rating in movies.items(): writer.writerow([title, rating]) if __name__ == "__main__": write_movies()
717
'''simple docstring''' import json import sys def __magic_name__( lowerCamelCase, lowerCamelCase): with open(lowerCamelCase, encoding='''utf-8''') as f: __lowerCAmelCase = json.load(lowerCamelCase) __lowerCAmelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(lowerCamelCase): __lowerCAmelCase = results[benchmark_name] __lowerCAmelCase = benchmark_name.split('''/''')[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""") __lowerCAmelCase = '''| metric |''' __lowerCAmelCase = '''|--------|''' __lowerCAmelCase = '''| new / old (diff) |''' for metric_name in sorted(lowerCamelCase): __lowerCAmelCase = benchmark_res[metric_name] __lowerCAmelCase = metric_vals['''new'''] __lowerCAmelCase = metric_vals.get('''old''', lowerCamelCase) __lowerCAmelCase = metric_vals.get('''diff''', lowerCamelCase) __lowerCAmelCase = F""" {new_val:f}""" if isinstance(lowerCamelCase, (int, float)) else '''None''' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(lowerCamelCase, (int, float)) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(lowerCamelCase, (int, float)) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''') with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.writelines('''\n'''.join(lowerCamelCase)) if __name__ == "__main__": _UpperCAmelCase : str = sys.argv[1] _UpperCAmelCase : Optional[Any] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
474
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=13 , UpperCAmelCase__ : Any=32 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=[10, 20, 30, 40] , UpperCAmelCase__ : Any=[2, 2, 3, 2] , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[Any]=10 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[int]=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Dict=[2, 3, 4] , UpperCAmelCase__ : Optional[int]=None , ): '''simple docstring''' lowercase : List[Any] =parent lowercase : Tuple =batch_size lowercase : List[str] =image_size lowercase : List[Any] =num_channels lowercase : Union[str, Any] =num_stages lowercase : int =hidden_sizes lowercase : Any =depths lowercase : Tuple =is_training lowercase : str =use_labels lowercase : List[Any] =intermediate_size lowercase : int =hidden_act lowercase : Union[str, Any] =num_labels lowercase : Optional[int] =initializer_range lowercase : int =out_features lowercase : List[str] =out_indices lowercase : str =scope def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Dict =None if self.use_labels: lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_labels ) lowercase : Dict =self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Any ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' lowercase : Dict =ConvNextVaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : Optional[Any] =model(UpperCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : Dict =ConvNextVaForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : str =model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : Union[str, Any] =ConvNextVaBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : Optional[int] =model(UpperCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase : Optional[Any] =None lowercase : str =ConvNextVaBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : Optional[Any] =model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Any =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : str =config_and_inputs lowercase : Any ={'''pixel_values''': pixel_values} return config, inputs_dict def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : str =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : List[str] =config_and_inputs lowercase : Optional[Any] ={'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase_ = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Dict =ConvNextVaModelTester(self ) lowercase : str =ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Any ): '''simple docstring''' return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' pass def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase , lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_with_labels() lowercase : Optional[int] =True if model_class.__name__ in [ *get_values(UpperCAmelCase__ ), *get_values(UpperCAmelCase__ ), ]: continue lowercase : Dict =model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() lowercase : Optional[Any] =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) lowercase : List[Any] =model(**UpperCAmelCase__ ).loss loss.backward() def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_with_labels() lowercase : List[Any] =False lowercase : Any =True if ( model_class.__name__ in [*get_values(UpperCAmelCase__ ), *get_values(UpperCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue lowercase : Any =model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.gradient_checkpointing_enable() model.train() lowercase : Optional[Any] =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) lowercase : int =model(**UpperCAmelCase__ ).loss loss.backward() def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Dict =model_class(UpperCAmelCase__ ) lowercase : Union[str, Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : int =[*signature.parameters.keys()] lowercase : Optional[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple ): lowercase : int =model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): lowercase : Any =model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase : Dict =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : List[Any] =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] =True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Tuple =True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[Any] =ConvNextVaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def _lowerCAmelCase ( ) -> List[Any]: lowercase : Union[str, Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Tuple =ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(UpperCAmelCase__ ) lowercase : int =self.default_image_processor lowercase : List[str] =prepare_img() lowercase : List[Any] =preprocessor(images=UpperCAmelCase__ , return_tensors='''pt''' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): lowercase : Dict =model(**UpperCAmelCase__ ) # verify the logits lowercase : Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) lowercase : Tuple =torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
92
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[str] = "https://openaipublic.azureedge.net/jukebox/models/" __lowerCamelCase : List[Any] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def lowerCamelCase_(lowerCamelCase_ ) -> int: if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: UpperCAmelCase = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: UpperCAmelCase = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: UpperCAmelCase = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: UpperCAmelCase = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: UpperCAmelCase = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: UpperCAmelCase = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCAmelCase = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: UpperCAmelCase = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: UpperCAmelCase = {} import re UpperCAmelCase = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_encoder_block_conv_in.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' UpperCAmelCase = re_encoder_block_conv_in.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_encoder_block_resnet.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' UpperCAmelCase = prefix + resnet_block UpperCAmelCase = re_encoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_encoder_block_proj_out.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' UpperCAmelCase = re_encoder_block_proj_out.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_decoder_block_conv_out.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' UpperCAmelCase = re_decoder_block_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_decoder_block_resnet.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' UpperCAmelCase = prefix + resnet_block UpperCAmelCase = re_decoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_decoder_block_proj_in.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' UpperCAmelCase = re_decoder_block_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_prior_cond_conv_out.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' UpperCAmelCase = re_prior_cond_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_prior_cond_resnet.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' UpperCAmelCase = prefix + resnet_block UpperCAmelCase = re_prior_cond_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCamelCase_ ): UpperCAmelCase = re_prior_cond_proj_in.match(lowerCamelCase_ ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' UpperCAmelCase = re_prior_cond_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # keep original key else: UpperCAmelCase = original_key UpperCAmelCase = replace_key(lowerCamelCase_ ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: UpperCAmelCase = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) UpperCAmelCase = original_key UpperCAmelCase = original_key UpperCAmelCase = value return new_dict @torch.no_grad() def lowerCamelCase_(lowerCamelCase_=None , lowerCamelCase_=None ) -> str: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): UpperCAmelCase = requests.get(F'{PREFIX}{file}' , allow_redirects=lowerCamelCase_ ) os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=lowerCamelCase_ ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , "wb" ).write(r.content ) UpperCAmelCase = MODEL_MAPPING[model_name.split("/" )[-1]] UpperCAmelCase = JukeboxConfig.from_pretrained(lowerCamelCase_ ) UpperCAmelCase = JukeboxModel(lowerCamelCase_ ) UpperCAmelCase = [] UpperCAmelCase = {} for i, dict_name in enumerate(lowerCamelCase_ ): UpperCAmelCase = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["model"] UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith(".b" ): UpperCAmelCase = old_dic[k] elif k.endswith(".w" ): UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCAmelCase = old_dic[k] else: UpperCAmelCase = old_dic[k] UpperCAmelCase = "vqvae" if i == 0 else F'priors.{3 - i}' UpperCAmelCase = fix_jukebox_keys(lowerCamelCase_ , model.state_dict() , lowerCamelCase_ , lowerCamelCase_ ) weight_dict.append(lowerCamelCase_ ) UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) with open(F'{pytorch_dump_folder_path}/mapping.json' , "w" ) as txtfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) return weight_dict if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __lowerCamelCase : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
323
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __UpperCAmelCase ( a_): snake_case_ = os.path.join(args.tf_model_dir , 'parameters.json') snake_case_ = json.loads(open(a_).read()) if not params: raise ValueError( f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''') if not args.output.endswith('.pt'): snake_case_ = args.output + '.pt' snake_case_ = OrderedDict() with tf.device('/CPU:0'): snake_case_ = tf.train.load_checkpoint(args.tf_model_dir) snake_case_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ = reader.get_tensor(a_).astype(np.floataa) if key_name.endswith('/adam_m') or key_name.endswith('/adam_v'): continue if key_name.startswith('pasts/'): if key_name.startswith('pasts/mlp'): snake_case_ = int(key_name[9]) elif key_name.startswith('pasts/out'): snake_case_ = 8 snake_case_ = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(a_) elif key_name.startswith('model/moe'): snake_case_ = int(key_name[9:].split('/')[0]) if key_name.endswith('/switch_gating/kernel'): snake_case_ = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(a_) elif key_name.endswith('/softmlp/kernel'): snake_case_ = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(a_) elif key_name.endswith('/wo/kernel') or key_name.endswith('/wi/kernel'): snake_case_ = key_name[-9:-7] for i in range(16): snake_case_ = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) snake_case_ = ( vnp[i].transpose([1, 0]).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ = torch.tensor(a_) elif key_name.startswith('model/mlp'): snake_case_ = int(key_name[9:].split('/')[0]) if key_name.endswith('/p1/kernel'): snake_case_ = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(a_) elif key_name.endswith('/p1/bias'): snake_case_ = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(a_) elif key_name.endswith('/p2/kernel'): snake_case_ = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(a_) elif key_name.endswith('/p2/bias'): snake_case_ = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(a_) elif key_name.startswith('model/ln'): snake_case_ = int(key_name[8:].split('/')[0]) if key_name.endswith('/b'): snake_case_ = 'model.blocks.%d.feed_forward.norm.bias' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(a_) elif key_name.endswith('/g'): snake_case_ = 'model.blocks.%d.feed_forward.norm.weight' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(a_) elif key_name.startswith('model/att'): snake_case_ = int(key_name[9:].split('/')[0]) if key_name.endswith('/qkv/kernel'): snake_case_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ = state[:, 0, :, :] snake_case_ = state[:, 1, :, :] snake_case_ = state[:, 2, :, :] snake_case_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player snake_case_ = torch.tensor(a_) snake_case_ = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player snake_case_ = torch.tensor(a_) snake_case_ = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player snake_case_ = torch.tensor(a_) elif key_name.endswith('/o/kernel'): snake_case_ = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player snake_case_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(a_) elif key_name.startswith('model/an'): snake_case_ = int(key_name[8:].split('/')[0]) if key_name.endswith('/b'): snake_case_ = 'model.blocks.%d.self_attn.norm.bias' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(a_) elif key_name.endswith('/g'): snake_case_ = 'model.blocks.%d.self_attn.norm.weight' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(a_) elif ( key_name.startswith('model/wte') or key_name.startswith('model/wpe') or key_name.startswith('model/ete') ): snake_case_ = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] snake_case_ = 'model.%s.weight' % nlayer snake_case_ = vnp.copy() # same in embedded snake_case_ = torch.tensor(a_) if key_name.startswith('model/wte'): snake_case_ = 'lm_head.weight' snake_case_ = vnp.copy() # same in embedded snake_case_ = torch.tensor(a_) elif key_name.startswith('model/wob'): snake_case_ = 'final_logits_bias' snake_case_ = vnp.copy() # same in embedded snake_case_ = state.reshape((1, -1)) snake_case_ = torch.tensor(a_) elif key_name == "model/dense/kernel": snake_case_ = 'model.last_project.weight' snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(a_) elif key_name == "model/dense_1/bias": snake_case_ = 'model.last_project.bias' snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(a_) torch.save(a_ , args.output) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") lowercase = parser.parse_args() convert_tf_gptsan_to_pt(args)
703
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( snake_case_ , snake_case_ ): '''simple docstring''' @register_to_config def __init__( self , a = 3 , a = 3 , a = ("DownEncoderBlock2D",) , a = ("UpDecoderBlock2D",) , a = (64,) , a = 1 , a = "silu" , a = 3 , a = 32 , a = 2_56 , a = 32 , a = None , a = 0.18_215 , a = "group" , ) -> Any: super().__init__() # pass init params to Encoder snake_case_ = Encoder( in_channels=a , out_channels=a , down_block_types=a , block_out_channels=a , layers_per_block=a , act_fn=a , norm_num_groups=a , double_z=a , ) snake_case_ = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case_ = nn.Convad(a , a , 1 ) snake_case_ = VectorQuantizer(a , a , beta=0.25 , remap=a , sane_index_shape=a ) snake_case_ = nn.Convad(a , a , 1 ) # pass init params to Decoder snake_case_ = Decoder( in_channels=a , out_channels=a , up_block_types=a , block_out_channels=a , layers_per_block=a , act_fn=a , norm_num_groups=a , norm_type=a , ) @apply_forward_hook def _UpperCamelCase ( self , a , a = True ) -> VQEncoderOutput: snake_case_ = self.encoder(a ) snake_case_ = self.quant_conv(a ) if not return_dict: return (h,) return VQEncoderOutput(latents=a ) @apply_forward_hook def _UpperCamelCase ( self , a , a = False , a = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case_ , snake_case_ , snake_case_ = self.quantize(a ) else: snake_case_ = h snake_case_ = self.post_quant_conv(a ) snake_case_ = self.decoder(a , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=a ) def _UpperCamelCase ( self , a , a = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case_ = sample snake_case_ = self.encode(a ).latents snake_case_ = self.decode(a ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a )
607
0
'''simple docstring''' from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , snake_case : str ): """simple docstring""" _snake_case : Optional[Any] = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(a__ ) self.set_fail_transitions() def __UpperCAmelCase ( self : str , snake_case : int , snake_case : Optional[Any] ): """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __UpperCAmelCase ( self : Tuple , snake_case : Tuple ): """simple docstring""" _snake_case : Any = 0 for character in keyword: _snake_case : Optional[int] = self.find_next_state(a__ , a__ ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _snake_case : int = len(self.adlist ) - 1 else: _snake_case : str = next_state self.adlist[current_state]["output"].append(a__ ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case : Optional[Any] = deque() for node in self.adlist[0]["next_states"]: q.append(a__ ) _snake_case : Dict = 0 while q: _snake_case : List[str] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(a__ ) _snake_case : List[str] = self.adlist[r]['fail_state'] while ( self.find_next_state(a__ , self.adlist[child]['value'] ) is None and state != 0 ): _snake_case : Optional[Any] = self.adlist[state]['fail_state'] _snake_case : Optional[int] = self.find_next_state( a__ , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: _snake_case : str = 0 _snake_case : Dict = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def __UpperCAmelCase ( self : Union[str, Any] , snake_case : Tuple ): """simple docstring""" _snake_case : int = {} # returns a dict with keywords and list of its occurrences _snake_case : List[Any] = 0 for i in range(len(a__ ) ): while ( self.find_next_state(a__ , string[i] ) is None and current_state != 0 ): _snake_case : List[str] = self.adlist[current_state]['fail_state'] _snake_case : int = self.find_next_state(a__ , string[i] ) if next_state is None: _snake_case : Union[str, Any] = 0 else: _snake_case : int = next_state for key in self.adlist[current_state]["output"]: if key not in result: _snake_case : List[Any] = [] result[key].append(i - len(a__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
517
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCamelCase_( snake_case : Optional[int] ): '''simple docstring''' snake_case_ = torch.exp(snake_case ) snake_case_ = torch.sum(snake_case , dim=1 ) # sum of exp(x_i) snake_case_ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(snake_case ) - B / A class _snake_case ( nn.Module ): def __init__( self , a__ ) -> List[str]: '''simple docstring''' super().__init__() snake_case_ = config.output_attentions snake_case_ = config.output_hidden_states snake_case_ = nn.ModuleList([BertLayer(a__ ) for _ in range(config.num_hidden_layers )] ) snake_case_ = nn.ModuleList([BertHighway(a__ ) for _ in range(config.num_hidden_layers )] ) snake_case_ = [-1 for _ in range(config.num_hidden_layers )] def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' if (type(a__ ) is float) or (type(a__ ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case_ = x else: snake_case_ = x def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' snake_case_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowerCAmelCase__ ( self , a__ , a__=None , a__=None , a__=None , a__=None , ) -> Any: '''simple docstring''' snake_case_ = () snake_case_ = () snake_case_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = layer_module( a__ , a__ , head_mask[i] , a__ , a__ ) snake_case_ = layer_outputs[0] if self.output_attentions: snake_case_ = all_attentions + (layer_outputs[1],) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = current_outputs + (all_attentions,) snake_case_ = self.highway[i](a__ ) # logits, pooled_output if not self.training: snake_case_ = highway_exit[0] snake_case_ = entropy(a__ ) snake_case_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(a__ , i + 1 ) else: snake_case_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = outputs + (all_attentions,) snake_case_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , lowercase_ , ) class _snake_case ( lowercase_ ): def __init__( self , a__ ) -> Tuple: '''simple docstring''' super().__init__(a__ ) snake_case_ = config snake_case_ = BertEmbeddings(a__ ) snake_case_ = DeeBertEncoder(a__ ) snake_case_ = BertPooler(a__ ) self.init_weights() def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = value def lowerCAmelCase__ ( self , a__ ) -> Dict: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(a__ ) @add_start_docstrings_to_model_forward(a__ ) def lowerCAmelCase__ ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ) -> Optional[int]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: snake_case_ = input_ids.size() elif inputs_embeds is not None: snake_case_ = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) snake_case_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case_ = torch.ones(a__ , device=a__ ) if encoder_attention_mask is None: snake_case_ = torch.ones(a__ , device=a__ ) if token_type_ids is None: snake_case_ = torch.zeros(a__ , dtype=torch.long , device=a__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case_ = self.get_extended_attention_mask(a__ , a__ , a__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case_ = encoder_attention_mask[:, None, None, :] snake_case_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case_ = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case_ = self.get_head_mask(a__ , self.config.num_hidden_layers ) snake_case_ = self.embeddings( input_ids=a__ , position_ids=a__ , token_type_ids=a__ , inputs_embeds=a__ ) snake_case_ = self.encoder( a__ , attention_mask=a__ , head_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(a__ ) snake_case_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class _snake_case ( lowercase_ ): def __init__( self , a__ , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = message snake_case_ = exit_layer # start from 1! class _snake_case ( nn.Module ): def __init__( self , a__ ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case_ = BertPooler(a__ ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , config.num_labels ) def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(a__ ) # "return" pooler_output # BertModel snake_case_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case_ = bmodel_output[1] snake_case_ = self.dropout(a__ ) snake_case_ = self.classifier(a__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowercase_ , ) class _snake_case ( lowercase_ ): def __init__( self , a__ ) -> Tuple: '''simple docstring''' super().__init__(a__ ) snake_case_ = config.num_labels snake_case_ = config.num_hidden_layers snake_case_ = DeeBertModel(a__ ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(a__ ) def lowerCAmelCase__ ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=-1 , a__=False , ) -> List[Any]: '''simple docstring''' snake_case_ = self.num_layers try: snake_case_ = self.bert( a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case_ = outputs[1] snake_case_ = self.dropout(a__ ) snake_case_ = self.classifier(a__ ) snake_case_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ = e.message snake_case_ = e.exit_layer snake_case_ = outputs[0] if not self.training: snake_case_ = entropy(a__ ) snake_case_ = [] snake_case_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ = [] for highway_exit in outputs[-1]: snake_case_ = highway_exit[0] if not self.training: highway_logits_all.append(a__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(a__ ) if train_highway: snake_case_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ = (loss,) + outputs if not self.training: snake_case_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
400
0
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) set_seed(770) UpperCamelCase_ = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } UpperCamelCase_ = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } UpperCamelCase_ = os.path.dirname(os.path.abspath(__file__)) UpperCamelCase_ = os.path.join(os.path.expanduser("""~"""), """.cache""") UpperCamelCase_ = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def _lowerCAmelCase ( __magic_name__ : List[Any] , __magic_name__ : str=False ) -> Any: lowercase : List[str] =model_type if use_small: key += "_small" return os.path.join(_lowerCamelCase , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def _lowerCAmelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ) -> Optional[Any]: os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) hf_hub_download(repo_id=_lowerCamelCase , filename=_lowerCamelCase , local_dir=_lowerCamelCase ) def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : List[str]=False , __magic_name__ : List[str]="text" ) -> int: if model_type == "text": lowercase : Any =BarkSemanticModel lowercase : Dict =BarkSemanticConfig lowercase : Tuple =BarkSemanticGenerationConfig elif model_type == "coarse": lowercase : Optional[int] =BarkCoarseModel lowercase : Union[str, Any] =BarkCoarseConfig lowercase : Optional[Any] =BarkCoarseGenerationConfig elif model_type == "fine": lowercase : List[str] =BarkFineModel lowercase : Optional[Any] =BarkFineConfig lowercase : Any =BarkFineGenerationConfig else: raise NotImplementedError() lowercase : List[Any] =f'''{model_type}_small''' if use_small else model_type lowercase : Optional[int] =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_lowerCamelCase ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) lowercase : Optional[Any] =torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) # this is a hack lowercase : Any =checkpoint["model_args"] if "input_vocab_size" not in model_args: lowercase : Union[str, Any] =model_args["vocab_size"] lowercase : Tuple =model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase : Optional[Any] =model_args.pop('''n_head''' ) lowercase : Optional[Any] =model_args.pop('''n_embd''' ) lowercase : Any =model_args.pop('''n_layer''' ) lowercase : int =ConfigClass(**checkpoint['''model_args'''] ) lowercase : Optional[Any] =ModelClass(config=_lowerCamelCase ) lowercase : int =GenerationConfigClass() lowercase : Any =model_generation_config lowercase : Optional[int] =checkpoint["model"] # fixup checkpoint lowercase : Dict ="_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(_lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation lowercase : List[Any] =k[len(_lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: lowercase : List[str] =new_k.replace(_lowerCamelCase , new_layer_name_dict[old_layer_name] ) lowercase : Optional[int] =state_dict.pop(_lowerCamelCase ) lowercase : Tuple =set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase : str ={k for k in extra_keys if not k.endswith('''.attn.bias''' )} lowercase : str =set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase : str ={k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(_lowerCamelCase ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(_lowerCamelCase ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) lowercase : List[str] =model.num_parameters(exclude_embeddings=_lowerCamelCase ) lowercase : Optional[Any] =checkpoint["best_val_loss"].item() logger.info(f'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(_lowerCamelCase , 3 )} loss''' ) model.eval() model.to(_lowerCamelCase ) del checkpoint, state_dict return model def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : str=False , __magic_name__ : Any="text" ) -> List[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase : Dict ="cpu" # do conversion on cpu lowercase : Tuple =_get_ckpt_path(_lowerCamelCase , use_small=_lowerCamelCase ) lowercase : str =_load_model(_lowerCamelCase , _lowerCamelCase , model_type=_lowerCamelCase , use_small=_lowerCamelCase ) # load bark initial model lowercase : Optional[Any] =_bark_load_model(_lowerCamelCase , '''cpu''' , model_type=_lowerCamelCase , use_small=_lowerCamelCase ) if model_type == "text": lowercase : Tuple =bark_model["model"] if model.num_parameters(exclude_embeddings=_lowerCamelCase ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model lowercase : Union[str, Any] =5 lowercase : Tuple =10 if model_type in ["text", "coarse"]: lowercase : int =torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowercase : int =bark_model(_lowerCamelCase )[0] lowercase : Dict =model(_lowerCamelCase ) # take last logits lowercase : Dict =output_new_model_total.logits[:, [-1], :] else: lowercase : str =3 lowercase : Optional[int] =8 lowercase : List[str] =torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase : Optional[Any] =model(_lowerCamelCase , _lowerCamelCase ) lowercase : Optional[int] =bark_model(_lowerCamelCase , _lowerCamelCase ) lowercase : List[Any] =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('''initial and new outputs are not equal''' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Dict , ) -> Dict: lowercase : str =os.path.join(_lowerCamelCase , _lowerCamelCase ) lowercase : List[Any] =BarkSemanticConfig.from_pretrained(os.path.join(_lowerCamelCase , '''config.json''' ) ) lowercase : Dict =BarkCoarseConfig.from_pretrained(os.path.join(_lowerCamelCase , '''config.json''' ) ) lowercase : List[Any] =BarkFineConfig.from_pretrained(os.path.join(_lowerCamelCase , '''config.json''' ) ) lowercase : Dict =EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) lowercase : int =BarkSemanticModel.from_pretrained(_lowerCamelCase ) lowercase : Tuple =BarkCoarseModel.from_pretrained(_lowerCamelCase ) lowercase : Optional[Any] =BarkFineModel.from_pretrained(_lowerCamelCase ) lowercase : Optional[int] =EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) lowercase : int =BarkConfig.from_sub_model_configs( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase : Tuple =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase : Union[str, Any] =BarkModel(_lowerCamelCase ) lowercase : Any =semantic lowercase : Any =coarseAcoustic lowercase : Any =fineAcoustic lowercase : Tuple =codec lowercase : Any =bark_generation_config Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) bark.save_pretrained(_lowerCamelCase , repo_id=_lowerCamelCase , push_to_hub=_lowerCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") UpperCamelCase_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
717
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'vision-encoder-decoder' lowerCamelCase_ = True def __init__( self : Optional[int] , **UpperCAmelCase__ : Tuple ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) lowercase : Optional[Any] =kwargs.pop('''encoder''' ) lowercase : List[Any] =encoder_config.pop('''model_type''' ) lowercase : List[str] =kwargs.pop('''decoder''' ) lowercase : Dict =decoder_config.pop('''model_type''' ) lowercase : Union[str, Any] =AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase : List[str] =AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase : str =True @classmethod def lowerCamelCase_ ( cls : List[str] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Optional[int] ): '''simple docstring''' logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase : int =True lowercase : Optional[Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : int =copy.deepcopy(self.__dict__ ) lowercase : Union[str, Any] =self.encoder.to_dict() lowercase : Union[str, Any] =self.decoder.to_dict() lowercase : int =self.__class__.model_type return output class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return 1E-4 @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): @property def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : List[str] =OrderedDict() lowercase : Tuple ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} lowercase : Optional[int] ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} lowercase : int ={0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , ): '''simple docstring''' import torch lowercase : Optional[Any] =OrderedDict() lowercase : List[Any] =super().generate_dummy_inputs( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) lowercase , lowercase : Optional[int] =dummy_input['''input_ids'''].shape lowercase : Union[str, Any] =(batch, encoder_sequence, self._config.encoder_hidden_size) lowercase : List[str] =dummy_input.pop('''input_ids''' ) lowercase : Tuple =dummy_input.pop('''attention_mask''' ) lowercase : Union[str, Any] =torch.zeros(UpperCAmelCase__ ) return common_inputs class __SCREAMING_SNAKE_CASE ( lowercase__ ): @property def lowerCamelCase_ ( self : int ): '''simple docstring''' pass def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default" ): '''simple docstring''' lowercase : List[Any] =encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase__ , UpperCAmelCase__ )
88
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[str] = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowerCamelCase_ ( snake_case__ ): '''simple docstring''' __UpperCAmelCase = "poolformer" def __init__( self , snake_case_=3 , snake_case_=1_6 , snake_case_=1_6 , snake_case_=3 , snake_case_=4.0 , snake_case_=[2, 2, 6, 2] , snake_case_=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[2, 1, 1, 1] , snake_case_=4 , snake_case_=0.0 , snake_case_="gelu" , snake_case_=True , snake_case_=1e-5 , snake_case_=0.0_2 , **snake_case_ , ) -> List[Any]: '''simple docstring''' __lowercase = num_channels __lowercase = patch_size __lowercase = stride __lowercase = padding __lowercase = pool_size __lowercase = hidden_sizes __lowercase = mlp_ratio __lowercase = depths __lowercase = patch_sizes __lowercase = strides __lowercase = num_encoder_blocks __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_layer_scale __lowercase = layer_scale_init_value __lowercase = initializer_range super().__init__(**snake_case_ ) class lowerCamelCase_ ( snake_case__ ): '''simple docstring''' __UpperCAmelCase = version.parse("1.11" ) @property def A ( self ) -> Any: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A ( self ) -> Any: '''simple docstring''' return 2e-3
639
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
244
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowercase : Optional[Any] = logging.getLogger(__name__) class __A( __UpperCAmelCase ): def _UpperCamelCase ( self, A, A, A=None, A=None ): """simple docstring""" _UpperCamelCase = self.layer[current_layer](A, A, head_mask[current_layer] ) _UpperCamelCase = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class __A( __UpperCAmelCase ): def __init__( self, A ): """simple docstring""" super().__init__(A ) _UpperCamelCase = BertEncoderWithPabee(A ) self.init_weights() _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 0 def _UpperCamelCase ( self, A ): """simple docstring""" _UpperCamelCase = threshold def _UpperCamelCase ( self, A ): """simple docstring""" _UpperCamelCase = patience def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = 0 def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.inference_layers_num / self.inference_instances_num _UpperCamelCase = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(A ) @add_start_docstrings_to_model_forward(A ) def _UpperCamelCase ( self, A=None, A=None, A=None, A=None, A=None, A=None, A=None, A=None, A=None, A=None, A=False, ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _UpperCamelCase = input_ids.size() elif inputs_embeds is not None: _UpperCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _UpperCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCamelCase = torch.ones(A, device=A ) if token_type_ids is None: _UpperCamelCase = torch.zeros(A, dtype=torch.long, device=A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCamelCase = self.get_extended_attention_mask(A, A, A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = encoder_hidden_states.size() _UpperCamelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCamelCase = torch.ones(A, device=A ) _UpperCamelCase = self.invert_attention_mask(A ) else: _UpperCamelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCamelCase = self.get_head_mask(A, self.config.num_hidden_layers ) _UpperCamelCase = self.embeddings( input_ids=A, position_ids=A, token_type_ids=A, inputs_embeds=A ) _UpperCamelCase = embedding_output if self.training: _UpperCamelCase = [] for i in range(self.config.num_hidden_layers ): _UpperCamelCase = self.encoder.adaptive_forward( A, current_layer=A, attention_mask=A, head_mask=A ) _UpperCamelCase = self.pooler(A ) _UpperCamelCase = output_layers[i](output_dropout(A ) ) res.append(A ) elif self.patience == 0: # Use all layers for inference _UpperCamelCase = self.encoder( A, attention_mask=A, head_mask=A, encoder_hidden_states=A, encoder_attention_mask=A, ) _UpperCamelCase = self.pooler(encoder_outputs[0] ) _UpperCamelCase = [output_layers[self.config.num_hidden_layers - 1](A )] else: _UpperCamelCase = 0 _UpperCamelCase = None _UpperCamelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _UpperCamelCase = self.encoder.adaptive_forward( A, current_layer=A, attention_mask=A, head_mask=A ) _UpperCamelCase = self.pooler(A ) _UpperCamelCase = output_layers[i](A ) if regression: _UpperCamelCase = logits.detach() if patient_result is not None: _UpperCamelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _UpperCamelCase = 0 else: _UpperCamelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: _UpperCamelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A ) ): patient_counter += 1 else: _UpperCamelCase = 0 _UpperCamelCase = logits if patient_counter == self.patience: break _UpperCamelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class __A( __UpperCAmelCase ): def __init__( self, A ): """simple docstring""" super().__init__(A ) _UpperCamelCase = config.num_labels _UpperCamelCase = BertModelWithPabee(A ) _UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) _UpperCamelCase = nn.ModuleList( [nn.Linear(config.hidden_size, self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A ) def _UpperCamelCase ( self, A=None, A=None, A=None, A=None, A=None, A=None, A=None, ): """simple docstring""" _UpperCamelCase = self.bert( input_ids=A, attention_mask=A, token_type_ids=A, position_ids=A, head_mask=A, inputs_embeds=A, output_dropout=self.dropout, output_layers=self.classifiers, regression=self.num_labels == 1, ) _UpperCamelCase = (logits[-1],) if labels is not None: _UpperCamelCase = None _UpperCamelCase = 0 for ix, logits_item in enumerate(A ): if self.num_labels == 1: # We are doing regression _UpperCamelCase = MSELoss() _UpperCamelCase = loss_fct(logits_item.view(-1 ), labels.view(-1 ) ) else: _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits_item.view(-1, self.num_labels ), labels.view(-1 ) ) if total_loss is None: _UpperCamelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCamelCase = (total_loss / total_weights,) + outputs return outputs
105
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : Optional[int] = logging.get_logger(__name__) lowercase : List[Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class __A( __UpperCAmelCase ): __A = "detr" __A = ["past_key_values"] __A = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, A=True, A=None, A=3, A=100, A=6, A=2048, A=8, A=6, A=2048, A=8, A=0.0, A=0.0, A=True, A="relu", A=256, A=0.1, A=0.0, A=0.0, A=0.02, A=1.0, A=False, A="sine", A="resnet50", A=True, A=False, A=1, A=5, A=2, A=1, A=1, A=5, A=2, A=0.1, **A, ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A, A ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(A ) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=A, **A ) @property def _UpperCamelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _UpperCamelCase ( self ): """simple docstring""" return self.d_model @classmethod def _UpperCamelCase ( cls, A, **A ): """simple docstring""" return cls(backbone_config=A, **A ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class __A( __UpperCAmelCase ): __A = version.parse("1.11" ) @property def _UpperCamelCase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _UpperCamelCase ( self ): """simple docstring""" return 1E-5 @property def _UpperCamelCase ( self ): """simple docstring""" return 12
105
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _lowerCAmelCase: List[str] = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> str: a__ =[file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: a__ =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: a__ =[file for file in files if n_ not in file] else: a__ =[file for file in files if n_identifier not in file] a__ =ignore_files or [] ignore_files.append('__init__.py') a__ =[file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: a__ =file.split('.')[0] try: a__ =getattr(lowercase_ , lowercase_) a__ =doctest.DocTestSuite(lowercase_) a__ =unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"""{module_identifier} is not a module.""") else: a__ =doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =Path('src/transformers') a__ ='modeling' a__ =[ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =Path('src/transformers') a__ ='tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def __UpperCamelCase ( self) -> int: a__ =Path('src/transformers') a__ ='configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def __UpperCamelCase ( self) -> Tuple: a__ =Path('src/transformers') a__ =['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =Path('docs/source') a__ =['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = "vit_mae" def __init__( self , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3072 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=224 , lowercase__=16 , lowercase__=3 , lowercase__=True , lowercase__=16 , lowercase__=512 , lowercase__=8 , lowercase__=2048 , lowercase__=0.75 , lowercase__=False , **lowercase__ , ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Dict = patch_size SCREAMING_SNAKE_CASE_ : List[str] = num_channels SCREAMING_SNAKE_CASE_ : Optional[int] = qkv_bias SCREAMING_SNAKE_CASE_ : str = decoder_num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = decoder_hidden_size SCREAMING_SNAKE_CASE_ : Any = decoder_num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = decoder_intermediate_size SCREAMING_SNAKE_CASE_ : int = mask_ratio SCREAMING_SNAKE_CASE_ : Any = norm_pix_loss
68
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = False , lowercase__ = None , lowercase__ = True , lowercase__ = "arrow" , **lowercase__ , ): """simple docstring""" super().__init__( split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , **lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = load_from_cache_file SCREAMING_SNAKE_CASE_ : Optional[int] = file_format SCREAMING_SNAKE_CASE_ : List[Any] = Spark( df=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , working_dir=lowercase__ , **lowercase__ , ) def __lowerCamelCase ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
68
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _a ( unittest.TestCase ): def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0.0_2 ,) -> int: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = (image_size // patch_size) ** 2 _snake_case = num_patches + 1 def _lowercase ( self ) -> Optional[int]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,) return config, pixel_values def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: _snake_case = FlaxViTModel(config=_SCREAMING_SNAKE_CASE ) _snake_case = model(_SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _snake_case = (self.image_size, self.image_size) _snake_case = (self.patch_size, self.patch_size) _snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = FlaxViTForImageClassification(config=_SCREAMING_SNAKE_CASE ) _snake_case = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = FlaxViTForImageClassification(_SCREAMING_SNAKE_CASE ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _a ( __lowerCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase ( self ) -> None: _snake_case = FlaxViTModelTester(self ) _snake_case = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,has_text_modality=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def _lowercase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Tuple: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Optional[Any]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_SCREAMING_SNAKE_CASE ) _snake_case = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Optional[int]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _snake_case = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ): return model(pixel_values=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) with self.subTest("JIT Enabled" ): _snake_case = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _snake_case = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def _lowercase ( self ) -> Dict: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained("google/vit-base-patch16-224" ) _snake_case = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
185
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ : List[Any] = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[Any] = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCamelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
185
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 6008_5147_5143 ) -> Dict: try: snake_case__ = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) snake_case__ = 2 snake_case__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case__ = i while n % i == 0: snake_case__ = n // i i += 1 return int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
704
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase__ : int = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ : List[Any] = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase__ : List[Any] = spec.loader.load_module() lowerCamelCase__ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase__ : Union[str, Any] = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCamelCase__ : int = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def SCREAMING_SNAKE_CASE ( ) -> List[str]: snake_case__ = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case__ = False # source code of `config_class` snake_case__ = inspect.getsource(__lowerCAmelCase ) snake_case__ = _re_checkpoint.findall(__lowerCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case__ , snake_case__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case__ = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: snake_case__ = True break snake_case__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = '''\n'''.join(sorted(__lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
208
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def __UpperCAmelCase ( a_ , a_): snake_case_ = '\n'.join(a_) Path(a_).open('w').writelines(a_) lowercase = "patrickvonplaten/t5-tiny-random" lowercase = "sshleifer/bart-tiny-random" lowercase = "sshleifer/tiny-mbart" lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def _UpperCamelCase ( self , a ) -> Tuple: snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' snake_case_ = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() snake_case_ = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(a , a ) snake_case_ = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) snake_case_ = 'translation_en_to_de' if model == T5_TINY else 'summarization' snake_case_ = F''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(a , 'argv' , a ): run_generate() assert Path(a ).exists() # os.remove(Path(output_file_name)) def _UpperCamelCase ( self ) -> str: self.run_eval_tester(a ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _UpperCamelCase ( self , a ) -> List[str]: self.run_eval_tester(a ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _UpperCamelCase ( self , a ) -> str: snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' snake_case_ = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() snake_case_ = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } snake_case_ = Path(self.get_auto_remove_tmp_dir() ) snake_case_ = str(tmp_dir / 'scores.json' ) snake_case_ = str(tmp_dir / 'val.target' ) _dump_articles(a , text['en'] ) _dump_articles(a , text['de'] ) snake_case_ = 'translation_en_to_de' if model == T5_TINY else 'summarization' snake_case_ = F''' run_eval_search.py {model} {str(a )} {str(a )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(a , 'argv' , a ): with CaptureStdout() as cs: run_search() snake_case_ = [' num_beams | length_penalty', model, 'Best score args'] snake_case_ = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(a ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(a ).exists() os.remove(Path(a ) )
198
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase = TypeVar("T") class UpperCamelCase_ ( Generic[T] ): '''simple docstring''' lowerCAmelCase = 42 # Cache store of keys lowerCAmelCase = 42 # References of the keys in cache lowerCAmelCase = 1_0 # Maximum capacity of cache def __init__( self , a ) -> None: snake_case_ = deque() snake_case_ = set() if not n: snake_case_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: snake_case_ = n def _UpperCamelCase ( self , a ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case_ = self.dq_store.pop() self.key_reference.remove(a ) else: self.dq_store.remove(a ) self.dq_store.appendleft(a ) self.key_reference.add(a ) def _UpperCamelCase ( self ) -> None: for k in self.dq_store: print(a ) def __repr__( self ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() lowercase = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
198
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def A_ ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_UpperCAmelCase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def A_ ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def A_ ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_UpperCAmelCase ): http_head('https://huggingface.co' )
716
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) SCREAMING_SNAKE_CASE_ : Dict = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Any = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDPMScheduler() SCREAMING_SNAKE_CASE_ : str = AudioDiffusionPipeline(vqvae=_SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe(generator=_SCREAMING_SNAKE_CASE , steps=4 ) SCREAMING_SNAKE_CASE_ : Any = output.audios[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(generator=_SCREAMING_SNAKE_CASE , steps=4 , return_dict=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) SCREAMING_SNAKE_CASE_ : List[Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : List[Any] = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : Any = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 SCREAMING_SNAKE_CASE_ : Optional[int] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) SCREAMING_SNAKE_CASE_ : str = DDIMScheduler() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_vqvae_and_unet SCREAMING_SNAKE_CASE_ : int = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) np.random.seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) SCREAMING_SNAKE_CASE_ : str = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(raw_audio=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) SCREAMING_SNAKE_CASE_ : int = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : int = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 SCREAMING_SNAKE_CASE_ : Dict = self.dummy_unet_condition SCREAMING_SNAKE_CASE_ : Union[str, Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_SCREAMING_SNAKE_CASE , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) np.random.seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.rand((1, 1, 10) ) SCREAMING_SNAKE_CASE_ : Any = pipe(generator=_SCREAMING_SNAKE_CASE , encoding=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images[0] SCREAMING_SNAKE_CASE_ : Dict = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = torch_device SCREAMING_SNAKE_CASE_ : str = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe(generator=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = output.audios[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] SCREAMING_SNAKE_CASE_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
353
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCamelCase : """simple docstring""" def UpperCAmelCase__ ( self : Tuple , _A : Optional[int] ): """simple docstring""" raise NotImplementedError() def UpperCAmelCase__ ( self : Any ): """simple docstring""" raise NotImplementedError() class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Any , _A : "AutoTokenizer" , _A : bool = False , **_A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = skip_prompt __SCREAMING_SNAKE_CASE : Optional[Any] = decode_kwargs # variables used in the streaming process __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = True def UpperCAmelCase__ ( self : List[Any] , _A : str ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __SCREAMING_SNAKE_CASE : int = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): __SCREAMING_SNAKE_CASE : Any = text[self.print_len :] __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # If the last token is a CJK character, we print the characters. elif len(_A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __SCREAMING_SNAKE_CASE : Dict = text[self.print_len :] self.print_len += len(_A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(_A ) self.on_finalized_text(_A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" if len(self.token_cache ) > 0: __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __SCREAMING_SNAKE_CASE : Dict = text[self.print_len :] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : int = 0 else: __SCREAMING_SNAKE_CASE : Dict = '''''' __SCREAMING_SNAKE_CASE : List[Any] = True self.on_finalized_text(_A , stream_end=_A ) def UpperCAmelCase__ ( self : Any , _A : str , _A : bool = False ): """simple docstring""" print(_A , flush=_A , end='''''' if not stream_end else None ) def UpperCAmelCase__ ( self : str , _A : List[Any] ): """simple docstring""" if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , _A : "AutoTokenizer" , _A : bool = False , _A : Optional[float] = None , **_A : Optional[Any] ): """simple docstring""" super().__init__(_A , _A , **_A ) __SCREAMING_SNAKE_CASE : int = Queue() __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : int = timeout def UpperCAmelCase__ ( self : Optional[int] , _A : str , _A : bool = False ): """simple docstring""" self.text_queue.put(_A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : str ): """simple docstring""" return self def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
74
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A__ : List[str] = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase_ ,R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' ,) class __snake_case ( UpperCamelCase_ ): def UpperCAmelCase__ ( self : Optional[Any] , A_ : GenericTensor): if self.framework == "tf": lowerCAmelCase_ : Dict = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": lowerCAmelCase_ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A_) else: raise ValueError('''Unsupported framework''') return masked_index def UpperCAmelCase__ ( self : Tuple , A_ : GenericTensor): lowerCAmelCase_ : List[str] = self.get_masked_index(A_) lowerCAmelCase_ : Union[str, Any] = np.prod(masked_index.shape) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def UpperCAmelCase__ ( self : str , A_ : GenericTensor): if isinstance(A_ , A_): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A_) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : Optional[int]=None , **A_ : List[str]): if return_tensors is None: lowerCAmelCase_ : Optional[int] = self.framework lowerCAmelCase_ : Optional[Any] = self.tokenizer(A_ , return_tensors=A_) self.ensure_exactly_one_mask_token(A_) return model_inputs def UpperCAmelCase__ ( self : List[str] , A_ : str): lowerCAmelCase_ : Union[str, Any] = self.model(**A_) lowerCAmelCase_ : List[str] = model_inputs['''input_ids'''] return model_outputs def UpperCAmelCase__ ( self : str , A_ : str , A_ : str=5 , A_ : int=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowerCAmelCase_ : int = target_ids.shape[0] lowerCAmelCase_ : List[Any] = model_outputs['''input_ids'''][0] lowerCAmelCase_ : int = model_outputs['''logits'''] if self.framework == "tf": lowerCAmelCase_ : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] lowerCAmelCase_ : Optional[Any] = outputs.numpy() lowerCAmelCase_ : List[str] = outputs[0, masked_index, :] lowerCAmelCase_ : List[Any] = stable_softmax(A_ , axis=-1) if target_ids is not None: lowerCAmelCase_ : str = tf.gather_nd(tf.squeeze(A_ , 0) , target_ids.reshape(-1 , 1)) lowerCAmelCase_ : Any = tf.expand_dims(A_ , 0) lowerCAmelCase_ : List[Any] = tf.math.top_k(A_ , k=A_) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = topk.values.numpy(), topk.indices.numpy() else: lowerCAmelCase_ : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A_).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample lowerCAmelCase_ : Dict = outputs[0, masked_index, :] lowerCAmelCase_ : Dict = logits.softmax(dim=-1) if target_ids is not None: lowerCAmelCase_ : str = probs[..., target_ids] lowerCAmelCase_ , lowerCAmelCase_ : int = probs.topk(A_) lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[int] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): lowerCAmelCase_ : int = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place lowerCAmelCase_ : Dict = input_ids.numpy().copy() if target_ids is not None: lowerCAmelCase_ : str = target_ids[p].tolist() lowerCAmelCase_ : List[Any] = p # Filter padding out: lowerCAmelCase_ : Tuple = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowerCAmelCase_ : Any = self.tokenizer.decode(A_ , skip_special_tokens=A_) lowerCAmelCase_ : str = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p]), '''sequence''': sequence} row.append(A_) result.append(A_) if single_mask: return result[0] return result def UpperCAmelCase__ ( self : int , A_ : Any , A_ : List[Any]=None): if isinstance(A_ , A_): lowerCAmelCase_ : List[str] = [targets] try: lowerCAmelCase_ : Union[str, Any] = self.tokenizer.get_vocab() except Exception: lowerCAmelCase_ : str = {} lowerCAmelCase_ : Any = [] for target in targets: lowerCAmelCase_ : List[str] = vocab.get(A_ , A_) if id_ is None: lowerCAmelCase_ : Optional[int] = self.tokenizer( A_ , add_special_tokens=A_ , return_attention_mask=A_ , return_token_type_ids=A_ , max_length=1 , truncation=A_ , )['''input_ids'''] if len(A_) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''') continue lowerCAmelCase_ : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.""") target_ids.append(id_) lowerCAmelCase_ : List[str] = list(set(A_)) if len(A_) == 0: raise ValueError('''At least one target must be provided when passed.''') lowerCAmelCase_ : Tuple = np.array(A_) return target_ids def UpperCAmelCase__ ( self : List[Any] , A_ : Optional[int]=None , A_ : Tuple=None): lowerCAmelCase_ : int = {} if targets is not None: lowerCAmelCase_ : Optional[Any] = self.get_target_ids(A_ , A_) lowerCAmelCase_ : str = target_ids if top_k is not None: lowerCAmelCase_ : int = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''') return {}, {}, postprocess_params def __call__( self : str , A_ : Tuple , *A_ : Dict , **A_ : Optional[Any]): lowerCAmelCase_ : Tuple = super().__call__(A_ , **A_) if isinstance(A_ , A_) and len(A_) == 1: return outputs[0] return outputs
171
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : int =MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) SCREAMING_SNAKE_CASE_ : Dict =re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' ,lowerCAmelCase_ ) if matches: SCREAMING_SNAKE_CASE_ : Any =float(matches[1] ) SCREAMING_SNAKE_CASE_ : Optional[int] =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". SCREAMING_SNAKE_CASE_ : Tuple =1001 SCREAMING_SNAKE_CASE_ : Any ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ : str ='huggingface/label-files' SCREAMING_SNAKE_CASE_ : int =json.load(open(hf_hub_download(lowerCAmelCase_ ,lowerCAmelCase_ ,repo_type='dataset' ) ,'r' ) ) SCREAMING_SNAKE_CASE_ : str ={int(lowerCAmelCase_ ) + 1: v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Dict ='background' SCREAMING_SNAKE_CASE_ : List[Any] =idalabel SCREAMING_SNAKE_CASE_ : int ={v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ='http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ : int =Image.open(requests.get(lowerCAmelCase_ ,stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : str=False ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =get_mobilenet_va_config(lowerCAmelCase_ ) # Load 🤗 model SCREAMING_SNAKE_CASE_ : Tuple =MobileNetVaForImageClassification(lowerCAmelCase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor SCREAMING_SNAKE_CASE_ : str =MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} ,size={'shortest_edge': config.image_size + 32} ,) SCREAMING_SNAKE_CASE_ : str =image_processor(images=prepare_img() ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Dict =outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": SCREAMING_SNAKE_CASE_ : List[Any] =torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": SCREAMING_SNAKE_CASE_ : int =torch.tensor([-3.9440, -2.3141, -0.3333] ) else: SCREAMING_SNAKE_CASE_ : Dict =None if expected_logits is not None: assert torch.allclose(logits[0, :3] ,lowerCAmelCase_ ,atol=1e-4 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing to the hub...' ) SCREAMING_SNAKE_CASE_ : Optional[Any] ='google/' + model_name image_processor.push_to_hub(lowerCAmelCase_ ) model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
715
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowercase = Features({'text': Value('string' )} ) _lowercase = Features({'labels': ClassLabel} ) _lowercase = "text" _lowercase = "labels" def __lowerCamelCase ( self , __UpperCAmelCase ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ : List[str] =self.label_schema.copy() SCREAMING_SNAKE_CASE_ : Tuple =features[self.label_column] SCREAMING_SNAKE_CASE_ : str =label_schema return task_template @property def __lowerCamelCase ( self ): return { self.text_column: "text", self.label_column: "labels", }
153
0
def a_ ( __magic_name__ = 1_000 ) -> int: """simple docstring""" snake_case : Any = -1 snake_case : Any = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c snake_case : Optional[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) snake_case : Optional[Any] = n - a - b if c * c == (a * a + b * b): snake_case : int = a * b * c if candidate >= product: snake_case : List[Any] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
598
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( __a , unittest.TestCase): __a : Any = CTRLTokenizer __a : Any = False __a : str = False def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase : int = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] _UpperCAmelCase : Any = dict(zip(_A , range(len(_A ) ) ) ) _UpperCAmelCase : Optional[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] _UpperCAmelCase : int = {"""unk_token""": """<unk>"""} _UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def __snake_case ( self , **_A ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , _A ) -> Tuple: '''simple docstring''' _UpperCAmelCase : str = """adapt react readapt apt""" _UpperCAmelCase : List[str] = """adapt react readapt apt""" return input_text, output_text def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase : Optional[Any] = """adapt react readapt apt""" _UpperCAmelCase : int = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() _UpperCAmelCase : Any = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _UpperCAmelCase : Dict = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
238
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_: List[str] = logging.get_logger(__name__) def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : List[str] = DPTConfig() if "large" in checkpoint_url: snake_case__ : List[Any] = 1_024 snake_case__ : List[Any] = 4_096 snake_case__ : Optional[int] = 24 snake_case__ : Dict = 16 snake_case__ : Any = [5, 11, 17, 23] snake_case__ : List[str] = [256, 512, 1_024, 1_024] snake_case__ : Dict = (1, 384, 384) if "ade" in checkpoint_url: snake_case__ : str = True snake_case__ : List[Any] = 150 snake_case__ : str = """huggingface/label-files""" snake_case__ : List[str] = """ade20k-id2label.json""" snake_case__ : Dict = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="""dataset""")) , """r""")) snake_case__ : int = {int(UpperCAmelCase_): v for k, v in idalabel.items()} snake_case__ : Optional[Any] = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} snake_case__ : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_) def _lowercase ( UpperCAmelCase_): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case__ : Dict = name.replace("""pretrained.model""" , """dpt.encoder""") if "pretrained.model" in name: snake_case__ : Any = name.replace("""pretrained.model""" , """dpt.embeddings""") if "patch_embed" in name: snake_case__ : int = name.replace("""patch_embed""" , """patch_embeddings""") if "pos_embed" in name: snake_case__ : Tuple = name.replace("""pos_embed""" , """position_embeddings""") if "attn.proj" in name: snake_case__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""") if "proj" in name and "project" not in name: snake_case__ : str = name.replace("""proj""" , """projection""") if "blocks" in name: snake_case__ : Dict = name.replace("""blocks""" , """layer""") if "mlp.fc1" in name: snake_case__ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""") if "mlp.fc2" in name: snake_case__ : Dict = name.replace("""mlp.fc2""" , """output.dense""") if "norm1" in name: snake_case__ : Optional[Any] = name.replace("""norm1""" , """layernorm_before""") if "norm2" in name: snake_case__ : int = name.replace("""norm2""" , """layernorm_after""") if "scratch.output_conv" in name: snake_case__ : int = name.replace("""scratch.output_conv""" , """head""") if "scratch" in name: snake_case__ : List[str] = name.replace("""scratch""" , """neck""") if "layer1_rn" in name: snake_case__ : Any = name.replace("""layer1_rn""" , """convs.0""") if "layer2_rn" in name: snake_case__ : Tuple = name.replace("""layer2_rn""" , """convs.1""") if "layer3_rn" in name: snake_case__ : str = name.replace("""layer3_rn""" , """convs.2""") if "layer4_rn" in name: snake_case__ : Dict = name.replace("""layer4_rn""" , """convs.3""") if "refinenet" in name: snake_case__ : Dict = int(name[len("""neck.refinenet""") : len("""neck.refinenet""") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case__ : Optional[int] = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: snake_case__ : int = name.replace("""out_conv""" , """projection""") if "resConfUnit1" in name: snake_case__ : Any = name.replace("""resConfUnit1""" , """residual_layer1""") if "resConfUnit2" in name: snake_case__ : Tuple = name.replace("""resConfUnit2""" , """residual_layer2""") if "conv1" in name: snake_case__ : Optional[Any] = name.replace("""conv1""" , """convolution1""") if "conv2" in name: snake_case__ : Tuple = name.replace("""conv2""" , """convolution2""") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case__ : List[str] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""") if "pretrained.act_postprocess2.0.project.0" in name: snake_case__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""") if "pretrained.act_postprocess3.0.project.0" in name: snake_case__ : Any = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""") if "pretrained.act_postprocess4.0.project.0" in name: snake_case__ : Union[str, Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""") # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case__ : str = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""") if "pretrained.act_postprocess1.4" in name: snake_case__ : Optional[int] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""") if "pretrained.act_postprocess2.3" in name: snake_case__ : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""") if "pretrained.act_postprocess2.4" in name: snake_case__ : Optional[int] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""") if "pretrained.act_postprocess3.3" in name: snake_case__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""") if "pretrained.act_postprocess4.3" in name: snake_case__ : Any = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""") if "pretrained.act_postprocess4.4" in name: snake_case__ : Union[str, Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""") if "pretrained" in name: snake_case__ : Optional[Any] = name.replace("""pretrained""" , """dpt""") if "bn" in name: snake_case__ : int = name.replace("""bn""" , """batch_norm""") if "head" in name: snake_case__ : Optional[Any] = name.replace("""head""" , """head.head""") if "encoder.norm" in name: snake_case__ : Optional[int] = name.replace("""encoder.norm""" , """layernorm""") if "auxlayer" in name: snake_case__ : Tuple = name.replace("""auxlayer""" , """auxiliary_head.head""") return name def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Dict = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight') snake_case__ : Tuple = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[: config.hidden_size, :] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :] def _lowercase ( ): """simple docstring""" snake_case__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_).raw) return im @torch.no_grad() def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ , snake_case__ : List[Any] = get_dpt_config(UpperCAmelCase_) # load original state_dict from URL snake_case__ : Union[str, Any] = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location="""cpu""") # remove certain keys remove_ignore_keys_(UpperCAmelCase_) # rename keys for key in state_dict.copy().keys(): snake_case__ : Optional[Any] = state_dict.pop(UpperCAmelCase_) snake_case__ : Optional[int] = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_) # load HuggingFace model snake_case__ : Union[str, Any] = DPTForSemanticSegmentation(UpperCAmelCase_) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase_) model.load_state_dict(UpperCAmelCase_) model.eval() # Check outputs on an image snake_case__ : Optional[int] = 480 if """ade""" in checkpoint_url else 384 snake_case__ : Dict = DPTImageProcessor(size=UpperCAmelCase_) snake_case__ : Tuple = prepare_img() snake_case__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors="""pt""") # forward pass snake_case__ : List[str] = model(**UpperCAmelCase_).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase_).predicted_depth # Assert logits snake_case__ : int = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: snake_case__ : str = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(UpperCAmelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , UpperCAmelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , UpperCAmelCase_) ) Path(UpperCAmelCase_).mkdir(exist_ok=UpperCAmelCase_) print(F'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(UpperCAmelCase_) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(UpperCAmelCase_) if push_to_hub: print("""Pushing model to hub...""") model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase_ , UpperCAmelCase_) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=UpperCAmelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase_ , UpperCAmelCase_) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=UpperCAmelCase_ , ) if __name__ == "__main__": lowercase_: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowercase_: List[str] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
127
from __future__ import annotations from typing import Any class lowercase__ : """simple docstring""" def __init__( self : str , __a : int ): snake_case__ : Any = num_of_nodes snake_case__ : list[list[int]] = [] snake_case__ : dict[int, int] = {} def lowercase ( self : Any , __a : int , __a : int , __a : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase ( self : int , __a : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase ( self : Dict , __a : int ): if self.m_component[u_node] != u_node: for k in self.m_component: snake_case__ : Optional[Any] = self.find_component(__a ) def lowercase ( self : Union[str, Any] , __a : list[int] , __a : int , __a : int ): if component_size[u_node] <= component_size[v_node]: snake_case__ : int = v_node component_size[v_node] += component_size[u_node] self.set_component(__a ) elif component_size[u_node] >= component_size[v_node]: snake_case__ : Any = self.find_component(__a ) component_size[u_node] += component_size[v_node] self.set_component(__a ) def lowercase ( self : int ): snake_case__ : Tuple = [] snake_case__ : Optional[Any] = 0 snake_case__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) snake_case__ : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: snake_case__ , snake_case__ , snake_case__ : List[Any] = edge snake_case__ : int = self.m_component[u] snake_case__ : Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): snake_case__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(__a , __a ): snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = edge snake_case__ : Optional[int] = self.m_component[u] snake_case__ : Tuple = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__a , __a , __a ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 snake_case__ : Union[str, Any] = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def _lowercase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
127
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __magic_name__ ( lowercase , lowercase , lowercase ) -> Any: """simple docstring""" if gpta_config_file == "": lowercase_ : Any = GPTaConfig() else: lowercase_ : Optional[Any] = GPTaConfig.from_json_file(_lowerCamelCase ) lowercase_ : Tuple = GPTaModel(_lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model lowercase_ : List[str] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase_ : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _lowerCamelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) UpperCAmelCase_ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
458
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = abs(_lowerCamelCase ) __snake_case = 0 while n > 0: res += n % 10 n //= 10 return res def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = abs(_lowerCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' return sum(int(_lowerCamelCase ) for c in str(abs(_lowerCamelCase ) ) ) def _UpperCamelCase ()-> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase : Callable , _lowerCamelCase : int ) -> None: __snake_case = f'''{func.__name__}({value})''' __snake_case = timeit(f'''__main__.{call}''' , setup='''import __main__''' ) print(f'''{call:56} = {func(_lowerCamelCase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _A = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _A = direct_transformers_import(PATH_TO_TRANSFORMERS) _A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _A = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _A = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowercase_ ( __UpperCAmelCase ) -> str: lowerCAmelCase__ : Union[str, Any] = None # source code of `config_class` lowerCAmelCase__ : List[Any] = inspect.getsource(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = _re_checkpoint.findall(__UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): lowerCAmelCase__ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase__ : Dict = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase__ : Optional[Any] = ckpt_name break return checkpoint def lowercase_ ( ) -> Dict: lowerCAmelCase__ : Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCAmelCase__ : Dict = get_checkpoint_from_config_class(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowerCAmelCase__ : int = """\n""".join(sorted(__UpperCAmelCase ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
507
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = inspect.getfile(accelerate.test_utils ) lowerCAmelCase__ : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCAmelCase__ : List[str] = test_metrics @require_cpu def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self.test_metrics.main() @require_multi_gpu def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowerCAmelCase__ : str = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
507
1
from __future__ import annotations def _lowerCamelCase ( lowerCamelCase_: list[int] , lowerCamelCase_: int ): '''simple docstring''' A : list[list[int]] = [] A : list[int] = [] A : Tuple = 0 A : Tuple = sum(lowerCamelCase_ ) create_state_space_tree(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return result def _lowerCamelCase ( lowerCamelCase_: list[int] , lowerCamelCase_: int , lowerCamelCase_: int , lowerCamelCase_: list[int] , lowerCamelCase_: list[list[int]] , lowerCamelCase_: int , ): '''simple docstring''' if sum(lowerCamelCase_ ) > max_sum or (remaining_nums_sum + sum(lowerCamelCase_ )) < max_sum: return if sum(lowerCamelCase_ ) == max_sum: result.append(lowerCamelCase_ ) return for index in range(lowerCamelCase_ , len(lowerCamelCase_ ) ): create_state_space_tree( lowerCamelCase_ , lowerCamelCase_ , index + 1 , [*path, nums[index]] , lowerCamelCase_ , remaining_nums_sum - nums[index] , ) UpperCamelCase_ = [3, 34, 4, 12, 5, 2] UpperCamelCase_ = 9 UpperCamelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
256
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = 'upernet' def __init__( self : Optional[int] , snake_case_ : Dict=None , snake_case_ : Any=512 , snake_case_ : str=0.02 , snake_case_ : Optional[int]=[1, 2, 3, 6] , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[Any]=0.4 , snake_case_ : Dict=384 , snake_case_ : List[Any]=256 , snake_case_ : str=1 , snake_case_ : Dict=False , snake_case_ : str=255 , **snake_case_ : Optional[Any] , ): """simple docstring""" super().__init__(**snake_case_ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A : List[str] = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(snake_case_ , snake_case_ ): A : Union[str, Any] = backbone_config.get('''model_type''' ) A : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A : str = config_class.from_dict(snake_case_ ) A : List[str] = backbone_config A : str = hidden_size A : Any = initializer_range A : str = pool_scales A : List[str] = use_auxiliary_head A : Optional[Any] = auxiliary_loss_weight A : Tuple = auxiliary_in_channels A : Optional[Any] = auxiliary_channels A : int = auxiliary_num_convs A : Any = auxiliary_concat_input A : Union[str, Any] = loss_ignore_index def _UpperCAmelCase ( self : str ): """simple docstring""" A : Optional[Any] = copy.deepcopy(self.__dict__ ) A : str = self.backbone_config.to_dict() A : List[str] = self.__class__.model_type return output
256
1
import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = [10, 20, 30, 40, 50, 60] _UpperCamelCase = [2, 4, 6, 8, 10, 12] _UpperCamelCase = 1_00 self.assertEqual(kp.calc_profit(a , a , a ) , 2_10 ) def A_ ( self ) -> str: '''simple docstring''' self.assertRaisesRegex(a , """max_weight must greater than zero.""" ) def A_ ( self ) -> Dict: '''simple docstring''' self.assertRaisesRegex(a , """Weight can not be negative.""" ) def A_ ( self ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(a , """Profit can not be negative.""" ) def A_ ( self ) -> Dict: '''simple docstring''' self.assertRaisesRegex(a , """max_weight must greater than zero.""" ) def A_ ( self ) -> Dict: '''simple docstring''' self.assertRaisesRegex( a , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
202
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = StableDiffusionInpaintPipeline UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : int = frozenset([] ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) _UpperCamelCase = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) _UpperCamelCase = CLIPTextModel(a ) _UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ ( self , a , a=0 ) -> List[Any]: '''simple docstring''' _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(a ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a ).startswith("""mps""" ): _UpperCamelCase = torch.manual_seed(a ) else: _UpperCamelCase = torch.Generator(device=a ).manual_seed(a ) _UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionInpaintPipeline(**a ) _UpperCamelCase = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) _UpperCamelCase = self.get_dummy_inputs(a ) _UpperCamelCase = sd_pipe(**a ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A_ ( self ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = PNDMScheduler.from_pretrained(a , subfolder="""scheduler""" ) _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="""np""" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
202
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=768 )-> Optional[Any]: '''simple docstring''' super().__init__(__UpperCAmelCase ) lowerCAmelCase__ = proj_size lowerCAmelCase__ = CLIPVisionModel(__UpperCAmelCase ) lowerCAmelCase__ = PaintByExampleMapper(__UpperCAmelCase ) lowerCAmelCase__ = nn.LayerNorm(config.hidden_size ) lowerCAmelCase__ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowerCAmelCase__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.model(pixel_values=__UpperCAmelCase ) lowerCAmelCase__ = clip_output.pooler_output lowerCAmelCase__ = self.mapper(latent_states[:, None] ) lowerCAmelCase__ = self.final_layer_norm(__UpperCAmelCase ) lowerCAmelCase__ = self.proj_out(__UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowercase__ ( nn.Module ): def __init__( self , __UpperCAmelCase )-> Dict: '''simple docstring''' super().__init__() lowerCAmelCase__ = (config.num_hidden_layers + 1) // 5 lowerCAmelCase__ = config.hidden_size lowerCAmelCase__ = 1 lowerCAmelCase__ = nn.ModuleList( [ BasicTransformerBlock(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , activation_fn="gelu" , attention_bias=__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ] ) def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' for block in self.blocks: lowerCAmelCase__ = block(__UpperCAmelCase ) return hidden_states
339
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCAmelCase__ = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__UpperCAmelCase ) , torch_builtin(__UpperCAmelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(__UpperCAmelCase ) , gelu_new(__UpperCAmelCase ) ) ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCAmelCase__ = get_activation("gelu" ) lowerCAmelCase__ = get_activation("gelu_10" ) lowerCAmelCase__ = torch_builtin(__UpperCAmelCase ) lowerCAmelCase__ = geluaa(__UpperCAmelCase ) lowerCAmelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__UpperCAmelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCAmelCase ( self )-> int: '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__UpperCAmelCase ): get_activation("bogus" ) with self.assertRaises(__UpperCAmelCase ): get_activation(__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = get_activation("gelu" ) lowerCAmelCase__ = 1 lowerCAmelCase__ = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ = acta.a
339
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Any ): '''simple docstring''' lowercase__ = data lowercase__ = None class _UpperCAmelCase : """simple docstring""" def __init__( self : str ): '''simple docstring''' lowercase__ = None lowercase__ = None def __iter__( self : Dict ): '''simple docstring''' lowercase__ = self.head while self.head: yield node.data lowercase__ = node.next if node == self.head: break def __len__( self : Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : List[Any] ): '''simple docstring''' return "->".join(str(lowerCamelCase ) for item in iter(self ) ) def lowercase__ ( self : int, lowerCamelCase : Any ): '''simple docstring''' self.insert_nth(len(self ), lowerCamelCase ) def lowercase__ ( self : List[Any], lowerCamelCase : Any ): '''simple docstring''' self.insert_nth(0, lowerCamelCase ) def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : Any ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) lowercase__ = Node(lowerCamelCase ) if self.head is None: lowercase__ = new_node # first node points itself lowercase__ = lowercase__ = new_node elif index == 0: # insert at head lowercase__ = self.head lowercase__ = lowercase__ = new_node else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = new_node if index == len(self ) - 1: # insert at tail lowercase__ = new_node def lowercase__ ( self : int ): '''simple docstring''' return self.delete_nth(0 ) def lowercase__ ( self : Dict ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) lowercase__ = self.head if self.head == self.tail: # just one node lowercase__ = lowercase__ = None elif index == 0: # delete head node lowercase__ = self.tail.next.next lowercase__ = self.head.next else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = temp.next.next if index == len(self ) - 1: # delete at tail lowercase__ = temp return delete_node.data def lowercase__ ( self : Tuple ): '''simple docstring''' return len(self ) == 0 def a ( ): '''simple docstring''' lowercase__ = CircularLinkedList() assert len(lowerCamelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCamelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCamelCase_ ) == i circular_linked_list.insert_nth(lowerCamelCase_ , i + 1 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ): '''simple docstring''' lowercase__ = size if size is not None else {'''shortest_edge''': 20} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size def lowercase__ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass def lowercase__ ( self : Any ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self : str ): '''simple docstring''' # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
671
0
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE_ = [1] for i in range(2 , __UpperCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = list(range(__UpperCAmelCase ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE_ = factorials.pop() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__UpperCAmelCase , __UpperCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
31
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
1
import os from collections.abc import Iterator def _lowercase ( _UpperCAmelCase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCamelCase =[d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip("""./""" ) def _lowercase ( _UpperCAmelCase ) -> Dict: return F"""{i * " "}*""" if i else "\n##" def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase =old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}""" ) return new_path def _lowercase ( _UpperCAmelCase = "." ) -> None: lowerCamelCase ="""""" for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCamelCase , lowerCamelCase =os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCamelCase =print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =(filepath.count(os.sep ) + 1) if filepath else 0 lowerCamelCase =F"""{filepath}/{filename}""".replace(""" """ , """%20""" ) lowerCamelCase =os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F"""{md_prefix(_UpperCAmelCase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('''.''')
713
import math from collections.abc import Iterator from itertools import takewhile def _lowercase ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( ) -> Iterator[int]: lowerCamelCase =2 while True: if is_prime(_UpperCAmelCase ): yield num num += 1 def _lowercase ( _UpperCAmelCase = 2_00_00_00 ) -> int: return sum(takewhile(lambda _UpperCAmelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
269
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
"""simple docstring""" a__ : Optional[int] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] a__ : Optional[int] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] a__ : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] a__ : Union[str, Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] a__ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] a__ : Optional[Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] a__ : Union[str, Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] a__ : Optional[int] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
589
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __A = TypeVar('T') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" def __init__( self: Tuple , __A: list[T] , __A: Callable[[T, T], T] ) -> str: _A = None _A = len(__SCREAMING_SNAKE_CASE ) _A = [any_type for _ in range(self.N )] + arr _A = fnc self.build() def __A ( self: Optional[int] ) -> int: for p in range(self.N - 1 , 0 , -1 ): _A = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self: List[Any] , __A: int , __A: T ) -> int: p += self.N _A = v while p > 1: _A = p // 2 _A = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self: List[Any] , __A: int , __A: int ) -> List[str]: # noqa: E741 _A ,_A = l + self.N, r + self.N _A = None while l <= r: if l % 2 == 1: _A = self.st[l] if res is None else self.fn(__SCREAMING_SNAKE_CASE , self.st[l] ) if r % 2 == 0: _A = self.st[r] if res is None else self.fn(__SCREAMING_SNAKE_CASE , self.st[r] ) _A ,_A = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __A = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __A = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __A = SegmentTree(test_array, min) __A = SegmentTree(test_array, max) __A = SegmentTree(test_array, lambda a, b: a + b) def __A ( ): '''simple docstring''' for i in range(len(_UpperCAmelCase ) ): for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): _A = reduce(_UpperCAmelCase , test_array[i : j + 1] ) _A = reduce(_UpperCAmelCase , test_array[i : j + 1] ) _A = reduce(lambda _lowercase , _lowercase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) assert max_range == max_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) assert sum_range == sum_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) test_all_segments() for index, value in test_updates.items(): __A = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
716
import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = jnp.floataa def __A ( self: Tuple ) -> Tuple: _A = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __A: Dict ) -> Tuple: _A ,_A ,_A ,_A = hidden_states.shape _A = jax.image.resize( __A , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) _A = self.conv(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = jnp.floataa def __A ( self: List[str] ) -> Tuple: _A = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Union[str, Any] , __A: List[Any] ) -> Union[str, Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _A = self.conv(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = None A_ = 0.0 A_ = None A_ = jnp.floataa def __A ( self: Dict ) -> Dict: _A = self.in_channels if self.out_channels is None else self.out_channels _A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _A = nn.Conv( __A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _A = nn.Dense(__A , dtype=self.dtype ) _A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _A = nn.Dropout(self.dropout_prob ) _A = nn.Conv( __A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _A = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _A = None if use_nin_shortcut: _A = nn.Conv( __A , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self: Dict , __A: List[Any] , __A: List[Any] , __A: Any=True ) -> List[Any]: _A = hidden_states _A = self.norma(__A ) _A = nn.swish(__A ) _A = self.conva(__A ) _A = self.time_emb_proj(nn.swish(__A ) ) _A = jnp.expand_dims(jnp.expand_dims(__A , 1 ) , 1 ) _A = hidden_states + temb _A = self.norma(__A ) _A = nn.swish(__A ) _A = self.dropout(__A , __A ) _A = self.conva(__A ) if self.conv_shortcut is not None: _A = self.conv_shortcut(__A ) return hidden_states + residual
62
0
def __lowerCamelCase ( _lowercase = 600851475143 ) -> int: try: UpperCamelCase = int(_lowercase ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) UpperCamelCase = 2 UpperCamelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCamelCase = i while n % i == 0: UpperCamelCase = n // i i += 1 return int(_lowercase ) if __name__ == "__main__": print(F"{solution() = }")
282
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu""" def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : Tuple=100 , __magic_name__ : Optional[int]=" " ) -> List[str]: lowercase : List[Any] =text.split(__magic_name__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__magic_name__ ) , __magic_name__ )] def _lowerCAmelCase ( __magic_name__ : dict ) -> dict: lowercase , lowercase : int =[], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__magic_name__ ): titles.append(title if title is not None else '''''' ) texts.append(__magic_name__ ) return {"title": titles, "text": texts} def _lowerCAmelCase ( __magic_name__ : dict , __magic_name__ : DPRContextEncoder , __magic_name__ : DPRContextEncoderTokenizerFast ) -> dict: lowercase : Dict =ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__magic_name__ , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] lowercase : Optional[int] =ctx_encoder(input_ids.to(device=__magic_name__ ) , return_dict=__magic_name__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _lowerCAmelCase ( __magic_name__ : "RagExampleArguments" , __magic_name__ : "ProcessingArguments" , __magic_name__ : "IndexHnswArguments" , ) -> str: ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase : Tuple =load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase : Optional[int] =dataset.map(__magic_name__ , batched=__magic_name__ , num_proc=processing_args.num_proc ) # And compute the embeddings lowercase : Any =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__magic_name__ ) lowercase : Any =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowercase : Optional[int] =Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space lowercase : Optional[Any] =dataset.map( partial(__magic_name__ , ctx_encoder=__magic_name__ , ctx_tokenizer=__magic_name__ ) , batched=__magic_name__ , batch_size=processing_args.batch_size , features=__magic_name__ , ) # And finally save your dataset lowercase : Optional[Any] =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__magic_name__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase : Union[str, Any] =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__magic_name__ ) # And save the index lowercase : Dict =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__magic_name__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=str(Path(lowercase__ ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) lowerCamelCase_ = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) lowerCamelCase_ = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) lowerCamelCase_ = field( default=str(Path(lowercase__ ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=lowercase__ , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) lowerCamelCase_ = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=7_68 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) lowerCamelCase_ = field( default=1_28 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
92
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Dict ={ "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'cvt' def __init__( self : Union[str, Any] , _UpperCamelCase : Any=3 , _UpperCamelCase : List[str]=[7, 3, 3] , _UpperCamelCase : Dict=[4, 2, 2] , _UpperCamelCase : List[Any]=[2, 1, 1] , _UpperCamelCase : Union[str, Any]=[64, 192, 384] , _UpperCamelCase : Optional[int]=[1, 3, 6] , _UpperCamelCase : Dict=[1, 2, 10] , _UpperCamelCase : List[Any]=[4.0, 4.0, 4.0] , _UpperCamelCase : str=[0.0, 0.0, 0.0] , _UpperCamelCase : Any=[0.0, 0.0, 0.0] , _UpperCamelCase : List[str]=[0.0, 0.0, 0.1] , _UpperCamelCase : int=[True, True, True] , _UpperCamelCase : Tuple=[False, False, True] , _UpperCamelCase : str=["dw_bn", "dw_bn", "dw_bn"] , _UpperCamelCase : List[Any]=[3, 3, 3] , _UpperCamelCase : Tuple=[1, 1, 1] , _UpperCamelCase : List[str]=[2, 2, 2] , _UpperCamelCase : List[str]=[1, 1, 1] , _UpperCamelCase : int=[1, 1, 1] , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : int=1E-1_2 , **_UpperCamelCase : List[str] , ) ->List[Any]: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : int = num_channels _lowerCamelCase : Tuple = patch_sizes _lowerCamelCase : List[Any] = patch_stride _lowerCamelCase : List[Any] = patch_padding _lowerCamelCase : int = embed_dim _lowerCamelCase : Dict = num_heads _lowerCamelCase : Tuple = depth _lowerCamelCase : Any = mlp_ratio _lowerCamelCase : Tuple = attention_drop_rate _lowerCamelCase : Dict = drop_rate _lowerCamelCase : Any = drop_path_rate _lowerCamelCase : Dict = qkv_bias _lowerCamelCase : int = cls_token _lowerCamelCase : int = qkv_projection_method _lowerCamelCase : List[Any] = kernel_qkv _lowerCamelCase : List[str] = padding_kv _lowerCamelCase : Dict = stride_kv _lowerCamelCase : Any = padding_q _lowerCamelCase : int = stride_q _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps
15
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch UpperCamelCase__ : int = random.Random() def __UpperCamelCase( _A : Any , _A : Union[str, Any]=1.0 , _A : str=None , _A : List[str]=None ): '''simple docstring''' if rng is None: UpperCAmelCase__ : int = global_rng UpperCAmelCase__ : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=7 ,lowerCamelCase_=400 ,lowerCamelCase_=2000 ,lowerCamelCase_=1 ,lowerCamelCase_=0.0 ,lowerCamelCase_=16000 ,lowerCamelCase_=True ,lowerCamelCase_=80 ,lowerCamelCase_=16 ,lowerCamelCase_=64 ,lowerCamelCase_="hann_window" ,lowerCamelCase_=80 ,lowerCamelCase_=7600 ,lowerCamelCase_=1e-10 ,lowerCamelCase_=True ,) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Optional[int] = min_seq_length UpperCAmelCase__ : int = max_seq_length UpperCAmelCase__ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : List[Any] = feature_size UpperCAmelCase__ : List[str] = padding_value UpperCAmelCase__ : Optional[Any] = sampling_rate UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : Tuple = num_mel_bins UpperCAmelCase__ : Optional[Any] = hop_length UpperCAmelCase__ : Any = win_length UpperCAmelCase__ : Optional[int] = win_function UpperCAmelCase__ : List[str] = fmin UpperCAmelCase__ : str = fmax UpperCAmelCase__ : Optional[Any] = mel_floor UpperCAmelCase__ : Any = return_attention_mask def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase__ ( self ,lowerCamelCase_=False ,lowerCamelCase_=False ) -> Tuple: '''simple docstring''' def _flatten(lowerCamelCase_ ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: UpperCAmelCase__ : Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : List[Any] = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs def lowerCAmelCase__ ( self ,lowerCamelCase_=False ,lowerCamelCase_=False ) -> List[str]: '''simple docstring''' if equal_length: UpperCAmelCase__ : Optional[int] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Tuple = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch class _lowercase ( lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = SpeechTaFeatureExtractor def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase__ : List[str] = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' self.assertTrue(np.all(np.mean(lowerCamelCase_ ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ ,axis=0 ) - 1 ) < 1e-3 ) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Dict = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] UpperCAmelCase__ : int = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : Optional[Any] = feat_extract(speech_inputs[0] ,return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] ,return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Union[str, Any] = feat_extract(lowerCamelCase_ ,return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(lowerCamelCase_ ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ ,lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] UpperCAmelCase__ : Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase__ : Optional[Any] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase__ : str = feat_extract(lowerCamelCase_ ,padding=lowerCamelCase_ ,max_length=lowerCamelCase_ ,return_tensors='''np''' ) UpperCAmelCase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Optional[Any] = range(800 ,1400 ,200 ) UpperCAmelCase__ : Dict = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase__ : List[str] = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase__ : List[str] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = feat_extract(lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding=lowerCamelCase_ ) UpperCAmelCase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] UpperCAmelCase__ : List[str] = feat_extract( lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=1000 ,padding='''max_length''' ,return_tensors='''np''' ) UpperCAmelCase__ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] UpperCAmelCase__ : Tuple = feat_extract( lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=1000 ,padding='''longest''' ,return_tensors='''np''' ) UpperCAmelCase__ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCAmelCase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] UpperCAmelCase__ : Optional[Any] = feat_extract( lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=2000 ,padding='''longest''' ,return_tensors='''np''' ) UpperCAmelCase__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : str = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : List[str] = feature_extractor.pad([{'''input_values''': inputs}] ,return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : int = feature_extractor.pad([{'''input_values''': inputs}] ,return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] UpperCAmelCase__ : Dict = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase__ : int = feature_extractor(audio_target=lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase__ : Any = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[int] = feature_extractor(lowerCamelCase_ ,return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feature_extractor(lowerCamelCase_ ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ ,lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Union[str, Any] = np.asarray(lowerCamelCase_ ) UpperCAmelCase__ : str = feature_extractor(lowerCamelCase_ ,return_tensors='''np''' ).input_values UpperCAmelCase__ : Union[str, Any] = feature_extractor(lowerCamelCase_ ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ ,lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Any = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Any = feat_extract.model_input_names[0] UpperCAmelCase__ : Dict = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) for x, y in zip(lowerCamelCase_ ,processed_features[input_name] ) ) ) UpperCAmelCase__ : str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase_ ) UpperCAmelCase__ : str = BatchFeature({input_name: speech_inputs} ,tensor_type='''np''' ) UpperCAmelCase__ : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : List[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase_ ) UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : List[Any] = feat_extract.model_input_names[0] UpperCAmelCase__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ,tensor_type='''pt''' ) UpperCAmelCase__ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Any = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase__ : List[str] = feat_extract.model_input_names[0] UpperCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Union[str, Any] = feat_extract.num_mel_bins # hack! UpperCAmelCase__ : int = feat_extract.pad(lowerCamelCase_ ,padding='''longest''' ,return_tensors='''np''' )[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(lowerCamelCase_ ,padding='''longest''' ,return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : str = self.feat_extract_dict UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : List[str] = self.feature_extraction_class(**lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase__ : List[Any] = [len(lowerCamelCase_ ) for x in speech_inputs] UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Dict = feat_extract.num_mel_bins # hack! UpperCAmelCase__ : str = feat_extract.pad(lowerCamelCase_ ,padding='''longest''' ,return_tensors='''np''' ) self.assertIn('''attention_mask''' ,lowerCamelCase_ ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ : Tuple = self.feat_extract_dict UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[int] = self.feature_extraction_class(**lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase__ : List[str] = [len(lowerCamelCase_ ) for x in speech_inputs] UpperCAmelCase__ : Optional[Any] = feat_extract.model_input_names[0] UpperCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : str = min(lowerCamelCase_ ) UpperCAmelCase__ : Tuple = feat_extract.num_mel_bins # hack! UpperCAmelCase__ : Union[str, Any] = feat_extract.pad( lowerCamelCase_ ,padding='''max_length''' ,max_length=lowerCamelCase_ ,truncation=lowerCamelCase_ ,return_tensors='''np''' ) self.assertIn('''attention_mask''' ,lowerCamelCase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> int: '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : str = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(lowerCamelCase_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on UpperCAmelCase__ : str = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Union[str, Any] = feature_extractor(lowerCamelCase_ ,return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape ,(1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] ,lowerCamelCase_ ,atol=1e-6 ) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Dict = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on UpperCAmelCase__ : int = self._load_datasamples(1 ) UpperCAmelCase__ : List[str] = SpeechTaFeatureExtractor() UpperCAmelCase__ : str = feature_extractor(audio_target=lowerCamelCase_ ,return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape ,(1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] ,lowerCamelCase_ ,atol=1e-4 ) )
614
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__) UpperCamelCase__ : Dict = 50 # max width of layer names UpperCamelCase__ : Any = 70 # max width of quantizer names def __UpperCamelCase( _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=_A , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=_A , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=_A , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=_A , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=_A , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=_A , type=_A , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_A , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def __UpperCamelCase( _A : Tuple ): '''simple docstring''' if args.calibrator == "max": UpperCAmelCase__ : str = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) UpperCAmelCase__ : Dict = '''histogram''' elif args.calibrator == "mse": UpperCAmelCase__ : Any = '''histogram''' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) UpperCAmelCase__ : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=_A ) UpperCAmelCase__ : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_A ) quant_nn.QuantLinear.set_default_quant_desc_weight(_A ) def __UpperCamelCase( _A : Any , _A : Any , _A : Any=False , _A : Optional[Any]=False ): '''simple docstring''' logger.info('''Configuring Model for Quantization''' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_A , ['''embeddings'''] , which='''weight''' , _disabled=_A ) if args.quant_disable: set_quantizer_by_name(_A , [''''''] , _disabled=_A ) if args.quant_disable_keyword: set_quantizer_by_name(_A , args.quant_disable_keyword , _disabled=_A ) if args.quant_disable_layer_module: set_quantizer_by_name(_A , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_A ) if args.quant_enable_layer_module: set_quantizer_by_name(_A , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_A ) if args.recalibrate_weights: recalibrate_weights(_A ) if args.fuse_qkv: fuse_qkv(_A , _A ) if args.clip_gelu: clip_gelu(_A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_A ) def __UpperCamelCase( _A : str ): '''simple docstring''' logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def __UpperCamelCase( _A : Tuple , _A : Any ): '''simple docstring''' logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_A ) def __UpperCamelCase( _A : Dict , _A : Optional[int] ): '''simple docstring''' def fusea(_A : Optional[Any] , _A : Optional[Any] , _A : Dict ): for mod in [qq, qk, qv]: if not hasattr(_A , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return UpperCAmelCase__ : Dict = qq._amax.detach().item() UpperCAmelCase__ : List[Any] = qk._amax.detach().item() UpperCAmelCase__ : Optional[int] = qv._amax.detach().item() UpperCAmelCase__ : Dict = max(_A , _A , _A ) qq._amax.fill_(_A ) qk._amax.fill_(_A ) qv._amax.fill_(_A ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __UpperCamelCase( _A : Dict , _A : Any ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): UpperCAmelCase__ : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_A ) UpperCAmelCase__ : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def __UpperCamelCase( _A : str ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase__ : int = mod.weight.shape[0] UpperCAmelCase__ : Tuple = mod._weight_quantizer._amax.detach() UpperCAmelCase__ : Optional[int] = torch.ones(_A , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def __UpperCamelCase( _A : List[str] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase__ : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase__ : Optional[Any] = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase__ : int = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_A , keepdims=_A ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) UpperCAmelCase__ : str = amax def __UpperCamelCase( _A : Dict , _A : Tuple=25 , _A : Any=1_80 , _A : Optional[int]=None ): '''simple docstring''' if ignore is None: UpperCAmelCase__ : Dict = [] elif not isinstance(_A , _A ): UpperCAmelCase__ : int = [ignore] UpperCAmelCase__ : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(_A , '''weight''' ): continue UpperCAmelCase__ : Dict = max(_A , len(_A ) ) for name, mod in model.named_modules(): UpperCAmelCase__ : str = getattr(_A , '''_input_quantizer''' , _A ) UpperCAmelCase__ : int = getattr(_A , '''_weight_quantizer''' , _A ) if not hasattr(_A , '''weight''' ): continue if type(_A ) in ignore: continue if [True for s in ignore if type(_A ) is str and s in name]: continue UpperCAmelCase__ : Dict = F'''Act:{input_q.extra_repr()}''' UpperCAmelCase__ : int = F'''Wgt:{weight_q.extra_repr()}''' UpperCAmelCase__ : Dict = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_A ) <= line_width: logger.info(_A ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def __UpperCamelCase( _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = 0 for name, mod in model.named_modules(): if isinstance(_A , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def __UpperCamelCase( _A : Dict , _A : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if quantizer_mod is not None: assert hasattr(_A , _A ) setattr(_A , _A , _A ) else: logger.warning(F'''{name} has no {quantizer}''' ) def __UpperCamelCase( _A : str , _A : Any , _A : Optional[int]="both" , **_A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_A , _A , '''_input_quantizer''' , _A , _A ) if which in ["weight", "both"]: set_quantizer(_A , _A , '''_weight_quantizer''' , _A , _A ) logger.info(_A ) def __UpperCamelCase( _A : Tuple , _A : List[str] , **_A : Optional[Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_input_quantizer''' ) or hasattr(_A , '''_weight_quantizer''' ): for n in names: if re.search(_A , _A ): set_quantizers(_A , _A , **_A ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(_A , _A ): UpperCAmelCase__ : str = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_A , _A , _A ) logger.info(_A )
614
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _lowerCamelCase = logging.get_logger('''transformers.models.speecht5''') _lowerCamelCase = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } _lowerCamelCase = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } _lowerCamelCase = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } _lowerCamelCase = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } _lowerCamelCase = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } _lowerCamelCase = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } _lowerCamelCase = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } _lowerCamelCase = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } _lowerCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _lowerCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCamelCase = [] _lowerCamelCase = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] _lowerCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] _lowerCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] _lowerCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any ): '''simple docstring''' for attribute in key.split('''.''' ): __SCREAMING_SNAKE_CASE : List[Any] = getattr(lowercase_ , lowercase_ ) if weight_type is not None: __SCREAMING_SNAKE_CASE : Any = getattr(lowercase_ , lowercase_ ).shape else: __SCREAMING_SNAKE_CASE : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE : Tuple = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE : int = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "running_mean": __SCREAMING_SNAKE_CASE : Any = value elif weight_type == "running_var": __SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "num_batches_tracked": __SCREAMING_SNAKE_CASE : Any = value else: __SCREAMING_SNAKE_CASE : Dict = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : int ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __SCREAMING_SNAKE_CASE : Dict = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase_ ( lowercase_ : Any , lowercase_ : str , lowercase_ : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : int = [] if task == "s2t": __SCREAMING_SNAKE_CASE : Tuple = hf_model.speechta.encoder.prenet.feature_encoder __SCREAMING_SNAKE_CASE : int = MAPPING_S2T __SCREAMING_SNAKE_CASE : Optional[Any] = IGNORE_KEYS_S2T elif task == "t2s": __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Optional[Any] = MAPPING_T2S __SCREAMING_SNAKE_CASE : Optional[Any] = IGNORE_KEYS_T2S elif task == "s2s": __SCREAMING_SNAKE_CASE : Any = hf_model.speechta.encoder.prenet.feature_encoder __SCREAMING_SNAKE_CASE : int = MAPPING_S2S __SCREAMING_SNAKE_CASE : List[str] = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(lowercase_ , lowercase_ ): logger.info(F'''{name} was ignored''' ) continue __SCREAMING_SNAKE_CASE : List[Any] = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) __SCREAMING_SNAKE_CASE : int = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __SCREAMING_SNAKE_CASE : List[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: __SCREAMING_SNAKE_CASE : List[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __SCREAMING_SNAKE_CASE : int = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE : str = name.split(lowercase_ )[0].split('''.''' )[-2] __SCREAMING_SNAKE_CASE : Dict = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = '''weight_g''' elif "weight_v" in name: __SCREAMING_SNAKE_CASE : Any = '''weight_v''' elif "bias" in name: __SCREAMING_SNAKE_CASE : Tuple = '''bias''' elif "weight" in name: __SCREAMING_SNAKE_CASE : List[Any] = '''weight''' elif "running_mean" in name: __SCREAMING_SNAKE_CASE : Tuple = '''running_mean''' elif "running_var" in name: __SCREAMING_SNAKE_CASE : Optional[int] = '''running_var''' elif "num_batches_tracked" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''num_batches_tracked''' else: __SCREAMING_SNAKE_CASE : Optional[int] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = full_name.split('''conv_layers.''' )[-1] __SCREAMING_SNAKE_CASE : Dict = name.split('''.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(items[0] ) __SCREAMING_SNAKE_CASE : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def lowerCAmelCase_ ( lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : int=None , lowercase_ : Dict=None , lowercase_ : str=None , ): '''simple docstring''' if config_path is not None: __SCREAMING_SNAKE_CASE : Dict = SpeechTaConfig.from_pretrained(lowercase_ ) else: __SCREAMING_SNAKE_CASE : Any = SpeechTaConfig() if task == "s2t": __SCREAMING_SNAKE_CASE : Any = config.max_text_positions __SCREAMING_SNAKE_CASE : List[Any] = SpeechTaForSpeechToText(lowercase_ ) elif task == "t2s": __SCREAMING_SNAKE_CASE : Optional[int] = 1876 __SCREAMING_SNAKE_CASE : Optional[int] = 600 __SCREAMING_SNAKE_CASE : Optional[Any] = config.max_speech_positions __SCREAMING_SNAKE_CASE : List[Any] = SpeechTaForTextToSpeech(lowercase_ ) elif task == "s2s": __SCREAMING_SNAKE_CASE : Dict = 1876 __SCREAMING_SNAKE_CASE : Dict = config.max_speech_positions __SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaForSpeechToSpeech(lowercase_ ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: __SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaTokenizer(lowercase_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken('''<mask>''' , lstrip=lowercase_ , rstrip=lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __SCREAMING_SNAKE_CASE : str = SpeechTaFeatureExtractor() __SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) processor.save_pretrained(lowercase_ ) __SCREAMING_SNAKE_CASE : List[Any] = torch.load(lowercase_ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowercase_ , lowercase_ ) model.save_pretrained(lowercase_ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _lowerCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
719
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class snake_case ( __UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase__ = '''nat''' lowerCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , _lowerCamelCase :int=4 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :Optional[int]=6_4 , _lowerCamelCase :Optional[Any]=[3, 4, 6, 5] , _lowerCamelCase :Optional[int]=[2, 4, 8, 1_6] , _lowerCamelCase :str=7 , _lowerCamelCase :int=3.0 , _lowerCamelCase :Optional[Any]=True , _lowerCamelCase :List[str]=0.0 , _lowerCamelCase :str=0.0 , _lowerCamelCase :int=0.1 , _lowerCamelCase :int="gelu" , _lowerCamelCase :Dict=0.0_2 , _lowerCamelCase :str=1e-5 , _lowerCamelCase :List[Any]=0.0 , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :Dict=None , **_lowerCamelCase :Union[str, Any] , ): super().__init__(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : List[str] = embed_dim __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : Any = kernel_size __SCREAMING_SNAKE_CASE : Tuple = mlp_ratio __SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = drop_path_rate __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE : List[Any] = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) __SCREAMING_SNAKE_CASE : Any = layer_scale_init_value __SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
401
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ ( ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __lowerCamelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' ) return image def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Tuple: __lowerCamelCase : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> int: __lowerCamelCase : List[Any] = dct.pop(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = val def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ) -> List[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowerCamelCase : Tuple = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) __lowerCamelCase : int = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __lowerCamelCase : List[Any] = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) ) __lowerCamelCase : Any = qkv_bias def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Optional[int]: __lowerCamelCase : int = 3_64 if 'coco' in model_name else 2_24 __lowerCamelCase : List[Any] = BlipaVisionConfig(image_size=UpperCAmelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __lowerCamelCase : Union[str, Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=UpperCAmelCase_ ).to_dict() elif "opt-6.7b" in model_name: __lowerCamelCase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=UpperCAmelCase_ ).to_dict() elif "t5-xl" in model_name: __lowerCamelCase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowerCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __lowerCamelCase : Tuple = BlipaConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=False ) -> Dict: __lowerCamelCase : Tuple = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __lowerCamelCase : Union[str, Any] = tokenizer('\n' , add_special_tokens=UpperCAmelCase_ ).input_ids[0] __lowerCamelCase , __lowerCamelCase : str = get_blipa_config(UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) __lowerCamelCase : Tuple = BlipaForConditionalGeneration(UpperCAmelCase_ ).eval() __lowerCamelCase : int = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __lowerCamelCase , __lowerCamelCase : int = model_name_to_original[model_name] # load original model print('Loading original model...' ) __lowerCamelCase : Any = 'cuda' if torch.cuda.is_available() else 'cpu' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = load_model_and_preprocess( name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ ) original_model.eval() print('Done!' ) # update state dict keys __lowerCamelCase : Dict = original_model.state_dict() __lowerCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowerCamelCase : Optional[Any] = state_dict.pop(UpperCAmelCase_ ) if key.startswith('Qformer.bert' ): __lowerCamelCase : Dict = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __lowerCamelCase : int = key.replace('self' , 'attention' ) if "opt_proj" in key: __lowerCamelCase : Any = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __lowerCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __lowerCamelCase : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): __lowerCamelCase : Optional[int] = key.replace('t5' , 'language' ) __lowerCamelCase : str = val # read in qv biases read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : List[str] = hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __lowerCamelCase : Optional[Any] = load_demo_image() __lowerCamelCase : Any = vis_processors['eval'](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) __lowerCamelCase : Dict = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ ) # create processor __lowerCamelCase : Tuple = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) __lowerCamelCase : List[str] = BlipaProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) __lowerCamelCase : str = processor(images=UpperCAmelCase_ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) original_model.to(UpperCAmelCase_ ) hf_model.to(UpperCAmelCase_ ) with torch.no_grad(): if "opt" in model_name: __lowerCamelCase : Optional[Any] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __lowerCamelCase : List[str] = hf_model(UpperCAmelCase_ , UpperCAmelCase_ ).logits else: __lowerCamelCase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __lowerCamelCase : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __lowerCamelCase : Dict = hf_model(UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __lowerCamelCase : List[Any] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=UpperCAmelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __lowerCamelCase : Tuple = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=UpperCAmelCase_ ) else: # cast to same type __lowerCamelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(UpperCAmelCase_ ) , UpperCAmelCase_ , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __lowerCamelCase : str = '' __lowerCamelCase : str = tokenizer(UpperCAmelCase_ , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = original_model.generate({'image': original_pixel_values} ) __lowerCamelCase : int = hf_model.generate( UpperCAmelCase_ , UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , UpperCAmelCase_ ) __lowerCamelCase : Any = input_ids.shape[1] __lowerCamelCase : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCAmelCase_ ) __lowerCamelCase : Dict = [text.strip() for text in output_text] print('HF generation:' , UpperCAmelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() A__ : Optional[int] = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) A__ : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''LayoutLMv2ImageProcessor''' lowerCamelCase__ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> List[Any]: if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase_ = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): lowerCAmelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase_ = features["words"] lowerCAmelCase_ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values lowerCAmelCase_ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase_ = self.get_overflowing_images(_a , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase_ = images return encoded_inputs def __a ( self , _a , _a ) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCAmelCase_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f" {len(_a )} and {len(_a )}" ) return images_with_overflow def __a ( self , *_a , **_a ) -> int: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Union[str, Any]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> Dict: return ["input_ids", "bbox", "attention_mask", "image"] @property def __a ( self ) -> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Any: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
700
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self ) -> Dict: lowerCAmelCase_ = 1 lowerCAmelCase_ = 3 lowerCAmelCase_ = (32, 32) lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def __a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_a ) @property def __a ( self ) -> List[str]: def extract(*_a , **_a ): class __magic_name__ : def __init__( self ) -> List[str]: lowerCAmelCase_ = torch.ones([0] ) def __a ( self , _a ) -> int: self.pixel_values.to(_a ) return self return Out() return extract def __a ( self ) -> Dict: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Any: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_a ) assert isinstance(_a , _a ) assert isinstance(pipe.scheduler , _a ) assert pipe.safety_checker is None lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __a ( self ) -> Any: lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 lowerCAmelCase_ = unet.half() lowerCAmelCase_ = vae.half() lowerCAmelCase_ = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Any: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) lowerCAmelCase_ = 4003660346 lowerCAmelCase_ = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "padme amidala taking a bath artwork, safe for work, no nudity" lowerCAmelCase_ = 2734971755 lowerCAmelCase_ = 7 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> int: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) lowerCAmelCase_ = 1044355234 lowerCAmelCase_ = 12 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
226
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( A_ , unittest.TestCase ): UpperCamelCase :Optional[int] = RoFormerTokenizer UpperCamelCase :Union[str, Any] = RoFormerTokenizerFast UpperCamelCase :Optional[Any] = True UpperCamelCase :Any = True def _snake_case (self ): super().setUp() def _snake_case (self , **__magic_name__ ): return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__magic_name__ ) def _snake_case (self , **__magic_name__ ): return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = """永和服装饰品有限公司,今天天气非常好""" lowerCamelCase__ : Tuple = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def _snake_case (self ): lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ ,lowerCamelCase__ : Any = self.get_chinese_input_output_texts() lowerCamelCase__ : List[Any] = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , output_text.split() ) lowerCamelCase__ : Dict = tokens + [tokenizer.unk_token] lowerCamelCase__ : Optional[int] = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : List[Any] = self.get_rust_tokenizer() lowerCamelCase__ ,lowerCamelCase__ : List[str] = self.get_chinese_input_output_texts() lowerCamelCase__ : str = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , output_text.split() ) lowerCamelCase__ : List[Any] = tokens + [tokenizer.unk_token] lowerCamelCase__ : Any = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): pass
157
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __A : UpperCamelCase :Dict = PegasusConfig UpperCamelCase :Dict = {} UpperCamelCase :Union[str, Any] = '''gelu''' def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=False , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=20 , __magic_name__=2 , __magic_name__=1 , __magic_name__=0 , ): lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : str = is_training lowerCamelCase__ : int = use_labels lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : int = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : int = eos_token_id lowerCamelCase__ : Tuple = pad_token_id lowerCamelCase__ : List[str] = bos_token_id def _snake_case (self ): lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCamelCase__ : Any = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : Any = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ : Dict = prepare_pegasus_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Optional[int] = 20 lowerCamelCase__ : str = model_class_name(__magic_name__ ) lowerCamelCase__ : List[str] = model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase__ ,lowerCamelCase__ : List[Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , __magic_name__ , __magic_name__ ) lowerCamelCase__ : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCamelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ : str = model.decode( decoder_input_ids[:, :-1] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , decoder_position_ids=__magic_name__ , ) lowerCamelCase__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__magic_name__ , ) lowerCamelCase__ : Dict = model.decode(__magic_name__ , __magic_name__ ) lowerCamelCase__ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : List[str] = 20 lowerCamelCase__ : Optional[int] = model_class_name(__magic_name__ ) lowerCamelCase__ : List[Any] = model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase__ ,lowerCamelCase__ : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase__ : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , __magic_name__ , __magic_name__ ) lowerCamelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , decoder_position_ids=__magic_name__ , ) lowerCamelCase__ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase__ : str = model.decode( decoder_input_ids[:, -1:] , __magic_name__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__magic_name__ , decoder_position_ids=__magic_name__ , ) lowerCamelCase__ : Optional[int] = model.decode(__magic_name__ , __magic_name__ , decoder_attention_mask=__magic_name__ ) lowerCamelCase__ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _A (UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , ) ->Optional[Any]: '''simple docstring''' if attention_mask is None: lowerCamelCase__ : List[Any] = np.not_equal(UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __A ( A_ , unittest.TestCase ): UpperCamelCase :int = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase :int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase :Union[str, Any] = True UpperCamelCase :Optional[int] = False UpperCamelCase :Optional[Any] = False UpperCamelCase :List[str] = False def _snake_case (self ): lowerCamelCase__ : Dict = FlaxPegasusModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__magic_name__ ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__magic_name__ , __magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__magic_name__ , __magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Any = self._prepare_for_class(__magic_name__ , __magic_name__ ) lowerCamelCase__ : Optional[Any] = model_class(__magic_name__ ) @jax.jit def encode_jitted(__magic_name__ , __magic_name__=None , **__magic_name__ ): return model.encode(input_ids=__magic_name__ , attention_mask=__magic_name__ ) with self.subTest("""JIT Enabled""" ): lowerCamelCase__ : str = encode_jitted(**__magic_name__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase__ : Optional[Any] = encode_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__ , __magic_name__ ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Tuple = model_class(__magic_name__ ) lowerCamelCase__ : Any = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowerCamelCase__ : str = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__magic_name__ , __magic_name__ , __magic_name__ ): return model.decode( decoder_input_ids=__magic_name__ , decoder_attention_mask=__magic_name__ , encoder_outputs=__magic_name__ , ) with self.subTest("""JIT Enabled""" ): lowerCamelCase__ : int = decode_jitted(**__magic_name__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase__ : Optional[int] = decode_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__ , __magic_name__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case (self ): for model_class_name in self.all_model_classes: lowerCamelCase__ : Tuple = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__magic_name__ ) lowerCamelCase__ : List[Any] = np.ones((1, 1) ) lowerCamelCase__ : Optional[int] = model(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @slow def _snake_case (self ): lowerCamelCase__ : str = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) lowerCamelCase__ : Any = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) lowerCamelCase__ : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowerCamelCase__ : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowerCamelCase__ : Optional[Any] = tokenizer(__magic_name__ , return_tensors="""np""" , truncation=__magic_name__ , max_length=512 , padding=__magic_name__ ) lowerCamelCase__ : Union[str, Any] = model.generate(**__magic_name__ , num_beams=2 ).sequences lowerCamelCase__ : List[Any] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) assert tgt_text == decoded
157
1
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _UpperCamelCase = logging.getLogger(__name__) class __magic_name__ ( a_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' super().__init__( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , ) __A : str = None def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually __A : Any = self._infer_socket_ifname() # avoid clash with the NCCL port __A : Optional[int] = str(distributed_port + 1 ) __A : Optional[Any] = dist.new_group(ranks=lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCAmelCase__ ( self ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=torch.floataa ): '''simple docstring''' __A : List[str] = torch.empty(lowerCamelCase , dtype=lowerCamelCase ) dist.scatter(lowerCamelCase , src=0 , scatter_list=lowerCamelCase , group=self.process_group ) return target_tensor def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __A : Optional[Any] = next((addr for addr in addrs if addr.startswith("e" )) , lowerCamelCase ) return ifname def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not dist.is_initialized(): __A : str = self._main_retrieve(lowerCamelCase , lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase ) # distributed training __A : List[str] = dist.get_world_size(group=self.process_group ) # gather logic __A : List[Any] = None if self._is_main(): __A : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCamelCase )] dist.gather(torch.tensor(lowerCamelCase ) , dst=0 , gather_list=lowerCamelCase , group=self.process_group ) # scatter logic __A : Optional[int] = question_hidden_states.shape[0] __A : Dict = [] __A : List[str] = [] if self._is_main(): assert len(lowerCamelCase ) == world_size __A : int = self._main_retrieve(torch.cat(lowerCamelCase ).numpy() , lowerCamelCase ) __A : Optional[int] = torch.tensor(lowerCamelCase ), torch.tensor(lowerCamelCase ) __A : Optional[Any] = self._chunk_tensor(lowerCamelCase , lowerCamelCase ) __A : int = self._chunk_tensor(lowerCamelCase , lowerCamelCase ) __A : Optional[Any] = self._scattered(lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) __A : int = self._scattered(lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCamelCase )
111
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : list[int] ,lowerCamelCase : int ): _A : Optional[Any] = [0] * no_of_processes _A : List[Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): _A : int = burst_time[i] _A : list[int] = [] _A : Tuple = 0 _A : Dict = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _A : Optional[int] = [] _A : Optional[int] = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: _A : List[str] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _A : Tuple = i total_time += burst_time[target_process] completed += 1 _A : str = 0 _A : Optional[Any] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : int ,lowerCamelCase : list[int] ): _A : List[str] = [0] * no_of_processes for i in range(lowerCamelCase ): _A : Optional[int] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') A : int = 4 A : Any = [2, 5, 3, 7] A : str = [0, 0, 0, 0] A : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
128
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _SCREAMING_SNAKE_CASE (unittest.TestCase ): def __snake_case ( self : List[Any] )->None: __SCREAMING_SNAKE_CASE : int = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Vector() def __snake_case ( self : int )->None: __SCREAMING_SNAKE_CASE : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase ) , "(0,0,0,0,0,1)" ) def __snake_case ( self : List[Any] )->None: __SCREAMING_SNAKE_CASE : int = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase ) , 4 ) def __snake_case ( self : str )->None: __SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2] ) __SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 2, 3, 4, 5] ) __SCREAMING_SNAKE_CASE : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __SCREAMING_SNAKE_CASE : str = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __snake_case ( self : Dict )->None: __SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 2, 3] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __snake_case ( self : Union[str, Any] )->None: __SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2, 3] ) __SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __snake_case ( self : Union[str, Any] )->None: __SCREAMING_SNAKE_CASE : Any = Vector([1, 2, 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = Vector([2, -1, 4] ) # for test of dot product __SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def __snake_case ( self : int )->None: self.assertEqual(str(zero_vector(1_0 ) ).count("0" ) , 1_0 ) def __snake_case ( self : Optional[int] )->None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def __snake_case ( self : int )->None: __SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2, 3] ) __SCREAMING_SNAKE_CASE : str = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase , UpperCamelCase ) ) , "(3,4,7)" ) def __snake_case ( self : Any )->None: __SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 0, 0, 0, 0, 0] ) __SCREAMING_SNAKE_CASE : Tuple = x.copy() self.assertEqual(str(UpperCamelCase ) , str(UpperCamelCase ) ) def __snake_case ( self : List[str] )->None: __SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase ) , "(0,1,0)" ) def __snake_case ( self : int )->None: __SCREAMING_SNAKE_CASE : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(UpperCamelCase ) ) def __snake_case ( self : Optional[int] )->None: __SCREAMING_SNAKE_CASE : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __SCREAMING_SNAKE_CASE : List[Any] = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase , UpperCamelCase ) ) def __snake_case ( self : Any )->None: __SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __SCREAMING_SNAKE_CASE : int = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase , UpperCamelCase ) ) def __snake_case ( self : Optional[Any] )->None: __SCREAMING_SNAKE_CASE : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __snake_case ( self : Optional[Any] )->None: __SCREAMING_SNAKE_CASE : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __SCREAMING_SNAKE_CASE : str = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def __snake_case ( self : List[str] )->None: __SCREAMING_SNAKE_CASE : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(UpperCamelCase ) ) def __snake_case ( self : int )->None: __SCREAMING_SNAKE_CASE : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __snake_case ( self : Optional[int] )->None: __SCREAMING_SNAKE_CASE : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __SCREAMING_SNAKE_CASE : Tuple = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def __snake_case ( self : Any )->None: __SCREAMING_SNAKE_CASE : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __SCREAMING_SNAKE_CASE : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def __snake_case ( self : str )->None: self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
447
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _SCREAMING_SNAKE_CASE : pass
447
1
"""simple docstring""" import re from filelock import FileLock try: import nltk lowercase__ = True except (ImportError, ModuleNotFoundError): lowercase__ = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __lowerCamelCase ( __UpperCamelCase ) -> str: """simple docstring""" re.sub("<n>" , "" , __UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCamelCase ) )
610
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase__ = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None ) -> Tuple: """simple docstring""" require_version(deps[pkg] , __UpperCamelCase )
610
1
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> bool: return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> bool: _UpperCAmelCase = credit_card_number _UpperCAmelCase = 0 _UpperCAmelCase = len(__snake_case ) - 2 for i in range(__snake_case , -1 , -2 ): # double the value of every second digit _UpperCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 _UpperCAmelCase = cc_number[:i] + str(__snake_case ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__snake_case ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def _SCREAMING_SNAKE_CASE ( __snake_case ) -> bool: _UpperCAmelCase = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 1_3 <= len(__snake_case ) <= 1_6: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(__snake_case ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(__snake_case ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
708
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase ) , '''Tatoeba directory does not exist.''' ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase ) @slow def lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" self.resolver.convert_models(["""heb-eng"""] ) @slow def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=lowerCamelCase ) assert mmeta["long_pair"] == "heb-eng"
402
0
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowercase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase : Any = 256 class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Tuple = ['''melgan'''] def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__() # From MELGAN snake_case : str = math.log(1E-5 ) # Matches MelGAN training. snake_case : List[Any] = 4.0 # Largest value for most examples snake_case : Optional[int] = 128 self.register_modules( notes_encoder=SCREAMING_SNAKE_CASE_ ,continuous_encoder=SCREAMING_SNAKE_CASE_ ,decoder=SCREAMING_SNAKE_CASE_ ,scheduler=SCREAMING_SNAKE_CASE_ ,melgan=SCREAMING_SNAKE_CASE_ ,) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=(-1.0, 1.0) ,SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' snake_case , snake_case : int = output_range if clip: snake_case : str = torch.clip(SCREAMING_SNAKE_CASE_ ,self.min_value ,self.max_value ) # Scale to [0, 1]. snake_case : Dict = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=(-1.0, 1.0) ,SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' snake_case , snake_case : Any = input_range snake_case : Optional[Any] = torch.clip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if clip else outputs # Scale to [0, 1]. snake_case : Any = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Any = input_tokens > 0 snake_case , snake_case : List[Any] = self.notes_encoder( encoder_input_tokens=SCREAMING_SNAKE_CASE_ ,encoder_inputs_mask=SCREAMING_SNAKE_CASE_ ) snake_case , snake_case : Any = self.continuous_encoder( encoder_inputs=SCREAMING_SNAKE_CASE_ ,encoder_inputs_mask=SCREAMING_SNAKE_CASE_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = noise_time if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): snake_case : List[str] = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: snake_case : Tuple = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case : Optional[Any] = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) snake_case : str = self.decoder( encodings_and_masks=SCREAMING_SNAKE_CASE_ ,decoder_input_tokens=SCREAMING_SNAKE_CASE_ ,decoder_noise_time=SCREAMING_SNAKE_CASE_ ) return logits @torch.no_grad() def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 100 ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = "numpy" ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 1 ,): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(SCREAMING_SNAKE_CASE_ )}.""" ) snake_case : Any = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) snake_case : str = np.zeros([1, 0, self.n_dims] ,np.floataa ) snake_case : Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=SCREAMING_SNAKE_CASE_ ,device=self.device ) for i, encoder_input_tokens in enumerate(SCREAMING_SNAKE_CASE_ ): if i == 0: snake_case : List[Any] = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. snake_case : Any = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=SCREAMING_SNAKE_CASE_ ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. snake_case : List[Any] = ones snake_case : str = self.scale_features( SCREAMING_SNAKE_CASE_ ,output_range=[-1.0, 1.0] ,clip=SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=SCREAMING_SNAKE_CASE_ ,continuous_mask=SCREAMING_SNAKE_CASE_ ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop snake_case : int = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=SCREAMING_SNAKE_CASE_ ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case : Tuple = self.decode( encodings_and_masks=SCREAMING_SNAKE_CASE_ ,input_tokens=SCREAMING_SNAKE_CASE_ ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 snake_case : Optional[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ).prev_sample snake_case : List[Any] = self.scale_to_features(SCREAMING_SNAKE_CASE_ ,input_range=[-1.0, 1.0] ) snake_case : str = mel[:1] snake_case : Dict = mel.cpu().float().numpy() snake_case : Optional[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) logger.info("""Generated segment""" ,SCREAMING_SNAKE_CASE_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": snake_case : List[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: snake_case : List[Any] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE_ )
315
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowercase ( __A : bytes , __A : int ) -> np.array: '''simple docstring''' snake_case : List[str] = f"""{sampling_rate}""" snake_case : Union[str, Any] = """1""" snake_case : List[str] = """f32le""" snake_case : Optional[Any] = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(__A , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: snake_case : str = ffmpeg_process.communicate(__A ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error snake_case : int = output_stream[0] snake_case : Tuple = np.frombuffer(__A , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def lowercase ( __A : int , __A : float , __A : str = "f32le" , ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = f"""{sampling_rate}""" snake_case : int = """1""" if format_for_conversion == "s16le": snake_case : Dict = 2 elif format_for_conversion == "f32le": snake_case : Optional[Any] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) snake_case : Dict = platform.system() if system == "Linux": snake_case : List[str] = """alsa""" snake_case : Union[str, Any] = """default""" elif system == "Darwin": snake_case : Optional[int] = """avfoundation""" snake_case : str = """:0""" elif system == "Windows": snake_case : List[str] = """dshow""" snake_case : Union[str, Any] = """default""" snake_case : Union[str, Any] = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] snake_case : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample snake_case : Optional[Any] = _ffmpeg_stream(__A , __A ) for item in iterator: yield item def lowercase ( __A : int , __A : float , __A : Optional[int] = None , __A : Optional[Union[Tuple[float, float], float]] = None , __A : str = "f32le" , ) -> Optional[Any]: '''simple docstring''' if stream_chunk_s is not None: snake_case : List[str] = stream_chunk_s else: snake_case : Tuple = chunk_length_s snake_case : Optional[Any] = ffmpeg_microphone(__A , __A , format_for_conversion=__A ) if format_for_conversion == "s16le": snake_case : List[Any] = np.intaa snake_case : Dict = 2 elif format_for_conversion == "f32le": snake_case : List[Any] = np.floataa snake_case : Optional[Any] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: snake_case : Tuple = chunk_length_s / 6 snake_case : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__A , (int, float) ): snake_case : int = [stride_length_s, stride_length_s] snake_case : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample snake_case : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample snake_case : str = datetime.datetime.now() snake_case : Tuple = datetime.timedelta(seconds=__A ) for item in chunk_bytes_iter(__A , __A , stride=(stride_left, stride_right) , stream=__A ): # Put everything back in numpy scale snake_case : List[str] = np.frombuffer(item["""raw"""] , dtype=__A ) snake_case : List[Any] = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) snake_case : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowercase ( __A : Optional[Any] , __A : int , __A : Tuple[int, int] , __A : bool = False ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = b"""""" snake_case , snake_case : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) snake_case : List[Any] = 0 for raw in iterator: acc += raw if stream and len(__A ) < chunk_len: snake_case : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__A ) >= chunk_len: # We are flushing the accumulator snake_case : str = (_stride_left, stride_right) snake_case : str = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: snake_case : Optional[Any] = False yield item snake_case : int = stride_left snake_case : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__A ) > stride_left: snake_case : Dict = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: snake_case : Tuple = False yield item def lowercase ( __A : Optional[int] , __A : int ) -> List[str]: '''simple docstring''' snake_case : List[str] = 2**24 # 16Mo try: with subprocess.Popen(__A , stdout=subprocess.PIPE , bufsize=__A ) as ffmpeg_process: while True: snake_case : Union[str, Any] = ffmpeg_process.stdout.read(__A ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
315
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __snake_case : Optional[int] = None __snake_case : int = logging.get_logger(__name__) __snake_case : Dict = "▁" __snake_case : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __snake_case : Optional[int] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } __snake_case : List[Any] = { "google/pegasus-xsum": 512, } class A ( a ): __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = PegasusTokenizer __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case_=None , snake_case_=None , snake_case_="<pad>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<mask_2>" , snake_case_="<mask_1>" , snake_case_=None , snake_case_=1_0_3 , **snake_case_ , ) -> List[str]: _a = offset if additional_special_tokens is not None: if not isinstance(snake_case_ , snake_case_ ): raise TypeError( F'''additional_special_tokens should be of type {type(snake_case_ )}, but is''' F''' {type(snake_case_ )}''' ) _a = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(snake_case_ ) , self.offset - 1 ) ] if len(set(snake_case_ ) ) != len(snake_case_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _a = additional_special_tokens_extended else: _a = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( snake_case_ , tokenizer_file=snake_case_ , pad_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , mask_token=snake_case_ , mask_token_sent=snake_case_ , offset=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) _a = vocab_file _a = False if not self.vocab_file else True def __lowerCAmelCase ( self , snake_case_ ) -> Union[str, Any]: _a = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> Optional[int]: if already_has_special_tokens: return self._special_token_mask(snake_case_ ) elif token_ids_a is None: return self._special_token_mask(snake_case_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> int: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Any: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
131
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _snake_case ( lowercase__ ): _lowerCamelCase : int = int(number**0.5 ) return number == sq * sq def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowerCamelCase : int = x_den * y_den * z_den _lowerCamelCase : int = gcd(lowercase__ , lowercase__ ) top //= hcf bottom //= hcf return top, bottom def _snake_case ( lowercase__ = 35 ): _lowerCamelCase : set = set() _lowerCamelCase : int _lowerCamelCase : Fraction = Fraction(0 ) _lowerCamelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowerCamelCase : int = x_num * y_den + x_den * y_num _lowerCamelCase : List[Any] = x_den * y_den _lowerCamelCase : int = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCamelCase : Optional[Any] = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=2 _lowerCamelCase : Tuple = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowerCamelCase : Dict = x_den * x_den * y_den * y_den if is_sq(lowercase__ ) and is_sq(lowercase__ ): _lowerCamelCase : Dict = int(sqrt(lowercase__ ) ) _lowerCamelCase : Optional[Any] = int(sqrt(lowercase__ ) ) _lowerCamelCase : List[Any] = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCamelCase : Union[str, Any] = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=-1 _lowerCamelCase : List[str] = x_num * y_num _lowerCamelCase : int = x_den * y_num + x_num * y_den _lowerCamelCase : Dict = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCamelCase : List[str] = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=2 _lowerCamelCase : Tuple = x_num * x_num * y_num * y_num _lowerCamelCase : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowercase__ ) and is_sq(lowercase__ ): _lowerCamelCase : Optional[int] = int(sqrt(lowercase__ ) ) _lowerCamelCase : Optional[int] = int(sqrt(lowercase__ ) ) _lowerCamelCase : Dict = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCamelCase : int = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) for num, den in unique_s: total += Fraction(lowercase__ , lowercase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
630
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Any =logging.get_logger(__name__) A__ : Any ={ 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''instructblip_vision_model''' def __init__( self : Tuple , lowerCamelCase : Optional[int]=14_08 , lowerCamelCase : str=61_44 , lowerCamelCase : List[Any]=39 , lowerCamelCase : Optional[Any]=16 , lowerCamelCase : Optional[int]=2_24 , lowerCamelCase : Any=14 , lowerCamelCase : str="gelu" , lowerCamelCase : str=1e-6 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Dict=1e-1_0 , lowerCamelCase : Optional[Any]=True , **lowerCamelCase : List[str] , ): """simple docstring""" super().__init__(**lowerCamelCase ) __A : int = hidden_size __A : List[str] = intermediate_size __A : Tuple = num_hidden_layers __A : str = num_attention_heads __A : str = patch_size __A : Dict = image_size __A : Any = initializer_range __A : int = attention_dropout __A : str = layer_norm_eps __A : Optional[Any] = hidden_act __A : List[str] = qkv_bias @classmethod def lowercase_( cls : Union[str, Any] , lowerCamelCase : Union[str, os.PathLike] , **lowerCamelCase : str ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase ) __A , __A : int = cls.get_config_dict(lowerCamelCase , **lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __A : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase , **lowerCamelCase ) class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''instructblip_qformer''' def __init__( self : Tuple , lowerCamelCase : int=3_05_22 , lowerCamelCase : Tuple=7_68 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Tuple=12 , lowerCamelCase : str=30_72 , lowerCamelCase : int="gelu" , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int=5_12 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : List[str]=1e-1_2 , lowerCamelCase : int=0 , lowerCamelCase : List[str]="absolute" , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : List[Any]=14_08 , **lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) __A : List[Any] = vocab_size __A : List[str] = hidden_size __A : str = num_hidden_layers __A : str = num_attention_heads __A : List[Any] = hidden_act __A : str = intermediate_size __A : List[Any] = hidden_dropout_prob __A : Tuple = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : List[Any] = position_embedding_type __A : List[str] = cross_attention_frequency __A : Dict = encoder_hidden_size @classmethod def lowercase_( cls : Any , lowerCamelCase : Union[str, os.PathLike] , **lowerCamelCase : Union[str, Any] ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase ) __A , __A : List[str] = cls.get_config_dict(lowerCamelCase , **lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __A : Optional[int] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase , **lowerCamelCase ) class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''instructblip''' lowerCamelCase =True def __init__( self : Any , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : Any=None , lowerCamelCase : Any=32 , **lowerCamelCase : int ): """simple docstring""" super().__init__(**lowerCamelCase ) if vision_config is None: __A : int = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: __A : Dict = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: __A : Any = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __A : List[Any] = InstructBlipVisionConfig(**lowerCamelCase ) __A : Union[str, Any] = InstructBlipQFormerConfig(**lowerCamelCase ) __A : Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __A : List[str] = CONFIG_MAPPING[text_model_type](**lowerCamelCase ) __A : Optional[int] = self.text_config.tie_word_embeddings __A : Dict = self.text_config.is_encoder_decoder __A : Optional[int] = num_query_tokens __A : int = self.vision_config.hidden_size __A : str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __A : Optional[Any] = 1.0 __A : Optional[int] = 0.02 @classmethod def lowercase_( cls : List[str] , lowerCamelCase : InstructBlipVisionConfig , lowerCamelCase : InstructBlipQFormerConfig , lowerCamelCase : PretrainedConfig , **lowerCamelCase : Optional[int] , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCamelCase , ) def lowercase_( self : List[Any] ): """simple docstring""" __A : Tuple = copy.deepcopy(self.__dict__ ) __A : Optional[int] = self.vision_config.to_dict() __A : Optional[Any] = self.qformer_config.to_dict() __A : List[Any] = self.text_config.to_dict() __A : Optional[int] = self.__class__.model_type return output
499
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: """simple docstring""" __A : Optional[int] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" __A : Tuple = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert("""RGB""" ) __A : Optional[Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) __A : Optional[int] = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE ) return image def A_ ( __SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" if "visual_encoder" in key: __A : Dict = re.sub("""visual_encoder*""" , """vision_model.encoder""" , __SCREAMING_SNAKE_CASE ) if "blocks" in key: __A : Dict = re.sub(R"""blocks""" , """layers""" , __SCREAMING_SNAKE_CASE ) if "attn" in key: __A : Union[str, Any] = re.sub(R"""attn""" , """self_attn""" , __SCREAMING_SNAKE_CASE ) if "norm1" in key: __A : str = re.sub(R"""norm1""" , """layer_norm1""" , __SCREAMING_SNAKE_CASE ) if "norm2" in key: __A : List[Any] = re.sub(R"""norm2""" , """layer_norm2""" , __SCREAMING_SNAKE_CASE ) if "encoder.norm" in key: __A : Optional[Any] = re.sub(R"""encoder.norm""" , """post_layernorm""" , __SCREAMING_SNAKE_CASE ) if "encoder.patch_embed.proj" in key: __A : Optional[int] = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , __SCREAMING_SNAKE_CASE ) if "encoder.pos_embed" in key: __A : Union[str, Any] = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , __SCREAMING_SNAKE_CASE ) if "encoder.cls_token" in key: __A : Tuple = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , __SCREAMING_SNAKE_CASE ) if "self_attn" in key: __A : Tuple = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , __SCREAMING_SNAKE_CASE ) return key @torch.no_grad() def A_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=None ) -> int: """simple docstring""" if config_path is not None: __A : Any = BlipConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: __A : List[Any] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) __A : List[Any] = BlipForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval() __A : List[str] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" __A : List[str] = blip_decoder(pretrained=__SCREAMING_SNAKE_CASE , image_size=384 , vit="""base""" ) __A : List[str] = pt_model.eval() __A : int = pt_model.state_dict() for key in modified_state_dict.copy(): __A : Tuple = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __A : Dict = rename_key(__SCREAMING_SNAKE_CASE ) __A : Tuple = value hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __A : List[Any] = 384 __A : Dict = load_demo_image(image_size=__SCREAMING_SNAKE_CASE , device="""cpu""" ) __A : Dict = BertTokenizer.from_pretrained("""bert-base-uncased""" ) __A : Optional[Any] = tokenizer(["""a picture of"""] ).input_ids __A : int = hf_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] __A : str = hf_model.generate(__SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __A : List[Any] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) __A : List[Any] = blip_vqa(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit="""base""" ) vqa_model.eval() __A : List[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): __A : List[Any] = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __A : int = rename_key(__SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = value __A : Any = BlipForQuestionAnswering(__SCREAMING_SNAKE_CASE ) hf_vqa_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __A : Tuple = ["""How many dogs are in this image?"""] __A : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids __A : List[str] = hf_vqa_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) __A : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" __A : List[str] = blip_itm(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit="""base""" ) itm_model.eval() __A : List[str] = itm_model.state_dict() for key in modified_state_dict.copy(): __A : Optional[Any] = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __A : str = rename_key(__SCREAMING_SNAKE_CASE ) __A : Any = value __A : List[Any] = BlipForImageTextRetrieval(__SCREAMING_SNAKE_CASE ) __A : Tuple = ["""A picture of a woman with a dog sitting in a beach"""] __A : List[str] = tokenizer( __SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding="""max_length""" , truncation=__SCREAMING_SNAKE_CASE , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__SCREAMING_SNAKE_CASE ) hf_itm_model.eval() __A : Any = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) __A : Optional[Any] = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": A__ : Tuple =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A__ : Any =parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
499
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase : Dict =logging.get_logger(__name__) class __a : _lowerCAmelCase : str _lowerCAmelCase : str = None @staticmethod def __lowercase ( ): '''simple docstring''' raise NotImplementedError def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' raise NotImplementedError def __lowercase ( self : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' raise NotImplementedError def __lowercase ( self : Union[str, Any] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def __lowercase ( cls : Tuple ): '''simple docstring''' return F'`pip install {cls.pip_package or cls.name}`' class __a ( A__ ): _lowerCAmelCase : str = '''optuna''' @staticmethod def __lowercase ( ): '''simple docstring''' return is_optuna_available() def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return run_hp_search_optuna(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return default_hp_space_optuna(SCREAMING_SNAKE_CASE ) class __a ( A__ ): _lowerCAmelCase : Union[str, Any] = '''ray''' _lowerCAmelCase : Any = '''\'ray[tune]\'''' @staticmethod def __lowercase ( ): '''simple docstring''' return is_ray_available() def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' return run_hp_search_ray(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return default_hp_space_ray(SCREAMING_SNAKE_CASE ) class __a ( A__ ): _lowerCAmelCase : Optional[int] = '''sigopt''' @staticmethod def __lowercase ( ): '''simple docstring''' return is_sigopt_available() def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return run_hp_search_sigopt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return default_hp_space_sigopt(SCREAMING_SNAKE_CASE ) class __a ( A__ ): _lowerCAmelCase : Optional[int] = '''wandb''' @staticmethod def __lowercase ( ): '''simple docstring''' return is_wandb_available() def __lowercase ( self : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return run_hp_search_wandb(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return default_hp_space_wandb(SCREAMING_SNAKE_CASE ) lowerCamelCase : str ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE ( ) -> str: UpperCamelCase__ : Dict = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowerCAmelCase ) > 0: UpperCamelCase__ : Optional[int] = available_backends[0].name if len(__lowerCAmelCase ) > 1: logger.info( f'{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
228
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase : List[Any] ={ '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] =[ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
228
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> int: lowerCAmelCase__ : Any = [] for part_id in partition_order: lowerCAmelCase__ : Tuple = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(UpperCamelCase ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase ( ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase__ : List[str] = spark.range(100 ).repartition(1 ) lowerCAmelCase__ : Dict = Spark(UpperCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase ( ) -> Any: lowerCAmelCase__ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase__ : List[Any] = spark.range(10 ).repartition(2 ) lowerCAmelCase__ : Union[str, Any] = [1, 0] lowerCAmelCase__ : int = _generate_iterable_examples(UpperCamelCase , UpperCamelCase ) # Reverse the partitions. lowerCAmelCase__ : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , UpperCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase ( ) -> List[str]: lowerCAmelCase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase__ : List[str] = spark.range(10 ).repartition(1 ) lowerCAmelCase__ : Dict = SparkExamplesIterable(UpperCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCamelCase ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase ( ) -> Dict: lowerCAmelCase__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase__ : Tuple = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: lowerCAmelCase__ : str = lambda UpperCamelCase : x.reverse() lowerCAmelCase__ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [2, 1, 0] ) lowerCAmelCase__ : Dict = SparkExamplesIterable(UpperCamelCase ).shuffle_data_sources(UpperCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCamelCase ): lowerCAmelCase__ , lowerCAmelCase__ : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase ( ) -> str: lowerCAmelCase__ : Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase__ : str = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowerCAmelCase__ : Union[str, Any] = SparkExamplesIterable(UpperCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCAmelCase__ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase ): lowerCAmelCase__ , lowerCAmelCase__ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowerCAmelCase__ : int = SparkExamplesIterable(UpperCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCAmelCase__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase ): lowerCAmelCase__ , lowerCAmelCase__ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCAmelCase ( ) -> Any: lowerCAmelCase__ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase__ : int = spark.range(100 ).repartition(1 ) lowerCAmelCase__ : int = Spark(UpperCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
706
lowerCAmelCase_ = 6_55_21 def __lowerCAmelCase ( UpperCamelCase ) -> int: lowerCAmelCase__ : List[str] = 1 lowerCAmelCase__ : List[Any] = 0 for plain_chr in plain_text: lowerCAmelCase__ : Union[str, Any] = (a + ord(UpperCamelCase )) % MOD_ADLER lowerCAmelCase__ : Optional[Any] = (b + a) % MOD_ADLER return (b << 16) | a
470
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class __snake_case ( A__ , A__ ): """simple docstring""" UpperCamelCase_ = 'resnet' UpperCamelCase_ = ['basic', 'bottleneck'] def __init__( self : List[str] ,lowerCAmelCase__ : Any=3 ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Tuple=[2_56, 5_12, 10_24, 20_48] ,lowerCAmelCase__ : Union[str, Any]=[3, 4, 6, 3] ,lowerCAmelCase__ : Tuple="bottleneck" ,lowerCAmelCase__ : Dict="relu" ,lowerCAmelCase__ : Dict=False ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Tuple=None ,**lowerCAmelCase__ : List[str] ,) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Optional[int] = embedding_size lowerCAmelCase_ : List[Any] = hidden_sizes lowerCAmelCase_ : List[str] = depths lowerCAmelCase_ : Union[str, Any] = layer_type lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : Tuple = downsample_in_first_stage lowerCAmelCase_ : Any = ["stem"] + [f'''stage{idx}''' for idx in range(1 ,len(lowerCamelCase__ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ ,out_indices=lowerCamelCase__ ,stage_names=self.stage_names ) class __snake_case ( A__ ): """simple docstring""" UpperCamelCase_ = version.parse('1.11' ) @property def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return 1e-3
659
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def lowerCAmelCase_( lowercase_ : int = 2_00_00_00 ) -> int: _lowerCamelCase = [0] _lowerCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target _lowerCamelCase = 0 # an estimate of b, using the quadratic formula _lowerCamelCase = 42 # the largest integer less than b_estimate _lowerCamelCase = 42 # the largest integer less than b_estimate _lowerCamelCase = 42 # the triangle number corresponding to b_floor _lowerCamelCase = 42 # the triangle number corresponding to b_ceil _lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowerCamelCase = floor(lowercase_ ) _lowerCamelCase = ceil(lowercase_ ) _lowerCamelCase = triangle_numbers[b_floor] _lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase = triangle_b_first_guess * triangle_a _lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase = triangle_b_second_guess * triangle_a _lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
661
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _lowercase : def __init__( self ): snake_case__ : Optional[Any] ="""""" snake_case__ : List[str] ="""""" snake_case__ : Dict =[] snake_case__ : Tuple =0 snake_case__ : Optional[int] =2_5_6 snake_case__ : str =0 snake_case__ : Any =0 snake_case__ : Tuple =0 snake_case__ : List[Any] =0 def lowercase__ ( self , a ): snake_case__ : Union[str, Any] =cva.imread(a , 0 ) snake_case__ : Optional[int] =copy.deepcopy(self.img ) snake_case__ , snake_case__ , snake_case__ : Optional[Any] =plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) snake_case__ : Any =np.sum(a ) for i in range(len(a ) ): snake_case__ : Any =x[i] / self.k self.sk += prk snake_case__ : Union[str, Any] =(self.L - 1) * self.sk if self.rem != 0: snake_case__ : List[Any] =int(last % last ) snake_case__ : str =int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(a ) snake_case__ : Tuple =int(np.ma.count(self.img ) / self.img[1].size ) snake_case__ : List[Any] =self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case__ : Any =self.img[j][i] if num != self.last_list[num]: snake_case__ : Union[str, Any] =self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def lowercase__ ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def lowercase__ ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCamelCase : Optional[Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") __lowerCamelCase : Union[str, Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
448
def A__ ( _a : list ): '''simple docstring''' if len(_a ) <= 1: return [tuple(_a )] snake_case__ : Optional[int] =[] def generate(_a : int , _a : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _a ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case__ , snake_case__ : Dict =arr[k - 1], arr[i] else: # k is odd snake_case__ , snake_case__ : int =arr[k - 1], arr[0] generate(k - 1 , _a ) generate(len(_a ) , _a ) return res if __name__ == "__main__": __lowerCamelCase : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Any = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
448
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} UpperCAmelCase_ = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } UpperCAmelCase_ = { """abeja/gpt-neox-japanese-2.7b""": 2_0_4_8, } def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :Any ) -> List[str]: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: _A = json.loads(f.read() ) _A = collections.OrderedDict() _A = collections.OrderedDict() _A = collections.OrderedDict() with open(a__ , '''r''' , encoding='''utf-8''' ) as f: _A = f.readlines() _A = [[t.rstrip('''\n''' )] if (t == ',' or ',' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(a__ ): _A = b _A = idx for wd in b: _A = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCamelCase__ ( lowercase_): """simple docstring""" a__ : List[str] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : str="<|endoftext|>" , __lowerCAmelCase : List[str]="<|endoftext|>" , __lowerCAmelCase : Optional[Any]="<|startoftext|>" , __lowerCAmelCase : str="<|endoftext|>" , __lowerCAmelCase : Any=False , **__lowerCAmelCase : List[Any] , ) -> Optional[int]: super().__init__( unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , do_clean_text=__lowerCAmelCase , **__lowerCAmelCase , ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) _A = do_clean_text _A = load_vocab_and_emoji(__lowerCAmelCase , __lowerCAmelCase ) _A = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def snake_case_ ( self : Optional[int] ) -> List[str]: return len(self.raw_vocab ) def snake_case_ ( self : str ) -> str: return dict(self.raw_vocab , **self.added_tokens_encoder ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] ) -> List[str]: return self.subword_tokenizer.tokenize(__lowerCAmelCase , clean=self.do_clean_text ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] ) -> int: return self.vocab.get(__lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case_ ( self : List[str] , __lowerCAmelCase : Tuple ) -> Optional[int]: return self.subword_tokenizer.convert_id_to_token(__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : Dict ) -> Any: _A = ''.join(__lowerCAmelCase ).strip() return out_string def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : "Conversation" ) -> Optional[int]: _A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [self.eos_token_id] ) if len(__lowerCAmelCase ) > self.model_max_length: _A = input_ids[-self.model_max_length :] return input_ids def snake_case_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Optional[int]: _A = 0 if os.path.isdir(__lowerCAmelCase ): _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: _A = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) _A = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) _A = token_index writer.write(''','''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , __lowerCAmelCase ) return vocab_file, emoji_file class lowerCamelCase__ ( lowercase_): """simple docstring""" def __init__( self : str , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ) -> List[Any]: _A = vocab # same as swe _A = ids_to_tokens # same as bpe _A = emoji _A = np.max([len(__lowerCAmelCase ) for w in self.vocab.keys()] ) _A = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) _A = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) _A = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) _A = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _A = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) _A = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) _A = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' _A = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' _A = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : int ) -> Union[str, Any]: return len(self.ids_to_tokens ) def snake_case_ ( self : Dict , __lowerCAmelCase : List[str] ) -> List[str]: _A = self.content_repattera.sub('''<URL>''' , __lowerCAmelCase ) _A = self.content_repattera.sub('''<EMAIL>''' , __lowerCAmelCase ) _A = self.content_repattera.sub('''<TEL>''' , __lowerCAmelCase ) _A = self.content_repattera.sub('''<DATE>''' , __lowerCAmelCase ) _A = self.content_repattera.sub('''<DATE>''' , __lowerCAmelCase ) _A = self.content_repattera.sub('''<PRICE>''' , __lowerCAmelCase ) _A = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _A = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def snake_case_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> str: _A = text.replace(''' ''' , '''<SP>''' ) _A = text.replace(''' ''' , '''<SP>''' ) _A = text.replace('''\r\n''' , '''<BR>''' ) _A = text.replace('''\n''' , '''<BR>''' ) _A = text.replace('''\r''' , '''<BR>''' ) _A = text.replace('''\t''' , '''<TAB>''' ) _A = text.replace('''—''' , '''ー''' ) _A = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: _A = text.replace(__lowerCAmelCase , __lowerCAmelCase ) if clean: _A = self.clean_text(__lowerCAmelCase ) def check_simbol(__lowerCAmelCase : Dict ): _A = x.encode() if len(__lowerCAmelCase ) == 1 and len(__lowerCAmelCase ) == 2: _A = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2_a_1 and c <= 0xc_2_b_f) or (c >= 0xc_7_8_0 and c <= 0xc_7_8_3) or (c >= 0xc_a_b_9 and c <= 0xc_b_b_f) or (c >= 0xc_c_8_0 and c <= 0xc_d_a_2) ): return True return False def checkuae(__lowerCAmelCase : List[Any] ): _A = x.encode() if len(__lowerCAmelCase ) == 1 and len(__lowerCAmelCase ) == 3: _A = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe_2_8_0_8_0 and c <= 0xe_2_b_0_7_f: return True return False _A = 0 _A = [] while pos < len(__lowerCAmelCase ): _A = min(len(__lowerCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 _A = [] # (token_id, token, pos) for e in range(__lowerCAmelCase , __lowerCAmelCase , -1 ): _A = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__lowerCAmelCase ) > 2: _A = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__lowerCAmelCase ) > 0: # the smallest token_id is adopted _A = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x[0] )[0] result.append(__lowerCAmelCase ) _A = e else: _A = pos + 1 _A = text[pos:end] if check_simbol(__lowerCAmelCase ): result.append('''<KIGOU>''' ) elif checkuae(__lowerCAmelCase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) _A = end return result def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str="\n" ) -> Union[str, Any]: _A = [] _A = [] _A = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__lowerCAmelCase ) > 0: words.append(bytearray(__lowerCAmelCase ).decode('''utf-8''' , errors='''replace''' ) ) _A = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(__lowerCAmelCase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: words.append(bytearray(__lowerCAmelCase ).decode('''utf-8''' , errors='''replace''' ) ) _A = ''.join(__lowerCAmelCase ) return text
2
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __init__( self : int , *snake_case : Optional[Any] , **snake_case : Optional[int] ): """simple docstring""" super().__init__(*snake_case , **snake_case ) _snake_case : Tuple = {} def __UpperCAmelCase ( self : int , snake_case : List[Any] , *snake_case : Optional[Any] , **snake_case : List[Any] ): """simple docstring""" _snake_case : str = super().add_tokens(snake_case , *snake_case , **snake_case ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def __UpperCAmelCase ( self : Union[str, Any] , snake_case : Optional[int] , *snake_case : Dict , snake_case : int=1 , **snake_case : int ): """simple docstring""" _snake_case : str = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case , *snake_case , **snake_case ) output.append(snake_case ) else: _snake_case : Optional[Any] = [] for i in range(snake_case ): _snake_case : int = placeholder_token + F"""_{i}""" self.try_adding_tokens(snake_case , *snake_case , **snake_case ) output.append(snake_case ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) _snake_case : Dict = output def __UpperCAmelCase ( self : Union[str, Any] , snake_case : str , snake_case : Dict=False , snake_case : List[str]=1.0 ): """simple docstring""" if isinstance(snake_case , snake_case ): _snake_case : int = [] for i in range(len(snake_case ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _snake_case : Union[str, Any] = self.token_map[placeholder_token] _snake_case : Any = tokens[: 1 + int(len(snake_case ) * prop_tokens_to_load )] if vector_shuffle: _snake_case : Union[str, Any] = copy.copy(snake_case ) random.shuffle(snake_case ) _snake_case : List[str] = text.replace(snake_case , ' '.join(snake_case ) ) return text def __call__( self : List[Any] , snake_case : Optional[int] , *snake_case : Any , snake_case : int=False , snake_case : str=1.0 , **snake_case : Optional[Any] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( snake_case , vector_shuffle=snake_case , prop_tokens_to_load=snake_case ) , *snake_case , **snake_case , ) def __UpperCAmelCase ( self : int , snake_case : List[str] , *snake_case : List[Any] , snake_case : Optional[int]=False , snake_case : Optional[Any]=1.0 , **snake_case : Any ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( snake_case , vector_shuffle=snake_case , prop_tokens_to_load=snake_case ) , *snake_case , **snake_case , )
517
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A : Any = logging.getLogger(__name__) def lowercase ( __snake_case : str , __snake_case : Optional[int] ): return (preds == labels).mean() @dataclass class _UpperCAmelCase : SCREAMING_SNAKE_CASE_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _UpperCAmelCase : SCREAMING_SNAKE_CASE_ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ : str = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=_A , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: lowercase_ : Optional[int] = processors[data_args.task_name]() lowercase_ : List[str] = processor.get_labels() lowercase_ : List[Any] = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowercase_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ : Optional[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowercase_ : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase_ : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case : EvalPrediction ) -> Dict: lowercase_ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator lowercase_ : Any = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase_ : str = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase_ : List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase_ : Union[str, Any] = trainer.evaluate() lowercase_ : Tuple = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def lowercase ( __snake_case : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
717
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Tuple ) -> Optional[Any]: lowercase_ : Any = inspect.getfile(accelerate.test_utils ) lowercase_ : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowercase_ : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) lowercase_ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def A ( self : List[str] ) -> List[str]: print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase_ : int = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) @require_multi_gpu def A ( self : List[Any] ) -> List[Any]: print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase_ : List[str] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) @require_multi_gpu def A ( self : str ) -> Union[str, Any]: lowercase_ : Tuple = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) @require_multi_gpu def A ( self : Optional[int] ) -> Optional[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) lowercase_ : Optional[int] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(A , env=os.environ.copy() ) if __name__ == "__main__": __A : List[Any] = Accelerator() __A : Dict = (accelerator.state.process_index + 2, 10) __A : Tuple = torch.randint(0, 10, shape).to(accelerator.device) __A : Optional[Any] = '''''' __A : Optional[int] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __A : int = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __A : Optional[int] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
141
0
import functools def __UpperCAmelCase ( a_ , a_): snake_case_ = len(__SCREAMING_SNAKE_CASE) snake_case_ = len(__SCREAMING_SNAKE_CASE) @functools.cache def min_distance(a_ , a_) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ = int(worda[indexa] != worda[indexa]) # current letters not identical return min( 1 + min_distance(indexa + 1 , __SCREAMING_SNAKE_CASE) , 1 + min_distance(__SCREAMING_SNAKE_CASE , indexa + 1) , diff + min_distance(indexa + 1 , indexa + 1) , ) return min_distance(0 , 0) if __name__ == "__main__": import doctest doctest.testmod()
198
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int = 2_00 ): lowercase_ : str = [1, 2, 5, 10, 20, 50, 1_00, 2_00] lowercase_ : Dict = [0] * (pence + 1) lowercase_ : List[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
425
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Any = {'''vocab_file''': '''spm_char.model'''} a__ : Optional[Any] = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } a__ : int = { '''microsoft/speecht5_asr''': 1_024, '''microsoft/speecht5_tts''': 1_024, '''microsoft/speecht5_vc''': 1_024, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Tuple: return self.sp_model.get_piece_size() def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Tuple = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = self.__dict__.copy() SCREAMING_SNAKE_CASE : Dict = None return state def __setstate__( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: return self.sp_model.piece_to_id(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.IdToPiece(_lowerCamelCase ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : str = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = [1] if token_ids_a is None: return ([0] * len(_lowerCamelCase )) + suffix_ones return ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
333
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE : int = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE : Optional[Any] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE : List[str] = RagConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE : List[Any] = question_encoder_config SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained_question_encoder_generator( a__ , a__ , config=a__ ) rag_model.save_pretrained(a__ ) # Sanity check. model_class.from_pretrained(a__ ) # Save tokenizers. SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(a__ ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(a__ ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) a__ : Dict = parser.parse_args() a__ : Tuple = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
333
1
def __SCREAMING_SNAKE_CASE ( lowercase_ = 1000 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
462
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=2 , lowercase__=3_2 , lowercase__=1_6 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=3_2 , lowercase__=4 , lowercase__=[0, 1, 2, 3] , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=[1, 3_8_4, 2_4, 2_4] , lowercase__=True , lowercase__=None , ): __UpperCAmelCase : Any = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Any = backbone_out_indices __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : List[Any] = backbone_featmap_shape __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : Optional[Any] = (image_size // patch_size) ** 2 __UpperCAmelCase : Any = num_patches + 1 def A( self): __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def A( self): __UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [9_6, 1_9_2, 3_8_4, 7_6_8], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowercase__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = DPTModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Dict = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : Optional[Any] = DPTForDepthEstimation(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : str = model(lowercase__) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : str = model(lowercase__ , labels=lowercase__) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def A( self): __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _lowerCAmelCase : Optional[int] = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCAmelCase : Any = False _lowerCAmelCase : str = False _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : Any = DPTModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(lowercase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __UpperCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(lowercase__) __UpperCAmelCase : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[str] = [*signature.parameters.keys()] __UpperCAmelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowercase__) def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__) def A( self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = True if model_class in get_values(lowercase__): continue __UpperCAmelCase : List[Any] = model_class(lowercase__) model.to(lowercase__) model.train() __UpperCAmelCase : Any = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) __UpperCAmelCase : Any = model(**lowercase__).loss loss.backward() def A( self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : str = True if model_class in get_values(lowercase__) or not model_class.supports_gradient_checkpointing: continue __UpperCAmelCase : Tuple = model_class(lowercase__) model.to(lowercase__) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : Tuple = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) __UpperCAmelCase : Union[str, Any] = model(**lowercase__).loss loss.backward() def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = _config_zero_init(lowercase__) for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(config=lowercase__) # Skip the check for the backbone __UpperCAmelCase : List[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __UpperCAmelCase : Optional[Any] = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def A( self): pass @slow def A( self): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __UpperCAmelCase : Optional[int] = DPTModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = '''add''' with self.assertRaises(lowercase__): __UpperCAmelCase : Optional[Any] = DPTForDepthEstimation(lowercase__) def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : str = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''') __UpperCAmelCase : str = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''').to(lowercase__) __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**lowercase__) __UpperCAmelCase : str = outputs.predicted_depth # verify the predicted depth __UpperCAmelCase : Union[str, Any] = torch.Size((1, 3_8_4, 3_8_4)) self.assertEqual(predicted_depth.shape , lowercase__) __UpperCAmelCase : List[str] = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]]).to(lowercase__) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , lowercase__ , atol=1e-4))
462
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] )
46
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] A_ = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } A_ = {f'''funnel-transformer/{name}''': 512 for name in _model_names} A_ = {f'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names} class UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = FunnelTokenizer SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = 2 def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="##" , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , bos_token=_A , eos_token=_A , clean_text=_A , tokenize_chinese_chars=_A , strip_accents=_A , wordpieces_prefix=_A , **_A , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(_A , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**_A ) lowerCamelCase_ = do_lower_case def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase_ = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
42
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') SCREAMING_SNAKE_CASE = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _lowerCamelCase ( __A : Tuple ) -> List[str]: _UpperCAmelCase : Union[str, Any] = None # source code of `config_class` _UpperCAmelCase : Dict = inspect.getsource(__A ) _UpperCAmelCase : Dict = _re_checkpoint.findall(__A ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): _UpperCAmelCase : int = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : str = ckpt_name break return checkpoint def _lowerCamelCase ( ) -> Any: _UpperCAmelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase : int = get_checkpoint_from_config_class(__A ) _UpperCAmelCase : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__A ) if len(__A ) > 0: _UpperCAmelCase : Any = '''\n'''.join(sorted(__A ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
485
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets __lowercase = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' __lowercase = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' __lowercase = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): """simple docstring""" def __snake_case ( self : Optional[Any]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def __snake_case ( self : Dict): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float")), "references": datasets.Sequence(datasets.Value("float")), } else: return { "predictions": datasets.Value("float"), "references": datasets.Value("float"), } def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]="uniform_average" , __UpperCAmelCase : List[Any]=True): a : int = mean_squared_error( __A , __A , sample_weight=__A , multioutput=__A , squared=__A) return {"mse": mse}
711
"""simple docstring""" from timeit import timeit def lowercase ( A_ )-> int: '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) a : Dict = 0 while number: number &= number - 1 result += 1 return result def lowercase ( A_ )-> int: '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) a : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowercase ( )-> None: '''simple docstring''' def do_benchmark(A_ ) -> None: a : Tuple = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(A_ ) = }''' ) a : List[Any] = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=A_ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(A_ ) = }''' ) a : Dict = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=A_ , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(A_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
135
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : int = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
394
'''simple docstring''' class _UpperCamelCase : '''simple docstring''' def __init__( self , _a ): """simple docstring""" # we need a list not a string, so do something to change the type a__ = arr.split(',' ) def lowercase__ ( self ): """simple docstring""" a__ = [int(self.array[0] )] * len(self.array ) a__ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): a__ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) a__ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __A : str = input('please input some numbers:') __A : int = SubArray(whole_array) __A : str = array.solve_sub_array() print(('the results is:', re))
394
1
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __a ( A , A , A ) -> List[Any]: '''simple docstring''' return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __a ( A , A , A , A="attention" ) -> Optional[int]: '''simple docstring''' A__ = A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) A__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) A__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) A__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) A__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __a ( A , A , A , A=False ) -> int: '''simple docstring''' if split_mlp_wi: A__ = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] A__ = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] A__ = (wi_a, wi_a) else: A__ = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] A__ = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __a ( A , A , A , A ) -> Any: '''simple docstring''' return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __a ( A , *, A , A , A = False ) -> Optional[Any]: '''simple docstring''' A__ = traverse_util.flatten_dict(variables["target"] ) A__ = {"/".join(A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , A ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old["token_embedder/embedding"] # Encoder. for i in range(A ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(A , A , "encoder" , "pre_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(A , A , "encoder" , "attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(A , A , "encoder" , "pre_mlp_layer_norm" ) A__ , A__ = tax_mlp_lookup(A , A , "encoder" , A ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T if scalable_attention: # convert the rel_embedding of each layer A__ = tax_relpos_bias_lookup( A , A , "encoder" ).T A__ = old["encoder/encoder_norm/scale"] if not scalable_attention: A__ = tax_relpos_bias_lookup( A , 0 , "encoder" ).T A__ = tax_relpos_bias_lookup( A , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(A ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(A , A , "decoder" , "pre_self_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(A , A , "decoder" , "self_attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(A , A , "decoder" , "pre_cross_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(A , A , "decoder" , "encoder_decoder_attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(A , A , "decoder" , "pre_mlp_layer_norm" ) A__ , A__ = tax_mlp_lookup(A , A , "decoder" , A ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T if scalable_attention: # convert the rel_embedding of each layer A__ = tax_relpos_bias_lookup(A , A , "decoder" ).T A__ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old["decoder/logits_dense/kernel"].T return new def __a ( A , A ) -> Dict: '''simple docstring''' A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) A__ = state_dict["shared.weight"] return state_dict def __a ( A , A , A , A , A ) -> Tuple: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(A ) A__ = convert_tax_to_pytorch( A , num_layers=config.num_layers , is_encoder_only=A , scalable_attention=A ) A__ = make_state_dict(A , A ) model.load_state_dict(A , strict=A ) def __a ( A , A , A , A = False , A = False , ) -> Optional[Any]: '''simple docstring''' A__ = MTaConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = UMTaEncoderModel(A ) else: A__ = UMTaForConditionalGeneration(A ) # Load weights from tf checkpoint load_tax_weights_in_ta(A , A , A , A , A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) # Verify that we can load the checkpoint. model.from_pretrained(A ) print("Done" ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) __UpperCAmelCase =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
261
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowercase__ : str = StableDiffusionInstructPixaPixPipeline lowercase__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowercase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A__ = CLIPTextModel(UpperCamelCase__ ) A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("RGB" ) if str(UpperCamelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCamelCase__ ) else: A__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = "french fries" A__ = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = [inputs["prompt"]] * 2 A__ = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 A__ = torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) A__ = image / 2 + 0.5 A__ = image.permute(0 , 3 , 1 , 2 ) A__ = image.repeat(2 , 1 , 1 , 1 ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" ) A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1] A__ = [round(UpperCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(UpperCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = VaeImageProcessor(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="pt" ) )[0] A__ = components["vae"] A__ = self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A__ = vae.encode(inputs[image_param] ).latent_dist.mode() A__ = pipe(**UpperCamelCase__ )[0] A__ = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase__ , 1e-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , UpperCamelCase__=0 ): '''simple docstring''' A__ = torch.manual_seed(UpperCamelCase__ ) A__ = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) A__ = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) A__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) A__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = 0 def callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: A__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A__ = False A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase_ ( self ): '''simple docstring''' A__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A__ = inputs["image"].resize((5_04, 5_04) ) A__ = "timbrooks/instruct-pix2pix" A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = pipe(**UpperCamelCase__ ) A__ = output.images[0] A__ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
261
1
from typing import Dict from .base import GenericTensor, Pipeline class __UpperCAmelCase ( __A ): """simple docstring""" def snake_case_ ( self , __A=None , __A=None , __A=None , **__A ): if tokenize_kwargs is None: __a = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) __a = truncation __a = tokenize_kwargs __a = {} if return_tensors is not None: __a = return_tensors return preprocess_params, {}, postprocess_params def snake_case_ ( self , __A , **__A ): __a = self.framework __a = self.tokenizer(__A , return_tensors=__A , **__A ) return model_inputs def snake_case_ ( self , __A ): __a = self.model(**__A ) return model_outputs def snake_case_ ( self , __A , __A=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *__A , **__A ): return super().__call__(*__A , **__A )
99
"""simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] ={ 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } SCREAMING_SNAKE_CASE__ : str ={value: key for key, value in encode_dict.items()} def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: _lowerCamelCase : Dict = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) _lowerCamelCase : List[Any] = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _lowerCamelCase : Union[str, Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
434
0
"""simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] ='0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
558
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( a_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ) -> List[Any]: _lowerCamelCase : Tuple = 1.0 if scale is None else scale _lowerCamelCase : int = 0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def a__ ( self ) -> Dict: return self.base_dist.mean * self.scale + self.loc @property def a__ ( self ) -> List[str]: return self.base_dist.variance * self.scale**2 @property def a__ ( self ) -> Union[str, Any]: return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> None: super().__init__(**_lowercase ) _lowerCamelCase : Union[str, Any] = args_dim _lowerCamelCase : Union[str, Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) _lowerCamelCase : str = domain_map def a__ ( self , _lowercase ) -> Tuple[torch.Tensor]: _lowerCamelCase : Any = [proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: super().__init__() _lowerCamelCase : Optional[Any] = function def a__ ( self , _lowercase , *_lowercase ) -> str: return self.function(_lowercase , *_lowercase ) class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = 42 __snake_case = 42 def __init__( self , _lowercase = 1 ) -> None: _lowerCamelCase : int = dim _lowerCamelCase : Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim} def a__ ( self , _lowercase ) -> Dict: if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def a__ ( self , _lowercase , _lowercase = None , _lowercase = None , ) -> Distribution: _lowerCamelCase : Any = self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def a__ ( self ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def a__ ( self ) -> int: return len(self.event_shape ) @property def a__ ( self ) -> float: return 0.0 def a__ ( self , _lowercase ) -> nn.Module: return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def a__ ( self , *_lowercase ) -> int: raise NotImplementedError() @staticmethod def a__ ( _lowercase ) -> torch.Tensor: return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"df": 1, "loc": 1, "scale": 1} __snake_case = StudentT @classmethod def a__ ( cls , _lowercase , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) _lowerCamelCase : List[Any] = 2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"loc": 1, "scale": 1} __snake_case = Normal @classmethod def a__ ( cls , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"total_count": 1, "logits": 1} __snake_case = NegativeBinomial @classmethod def a__ ( cls , _lowercase , _lowercase ) -> int: _lowerCamelCase : str = cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a__ ( self , _lowercase ) -> Distribution: _lowerCamelCase, _lowerCamelCase : int = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def a__ ( self , _lowercase , _lowercase = None , _lowercase = None ) -> Distribution: _lowerCamelCase, _lowerCamelCase : Optional[int] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
558
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } a_ = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } a_ = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = BertTokenizer def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase="[UNK]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="[PAD]" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) __A : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowerCamelCase ) != tokenize_chinese_chars ): __A : Optional[Any] = getattr(__lowerCamelCase , normalizer_state.pop('''type''' ) ) __A : Optional[Any] = do_lower_case __A : str = strip_accents __A : Optional[int] = tokenize_chinese_chars __A : List[Any] = normalizer_class(**__lowerCamelCase ) __A : List[Any] = do_lower_case def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : Union[str, Any] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : str = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
177
"""simple docstring""" from collections import namedtuple a_ = namedtuple("""from_to""", """from_ to""") a_ = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00454, 264.172), """cubicyard""": from_to(0.76455, 1.30795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.000236588, 4226.75), } def __lowercase ( snake_case_ : float ,snake_case_ : str ,snake_case_ : str ) ->float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(snake_case_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(snake_case_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
177
1
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase_ ( unittest.TestCase ): def a_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = ["a", "b", "c"] # Defaults to last layer if both are None _UpperCAmelCase : Tuple = get_aligned_output_features_output_indices(a_ , a_ , a_ ) self.assertEqual(a_ , ['''c'''] ) self.assertEqual(a_ , [2] ) # Out indices set to match out features _UpperCAmelCase : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , a_ , a_ ) self.assertEqual(a_ , ['''a''', '''c'''] ) self.assertEqual(a_ , [0, 2] ) # Out features set to match out indices _UpperCAmelCase : Tuple = get_aligned_output_features_output_indices(a_ , [0, 2] , a_ ) self.assertEqual(a_ , ['''a''', '''c'''] ) self.assertEqual(a_ , [0, 2] ) # Out features selected from negative indices _UpperCAmelCase : Dict = get_aligned_output_features_output_indices(a_ , [-3, -1] , a_ ) self.assertEqual(a_ , ['''a''', '''c'''] ) self.assertEqual(a_ , [-3, -1] ) def a_ ( self : str ) -> str: '''simple docstring''' with self.assertRaises(a_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , a_ ) # Out features must be a list with self.assertRaises(a_ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(a_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(a_ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(a_ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def a_ ( self : str ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = BackboneMixin() _UpperCAmelCase : List[Any] = ["a", "b", "c"] _UpperCAmelCase : Optional[int] = ["a", "c"] _UpperCAmelCase : Dict = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _UpperCAmelCase : Union[str, Any] = ["a", "b"] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) _UpperCAmelCase : str = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
707
def _A ( _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase : Tuple = len(_UpperCamelCase ) _UpperCAmelCase : Tuple = len(_UpperCamelCase ) _UpperCAmelCase : Dict = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase : List[Any] = True for i in range(_UpperCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase : List[Any] = True if a[i].islower(): _UpperCAmelCase : str = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
416
0
'''simple docstring''' from math import isqrt def snake_case__ ( UpperCamelCase ) -> Optional[int]: _UpperCamelCase : Dict = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,UpperCamelCase ,UpperCamelCase ): _UpperCamelCase : List[str] = False return [i for i in range(2 ,UpperCamelCase ) if is_prime[i]] def snake_case__ ( UpperCamelCase = 10**8 ) -> Optional[int]: _UpperCamelCase : int = calculate_prime_numbers(max_number // 2 ) _UpperCamelCase : Any = 0 _UpperCamelCase : Any = 0 _UpperCamelCase : int = len(UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
683
__lowercase = { "km/h": 1.0, "m/s": 3.6, "mph": 1.6_0_9_3_4_4, "knot": 1.8_5_2, } __lowercase = { "km/h": 1.0, "m/s": 0.2_7_7_7_7_7_7_7_8, "mph": 0.6_2_1_3_7_1_1_9_2, "knot": 0.5_3_9_9_5_6_8_0_3, } def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase :int = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {', '.join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
167
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) a = logging.getLogger(__name__) a = tf.data.AUTOTUNE def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=__magic_name__ , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=__magic_name__ , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=__magic_name__ , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=__magic_name__ , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=__magic_name__ , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=__magic_name__ , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=__magic_name__ , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=__magic_name__ , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=__magic_name__ , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=__magic_name__ , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=__magic_name__ , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=__magic_name__ , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=__magic_name__ , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=__magic_name__ , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=__magic_name__ , required=__magic_name__ , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=__magic_name__ , help='Model ID to upload to on the Hugging Face Hub.' ) _lowerCAmelCase :Any = parser.parse_args() return args def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" try: if args.tpu_name: _lowerCAmelCase :Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _lowerCAmelCase :str = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(__magic_name__ ) tf.tpu.experimental.initialize_tpu_system(__magic_name__ ) return tpu def UpperCamelCase_( __magic_name__ : Optional[int] ): """simple docstring""" _lowerCAmelCase :str = 0 for file in file_list: _lowerCAmelCase :str = file.split('/' )[-1] _lowerCAmelCase :Union[str, Any] = re.search(r'-\d+-(\d+)\.tfrecord' , __magic_name__ ).group(1 ) _lowerCAmelCase :Dict = int(__magic_name__ ) num_samples += sample_count return num_samples def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=None ): """simple docstring""" _lowerCAmelCase :Dict = count_samples(__magic_name__ ) _lowerCAmelCase :List[str] = tf.data.Dataset.from_tensor_slices(__magic_name__ ) if shuffle: _lowerCAmelCase :Union[str, Any] = dataset.shuffle(len(__magic_name__ ) ) _lowerCAmelCase :int = tf.data.TFRecordDataset(__magic_name__ , num_parallel_reads=__magic_name__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _lowerCAmelCase :str = dataset.apply(tf.data.experimental.assert_cardinality(__magic_name__ ) ) _lowerCAmelCase :Optional[int] = dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) if shuffle: assert shuffle_buffer_size is not None _lowerCAmelCase :Any = dataset.shuffle(args.shuffle_buffer_size ) _lowerCAmelCase :Any = dataset.batch(__magic_name__ , drop_remainder=__magic_name__ ) _lowerCAmelCase :Optional[int] = dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) _lowerCAmelCase :str = dataset.prefetch(__magic_name__ ) return dataset def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if not args.no_tpu: _lowerCAmelCase :Dict = initialize_tpu(__magic_name__ ) _lowerCAmelCase :Optional[int] = tf.distribute.TPUStrategy(__magic_name__ ) else: _lowerCAmelCase :List[str] = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) _lowerCAmelCase :str = AutoTokenizer.from_pretrained(args.tokenizer ) _lowerCAmelCase :Dict = AutoConfig.from_pretrained(args.pretrained_model_config ) _lowerCAmelCase :Dict = tokenizer.vocab_size _lowerCAmelCase :Tuple = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) _lowerCAmelCase :Optional[int] = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) _lowerCAmelCase :Dict = count_samples(__magic_name__ ) _lowerCAmelCase :Any = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _lowerCAmelCase :Optional[Any] = steps_per_epoch * args.num_epochs with strategy.scope(): _lowerCAmelCase :int = TFAutoModelForMaskedLM.from_config(__magic_name__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _lowerCAmelCase :List[str] = create_optimizer( num_train_steps=__magic_name__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__magic_name__ , metrics=['accuracy'] ) def decode_fn(__magic_name__ : Tuple ): _lowerCAmelCase :int = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__magic_name__ , __magic_name__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _lowerCAmelCase :Dict = DataCollatorForLanguageModeling( tokenizer=__magic_name__ , mlm_probability=args.mlm_probability , mlm=__magic_name__ , return_tensors='tf' ) def mask_with_collator(__magic_name__ : Union[str, Any] ): # TF really needs an isin() function _lowerCAmelCase :Optional[Any] = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) _lowerCAmelCase :Any = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(__magic_name__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__magic_name__ , ) return batch _lowerCAmelCase :List[str] = args.per_replica_batch_size * strategy.num_replicas_in_sync _lowerCAmelCase :Optional[int] = prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , shuffle_buffer_size=args.shuffle_buffer_size , ) _lowerCAmelCase :int = prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , ) _lowerCAmelCase :Tuple = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__magic_name__ ) ) model.fit( __magic_name__ , validation_data=__magic_name__ , epochs=args.num_epochs , callbacks=__magic_name__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": a = parse_args() main(args)
718
from math import sqrt def UpperCamelCase_( __magic_name__ : int = 1000000 ): """simple docstring""" _lowerCAmelCase :int = 0 _lowerCAmelCase :int = 0 _lowerCAmelCase :int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__magic_name__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'''{solution() = }''')
382
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase__ : """simple docstring""" def __init__( self : int , UpperCamelCase : Dict , UpperCamelCase : List[str]=13 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : Any=True , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=True , UpperCamelCase : str=99 , UpperCamelCase : int=32 , UpperCamelCase : Any=5 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : Any=4 , UpperCamelCase : int="gelu" , UpperCamelCase : Dict=0.0 , UpperCamelCase : str=0.1 , UpperCamelCase : List[Any]=True , UpperCamelCase : Tuple=512 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : int=2 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Optional[int]=3 , UpperCamelCase : List[Any]=4 , UpperCamelCase : Union[str, Any]=None , ): '''simple docstring''' __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Optional[Any] = use_token_type_ids __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_multiple_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : Optional[int] = weight_tying __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : str = num_labels __UpperCAmelCase : int = num_choices __UpperCAmelCase : Optional[Any] = scope def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : Dict = True return config, input_ids, input_mask, token_labels def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : int = GPTNeoXJapaneseModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : Tuple = model(UpperCamelCase , attention_mask=UpperCamelCase ) __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : str = True __UpperCAmelCase : int = GPTNeoXJapaneseModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = True __UpperCAmelCase : str = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , use_cache=UpperCamelCase ) __UpperCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : List[str] = model(UpperCamelCase , attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase ) __UpperCAmelCase : List[Any] = output_from_no_past["""hidden_states"""][0] __UpperCAmelCase : Tuple = model( UpperCamelCase , attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : str = config_and_inputs __UpperCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __a = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __a = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = GPTNeoXJapaneseModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCAmelCase : List[str] = None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = """abeja/gpt-neox-japanese-2.7b""" __UpperCAmelCase : List[str] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] __UpperCAmelCase : Any = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] __UpperCAmelCase : Dict = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = [] for prompt in prompts: __UpperCAmelCase : Optional[Any] = tokenizer(UpperCamelCase , return_tensors="""pt""" ).input_ids __UpperCAmelCase : Any = model.generate(UpperCamelCase , max_length=50 ) __UpperCAmelCase : Dict = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase , UpperCamelCase )
139
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase ( _UpperCamelCase : Callable , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> np.array: '''simple docstring''' __UpperCAmelCase : Tuple = int(np.ceil((x_end - xa) / step_size ) ) __UpperCAmelCase : Optional[int] = np.zeros((n + 1,) ) __UpperCAmelCase : List[Any] = ya __UpperCAmelCase : List[Any] = xa for k in range(_UpperCamelCase ): __UpperCAmelCase : str = y[k] + step_size * ode_func(_UpperCamelCase , y[k] ) __UpperCAmelCase : Tuple = y[k] + ( (step_size / 2) * (ode_func(_UpperCamelCase , y[k] ) + ode_func(x + step_size , _UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
139
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : Tuple = logging.get_logger(__name__) A : List[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } A : List[str] = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } A : str = { """ctrl""": 256, } A : Optional[Any] = { """Pregnancy""": 168_629, """Christianity""": 7_675, """Explain""": 106_423, """Fitness""": 63_440, """Saving""": 63_163, """Ask""": 27_171, """Ass""": 95_985, """Joke""": 163_509, """Questions""": 45_622, """Thoughts""": 49_605, """Retail""": 52_342, """Feminism""": 164_338, """Writing""": 11_992, """Atheism""": 192_263, """Netflix""": 48_616, """Computing""": 39_639, """Opinion""": 43_213, """Alone""": 44_967, """Funny""": 58_917, """Gaming""": 40_358, """Human""": 4_088, """India""": 1_331, """Joker""": 77_138, """Diet""": 36_206, """Legal""": 11_859, """Norman""": 4_939, """Tip""": 72_689, """Weight""": 52_343, """Movies""": 46_273, """Running""": 23_425, """Science""": 2_090, """Horror""": 37_793, """Confession""": 60_572, """Finance""": 12_250, """Politics""": 16_360, """Scary""": 191_985, """Support""": 12_654, """Technologies""": 32_516, """Teenage""": 66_160, """Event""": 32_769, """Learned""": 67_460, """Notion""": 182_770, """Wikipedia""": 37_583, """Books""": 6_665, """Extract""": 76_050, """Confessions""": 102_701, """Conspiracy""": 75_932, """Links""": 63_674, """Narcissus""": 150_425, """Relationship""": 54_766, """Relationships""": 134_796, """Reviews""": 41_671, """News""": 4_256, """Translation""": 26_820, """multilingual""": 128_406, } def snake_case_ ( a__ : Any ): """simple docstring""" __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char __lowercase = set(a__ ) return pairs class SCREAMING_SNAKE_CASE( __A ): snake_case_ : Optional[int] = VOCAB_FILES_NAMES snake_case_ : Any = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Union[str, Any] = CONTROL_CODES def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<unk>" , **lowerCamelCase__ ) -> Any: """simple docstring""" super().__init__(unk_token=lowerCamelCase__ , **lowerCamelCase__ ) with open(lowerCamelCase__ , encoding="""utf-8""" ) as vocab_handle: __lowercase = json.load(lowerCamelCase__ ) __lowercase = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__ , encoding="""utf-8""" ) as merges_handle: __lowercase = merges_handle.read().split("""\n""" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in merges] __lowercase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowercase = {} @property def snake_case__ ( self ) -> List[Any]: """simple docstring""" return len(self.encoder ) def snake_case__ ( self ) -> int: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case__ ( self , lowerCamelCase__ ) -> Any: """simple docstring""" if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase__ ) __lowercase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowercase = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: __lowercase = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowercase ,__lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase__ ): try: __lowercase = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase__ ) __lowercase = new_word if len(lowerCamelCase__ ) == 1: break else: __lowercase = get_pairs(lowerCamelCase__ ) __lowercase = """@@ """.join(lowerCamelCase__ ) __lowercase = word[:-4] __lowercase = word return word def snake_case__ ( self , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __lowercase = [] __lowercase = re.findall(R"""\S+\n?""" , lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) ) return split_tokens def snake_case__ ( self , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def snake_case__ ( self , lowerCamelCase__ ) -> List[Any]: """simple docstring""" return self.decoder.get(lowerCamelCase__ , self.unk_token ) def snake_case__ ( self , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __lowercase = """ """.join(lowerCamelCase__ ).replace("""@@ """ , """""" ).strip() return out_string def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + """\n""" ) __lowercase = 0 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __lowercase = token_index writer.write(""" """.join(lowerCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
163
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ): def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=lowerCamelCase__ , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ): def snake_case__ ( self ) -> int: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=lowerCamelCase__ , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCamelCase__ ) def snake_case_ ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def snake_case_ ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class SCREAMING_SNAKE_CASE( __A ): @require_beam def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowercase = DummyBeamDataset(cache_dir=lowerCamelCase__ , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) __lowercase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , lowerCamelCase__ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowerCamelCase__ ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def snake_case__ ( self ) -> List[Any]: """simple docstring""" import apache_beam as beam __lowercase = beam.io.parquetio.WriteToParquet __lowercase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowercase = DummyBeamDataset(cache_dir=lowerCamelCase__ , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: __lowercase = partial(lowerCamelCase__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) __lowercase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , lowerCamelCase__ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowerCamelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def snake_case__ ( self ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowercase = DummyBeamDataset(cache_dir=lowerCamelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowercase = NestedBeamDataset(cache_dir=lowerCamelCase__ , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) __lowercase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , lowerCamelCase__ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowerCamelCase__ ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
163
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a ={ 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
530
def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _A ( _lowercase , _lowercase=0 ) -> Dict: """simple docstring""" return sorted(_lowercase , key=lambda _lowercase : x[column] ) def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion __UpperCamelCase = points_counts // 2 __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCamelCase = min(_lowercase , _lowercase ) __UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) __UpperCamelCase = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = column_based_sort(_lowercase , column=0 ) __UpperCamelCase = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
1
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __A = """sshleifer/bart-tiny-random""" __A = """patrickvonplaten/t5-tiny-random""" @require_torch class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: return AutoConfig.from_pretrained(lowerCamelCase_ ) def lowerCAmelCase_ ( self : Any ) -> List[Any]: __a , *__a = create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCAmelCase_ ( self : Tuple ) -> Any: __a , *__a = create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=1 , d=lowerCamelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] ) -> Dict: __a , *__a = create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=1 , d=lowerCamelCase_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCAmelCase_ ( self : List[str] ) -> List[Any]: __a , *__a = create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCAmelCase_ ( self : int ) -> Optional[int]: with self.assertRaises(lowerCamelCase_ ): create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=lowerCamelCase_ , d=lowerCamelCase_ )
173
"""simple docstring""" __A = 6_55_21 def UpperCamelCase ( _lowerCAmelCase : str ): __a = 1 __a = 0 for plain_chr in plain_text: __a = (a + ord(_lowerCAmelCase )) % MOD_ADLER __a = (b + a) % MOD_ADLER return (b << 16) | a
173
1
'''simple docstring''' import math def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): snake_case__ : Union[str, Any] = f"Input value of [number={number}] must be an integer" raise TypeError(__magic_name__ ) if number < 1: snake_case__ : Optional[int] = f"Input value of [number={number}] must be > 0" raise ValueError(__magic_name__ ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case__ : Optional[int] = int(math.log(number // 3 , 2 ) ) + 2 snake_case__ : str = [3, 5] snake_case__ : List[Any] = 2 snake_case__ : Optional[Any] = 3 for block in range(1 , __magic_name__ ): for _ in range(__magic_name__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): A_ : Optional[int] = 0 try: A_ : Dict = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
38
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase_ ( a_ ): _A : int = 'wav2vec2' def __init__( self , snake_case__=32 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=1_28 , snake_case__=16 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__=3_20 , snake_case__=2 , snake_case__=0.1 , snake_case__=1_00 , snake_case__=2_56 , snake_case__=2_56 , snake_case__=0.1 , snake_case__="sum" , snake_case__=False , snake_case__=False , snake_case__=2_56 , snake_case__=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=5_12 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size UpperCAmelCase = do_stable_layer_norm UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase = num_codevectors_per_group UpperCAmelCase = num_codevector_groups UpperCAmelCase = contrastive_logits_temperature UpperCAmelCase = feat_quantizer_dropout UpperCAmelCase = num_negatives UpperCAmelCase = codevector_dim UpperCAmelCase = proj_codevector_dim UpperCAmelCase = diversity_loss_weight # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # adapter UpperCAmelCase = add_adapter UpperCAmelCase = adapter_kernel_size UpperCAmelCase = adapter_stride UpperCAmelCase = num_adapter_layers UpperCAmelCase = output_hidden_size or hidden_size UpperCAmelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = xvector_output_dim @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
673
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = {'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE : str = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class lowercase_ ( __snake_case ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = ['input_ids', 'attention_mask'] _lowerCamelCase = None def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="<unk>" , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<pad>" , lowercase_=False , lowercase_=False , **lowercase_ , ): super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , add_prefix_space=lowercase_ , clean_up_tokenization_spaces=lowercase_ , **lowercase_ , ) _snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase_ ) != add_prefix_space: _snake_case : Union[str, Any] = getattr(lowercase_ , pre_tok_state.pop("type" ) ) _snake_case : List[str] = add_prefix_space _snake_case : List[str] = pre_tok_class(**lowercase_ ) _snake_case : Tuple = add_prefix_space def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): _snake_case : Dict = kwargs.get("is_split_into_words" , lowercase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): _snake_case : Any = kwargs.get("is_split_into_words" , lowercase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def UpperCamelCase ( self , lowercase_ , lowercase_ = None ): _snake_case : Any = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCamelCase ( self , lowercase_ ): _snake_case : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: _snake_case : int = input_ids[-self.model_max_length :] return input_ids
580
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowercase_ ( nn.Module ): def __init__( self ): super().__init__() _snake_case : Optional[int] = nn.Linear(3 , 4 ) _snake_case : Any = nn.BatchNormad(4 ) _snake_case : List[str] = nn.Linear(4 , 5 ) def UpperCamelCase ( self , lowercase_ ): return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class lowercase_ ( __snake_case ): def UpperCamelCase ( self , lowercase_ , *lowercase_ , **lowercase_ ): return (args[0] + 1,) + args[1:], kwargs class lowercase_ ( __snake_case ): def UpperCamelCase ( self , lowercase_ , lowercase_ ): return output + 1 class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): _snake_case : List[str] = ModelForTest() _snake_case : List[str] = ModelHook() add_hook_to_module(lowercase_ , lowercase_ ) self.assertEqual(test_model._hf_hook , lowercase_ ) self.assertTrue(hasattr(lowercase_ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(lowercase_ ) self.assertFalse(hasattr(lowercase_ , "_hf_hook" ) ) self.assertFalse(hasattr(lowercase_ , "_old_forward" ) ) def UpperCamelCase ( self ): _snake_case : Optional[Any] = ModelForTest() _snake_case : Any = ModelHook() add_hook_to_module(lowercase_ , lowercase_ ) add_hook_to_module(lowercase_ , lowercase_ , append=lowercase_ ) self.assertEqual(isinstance(test_model._hf_hook , lowercase_ ) , lowercase_ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(lowercase_ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(lowercase_ ) self.assertFalse(hasattr(lowercase_ , "_hf_hook" ) ) self.assertFalse(hasattr(lowercase_ , "_old_forward" ) ) def UpperCamelCase ( self ): _snake_case : Union[str, Any] = ModelForTest() _snake_case : Tuple = torch.randn(2 , 3 ) _snake_case : List[str] = test_model(x + 1 ) _snake_case : str = test_model(x + 2 ) _snake_case : int = PreForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) _snake_case : Any = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _snake_case : str = PreForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) _snake_case : Union[str, Any] = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _snake_case : Optional[Any] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(lowercase_ , lowercase_ ) _snake_case : Optional[Any] = test_model(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) def UpperCamelCase ( self ): _snake_case : Optional[Any] = ModelForTest() _snake_case : Dict = torch.randn(2 , 3 ) _snake_case : List[str] = test_model(lowercase_ ) _snake_case : Any = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) _snake_case : Optional[int] = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _snake_case : Tuple = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) _snake_case : Any = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _snake_case : Union[str, Any] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(lowercase_ , lowercase_ ) _snake_case : Any = test_model(lowercase_ ) assert torch.allclose(lowercase_ , output + 2 , atol=1e-5 ) def UpperCamelCase ( self ): _snake_case : Dict = ModelForTest() _snake_case : List[str] = torch.randn(2 , 3 ) _snake_case : int = test_model(lowercase_ ) _snake_case : str = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_ ) _snake_case : Dict = test_model(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _snake_case : Dict = True _snake_case : str = test_model(lowercase_ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCamelCase ( self ): _snake_case : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _snake_case : str = torch.randn(2 , 3 ) _snake_case : int = model(lowercase_ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase_ , AlignDevicesHook(io_same_device=lowercase_ ) ) _snake_case : str = torch.randn(2 , 3 ).to(0 ) _snake_case : Dict = model(lowercase_ ) self.assertEqual(output.device , torch.device(0 ) ) def UpperCamelCase ( self ): _snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _snake_case : Tuple = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case : Optional[Any] = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) _snake_case : List[str] = torch.randn(2 , 3 ) _snake_case : Any = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload _snake_case : Dict = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _snake_case : List[str] = torch.randn(2 , 3 ) _snake_case : List[str] = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def UpperCamelCase ( self ): _snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _snake_case : Any = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case : Optional[int] = torch.device(lowercase_ ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) _snake_case : Dict = torch.randn(2 , 3 ) _snake_case : int = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ , offload_buffers=lowercase_ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _snake_case : int = torch.randn(2 , 3 ) _snake_case : str = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def UpperCamelCase ( self ): _snake_case : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _snake_case : int = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case : int = torch.device(lowercase_ ) self.assertEqual(model.batchnorm.running_mean.device , lowercase_ ) _snake_case : Union[str, Any] = torch.randn(2 , 3 ) _snake_case : Dict = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() , offload_buffers=lowercase_ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _snake_case : List[Any] = torch.randn(2 , 3 ) _snake_case : List[Any] = model(lowercase_ ) self.assertEqual(output.device , lowercase_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
580
1
import os def __snake_case ( ) -> List[Any]: with open(os.path.dirname(UpperCamelCase__ ) + '''/p022_names.txt''' ) as file: _a = str(file.readlines()[0] ) _a = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _a = 0 _a = 0 for i, name in enumerate(UpperCamelCase__ ): for letter in name: name_score += ord(UpperCamelCase__ ) - 64 total_score += (i + 1) * name_score _a = 0 return total_score if __name__ == "__main__": print(solution())
487
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = checkpoints.load_tax_checkpoint(UpperCamelCase__ ) UpperCamelCase__ = flatten_dict(UpperCamelCase__ ) return flax_params def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ): '''simple docstring''' UpperCamelCase__ = {} UpperCamelCase__ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } UpperCamelCase__ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCamelCase__ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCamelCase__ = new_key.replace(UpperCamelCase__, UpperCamelCase__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCamelCase__ = new_key.replace(UpperCamelCase__, UpperCamelCase__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCamelCase__ = re.sub(r'''layers_(\d+)''', r'''layer.\1''', UpperCamelCase__ ) UpperCamelCase__ = new_key.replace('''encoder''', '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCamelCase__ = re.sub(r'''layers_(\d+)''', r'''layer.\1''', UpperCamelCase__ ) UpperCamelCase__ = flax_dict[key] UpperCamelCase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCamelCase__ = torch.from_numpy(converted_dict[key].T ) else: UpperCamelCase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Any, UpperCamelCase__ : Tuple=False, UpperCamelCase__ : List[str]=False ): '''simple docstring''' UpperCamelCase__ = get_flax_param(UpperCamelCase__ ) if not use_large: UpperCamelCase__ = PixaStructVisionConfig() UpperCamelCase__ = PixaStructTextConfig() else: UpperCamelCase__ = PixaStructVisionConfig( hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18 ) UpperCamelCase__ = PixaStructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18 ) UpperCamelCase__ = PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=UpperCamelCase__ ) UpperCamelCase__ = PixaStructForConditionalGeneration(UpperCamelCase__ ) UpperCamelCase__ = rename_and_convert_flax_params(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) UpperCamelCase__ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) UpperCamelCase__ = PixaStructImageProcessor() UpperCamelCase__ = PixaStructProcessor(image_processor=UpperCamelCase__, tokenizer=UpperCamelCase__ ) if use_large: UpperCamelCase__ = 4096 UpperCamelCase__ = True # mkdir if needed os.makedirs(UpperCamelCase__, exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) print('''Model saved in {}'''.format(UpperCamelCase__ ) ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") lowercase = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
240
0
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ = 10_00 )-> int: """simple docstring""" UpperCamelCase , UpperCamelCase = 1, 1 UpperCamelCase = [] for i in range(1 , n + 1 ): UpperCamelCase = prev_numerator + 2 * prev_denominator UpperCamelCase = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCamelCase = numerator UpperCamelCase = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(F'''{solution() = }''')
556
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass(frozen=_lowerCAmelCase ) class __a : UpperCamelCase_ : str UpperCamelCase_ : str UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None @dataclass(frozen=_lowerCAmelCase ) class __a : UpperCamelCase_ : List[int] UpperCamelCase_ : Optional[List[int]] = None UpperCamelCase_ : Optional[List[int]] = None UpperCamelCase_ : Optional[Union[int, float]] = None UpperCamelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a ( _lowerCAmelCase ): UpperCamelCase_ : List[InputFeatures] def __init__( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , )-> Dict: """simple docstring""" UpperCamelCase = hans_processors[task]() UpperCamelCase = os.path.join( UpperCAmelCase_ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(UpperCAmelCase_ ) , UpperCAmelCase_ , ) , ) UpperCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase = label_list[2], label_list[1] UpperCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase = cached_features_file + ".lock" with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) UpperCamelCase = torch.load(UpperCAmelCase_ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) UpperCamelCase = ( processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) ) logger.info("Training examples: %s" , len(UpperCAmelCase_ ) ) UpperCamelCase = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info("Saving features into cached file %s" , UpperCAmelCase_ ) torch.save(self.features , UpperCAmelCase_ ) def __len__( self : Optional[Any] )-> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Any )-> InputFeatures: """simple docstring""" return self.features[i] def _SCREAMING_SNAKE_CASE ( self : str )-> List[Any]: """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class __a : UpperCamelCase_ : List[InputFeatures] def __init__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = 128 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , )-> Union[str, Any]: """simple docstring""" UpperCamelCase = hans_processors[task]() UpperCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase = label_list[2], label_list[1] UpperCamelCase = label_list UpperCamelCase = processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) UpperCamelCase = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(UpperCAmelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase = tf.data.Dataset.from_generator( UpperCAmelCase_ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Tuple: """simple docstring""" return self.dataset def __len__( self : List[Any] )-> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase_ : List[str] )-> InputFeatures: """simple docstring""" return self.features[i] def _SCREAMING_SNAKE_CASE ( self : List[str] )-> List[str]: """simple docstring""" return self.label_list class __a ( _lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : Tuple )-> Tuple: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , "heuristics_train_set.txt" ) ) , "train" ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : List[str] )-> Dict: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" return ["contradiction", "entailment", "neutral"] def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str )-> str: """simple docstring""" UpperCamelCase = [] for i, line in enumerate(UpperCAmelCase_ ): if i == 0: continue UpperCamelCase = "%s-%s" % (set_type, line[0]) UpperCamelCase = line[5] UpperCamelCase = line[6] UpperCamelCase = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCamelCase = line[0] examples.append(InputExample(guid=UpperCAmelCase_ , text_a=UpperCAmelCase_ , text_b=UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) return examples def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )-> Union[str, Any]: """simple docstring""" UpperCamelCase = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCamelCase = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCamelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCamelCase = label_map[example.label] if example.label in label_map else 0 UpperCamelCase = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"guid: {example}" ) logger.info(F"features: {features[i]}" ) return features SCREAMING_SNAKE_CASE = { """hans""": 3, } SCREAMING_SNAKE_CASE = { """hans""": HansProcessor, }
556
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _SCREAMING_SNAKE_CASE : Any = 25_00_04 _SCREAMING_SNAKE_CASE : Any = 25_00_20 @require_sentencepiece @require_tokenizers class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a_ ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case = MBartaaTokenizer(__snake_case , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self ): snake_case = '''<s>''' snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def a_ ( self ): snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__snake_case ) , 1_0_5_4 ) def a_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def a_ ( self ): snake_case = MBartaaTokenizer(__snake_case , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__snake_case ) snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) snake_case = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def a_ ( self ): # fmt: off snake_case = {'''input_ids''': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def a_ ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) snake_case = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(__snake_case ) snake_case = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(__snake_case ) snake_case = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) snake_case = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(__snake_case ) snake_case = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) snake_case = tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(__snake_case ) snake_case = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = 'facebook/mbart-large-50-one-to-many-mmt' __magic_name__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __magic_name__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __magic_name__ = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def a_ ( cls ): snake_case = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) snake_case = 1 return cls def a_ ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 2_5_0_0_3_8 ) def a_ ( self ): snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def a_ ( self ): self.assertIn(__snake_case , self.tokenizer.all_special_ids ) snake_case = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def a_ ( self ): snake_case = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , __snake_case ) snake_case = 1_0 snake_case = self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[0] , __snake_case ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__snake_case ) , __snake_case ) def a_ ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def a_ ( self ): snake_case = tempfile.mkdtemp() snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) snake_case = MBartaaTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def a_ ( self ): snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__snake_case , return_tensors='''pt''' ) snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a_ ( self ): snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a_ ( self ): snake_case = self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='''pt''' ) snake_case = self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=1_0 , return_tensors='''pt''' ) snake_case = targets['''input_ids'''] snake_case = shift_tokens_right(__snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def a_ ( self ): snake_case = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__snake_case ) , { # en_XX, A, test, EOS '''input_ids''': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
550
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = tempfile.mkdtemp() snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) snake_case = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], '''do_convert_rgb''': True, } snake_case = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__snake_case , __snake_case ) def a_ ( self , **__snake_case ): return BertTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self , **__snake_case ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self , **__snake_case ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): snake_case = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self ): snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = self.get_image_processor() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def a_ ( self ): snake_case = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) snake_case = self.get_image_processor(do_normalize=__snake_case ) snake_case = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=__snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = self.prepare_image_inputs() snake_case = image_processor(__snake_case , return_tensors='''np''' ) snake_case = processor(images=__snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = '''Alexandra,T-shirt的价格是15便士。''' snake_case = processor(text=__snake_case ) snake_case = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = '''Alexandra,T-shirt的价格是15便士。''' snake_case = self.prepare_image_inputs() snake_case = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case = processor.batch_decode(__snake_case ) snake_case = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = '''Alexandra,T-shirt的价格是15便士。''' snake_case = self.prepare_image_inputs() snake_case = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
550
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _snake_case : def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=2 ,_snake_case=24 ,_snake_case=16 ,_snake_case=True ,_snake_case=True ,_snake_case=32 ,_snake_case=5 ,_snake_case=4 ,_snake_case=37 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=10 ,_snake_case=0.02 ,_snake_case=None ,_snake_case=2 ,_snake_case=2 ,): UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : int = max_length UpperCAmelCase_ : Tuple = num_mel_bins UpperCAmelCase_ : int = is_training UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Tuple = scope UpperCAmelCase_ : Union[str, Any] = frequency_stride UpperCAmelCase_ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase_ : Dict = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase_ : str = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase_ : List[Any] = frequency_out_dimension * time_out_dimension UpperCAmelCase_ : int = num_patches + 2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, input_values, labels def UpperCamelCase__ ( self ): return ASTConfig( patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = ASTModel(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Dict = config_and_inputs UpperCAmelCase_ : Optional[int] = {"input_values": input_values} return config, inputs_dict @require_torch class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Optional[Any] =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __A : List[Any] =( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) __A : int =False __A : Tuple =False __A : List[str] =False __A : Optional[Any] =False def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = ASTModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ,hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(_snake_case ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[int] = ["input_values"] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @slow def UpperCamelCase__ ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = ASTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def a__ ( ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) UpperCAmelCase_ : List[str] = torchaudio.load(_SCREAMING_SNAKE_CASE ) return audio, sampling_rate @require_torch @require_torchaudio class _snake_case (unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.default_feature_extractor UpperCAmelCase_ : Tuple = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(_snake_case ) UpperCAmelCase_ : Any = self.default_feature_extractor UpperCAmelCase_ : Dict = prepare_audio() UpperCAmelCase_ : str = audio.squeeze().numpy() UpperCAmelCase_ : Optional[Any] = feature_extractor(_snake_case ,sampling_rate=_snake_case ,return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : int = model(**_snake_case ) # verify the logits UpperCAmelCase_ : int = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape ,_snake_case ) UpperCAmelCase_ : str = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1E-4 ) )
701
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _snake_case : def __init__( self ,_snake_case ,): UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : List[str] = 13 UpperCAmelCase_ : str = 7 UpperCAmelCase_ : Dict = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : str = True UpperCAmelCase_ : str = 99 UpperCAmelCase_ : Tuple = 32 UpperCAmelCase_ : int = 2 UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : List[Any] = 37 UpperCAmelCase_ : int = "gelu" UpperCAmelCase_ : Any = 0.1 UpperCAmelCase_ : Optional[Any] = 0.1 UpperCAmelCase_ : List[Any] = 5_12 UpperCAmelCase_ : Optional[Any] = 16 UpperCAmelCase_ : List[Any] = 2 UpperCAmelCase_ : List[Any] = 0.02 UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Any = 4 UpperCAmelCase_ : Optional[int] = None def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : int = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase_ : str = True UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[str] = TFEsmModel(config=_snake_case ) UpperCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase_ : List[Any] = model(_snake_case ) UpperCAmelCase_ : Optional[int] = [input_ids, input_mask] UpperCAmelCase_ : Optional[Any] = model(_snake_case ) UpperCAmelCase_ : str = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : List[Any] = TFEsmModel(config=_snake_case ) UpperCAmelCase_ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } UpperCAmelCase_ : Tuple = model(_snake_case ) UpperCAmelCase_ : Any = [input_ids, input_mask] UpperCAmelCase_ : List[Any] = model(_snake_case ,encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed UpperCAmelCase_ : Any = model(_snake_case ,attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Optional[Any] = TFEsmForMaskedLM(config=_snake_case ) UpperCAmelCase_ : Optional[Any] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : List[str] = TFEsmForTokenClassification(config=_snake_case ) UpperCAmelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase_ : Dict = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = config_and_inputs UpperCAmelCase_ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Optional[int] =( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __A : int =( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __A : Tuple =False __A : Optional[Any] =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = TFEsmModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip("Protein models do not support embedding resizing." ) def UpperCamelCase__ ( self ): pass @unittest.skip("Protein models do not support embedding resizing." ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Any = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer UpperCAmelCase_ : int = model.get_bias() assert isinstance(_snake_case ,_snake_case ) for k, v in name.items(): assert isinstance(_snake_case ,tf.Variable ) else: UpperCAmelCase_ : int = model.get_output_embeddings() assert x is None UpperCAmelCase_ : int = model.get_bias() assert name is None @require_tf class _snake_case (unittest.TestCase): @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) UpperCAmelCase_ : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ : Optional[int] = model(_snake_case )[0] UpperCAmelCase_ : str = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,_snake_case ) # compare the actual values for a slice. UpperCAmelCase_ : Tuple = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) UpperCAmelCase_ : Dict = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase_ : Optional[Any] = model(_snake_case )[0] # compare the actual values for a slice. UpperCAmelCase_ : Tuple = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
323
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : str = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__a ) __lowerCamelCase : str = -1 __lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) __lowerCamelCase : Optional[int] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) __lowerCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowerCamelCase : int = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowerCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def snake_case_ ( self ): __lowerCamelCase : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__a ) __lowerCamelCase : Tuple = -1 __lowerCamelCase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) __lowerCamelCase : int = model.generate(__a , max_new_tokens=10 , do_sample=__a ) __lowerCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) __lowerCamelCase : Optional[int] = TextIteratorStreamer(__a ) __lowerCamelCase : str = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() __lowerCamelCase : List[str] = '' for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def snake_case_ ( self ): __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowerCamelCase : Tuple = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__a ) __lowerCamelCase : Optional[Any] = -1 __lowerCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) __lowerCamelCase : Optional[int] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) __lowerCamelCase : Any = greedy_ids[:, input_ids.shape[1] :] __lowerCamelCase : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowerCamelCase : int = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowerCamelCase : Dict = cs.out[:-1] self.assertEqual(__a , __a ) def snake_case_ ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __lowerCamelCase : Dict = AutoTokenizer.from_pretrained('distilgpt2' ) __lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(__a ) __lowerCamelCase : Optional[int] = -1 __lowerCamelCase : List[str] = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowerCamelCase : str = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowerCamelCase : Optional[Any] = cs.out[:-1] # Remove the final "\n" __lowerCamelCase : Tuple = tokenizer(__a , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case_ ( self ): __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowerCamelCase : int = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__a ) __lowerCamelCase : List[Any] = -1 __lowerCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) __lowerCamelCase : List[str] = TextIteratorStreamer(__a , timeout=0.001 ) __lowerCamelCase : Optional[Any] = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __lowerCamelCase : Any = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): __lowerCamelCase : Union[str, Any] = '' for new_text in streamer: streamer_text += new_text
594
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ : Dict = logging.get_logger(__name__) a_ : Dict = Dict[str, Any] a_ : str = List[Prediction] @add_end_docstrings(lowercase__ ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , *__a , **__a ): super().__init__(*__a , **__a ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def snake_case_ ( self , **__a ): __lowerCamelCase : List[str] = {} if "threshold" in kwargs: __lowerCamelCase : Optional[int] = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *__a , **__a ): return super().__call__(*__a , **__a ) def snake_case_ ( self , __a ): __lowerCamelCase : Optional[Any] = load_image(__a ) __lowerCamelCase : Any = torch.IntTensor([[image.height, image.width]] ) __lowerCamelCase : Any = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: __lowerCamelCase : List[str] = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) __lowerCamelCase : Dict = target_size return inputs def snake_case_ ( self , __a ): __lowerCamelCase : Union[str, Any] = model_inputs.pop('target_size' ) __lowerCamelCase : Optional[Any] = self.model(**__a ) __lowerCamelCase : Any = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: __lowerCamelCase : Optional[Any] = model_inputs['bbox'] return model_outputs def snake_case_ ( self , __a , __a=0.9 ): __lowerCamelCase : Dict = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __lowerCamelCase , __lowerCamelCase : Dict = target_size[0].tolist() def unnormalize(__a ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __lowerCamelCase , __lowerCamelCase : Tuple = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __lowerCamelCase : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __lowerCamelCase : Union[str, Any] = [unnormalize(__a ) for bbox in model_outputs['bbox'].squeeze(0 )] __lowerCamelCase : List[str] = ['score', 'label', 'box'] __lowerCamelCase : Tuple = [dict(zip(__a , __a ) ) for vals in zip(scores.tolist() , __a , __a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __lowerCamelCase : Optional[int] = self.image_processor.post_process_object_detection(__a , __a , __a ) __lowerCamelCase : Any = raw_annotations[0] __lowerCamelCase : Any = raw_annotation['scores'] __lowerCamelCase : Tuple = raw_annotation['labels'] __lowerCamelCase : Union[str, Any] = raw_annotation['boxes'] __lowerCamelCase : List[str] = scores.tolist() __lowerCamelCase : str = [self.model.config.idalabel[label.item()] for label in labels] __lowerCamelCase : List[Any] = [self._get_bounding_box(__a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __lowerCamelCase : int = ['score', 'label', 'box'] __lowerCamelCase : int = [ dict(zip(__a , __a ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def snake_case_ ( self , __a ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = box.int().tolist() __lowerCamelCase : Dict = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
594
1
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] ={} def A__ ( self : Any ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(UpperCAmelCase , ''' -> ''' , ''' -> '''.join([str(UpperCAmelCase ) for j in self.vertex[i]] ) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCAmelCase ) else: # else make a new vertex lowercase : Any =[to_vertex] def A__ ( self : List[str] ) -> None: '''simple docstring''' lowercase : Optional[int] =[False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : list ) -> None: '''simple docstring''' lowercase : int =True print(UpperCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
8
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase ( _a ,_a ,_a ,_a ,_a ,_a = None ,) -> Union[str, Any]: UpperCAmelCase_: Union[str, Any] = {} if train_file is not None: UpperCAmelCase_: List[str] = [train_file] if eval_file is not None: UpperCAmelCase_: Union[str, Any] = [eval_file] if test_file is not None: UpperCAmelCase_: List[str] = [test_file] UpperCAmelCase_: Optional[Any] = datasets.load_dataset("csv" ,data_files=_a ) UpperCAmelCase_: List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase_: Any = features_name.pop(_a ) UpperCAmelCase_: str = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase_: Union[str, Any] = {label: i for i, label in enumerate(_a )} UpperCAmelCase_: Tuple = tokenizer.model_input_names UpperCAmelCase_: Union[str, Any] = {} if len(_a ) == 1: for k in files.keys(): UpperCAmelCase_: Union[str, Any] = ds[k].map( lambda _a : tokenizer.batch_encode_plus( example[features_name[0]] ,truncation=_a ,max_length=_a ,padding="max_length" ) ,batched=_a ,) elif len(_a ) == 2: for k in files.keys(): UpperCAmelCase_: List[str] = ds[k].map( lambda _a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) ,truncation=_a ,max_length=_a ,padding="max_length" ,) ,batched=_a ,) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase_: Optional[int] = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_: Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase_: Any = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_: List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase_: int = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_: Union[str, Any] = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase_: Optional[Any] = ( tf.data.Dataset.from_generator( _a ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase_: List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase_: Tuple = ( tf.data.Dataset.from_generator( _a ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase_: Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase_: Union[str, Any] = ( tf.data.Dataset.from_generator( _a ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase_: str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _lowerCAmelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : snake_case_ = field(metadata={'''help''': '''Which column contains the label'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''The path of the training file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''The path of the development file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''The path of the test file'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class UpperCAmelCase__ : snake_case_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowercase ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_: List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = get_tfds( train_file=data_args.train_file ,eval_file=data_args.dev_file ,test_file=data_args.test_file ,tokenizer=_a ,label_column_id=data_args.label_column_id ,max_seq_length=data_args.max_seq_length ,) UpperCAmelCase_: Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=len(_a ) ,labelaid=_a ,idalabel={id: label for label, id in labelaid.items()} ,finetuning_task="text-classification" ,cache_dir=model_args.cache_dir ,) with training_args.strategy.scope(): UpperCAmelCase_: Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_pt=bool(".bin" in model_args.model_name_or_path ) ,config=_a ,cache_dir=model_args.cache_dir ,) def compute_metrics(_a ) -> Dict: UpperCAmelCase_: int = np.argmax(p.predictions ,axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase_: List[Any] = TFTrainer( model=_a ,args=_a ,train_dataset=_a ,eval_dataset=_a ,compute_metrics=_a ,) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_: List[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_: List[str] = trainer.evaluate() UpperCAmelCase_: Optional[int] = os.path.join(training_args.output_dir ,"eval_results.txt" ) with open(_a ,"w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(_a ) return results if __name__ == "__main__": main()
137
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Any = tempfile.mkdtemp() UpperCAmelCase_: Union[str, Any] = BlipImageProcessor() UpperCAmelCase_: int = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) UpperCAmelCase_: int = BlipaProcessor(A__ , A__ ) processor.save_pretrained(self.tmpdirname ) def snake_case_ ( self , **A__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A__ ).tokenizer def snake_case_ ( self , **A__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A__ ).image_processor def snake_case_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_: Optional[int] = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_: int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_: int = self.get_image_processor(do_normalize=A__ , padding_value=1.0 ) UpperCAmelCase_: str = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[Any] = self.get_image_processor() UpperCAmelCase_: str = self.get_tokenizer() UpperCAmelCase_: Tuple = BlipaProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase_: List[str] = self.prepare_image_inputs() UpperCAmelCase_: List[str] = image_processor(A__ , return_tensors="np" ) UpperCAmelCase_: List[Any] = processor(images=A__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = self.get_image_processor() UpperCAmelCase_: Any = self.get_tokenizer() UpperCAmelCase_: Tuple = BlipaProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase_: Optional[int] = "lower newer" UpperCAmelCase_: int = processor(text=A__ ) UpperCAmelCase_: str = tokenizer(A__ , return_token_type_ids=A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = self.get_image_processor() UpperCAmelCase_: Optional[Any] = self.get_tokenizer() UpperCAmelCase_: Dict = BlipaProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase_: Optional[Any] = "lower newer" UpperCAmelCase_: Optional[int] = self.prepare_image_inputs() UpperCAmelCase_: Dict = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: int = self.get_image_processor() UpperCAmelCase_: Tuple = self.get_tokenizer() UpperCAmelCase_: Tuple = BlipaProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase_: Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_: List[str] = processor.batch_decode(A__ ) UpperCAmelCase_: Optional[int] = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Tuple = self.get_image_processor() UpperCAmelCase_: List[str] = self.get_tokenizer() UpperCAmelCase_: Optional[Any] = BlipaProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase_: Tuple = "lower newer" UpperCAmelCase_: Optional[Any] = self.prepare_image_inputs() UpperCAmelCase_: Union[str, Any] = processor(text=A__ , images=A__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
137
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Optional[Any]: super().__init__( lowerCAmelCase_ , split=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , num_proc=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A = field _A = path_or_paths if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else {self.split: path_or_paths} _A = Json( cache_dir=lowerCAmelCase_ , data_files=lowerCAmelCase_ , features=lowerCAmelCase_ , field=lowerCAmelCase_ , **lowerCAmelCase_ , ) def UpperCAmelCase ( self ) -> int: # Build iterable dataset if self.streaming: _A = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _A = None _A = None _A = None _A = None self.builder.download_and_prepare( download_config=lowerCAmelCase_ , download_mode=lowerCAmelCase_ , verification_mode=lowerCAmelCase_ , base_path=lowerCAmelCase_ , num_proc=self.num_proc , ) _A = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase_ , in_memory=self.keep_in_memory ) return dataset class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> List[Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _A = dataset _A = path_or_buf _A = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A = num_proc _A = """utf-8""" _A = to_json_kwargs def UpperCAmelCase ( self ) -> int: _A = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase_ ) _A = self.to_json_kwargs.pop("""orient""" , """records""" ) _A = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) _A = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) _A = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase_ ) as buffer: _A = self._write(file_obj=lowerCAmelCase_ , orient=lowerCAmelCase_ , lines=lowerCAmelCase_ , index=lowerCAmelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""" ) _A = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase_ , lines=lowerCAmelCase_ , index=lowerCAmelCase_ , **self.to_json_kwargs ) return written def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: _A , _A , _A , _A , _A = args _A = query_table( table=self.dataset.data , key=slice(lowerCAmelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) _A = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase_ , orient=lowerCAmelCase_ , lines=lowerCAmelCase_ , index=lowerCAmelCase_ , **lowerCAmelCase_ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ , ) -> int: _A = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _A = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCAmelCase_ ) else: _A , _A = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase_ , lowerCAmelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase_ ) return written
83
def snake_case ( snake_case__ :int = 1_000_000) -> int: _A = set(range(3 , snake_case__ , 2)) primes.add(2) for p in range(3 , snake_case__ , 2): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case__ , snake_case__))) _A = [float(snake_case__) for n in range(limit + 1)] for p in primes: for n in range(snake_case__ , limit + 1 , snake_case__): phi[n] *= 1 - 1 / p return int(sum(phi[2:])) if __name__ == "__main__": print(F'''{solution() = }''')
83
1
import math def lowercase__( A , A ): snake_case__ : str = len(lowerCAmelCase_ ) snake_case__ : Dict = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) snake_case__ : Optional[int] = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: snake_case__ : str = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: snake_case__ : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCamelCase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] lowerCamelCase : int = int(input('Enter the number to be searched:\n')) lowerCamelCase : Any = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
170
"""simple docstring""" import os from pathlib import Path def snake_case ( ) -> Tuple: from torch.utils.cpp_extension import load _snake_case = Path(lowerCAmelCase_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _snake_case = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , lowerCAmelCase_ , with_cuda=lowerCAmelCase_ , extra_include_paths=[str(lowerCAmelCase_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
103
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Tuple = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase : Dict = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def lowercase__ ( __A: List[Any] ): '''simple docstring''' __magic_name__ : int = test_results.split(''' ''' ) __magic_name__ : Optional[Any] = 0 __magic_name__ : int = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __magic_name__ : Optional[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__A ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowercase__ ( __A: Dict ): '''simple docstring''' __magic_name__ : Tuple = {} __magic_name__ : List[Any] = None __magic_name__ : int = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' ,__A ): __magic_name__ : Dict = True __magic_name__ : Any = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __magic_name__ : List[Any] = line __magic_name__ : List[Any] = False return failures class lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Dict ) -> List[str]: __magic_name__ : Union[str, Any] = title __magic_name__ : List[Any] = doc_test_results['''time_spent'''].split(''',''' )[0] __magic_name__ : Optional[Any] = doc_test_results['''success'''] __magic_name__ : Optional[Any] = doc_test_results['''failures'''] __magic_name__ : Union[str, Any] = self.n_success + self.n_failures # Failures and success of the modeling tests __magic_name__ : List[Any] = doc_test_results @property def UpperCAmelCase__ ( self : List[str] ) -> str: __magic_name__ : Union[str, Any] = [self._time_spent] __magic_name__ : str = 0 for time in time_spent: __magic_name__ : List[Any] = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCamelCase_ ) == 1: __magic_name__ : str = [0, 0, time_parts[0]] __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __magic_name__ , __magic_name__ , __magic_name__ : Dict = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(lowerCamelCase_ )}h{int(lowerCamelCase_ )}m{int(lowerCamelCase_ )}s''' @property def UpperCAmelCase__ ( self : Dict ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def UpperCAmelCase__ ( self : Dict ) -> Dict: __magic_name__ : List[Any] = 40 __magic_name__ : Optional[Any] = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(lowerCamelCase_ , lowerCamelCase_ )} __magic_name__ : Any = '''''' for category, failures in category_failures.items(): if len(lowerCamelCase_ ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCamelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def UpperCAmelCase__ ( self : Dict ) -> str: __magic_name__ : List[str] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCamelCase_ ) @staticmethod def UpperCAmelCase__ ( ) -> List[Any]: __magic_name__ : Dict = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(lowerCamelCase_ )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __magic_name__ : Tuple = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' __magic_name__ : List[Any] = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Any ) -> Optional[Any]: __magic_name__ : Optional[Any] = '''''' for key, value in failures.items(): __magic_name__ : int = value[:200] + ''' [Truncated]''' if len(lowerCamelCase_ ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' __magic_name__ : Dict = job_name __magic_name__ : Tuple = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __magic_name__ : int = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCAmelCase__ ( self : Any ) -> Tuple: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __magic_name__ : List[str] = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __magic_name__ : int = sorted(self.doc_test_results.items() , key=lambda lowerCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __magic_name__ : List[Any] = F'''*Num failures* :{len(job_result['failed'] )} \n''' __magic_name__ : str = job_result['''failures'''] __magic_name__ : str = self.get_reply_blocks(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , text=lowerCamelCase_ ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=lowerCamelCase_ , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def lowercase__ ( ): '''simple docstring''' __magic_name__ : List[Any] = os.environ['''GITHUB_RUN_ID'''] __magic_name__ : Optional[int] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' __magic_name__ : Any = requests.get(__A ).json() __magic_name__ : List[str] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __magic_name__ : Optional[int] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(__A ): __magic_name__ : Optional[Any] = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' ,__A ) return {} def lowercase__ ( __A: str ): '''simple docstring''' __magic_name__ : List[str] = {} if os.path.exists(__A ): __magic_name__ : Any = os.listdir(__A ) for file in files: try: with open(os.path.join(__A ,__A ) ,encoding='''utf-8''' ) as f: __magic_name__ : Dict = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__A ,__A )}.''' ) from e return _artifact def lowercase__ ( ): '''simple docstring''' class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase_ : str ) -> int: __magic_name__ : int = name __magic_name__ : Dict = [] def __str__( self : List[str] ) -> Union[str, Any]: return self.name def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase_ : str ) -> Optional[Any]: self.paths.append({'''name''': self.name, '''path''': path} ) __magic_name__ : Dict[str, Artifact] = {} __magic_name__ : Tuple = filter(os.path.isdir ,os.listdir() ) for directory in directories: __magic_name__ : int = directory if artifact_name not in _available_artifacts: __magic_name__ : List[Any] = Artifact(__A ) _available_artifacts[artifact_name].add_path(__A ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase : Optional[int] = get_job_links() __lowerCamelCase : Tuple = retrieve_available_artifacts() __lowerCamelCase : Tuple = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase : Tuple = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase : Optional[int] = github_actions_job_links.get('''run_doctests''') __lowerCamelCase : Optional[Any] = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] __lowerCamelCase : Optional[int] = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = handle_test_results(artifact['''stats''']) __lowerCamelCase : Optional[Any] = failed __lowerCamelCase : List[Any] = success __lowerCamelCase : int = time_spent[1:-1] + ''', ''' __lowerCamelCase : Dict = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): __lowerCamelCase : List[Any] = line.replace('''FAILED ''', '''''') __lowerCamelCase : int = line.split()[0].replace('''\n''', '''''') if "::" in line: __lowerCamelCase , __lowerCamelCase : List[str] = line.split('''::''') else: __lowerCamelCase , __lowerCamelCase : Optional[int] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase : Union[str, Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase : List[Any] = all_failures[test] if test in all_failures else '''N/A''' __lowerCamelCase : int = failure break __lowerCamelCase : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
501
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCamelCase__ : Union[str, Any] = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ ( lowercase_ ): __a : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __a : bool = field(default=lowercase_ , metadata={"help": "Whether to SortishSamler or not."} ) __a : bool = field( default=lowercase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __a : bool = field(default=lowercase_ , metadata={"help": "whether to use adafactor"} ) __a : Optional[float] = field( default=lowercase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __a : Optional[float] = field( default=lowercase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __a : Optional[float] = field(default=lowercase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) __a : Optional[float] = field( default=lowercase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __a : Optional[str] = field( default="linear" , metadata={"help": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
105
'''simple docstring''' from __future__ import annotations from collections import deque class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : list[str] ): '''simple docstring''' lowercase__ = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(UpperCamelCase ) self.set_fail_transitions() def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(UpperCamelCase , UpperCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCamelCase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCamelCase ) lowercase__ = self.adlist[r]['''fail_state'''] while ( self.find_next_state(UpperCamelCase , self.adlist[child]['''value'''] ) is None and state != 0 ): lowercase__ = self.adlist[state]['''fail_state'''] lowercase__ = self.find_next_state( UpperCamelCase , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(UpperCamelCase ) ): while ( self.find_next_state(UpperCamelCase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]['''fail_state'''] lowercase__ = self.find_next_state(UpperCamelCase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
460
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) A_ = "CIDAS/clipseg-rd64-refined" A_ = "image_segmenter" A_ = CLIPSegForImageSegmentation A_ = ["image", "text"] A_ = ["image"] def __init__( self: Optional[int] , *__A: Optional[int] , **__A: Tuple ) -> Dict: requires_backends(self , ['''vision'''] ) super().__init__(*__A , **__A ) def __A ( self: Any , __A: "Image" , __A: str ) -> List[Any]: return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors='''pt''' ) def __A ( self: int , __A: Optional[int] ) -> str: with torch.no_grad(): _A = self.model(**__A ).logits return logits def __A ( self: Optional[int] , __A: Dict ) -> Union[str, Any]: _A = outputs.cpu().detach().numpy() _A = 0 _A = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
721
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: Optional[int] , __A: Union[str, Any] , __A: int=2 , __A: List[str]=True , __A: List[Any]=False , __A: Union[str, Any]=10 , __A: Optional[int]=3 , __A: List[Any]=32 * 4 , __A: Dict=32 * 6 , __A: Optional[Any]=4 , __A: Any=32 , ) -> str: _A = parent _A = batch_size _A = is_training _A = use_auxiliary_loss _A = num_queries _A = num_channels _A = min_size _A = max_size _A = num_labels _A = mask_feature_size def __A ( self: Dict ) -> Optional[int]: _A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __A ) _A = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__A ) _A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__A ) > 0.5 ).float() _A = (torch.rand((self.batch_size, self.num_labels) , device=__A ) > 0.5).long() _A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __A ( self: Optional[Any] ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __A ( self: Dict ) -> Tuple: _A ,_A ,_A ,_A ,_A = self.prepare_config_and_inputs() _A = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __A ( self: Optional[int] , __A: Union[str, Any] , __A: Dict ) -> int: _A = output.encoder_hidden_states _A = output.pixel_decoder_hidden_states _A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__A ) , config.decoder_config.decoder_layers ) def __A ( self: Optional[Any] , __A: Union[str, Any] , __A: Optional[Any] , __A: Any , __A: Dict=False ) -> Any: with torch.no_grad(): _A = MaskFormerModel(config=__A ) model.to(__A ) model.eval() _A = model(pixel_values=__A , pixel_mask=__A ) _A = model(__A , output_hidden_states=__A ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__A , __A ) def __A ( self: Optional[Any] , __A: Union[str, Any] , __A: Optional[Any] , __A: Union[str, Any] , __A: Union[str, Any] , __A: List[Any] ) -> int: _A = MaskFormerForInstanceSegmentation(config=__A ) model.to(__A ) model.eval() def comm_check_on_output(__A: int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _A = model(pixel_values=__A , pixel_mask=__A ) _A = model(__A ) comm_check_on_output(__A ) _A = model( pixel_values=__A , pixel_mask=__A , mask_labels=__A , class_labels=__A ) comm_check_on_output(__A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" A_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () A_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def __A ( self: int ) -> Tuple: _A = MaskFormerModelTester(self ) _A = ConfigTester(self , config_class=__A , has_text_modality=__A ) def __A ( self: List[Any] ) -> Dict: self.config_tester.run_common_tests() def __A ( self: Optional[Any] ) -> int: _A ,_A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__A , **__A , output_hidden_states=__A ) def __A ( self: Dict ) -> Optional[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__A ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def __A ( self: int ) -> Tuple: pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def __A ( self: List[Any] ) -> Any: pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def __A ( self: Union[str, Any] ) -> Optional[int]: pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def __A ( self: int ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __A ( self: Union[str, Any] ) -> List[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self: List[Any] ) -> Any: pass def __A ( self: Dict ) -> Optional[Any]: _A ,_A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__A ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) @slow def __A ( self: int ) -> Optional[Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: _A = MaskFormerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __A ( self: Optional[Any] ) -> Optional[int]: _A = (self.model_tester.min_size,) * 2 _A = { '''pixel_values''': torch.randn((2, 3, *size) , device=__A ), '''mask_labels''': torch.randn((2, 10, *size) , device=__A ), '''class_labels''': torch.zeros(2 , 10 , device=__A ).long(), } _A = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__A ) _A = model(**__A ) self.assertTrue(outputs.loss is not None ) def __A ( self: Optional[Any] ) -> List[Any]: _A ,_A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__A , **__A , output_hidden_states=__A ) def __A ( self: Any ) -> Tuple: _A ,_A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__A ).to(__A ) _A = model(**__A , output_attentions=__A ) self.assertTrue(outputs.attentions is not None ) def __A ( self: Dict ) -> Union[str, Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _A = self.all_model_classes[1] _A ,_A ,_A ,_A ,_A = self.model_tester.prepare_config_and_inputs() _A = model_class(__A ) model.to(__A ) model.train() _A = model(__A , mask_labels=__A , class_labels=__A ).loss loss.backward() def __A ( self: Tuple ) -> Optional[Any]: # only MaskFormerForInstanceSegmentation has the loss _A = self.all_model_classes[1] _A ,_A ,_A ,_A ,_A = self.model_tester.prepare_config_and_inputs() _A = True _A = True _A = model_class(__A ) model.to(__A ) model.train() _A = model(__A , mask_labels=__A , class_labels=__A ) _A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def __A ( ): '''simple docstring''' _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self: Union[str, Any] ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def __A ( self: List[Any] ) -> Any: _A = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__A ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(__A , return_tensors='''pt''' ).to(__A ) _A = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__A , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**__A ) _A = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(__A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __A , atol=__A ) ) _A = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(__A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __A , atol=__A ) ) _A = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(__A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __A , atol=__A ) ) def __A ( self: Dict ) -> Dict: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__A ) .eval() ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(__A , return_tensors='''pt''' ).to(__A ) _A = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__A , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**__A ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _A = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] _A = torch.tensor(__A ).to(__A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __A , atol=__A ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [ [1.65_12e00, -5.25_72e00, -3.35_19e00], [3.61_69e-02, -5.90_25e00, -2.93_13e00], [1.07_66e-04, -7.76_30e00, -5.12_63e00], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __A , atol=__A ) ) def __A ( self: List[Any] ) -> Dict: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__A ) .eval() ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(__A , return_tensors='''pt''' ).to(__A ) _A = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__A , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**__A ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _A = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] _A = torch.tensor(__A ).to(__A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __A , atol=__A ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(__A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __A , atol=__A ) ) def __A ( self: Optional[Any] ) -> str: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__A ) .eval() ) _A = self.default_image_processor _A = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) _A = inputs['''pixel_values'''].to(__A ) _A = [el.to(__A ) for el in inputs['''mask_labels''']] _A = [el.to(__A ) for el in inputs['''class_labels''']] with torch.no_grad(): _A = model(**__A ) self.assertTrue(outputs.loss is not None )
62
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : int = 0 __lowerCAmelCase : bool = False __lowerCAmelCase : float = 3.0 class a ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ) -> Dict: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCamelCase_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def __UpperCamelCase ( self ) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. _a : List[str] = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _a : Optional[int] = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _a : Tuple = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , lowerCamelCase_ ) @require_multi_gpu def __UpperCamelCase ( self ) -> Optional[Any]: _a : List[str] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase_ : str = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase_ : List[Any] = torch.nn.Linear(100, 200) UpperCAmelCase_ : Tuple = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
120
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCAmelCase_ : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : Union[str, Any] = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ : str = { "unc-nlp/lxmert-base-uncased": 512, } UpperCAmelCase_ : Optional[int] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[Any] = LxmertTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Optional[int]: super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) _a : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCamelCase_ ) != tokenize_chinese_chars ): _a : str = getattr(lowerCamelCase_ , normalizer_state.pop('type' ) ) _a : Tuple = do_lower_case _a : str = strip_accents _a : Optional[Any] = tokenize_chinese_chars _a : Dict = normalizer_class(**lowerCamelCase_ ) _a : Optional[int] = do_lower_case def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Optional[Any]: _a : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: _a : Optional[Any] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
120
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = ort.SessionOptions() snake_case_ : List[str] = False return options def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case_ : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Optional[int] = """A red cat sitting on a park bench""" snake_case_ : Optional[Any] = np.random.RandomState(0 ) snake_case_ : Tuple = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowercase , output_type="""np""" , ) snake_case_ : str = output.images snake_case_ : Any = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case_ : Dict = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case_ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """A red cat sitting on a park bench""" snake_case_ : List[Any] = np.random.RandomState(0 ) snake_case_ : List[Any] = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Tuple = output.images snake_case_ : int = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ : Optional[int] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
from typing import Any def _UpperCamelCase ( lowercase__ ): if not input_list: return [] __SCREAMING_SNAKE_CASE : Dict = [input_list.count(snake_case__ ) for value in input_list] __SCREAMING_SNAKE_CASE : Any = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
696
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> list[int]: _lowercase = str(snake_case__ ) _lowercase = [n] for i in range(1 , len(snake_case__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool: if len(str(snake_case__ ) ) > 3: if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ): return False return True def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 11 ) -> list[int]: _lowercase = [] _lowercase = 13 while len(snake_case__ ) != count: if validate(snake_case__ ): _lowercase = list_truncated_nums(snake_case__ ) if all(is_prime(snake_case__ ) for i in list_nums ): list_truncated_primes.append(snake_case__ ) num += 2 return list_truncated_primes def SCREAMING_SNAKE_CASE__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(1_1)) = }""")
67
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a__ ( __lowercase ) -> Optional[Any]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e00 and cp <= 0x9_fff) or (cp >= 0x3_400 and cp <= 0x4_dbf) # or (cp >= 0x20_000 and cp <= 0x2a_6df) # or (cp >= 0x2a_700 and cp <= 0x2b_73f) # or (cp >= 0x2b_740 and cp <= 0x2b_81f) # or (cp >= 0x2b_820 and cp <= 0x2c_eaf) # or (cp >= 0xf_900 and cp <= 0xf_aff) or (cp >= 0x2f_800 and cp <= 0x2f_a1f) # ): # return True return False def a__ ( __lowercase ) -> List[str]: # word like '180' or '身高' or '神' for char in word: _A = ord(__lowercase ) if not _is_chinese_char(__lowercase ): return 0 return 1 def a__ ( __lowercase ) -> Dict: _A = set() for token in tokens: _A = len(__lowercase ) > 1 and is_chinese(__lowercase ) if chinese_word: word_set.add(__lowercase ) _A = list(__lowercase ) return word_list def a__ ( __lowercase , __lowercase ) -> List[str]: if not chinese_word_set: return bert_tokens _A = max([len(__lowercase ) for w in chinese_word_set] ) _A = bert_tokens _A , _A = 0, len(__lowercase ) while start < end: _A = True if is_chinese(bert_word[start] ): _A = min(end - start , __lowercase ) for i in range(__lowercase , 1 , -1 ): _A = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _A = "##" + bert_word[j] _A = start + i _A = False break if single_word: start += 1 return bert_word def a__ ( __lowercase , __lowercase , __lowercase ) -> List[Any]: _A = [] for i in range(0 , len(__lowercase ) , 100 ): _A = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws _A = [get_chinese_word(__lowercase ) for r in res] ltp_res.extend(__lowercase ) assert len(__lowercase ) == len(__lowercase ) _A = [] for i in range(0 , len(__lowercase ) , 100 ): _A = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowercase , truncation=__lowercase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__lowercase ) == len(__lowercase ) _A = [] for input_ids, chinese_word in zip(__lowercase , __lowercase ): _A = [] for id in input_ids: _A = bert_tokenizer._convert_id_to_token(__lowercase ) input_tokens.append(__lowercase ) _A = add_sub_symbol(__lowercase , __lowercase ) _A = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowercase ): if token[:2] == "##": _A = token[2:] # save chinese tokens' pos if len(__lowercase ) == 1 and _is_chinese_char(ord(__lowercase ) ): ref_id.append(__lowercase ) ref_ids.append(__lowercase ) assert len(__lowercase ) == len(__lowercase ) return ref_ids def a__ ( __lowercase ) -> Union[str, Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _A = f.readlines() _A = [line.strip() for line in data if len(__lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _A = LTP(args.ltp ) # faster in GPU device _A = BertTokenizer.from_pretrained(args.bert ) _A = prepare_ref(__lowercase , __lowercase , __lowercase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _A = [json.dumps(__lowercase ) + "\n" for ref in ref_ids] f.writelines(__lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __snake_case = parser.parse_args() main(args)
704
"""simple docstring""" def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> str: # Return True if there is node that has not iterated. _A = [False] * len(__lowercase ) _A = [] queue.append(__lowercase ) _A = True while queue: _A = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowercase ) _A = True _A = u return visited[t] def a__ ( __lowercase , __lowercase , __lowercase ) -> int: # This array is filled by BFS and to store path _A = [-1] * (len(__lowercase )) _A = 0 while bfs(__lowercase , __lowercase , __lowercase , __lowercase ): _A = float("Inf" ) _A = sink while s != source: # Find the minimum value in select path _A = min(__lowercase , graph[parent[s]][s] ) _A = parent[s] max_flow += path_flow _A = sink while v != source: _A = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _A = parent[v] return max_flow a_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a_ , a_ = 0, 5 print(ford_fulkerson(graph, source, sink))
621
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( _A ): a_ = (EulerDiscreteScheduler,) a_ = 10 def lowerCamelCase_ ( self , **UpperCamelCase__ ) -> int: """simple docstring""" UpperCAmelCase_ = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase__ ) return config def lowerCamelCase_ ( self ) -> Optional[int]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = model(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowerCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCAmelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = model(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: UpperCAmelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = model(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowerCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**UpperCamelCase__ , use_karras_sigmas=UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: UpperCAmelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = model(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
660
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Tuple = {'''vocab_file''': '''spiece.model'''} __snake_case : Dict = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __snake_case : Tuple = { '''AI-Sweden/gpt-sw3-126m''': 20_48, '''AI-Sweden/gpt-sw3-350m''': 20_48, '''AI-Sweden/gpt-sw3-1.6b''': 20_48, '''AI-Sweden/gpt-sw3-6.7b''': 20_48, '''AI-Sweden/gpt-sw3-20b''': 20_48, } class lowercase_ ( _A ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: """simple docstring""" UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) UpperCAmelCase_ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCAmelCase_ = "<|endoftext|>" if eos_token is None else eos_token UpperCAmelCase_ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCAmelCase_ = unk_token if pad_token is None else pad_token UpperCAmelCase_ = eos_token if bos_token is None else bos_token else: UpperCAmelCase_ = "<pad>" if pad_token is None else pad_token UpperCAmelCase_ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off UpperCAmelCase_ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCAmelCase_ = re.compile( F"""[{"".join(map(UpperCamelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]""" ) def __getstate__( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self , UpperCamelCase__ ) -> List[str]: """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self ) -> int: """simple docstring""" return len(self.sp_model ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = self.non_printing_characters_re.sub("" , UpperCamelCase__ ) # Normalize whitespaces UpperCAmelCase_ = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization UpperCAmelCase_ = unicodedata.normalize("NFC" , UpperCamelCase__ ) return text def lowerCamelCase_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" UpperCAmelCase_ = self.preprocess_text(UpperCamelCase__ ) return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> int: """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase__ ) @staticmethod def lowerCamelCase_ ( UpperCamelCase__ ) -> str: """simple docstring""" return out_string def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = "" UpperCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token UpperCAmelCase_ = True UpperCAmelCase_ = [] else: current_sub_tokens.append(UpperCamelCase__ ) UpperCAmelCase_ = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string def lowerCamelCase_ ( self ) -> Dict[str, int]: """simple docstring""" UpperCAmelCase_ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ = self.preprocess_text(UpperCamelCase__ ) UpperCAmelCase_ = self.sp_model.encode(UpperCamelCase__ ) else: UpperCAmelCase_ = [self.preprocess_text(UpperCamelCase__ ) for t in text] UpperCAmelCase_ = self.sp_model.encode(UpperCamelCase__ ) if return_tensors is True or return_tensors == "pt": UpperCAmelCase_ = torch.tensor(UpperCamelCase__ ) return token_ids def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" return self.sp_model.decode(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[int]: """simple docstring""" UpperCAmelCase_ = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] UpperCAmelCase_ = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(UpperCamelCase__ ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=UpperCamelCase__ )
660
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: Optional[Any] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class a__ ( _a ): snake_case_ = "canine" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1_6384, _UpperCAmelCase=16, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0Xe000, _UpperCAmelCase=0Xe001, _UpperCAmelCase=4, _UpperCAmelCase=4, _UpperCAmelCase=8, _UpperCAmelCase=1_6384, _UpperCAmelCase=128, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Character config: lowercase__ = downsampling_rate lowercase__ = upsampling_kernel_size lowercase__ = num_hash_functions lowercase__ = num_hash_buckets lowercase__ = local_transformer_stride
668
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor snake_case = logging.get_logger(__name__) class lowerCAmelCase ( UpperCamelCase_ ): def __init__( self : List[Any] , *a__ : int , **a__ : Optional[Any] ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , a__ , ) super().__init__(*a__ , **a__ )
378
'''simple docstring''' def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : str = len(lowerCamelCase_ ) lowerCAmelCase__ : Optional[Any] = len(matrix[0] ) lowerCAmelCase__ : Any = min(lowerCamelCase_ , lowerCamelCase_ ) for row in range(lowerCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase_ ): lowerCAmelCase__ : Tuple = matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase_ , lowerCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase__ : Dict = True for i in range(row + 1 , lowerCamelCase_ ): if matrix[i][row] != 0: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = matrix[i], matrix[row] lowerCAmelCase__ : Optional[Any] = False break if reduce: rank -= 1 for i in range(lowerCamelCase_ ): lowerCAmelCase__ : Union[str, Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
378
1
"""simple docstring""" import math def lowerCAmelCase__ ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
104
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } SCREAMING_SNAKE_CASE__ = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def lowerCAmelCase__ ( ) -> Union[str, Any]: """simple docstring""" snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) snake_case = bs[:] snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" snake_case = set() snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case = char return pairs class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , **lowerCAmelCase , ): """simple docstring""" snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token super().__init__( errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: snake_case = json.load(lowerCAmelCase ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = errors # how to handle errors in decoding snake_case = bytes_to_unicode() snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase , encoding='utf-8' ) as merges_handle: snake_case = merges_handle.read().split('\n' )[1:-1] snake_case = [tuple(merge.split() ) for merge in bpe_merges] snake_case = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) snake_case = {} snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def snake_case ( self ): """simple docstring""" return len(self.encoder ) def snake_case ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] snake_case = tuple(lowerCAmelCase ) snake_case = get_pairs(lowerCAmelCase ) if not pairs: return token while True: snake_case = min(lowerCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case ,snake_case = bigram snake_case = [] snake_case = 0 while i < len(lowerCAmelCase ): try: snake_case = word.index(lowerCAmelCase , lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case = j if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case = tuple(lowerCAmelCase ) snake_case = new_word if len(lowerCAmelCase ) == 1: break else: snake_case = get_pairs(lowerCAmelCase ) snake_case = ' '.join(lowerCAmelCase ) snake_case = word return word def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for token in re.findall(self.pat , lowerCAmelCase ): snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase ).split(' ' ) ) return bpe_tokens def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = ''.join(lowerCAmelCase ) snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) snake_case = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) snake_case = token_index writer.write(' '.join(lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case = [self.cls_token_id] snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False , **lowerCAmelCase ): """simple docstring""" snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase ) > 0 and not text[0].isspace()): snake_case = ' ' + text return (text, kwargs)
104
1
'''simple docstring''' from __future__ import annotations import numpy as np def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : np.ndarray ): UpperCAmelCase = np.shape(SCREAMING_SNAKE_CASE ) if rows != columns: UpperCAmelCase = ( "'table' has to be of square shaped array but got a " f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(SCREAMING_SNAKE_CASE ) UpperCAmelCase = np.zeros((rows, columns) ) UpperCAmelCase = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) UpperCAmelCase = (table[i][j] - total) / upper[j][j] UpperCAmelCase = 1 for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
447
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class a ( UpperCAmelCase ): def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return 0.0 def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: np.ndarray , lowerCAmelCase: int ) -> tuple[int | float, int | float]: _UpperCAmelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase : List[str] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: FilterType , lowerCAmelCase: int ) -> None: _UpperCAmelCase : Optional[int] = 512 _UpperCAmelCase : Dict = [1] + [0] * (size - 1) _UpperCAmelCase : Union[str, Any] = [filter_type.process(lowerCAmelCase ) for item in inputs] _UpperCAmelCase : str = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : Union[str, Any] = np.abs(np.fft.fft(lowerCAmelCase ) ) _UpperCAmelCase : List[Any] = 20 * np.logaa(lowerCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _UpperCAmelCase : Dict = get_bounds(lowerCAmelCase , lowerCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(lowerCAmelCase ) plt.show() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: FilterType , lowerCAmelCase: int ) -> None: _UpperCAmelCase : int = 512 _UpperCAmelCase : Optional[int] = [1] + [0] * (size - 1) _UpperCAmelCase : Dict = [filter_type.process(lowerCAmelCase ) for item in inputs] _UpperCAmelCase : Any = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : Optional[int] = np.angle(np.fft.fft(lowerCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(lowerCAmelCase , -2 * pi ) ) plt.show()
300
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : Optional[Any] = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
707
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
0