code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from __future__ import annotations
def A__ ( lowerCamelCase ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(lowerCamelCase ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(lowerCamelCase ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 548 |
lowerCamelCase_ : Tuple = {
"""meter""": """m""",
"""kilometer""": """km""",
"""megametre""": """Mm""",
"""gigametre""": """Gm""",
"""terametre""": """Tm""",
"""petametre""": """Pm""",
"""exametre""": """Em""",
"""zettametre""": """Zm""",
"""yottametre""": """Ym""",
}
# Exponent of the factor(meter)
lowerCamelCase_ : Union[str, Any] = {
"""m""": 0,
"""km""": 3,
"""Mm""": 6,
"""Gm""": 9,
"""Tm""": 12,
"""Pm""": 15,
"""Em""": 18,
"""Zm""": 21,
"""Ym""": 24,
}
def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float:
UpperCamelCase_: Any = from_type.lower().strip("""s""" )
UpperCamelCase_: int = to_type.lower().strip("""s""" )
UpperCamelCase_: Any = UNIT_SYMBOL.get(lowerCamelCase , lowerCamelCase )
UpperCamelCase_: str = UNIT_SYMBOL.get(lowerCamelCase , lowerCamelCase )
if from_sanitized not in METRIC_CONVERSION:
UpperCamelCase_: Optional[int] = (
F'''Invalid \'from_type\' value: {from_type!r}.\n'''
F'''Conversion abbreviations are: {", ".join(lowerCamelCase )}'''
)
raise ValueError(lowerCamelCase )
if to_sanitized not in METRIC_CONVERSION:
UpperCamelCase_: Dict = (
F'''Invalid \'to_type\' value: {to_type!r}.\n'''
F'''Conversion abbreviations are: {", ".join(lowerCamelCase )}'''
)
raise ValueError(lowerCamelCase )
UpperCamelCase_: Union[str, Any] = METRIC_CONVERSION[from_sanitized]
UpperCamelCase_: str = METRIC_CONVERSION[to_sanitized]
UpperCamelCase_: Tuple = 1
if from_exponent > to_exponent:
UpperCamelCase_: Union[str, Any] = from_exponent - to_exponent
else:
UpperCamelCase_: Dict = -(to_exponent - from_exponent)
return value * pow(10 , lowerCamelCase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 548 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class A_(unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self ):
_lowerCamelCase : str = 10
def _lowerCAmelCase ( self ):
_lowerCamelCase : Optional[Any] = [1, 2, 3, 4]
_lowerCamelCase : List[str] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A )
def _lowerCAmelCase ( self ):
_lowerCamelCase : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
_lowerCamelCase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A )
def _lowerCAmelCase ( self ):
_lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
_lowerCamelCase : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A )
def _lowerCAmelCase ( self ):
_lowerCamelCase : List[Any] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
_lowerCamelCase , _lowerCamelCase : Optional[Any] = process_story(A )
self.assertEqual(A , [] )
def _lowerCAmelCase ( self ):
_lowerCamelCase : int = ''
_lowerCamelCase , _lowerCamelCase : Dict = process_story(A )
self.assertEqual(A , [] )
self.assertEqual(A , [] )
def _lowerCAmelCase ( self ):
_lowerCamelCase : Optional[int] = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
_lowerCamelCase , _lowerCamelCase : Optional[int] = process_story(A )
_lowerCamelCase : str = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(A , A )
_lowerCamelCase : List[str] = ['It was the best of times.']
self.assertEqual(A , A )
def _lowerCAmelCase ( self ):
_lowerCamelCase : List[str] = torch.tensor([1, 2, 3, 4] )
_lowerCamelCase : Dict = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(A , 0 ).numpy() , expected.numpy() )
def _lowerCAmelCase ( self ):
_lowerCamelCase : Any = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
_lowerCamelCase : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(A , 23 ).numpy() , expected.numpy() )
def _lowerCAmelCase ( self ):
_lowerCamelCase : Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
_lowerCamelCase : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(A , 1 ).numpy() , expected.numpy() )
def _lowerCAmelCase ( self ):
_lowerCamelCase : List[str] = 101
_lowerCamelCase : Tuple = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
_lowerCamelCase : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
_lowerCamelCase : List[Any] = compute_token_type_ids(A , A )
np.testing.assert_array_equal(A , A )
| 349 |
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
@require_tokenizers
class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
a_ : str = XLMRobertaTokenizer
a_ : Tuple = XLMRobertaTokenizerFast
a_ : List[str] = True
a_ : Optional[Any] = True
def _lowerCAmelCase ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : Any = XLMRobertaTokenizer(A , keep_accents=A )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self ):
_lowerCamelCase : Dict = '<pad>'
_lowerCamelCase : Any = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def _lowerCAmelCase ( self ):
_lowerCamelCase : int = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(A ) , 1002 )
def _lowerCAmelCase ( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1002 )
def _lowerCAmelCase ( self ):
_lowerCamelCase : int = XLMRobertaTokenizer(A , keep_accents=A )
_lowerCamelCase : Optional[Any] = tokenizer.tokenize('This is a test' )
self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
A , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
_lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(
A , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(A )
self.assertListEqual(
A , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def _lowerCAmelCase ( self ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCamelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
_lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(A , **A )
_lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(A , **A )
_lowerCamelCase : Tuple = tempfile.mkdtemp()
_lowerCamelCase : List[Any] = tokenizer_r.save_pretrained(A )
_lowerCamelCase : List[str] = tokenizer_p.save_pretrained(A )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
_lowerCamelCase : Optional[int] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(A , A )
# Checks everything loads correctly in the same way
_lowerCamelCase : str = tokenizer_r.from_pretrained(A )
_lowerCamelCase : Optional[Any] = tokenizer_p.from_pretrained(A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A , A ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(A )
# Save tokenizer rust, legacy_format=True
_lowerCamelCase : int = tempfile.mkdtemp()
_lowerCamelCase : int = tokenizer_r.save_pretrained(A , legacy_format=A )
_lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(A )
# Checks it save with the same files
self.assertSequenceEqual(A , A )
# Checks everything loads correctly in the same way
_lowerCamelCase : Dict = tokenizer_r.from_pretrained(A )
_lowerCamelCase : Tuple = tokenizer_p.from_pretrained(A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A , A ) )
shutil.rmtree(A )
# Save tokenizer rust, legacy_format=False
_lowerCamelCase : Dict = tempfile.mkdtemp()
_lowerCamelCase : Any = tokenizer_r.save_pretrained(A , legacy_format=A )
_lowerCamelCase : str = tokenizer_p.save_pretrained(A )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCamelCase : int = tokenizer_r.from_pretrained(A )
_lowerCamelCase : str = tokenizer_p.from_pretrained(A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A , A ) )
shutil.rmtree(A )
@cached_property
def _lowerCAmelCase ( self ):
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def _lowerCAmelCase ( self ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(A , f.name )
_lowerCamelCase : Optional[int] = XLMRobertaTokenizer(f.name , keep_accents=A )
_lowerCamelCase : Optional[Any] = pickle.dumps(A )
pickle.loads(A )
def _lowerCAmelCase ( self ):
if not self.test_rust_tokenizer:
return
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : Optional[int] = self.get_rust_tokenizer()
_lowerCamelCase : List[str] = 'I was born in 92000, and this is falsé.'
_lowerCamelCase : str = tokenizer.tokenize(A )
_lowerCamelCase : Optional[Any] = rust_tokenizer.tokenize(A )
self.assertListEqual(A , A )
_lowerCamelCase : List[str] = tokenizer.encode(A , add_special_tokens=A )
_lowerCamelCase : Optional[Any] = rust_tokenizer.encode(A , add_special_tokens=A )
self.assertListEqual(A , A )
_lowerCamelCase : Dict = self.get_rust_tokenizer()
_lowerCamelCase : Tuple = tokenizer.encode(A )
_lowerCamelCase : Tuple = rust_tokenizer.encode(A )
self.assertListEqual(A , A )
@slow
def _lowerCAmelCase ( self ):
_lowerCamelCase : Any = 'Hello World!'
_lowerCamelCase : List[Any] = [0, 3_5378, 6661, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(A , self.big_tokenizer.encode(A ) )
@slow
def _lowerCAmelCase ( self ):
_lowerCamelCase : List[Any] = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
_lowerCamelCase : Optional[int] = [
0,
3293,
83,
10,
4552,
4989,
7986,
678,
10,
5915,
111,
17_9459,
12_4850,
4,
6044,
237,
12,
6,
5,
6,
4,
6780,
705,
15,
1388,
44,
378,
1_0114,
711,
152,
20,
6,
5,
2_2376,
642,
1221,
1_5190,
3_4153,
450,
5608,
959,
1119,
5_7702,
136,
186,
47,
1098,
2_9367,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
6044,
237,
6284,
5_0901,
528,
31,
90,
34,
927,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(A , self.big_tokenizer.encode(A ) )
@slow
def _lowerCAmelCase ( self ):
# fmt: off
_lowerCamelCase : List[Any] = {'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 349 | 1 |
"""simple docstring"""
import baseaa
def _snake_case ( lowercase__ ):
return baseaa.baaencode(string.encode('utf-8' ) )
def _snake_case ( lowercase__ ):
return baseaa.baadecode(a_ ).decode('utf-8' )
if __name__ == "__main__":
lowercase__ = """Hello World!"""
lowercase__ = baseaa_encode(test)
print(encoded)
lowercase__ = baseaa_decode(encoded)
print(decoded) | 630 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
UpperCamelCase =models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="relu"))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation="relu"))
classifier.add(layers.Dense(units=1, activation="sigmoid"))
# Compiling the CNN
classifier.compile(
optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
UpperCamelCase =tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
UpperCamelCase =tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
UpperCamelCase =train_datagen.flow_from_directory(
"dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
UpperCamelCase =test_datagen.flow_from_directory(
"dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("cnn.h5")
# Part 3 - Making new predictions
UpperCamelCase =tf.keras.preprocessing.image.load_img(
"dataset/single_prediction/image.png", target_size=(64, 64)
)
UpperCamelCase =tf.keras.preprocessing.image.img_to_array(test_image)
UpperCamelCase =np.expand_dims(test_image, axis=0)
UpperCamelCase =classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
UpperCamelCase ="Normal"
if result[0][0] == 1:
UpperCamelCase ="Abnormality detected"
| 208 | 0 |
from math import sqrt
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(lowerCAmelCase__ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCAmelCase__ ) ):
for j in range(i + 1 , len(lowerCAmelCase__ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(lowerCAmelCase__ ):
ans.append(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(lowerCAmelCase__ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCAmelCase__ ):
while quotient != 1:
if is_prime(lowerCAmelCase__ ) and (quotient % factor == 0):
ans.append(lowerCAmelCase__ )
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(lowerCAmelCase__ )
__A = max(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(lowerCAmelCase__ )
__A = min(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , lowerCAmelCase__ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , lowerCAmelCase__ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (number > 2) and is_even(lowerCAmelCase__ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(lowerCAmelCase__ )
__A = len(lowerCAmelCase__ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and (len(lowerCAmelCase__ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
assert (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
assert (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(lowerCAmelCase__ )
__A = prime_factorization(lowerCAmelCase__ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(lowerCAmelCase__ , lowerCAmelCase__ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(lowerCAmelCase__ )
__A = prime_fac_a.count(lowerCAmelCase__ )
for _ in range(max(lowerCAmelCase__ , lowerCAmelCase__ ) ):
ans *= n
else:
__A = prime_fac_a.count(lowerCAmelCase__ )
for _ in range(lowerCAmelCase__ ):
ans *= n
done.append(lowerCAmelCase__ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(lowerCAmelCase__ )
for _ in range(lowerCAmelCase__ ):
ans *= n
done.append(lowerCAmelCase__ )
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCAmelCase__ ):
ans += 1
# precondition
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and is_prime(
lowerCAmelCase__ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
assert (
is_prime(lowerCAmelCase__ ) and is_prime(lowerCAmelCase__ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCAmelCase__ ):
number += 1
while number < p_number_a:
ans.append(lowerCAmelCase__ )
number += 1
# fetch the next prime number.
while not is_prime(lowerCAmelCase__ ):
number += 1
# precondition
assert (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and ans[0] != p_number_a
and ans[len(lowerCAmelCase__ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(lowerCAmelCase__ )
# precondition
assert ans[0] == 1 and ans[len(lowerCAmelCase__ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(lowerCAmelCase__ )
# precondition
assert (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and (divisors[0] == 1)
and (divisors[len(lowerCAmelCase__ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
assert (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(lowerCAmelCase__ ) , abs(lowerCAmelCase__ ) )
# precondition
assert (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 205 |
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
return "".join(sorted(lowerCAmelCase__ ) )
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
return word_by_signature[signature(lowerCAmelCase__ )]
snake_case_ : str =Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
snake_case_ : List[str] =sorted({word.strip().lower() for word in data.splitlines()})
snake_case_ : str =collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
snake_case_ : List[str] ={word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 205 | 1 |
'''simple docstring'''
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __lowercase ( _lowercase , _lowercase ):
@register_to_config
def __init__(self , A = 1_2_8 , A = 2_5_6 , A = 20_00.0 , A = 7_6_8 , A = 1_2 , A = 1_2 , A = 6_4 , A = 2_0_4_8 , A = 0.1 , ):
super().__init__()
lowerCamelCase_ : Tuple = nn.Sequential(
nn.Linear(A , d_model * 4 , bias=A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=A ) , nn.SiLU() , )
lowerCamelCase_ : List[str] = nn.Embedding(A , A )
lowerCamelCase_ : int = False
lowerCamelCase_ : Dict = nn.Linear(A , A , bias=A )
lowerCamelCase_ : Optional[int] = nn.Dropout(p=A )
lowerCamelCase_ : Union[str, Any] = nn.ModuleList()
for lyr_num in range(A ):
# FiLM conditional T5 decoder
lowerCamelCase_ : Tuple = DecoderLayer(d_model=A , d_kv=A , num_heads=A , d_ff=A , dropout_rate=A )
self.decoders.append(A )
lowerCamelCase_ : Optional[Any] = TaLayerNorm(A )
lowerCamelCase_ : Any = nn.Dropout(p=A )
lowerCamelCase_ : Union[str, Any] = nn.Linear(A , A , bias=A )
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : Union[str, Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def UpperCAmelCase__ (self , A , A , A ):
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
lowerCamelCase_ : Optional[int] = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
lowerCamelCase_ : Any = self.conditioning_emb(A ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
lowerCamelCase_ : Optional[Any] = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
lowerCamelCase_ : Optional[Any] = torch.broadcast_to(
torch.arange(A , device=decoder_input_tokens.device ) , (batch, seq_length) , )
lowerCamelCase_ : Optional[Any] = self.position_encoding(A )
lowerCamelCase_ : str = self.continuous_inputs_projection(A )
inputs += position_encodings
lowerCamelCase_ : str = self.dropout(A )
# decoder: No padding present.
lowerCamelCase_ : Any = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
lowerCamelCase_ : List[Any] = [(x, self.encoder_decoder_mask(A , A )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
lowerCamelCase_ : int = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
lowerCamelCase_ : Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
lowerCamelCase_ : List[Any] = lyr(
A , conditioning_emb=A , encoder_hidden_states=A , encoder_attention_mask=A , )[0]
lowerCamelCase_ : Dict = self.decoder_norm(A )
lowerCamelCase_ : Dict = self.post_dropout(A )
lowerCamelCase_ : Optional[int] = self.spec_out(A )
return spec_out
class __lowercase ( nn.Module ):
def __init__(self , A , A , A , A , A , A=1E-6 ):
super().__init__()
lowerCamelCase_ : str = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=A , d_kv=A , num_heads=A , dropout_rate=A ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=A , d_kv=A , num_heads=A , dropout_rate=A , layer_norm_epsilon=A , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=A , d_ff=A , dropout_rate=A , layer_norm_epsilon=A ) )
def UpperCAmelCase__ (self , A , A=None , A=None , A=None , A=None , A=None , ):
lowerCamelCase_ : Any = self.layer[0](
A , conditioning_emb=A , attention_mask=A , )
if encoder_hidden_states is not None:
lowerCamelCase_ : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to(
encoder_hidden_states.dtype )
lowerCamelCase_ : Optional[Any] = self.layer[1](
A , key_value_states=A , attention_mask=A , )
# Apply Film Conditional Feed Forward layer
lowerCamelCase_ : Dict = self.layer[-1](A , A )
return (hidden_states,)
class __lowercase ( nn.Module ):
def __init__(self , A , A , A , A ):
super().__init__()
lowerCamelCase_ : Union[str, Any] = TaLayerNorm(A )
lowerCamelCase_ : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=A )
lowerCamelCase_ : Union[str, Any] = Attention(query_dim=A , heads=A , dim_head=A , out_bias=A , scale_qk=A )
lowerCamelCase_ : Optional[int] = nn.Dropout(A )
def UpperCAmelCase__ (self , A , A=None , A=None , ):
# pre_self_attention_layer_norm
lowerCamelCase_ : Optional[Any] = self.layer_norm(A )
if conditioning_emb is not None:
lowerCamelCase_ : str = self.FiLMLayer(A , A )
# Self-attention block
lowerCamelCase_ : Optional[Any] = self.attention(A )
lowerCamelCase_ : Union[str, Any] = hidden_states + self.dropout(A )
return hidden_states
class __lowercase ( nn.Module ):
def __init__(self , A , A , A , A , A ):
super().__init__()
lowerCamelCase_ : Dict = Attention(query_dim=A , heads=A , dim_head=A , out_bias=A , scale_qk=A )
lowerCamelCase_ : int = TaLayerNorm(A , eps=A )
lowerCamelCase_ : Any = nn.Dropout(A )
def UpperCAmelCase__ (self , A , A=None , A=None , ):
lowerCamelCase_ : Dict = self.layer_norm(A )
lowerCamelCase_ : Optional[int] = self.attention(
A , encoder_hidden_states=A , attention_mask=attention_mask.squeeze(1 ) , )
lowerCamelCase_ : int = hidden_states + self.dropout(A )
return layer_output
class __lowercase ( nn.Module ):
def __init__(self , A , A , A , A ):
super().__init__()
lowerCamelCase_ : Optional[int] = TaDenseGatedActDense(d_model=A , d_ff=A , dropout_rate=A )
lowerCamelCase_ : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=A )
lowerCamelCase_ : Optional[int] = TaLayerNorm(A , eps=A )
lowerCamelCase_ : Dict = nn.Dropout(A )
def UpperCAmelCase__ (self , A , A=None ):
lowerCamelCase_ : str = self.layer_norm(A )
if conditioning_emb is not None:
lowerCamelCase_ : Tuple = self.film(A , A )
lowerCamelCase_ : Union[str, Any] = self.DenseReluDense(A )
lowerCamelCase_ : Any = hidden_states + self.dropout(A )
return hidden_states
class __lowercase ( nn.Module ):
def __init__(self , A , A , A ):
super().__init__()
lowerCamelCase_ : str = nn.Linear(A , A , bias=A )
lowerCamelCase_ : List[Any] = nn.Linear(A , A , bias=A )
lowerCamelCase_ : Optional[int] = nn.Linear(A , A , bias=A )
lowerCamelCase_ : Tuple = nn.Dropout(A )
lowerCamelCase_ : Optional[int] = NewGELUActivation()
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Tuple = self.act(self.wi_a(A ) )
lowerCamelCase_ : int = self.wi_a(A )
lowerCamelCase_ : Dict = hidden_gelu * hidden_linear
lowerCamelCase_ : Optional[Any] = self.dropout(A )
lowerCamelCase_ : Dict = self.wo(A )
return hidden_states
class __lowercase ( nn.Module ):
def __init__(self , A , A=1E-6 ):
super().__init__()
lowerCamelCase_ : Optional[int] = nn.Parameter(torch.ones(A ) )
lowerCamelCase_ : Dict = eps
def UpperCAmelCase__ (self , A ):
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
lowerCamelCase_ : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=A )
lowerCamelCase_ : str = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
lowerCamelCase_ : Any = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class __lowercase ( nn.Module ):
def UpperCAmelCase__ (self , A ):
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(A , 3.0 )) ))
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : str = nn.Linear(A , out_features * 2 , bias=A )
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : Union[str, Any] = self.scale_bias(A )
lowerCamelCase_, lowerCamelCase_ : List[Any] = torch.chunk(A , 2 , -1 )
lowerCamelCase_ : Optional[int] = x * (1 + scale) + shift
return x
| 422 |
'''simple docstring'''
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowercase_ ( _lowercase , _lowercase=False ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = OmegaConf.load(_lowercase )
if display:
print(yaml.dump(OmegaConf.to_container(_lowercase ) ) )
return config
def lowercase_ ( _lowercase , _lowercase=None , _lowercase=None ) -> Optional[int]:
'''simple docstring'''
if conf_path is None:
lowerCamelCase_ : int = '''./model_checkpoints/vqgan_only.yaml'''
lowerCamelCase_ : Dict = load_config(_lowercase , display=_lowercase )
lowerCamelCase_ : List[str] = VQModel(**config.model.params )
if ckpt_path is None:
lowerCamelCase_ : int = '''./model_checkpoints/vqgan_only.pt'''
lowerCamelCase_ : Union[str, Any] = torch.load(_lowercase , map_location=_lowercase )
if ".ckpt" in ckpt_path:
lowerCamelCase_ : str = sd['''state_dict''']
model.load_state_dict(_lowercase , strict=_lowercase )
model.to(_lowercase )
del sd
return model
def lowercase_ ( _lowercase , _lowercase ) -> List[str]:
'''simple docstring'''
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Any = model.encode(_lowercase )
print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" )
lowerCamelCase_ : Any = model.decode(_lowercase )
return xrec
def lowercase_ ( _lowercase , _lowercase=False ) -> Any:
'''simple docstring'''
lowerCamelCase_, lowerCamelCase_ : Any = string.rsplit('''.''' , 1 )
if reload:
lowerCamelCase_ : int = importlib.import_module(_lowercase )
importlib.reload(_lowercase )
return getattr(importlib.import_module(_lowercase , package=_lowercase ) , cls )
def lowercase_ ( _lowercase ) -> List[str]:
'''simple docstring'''
if "target" not in config:
raise KeyError('''Expected key `target` to instantiate.''' )
return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) )
def lowercase_ ( _lowercase , _lowercase , _lowercase=True , _lowercase=True ) -> Any:
'''simple docstring'''
lowerCamelCase_ : int = instantiate_from_config(_lowercase )
if sd is not None:
model.load_state_dict(_lowercase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple:
'''simple docstring'''
if ckpt:
lowerCamelCase_ : List[Any] = torch.load(_lowercase , map_location='''cpu''' )
lowerCamelCase_ : int = pl_sd['''global_step''']
print(F"""loaded model from global step {global_step}.""" )
else:
lowerCamelCase_ : Optional[int] = {'''state_dict''': None}
lowerCamelCase_ : str = None
lowerCamelCase_ : Any = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_lowercase , eval_mode=_lowercase )['''model''']
return model, global_step
| 422 | 1 |
from __future__ import annotations
from typing import Any
class lowercase_ :
def __init__( self: List[str], _lowercase: Optional[Any] = 6):
'''simple docstring'''
__lowerCAmelCase = None
__lowerCAmelCase = None
self.create_linked_list(lowerCAmelCase__)
def _lowercase ( self: List[str], _lowercase: List[Any]):
'''simple docstring'''
__lowerCAmelCase = Node()
__lowerCAmelCase = current_node
__lowerCAmelCase = current_node
__lowerCAmelCase = current_node
for _ in range(1, lowerCAmelCase__):
__lowerCAmelCase = Node()
__lowerCAmelCase = current_node
__lowerCAmelCase = previous_node
__lowerCAmelCase = current_node
__lowerCAmelCase = self.front
__lowerCAmelCase = previous_node
def _lowercase ( self: Optional[int]):
'''simple docstring'''
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def _lowercase ( self: List[Any]):
'''simple docstring'''
self.check_can_perform_operation()
return self.front.data if self.front else None
def _lowercase ( self: List[str], _lowercase: Tuple):
'''simple docstring'''
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
__lowerCAmelCase = self.rear.next
if self.rear:
__lowerCAmelCase = data
def _lowercase ( self: Dict):
'''simple docstring'''
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
__lowerCAmelCase = self.front.data
__lowerCAmelCase = None
return data
__lowerCAmelCase = self.front
__lowerCAmelCase = old_front.next
__lowerCAmelCase = old_front.data
__lowerCAmelCase = None
return data
def _lowercase ( self: Union[str, Any]):
'''simple docstring'''
if self.is_empty():
raise Exception("""Empty Queue""")
def _lowercase ( self: Any):
'''simple docstring'''
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""")
class lowercase_ :
def __init__( self: Optional[Any]):
'''simple docstring'''
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 709 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__A : Optional[Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = ["MLukeTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
__A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 | 0 |
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class UpperCAmelCase :
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : Any=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : str=64 , lowerCAmelCase : Tuple=5 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Union[str, Any]=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Optional[int]=512 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : int=None , ):
lowercase : int = parent
lowercase : int = batch_size
lowercase : str = seq_length
lowercase : List[str] = is_training
lowercase : str = use_input_mask
lowercase : Any = use_token_type_ids
lowercase : List[Any] = use_labels
lowercase : str = vocab_size
lowercase : Any = hidden_size
lowercase : List[str] = num_hidden_layers
lowercase : Tuple = num_attention_heads
lowercase : Union[str, Any] = intermediate_size
lowercase : Union[str, Any] = hidden_act
lowercase : List[str] = hidden_dropout_prob
lowercase : Optional[Any] = attention_probs_dropout_prob
lowercase : Optional[int] = max_position_embeddings
lowercase : Union[str, Any] = type_vocab_size
lowercase : Optional[Any] = type_sequence_label_size
lowercase : int = initializer_range
lowercase : List[Any] = num_labels
lowercase : Tuple = num_choices
lowercase : Tuple = scope
lowercase : Dict = vocab_size - 1
def _lowerCAmelCase ( self : Optional[Any] ):
lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Any = None
if self.use_input_mask:
lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Optional[Any] = None
if self.use_labels:
lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : Optional[Any] = self.get_config()
return config, input_ids, input_mask, token_labels
def _lowerCAmelCase ( self : List[Any] ):
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def _lowerCAmelCase ( self : List[Any] ):
lowercase , lowercase , lowercase , lowercase : Optional[int] = self.prepare_config_and_inputs()
lowercase : Optional[int] = True
return config, input_ids, input_mask, token_labels
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ):
lowercase : Optional[int] = GPTNeoXModel(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
lowercase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase )
lowercase : Dict = model(lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Any ):
lowercase : Optional[int] = True
lowercase : int = GPTNeoXModel(lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
lowercase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : int ):
lowercase : Union[str, Any] = GPTNeoXForCausalLM(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
lowercase : Optional[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ):
lowercase : Dict = self.num_labels
lowercase : Dict = GPTNeoXForQuestionAnswering(lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
lowercase : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] ):
lowercase : Tuple = self.num_labels
lowercase : List[str] = GPTNeoXForSequenceClassification(lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ):
lowercase : int = self.num_labels
lowercase : Optional[int] = GPTNeoXForTokenClassification(lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
lowercase : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : str ):
lowercase : Any = True
lowercase : Any = GPTNeoXForCausalLM(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
# first forward pass
lowercase : List[str] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase )
lowercase : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowercase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowercase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
lowercase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
lowercase : str = torch.cat([input_mask, next_mask] , dim=-1 )
lowercase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase )
lowercase : Optional[int] = output_from_no_past['''hidden_states'''][0]
lowercase : Optional[Any] = model(
lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )['''hidden_states'''][0]
# select random slice
lowercase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
lowercase : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) )
def _lowerCAmelCase ( self : Tuple ):
lowercase : Optional[Any] = self.prepare_config_and_inputs()
lowercase , lowercase , lowercase , lowercase : Union[str, Any] = config_and_inputs
lowercase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
a__: List[str] = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
a__: int = (GPTNeoXForCausalLM,) if is_torch_available() else ()
a__: Optional[int] = (
{
"""feature-extraction""": GPTNeoXModel,
"""question-answering""": GPTNeoXForQuestionAnswering,
"""text-classification""": GPTNeoXForSequenceClassification,
"""text-generation""": GPTNeoXForCausalLM,
"""token-classification""": GPTNeoXForTokenClassification,
"""zero-shot""": GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
a__: str = False
a__: Tuple = False
a__: List[Any] = False
a__: Optional[int] = False
def _lowerCAmelCase ( self : Union[str, Any] ):
lowercase : Union[str, Any] = GPTNeoXModelTester(self )
lowercase : List[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=64 , num_attention_heads=8 )
def _lowerCAmelCase ( self : Dict ):
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Dict ):
lowercase , lowercase , lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
def _lowerCAmelCase ( self : Any ):
lowercase , lowercase , lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
def _lowerCAmelCase ( self : str ):
# This regression test was failing with PyTorch < 1.3
lowercase , lowercase , lowercase , lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase : List[str] = None
self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
def _lowerCAmelCase ( self : Tuple ):
lowercase , lowercase , lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
def _lowerCAmelCase ( self : Any ):
lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase )
def _lowerCAmelCase ( self : Tuple ):
lowercase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase )
def _lowerCAmelCase ( self : str ):
lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase )
def _lowerCAmelCase ( self : Tuple ):
lowercase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase )
@unittest.skip(reason='''Feed forward chunking is not implemented''' )
def _lowerCAmelCase ( self : List[Any] ):
pass
@parameterized.expand([('''linear''',), ('''dynamic''',)] )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase : List[str] ):
lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
lowercase : str = ids_tensor([1, 10] , config.vocab_size )
lowercase : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowercase : List[Any] = GPTNeoXModel(lowerCAmelCase )
original_model.to(lowerCAmelCase )
original_model.eval()
lowercase : Union[str, Any] = original_model(lowerCAmelCase ).last_hidden_state
lowercase : List[Any] = original_model(lowerCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowercase : List[Any] = {'''type''': scaling_type, '''factor''': 10.0}
lowercase : str = GPTNeoXModel(lowerCAmelCase )
scaled_model.to(lowerCAmelCase )
scaled_model.eval()
lowercase : List[str] = scaled_model(lowerCAmelCase ).last_hidden_state
lowercase : Any = scaled_model(lowerCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) )
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
@slow
def _lowerCAmelCase ( self : Any ):
lowercase : Dict = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' )
for checkpointing in [True, False]:
lowercase : Dict = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(lowerCAmelCase )
lowercase : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowerCAmelCase )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
lowercase : Union[str, Any] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure'''
lowercase : Any = model.generate(**lowerCAmelCase , do_sample=lowerCAmelCase , max_new_tokens=20 )
lowercase : Optional[int] = tokenizer.batch_decode(lowerCAmelCase )[0]
self.assertEqual(lowerCAmelCase , lowerCAmelCase )
| 583 |
from __future__ import annotations
def UpperCamelCase__ ( _A: float , _A: float , _A: float ):
'''simple docstring'''
if days_between_payments <= 0:
raise ValueError("""days_between_payments must be > 0""" )
if daily_interest_rate < 0:
raise ValueError("""daily_interest_rate must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return principal * daily_interest_rate * days_between_payments
def UpperCamelCase__ ( _A: float , _A: float , _A: float , ):
'''simple docstring'''
if number_of_compounding_periods <= 0:
raise ValueError("""number_of_compounding_periods must be > 0""" )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def UpperCamelCase__ ( _A: float , _A: float , _A: float , ):
'''simple docstring'''
if number_of_years <= 0:
raise ValueError("""number_of_years must be > 0""" )
if nominal_annual_percentage_rate < 0:
raise ValueError("""nominal_annual_percentage_rate must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return compound_interest(
_A , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 479 | 0 |
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __snake_case ( lowercase : Optional[int]=None ):
if subparsers is not None:
snake_case_ = subparsers.add_parser("test" )
else:
snake_case_ = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=lowercase , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def __snake_case ( lowercase : List[Any] ):
snake_case_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
snake_case_ = script_name
else:
snake_case_ = f'''--config_file={args.config_file} {script_name}'''
snake_case_ = ["accelerate-launch"] + test_args.split()
snake_case_ = execute_subprocess_async(lowercase , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __snake_case ( ):
snake_case_ = test_command_parser()
snake_case_ = parser.parse_args()
test_command(lowercase )
if __name__ == "__main__":
main()
| 708 |
'''simple docstring'''
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __snake_case ( lowercase : str , lowercase : str , lowercase : str ):
def get_masked_lm_array(lowercase : str ):
snake_case_ = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
snake_case_ = tf.train.load_variable(lowercase , lowercase )
if "kernel" in name:
snake_case_ = array.transpose()
return torch.from_numpy(lowercase )
def get_encoder_array(lowercase : str ):
snake_case_ = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
snake_case_ = tf.train.load_variable(lowercase , lowercase )
if "kernel" in name:
snake_case_ = array.transpose()
return torch.from_numpy(lowercase )
def get_encoder_layer_array(lowercase : int , lowercase : str ):
snake_case_ = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
snake_case_ = tf.train.load_variable(lowercase , lowercase )
if "kernel" in name:
snake_case_ = array.transpose()
return torch.from_numpy(lowercase )
def get_encoder_attention_layer_array(lowercase : int , lowercase : str , lowercase : int ):
snake_case_ = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
snake_case_ = tf.train.load_variable(lowercase , lowercase )
snake_case_ = array.reshape(lowercase )
if "kernel" in name:
snake_case_ = array.transpose()
return torch.from_numpy(lowercase )
print(f'''Loading model based on config from {config_path}...''' )
snake_case_ = BertConfig.from_json_file(lowercase )
snake_case_ = BertForMaskedLM(lowercase )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
snake_case_ = model.bert.encoder.layer[layer_index]
# Self-attention
snake_case_ = layer.attention.self
snake_case_ = get_encoder_attention_layer_array(
lowercase , "_query_dense/kernel" , self_attn.query.weight.data.shape )
snake_case_ = get_encoder_attention_layer_array(
lowercase , "_query_dense/bias" , self_attn.query.bias.data.shape )
snake_case_ = get_encoder_attention_layer_array(
lowercase , "_key_dense/kernel" , self_attn.key.weight.data.shape )
snake_case_ = get_encoder_attention_layer_array(
lowercase , "_key_dense/bias" , self_attn.key.bias.data.shape )
snake_case_ = get_encoder_attention_layer_array(
lowercase , "_value_dense/kernel" , self_attn.value.weight.data.shape )
snake_case_ = get_encoder_attention_layer_array(
lowercase , "_value_dense/bias" , self_attn.value.bias.data.shape )
# Self-attention Output
snake_case_ = layer.attention.output
snake_case_ = get_encoder_attention_layer_array(
lowercase , "_output_dense/kernel" , self_output.dense.weight.data.shape )
snake_case_ = get_encoder_attention_layer_array(
lowercase , "_output_dense/bias" , self_output.dense.bias.data.shape )
snake_case_ = get_encoder_layer_array(lowercase , "_attention_layer_norm/gamma" )
snake_case_ = get_encoder_layer_array(lowercase , "_attention_layer_norm/beta" )
# Intermediate
snake_case_ = layer.intermediate
snake_case_ = get_encoder_layer_array(lowercase , "_intermediate_dense/kernel" )
snake_case_ = get_encoder_layer_array(lowercase , "_intermediate_dense/bias" )
# Output
snake_case_ = layer.output
snake_case_ = get_encoder_layer_array(lowercase , "_output_dense/kernel" )
snake_case_ = get_encoder_layer_array(lowercase , "_output_dense/bias" )
snake_case_ = get_encoder_layer_array(lowercase , "_output_layer_norm/gamma" )
snake_case_ = get_encoder_layer_array(lowercase , "_output_layer_norm/beta" )
# Embeddings
snake_case_ = get_encoder_array("_position_embedding_layer/embeddings" )
snake_case_ = get_encoder_array("_type_embedding_layer/embeddings" )
snake_case_ = get_encoder_array("_embedding_norm_layer/gamma" )
snake_case_ = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
snake_case_ = model.cls.predictions.transform
snake_case_ = get_masked_lm_array("dense/kernel" )
snake_case_ = get_masked_lm_array("dense/bias" )
snake_case_ = get_masked_lm_array("layer_norm/gamma" )
snake_case_ = get_masked_lm_array("layer_norm/beta" )
snake_case_ = get_masked_lm_array("embedding_table" )
# Pooling
snake_case_ = BertPooler(config=lowercase )
snake_case_ = get_encoder_array("_pooler_layer/kernel" )
snake_case_ = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(lowercase )
# Integration test - should load without any errors ;)
snake_case_ = BertForMaskedLM.from_pretrained(lowercase )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
'''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
type=str,
required=True,
help='''The config json file corresponding to the BERT model. This specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''',
type=str,
required=True,
help='''Path to the output PyTorch model.''',
)
lowercase__ = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 420 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : List[Any] = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
"""simple docstring"""
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
a_ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""")
a_ = get_tests_dir("""fixtures/vocab.json""")
a_ = get_tests_dir("""fixtures""")
class __snake_case ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Optional[Any] = 0
def UpperCamelCase__( self ):
'''simple docstring'''
__A : str = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def UpperCamelCase__( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__A : str = WavaVecaConfig()
__A : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
# save in new folder
model_config.save_pretrained(__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
__A : List[str] = AutoProcessor.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def UpperCamelCase__( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , '''vocab.json''' ) )
__A : Union[str, Any] = AutoProcessor.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def UpperCamelCase__( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__A : Union[str, Any] = WavaVecaFeatureExtractor()
__A : Optional[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
__A : Union[str, Any] = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase )
# save in new folder
processor.save_pretrained(__lowerCamelCase )
# drop `processor_class` in tokenizer
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''r''' ) as f:
__A : Optional[int] = json.load(__lowerCamelCase )
config_dict.pop('''processor_class''' )
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f:
f.write(json.dumps(__lowerCamelCase ) )
__A : Tuple = AutoProcessor.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def UpperCamelCase__( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__A : Optional[int] = WavaVecaFeatureExtractor()
__A : List[str] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
__A : List[Any] = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase )
# save in new folder
processor.save_pretrained(__lowerCamelCase )
# drop `processor_class` in feature extractor
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''r''' ) as f:
__A : int = json.load(__lowerCamelCase )
config_dict.pop('''processor_class''' )
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f:
f.write(json.dumps(__lowerCamelCase ) )
__A : Optional[int] = AutoProcessor.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def UpperCamelCase__( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__A : Optional[Any] = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' )
model_config.save_pretrained(__lowerCamelCase )
# copy relevant files
copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , '''vocab.json''' ) )
# create emtpy sample processor
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f:
f.write('''{}''' )
__A : Union[str, Any] = AutoProcessor.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def UpperCamelCase__( self ):
'''simple docstring'''
with self.assertRaises(__lowerCamelCase ):
__A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowerCamelCase ):
__A : Dict = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase )
__A : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
__A : Union[str, Any] = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
__A : Optional[int] = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
__A : int = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase )
__A : Optional[int] = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
def UpperCamelCase__( self ):
'''simple docstring'''
try:
AutoConfig.register('''custom''' , __lowerCamelCase )
AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase )
AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase )
AutoProcessor.register(__lowerCamelCase , __lowerCamelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCamelCase ):
AutoProcessor.register(__lowerCamelCase , __lowerCamelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
__A : str = CustomFeatureExtractor.from_pretrained(__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
__A : Optional[Any] = os.path.join(__lowerCamelCase , '''vocab.txt''' )
with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
__A : Dict = CustomTokenizer(__lowerCamelCase )
__A : Optional[Any] = CustomProcessor(__lowerCamelCase , __lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__lowerCamelCase )
__A : List[str] = AutoProcessor.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCamelCase__( self ):
'''simple docstring'''
class __snake_case ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_lowerCamelCase = False
class __snake_case ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_lowerCamelCase = False
class __snake_case ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_lowerCamelCase = """AutoFeatureExtractor"""
_lowerCamelCase = """AutoTokenizer"""
_lowerCamelCase = False
try:
AutoConfig.register('''custom''' , __lowerCamelCase )
AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase )
AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase )
AutoProcessor.register(__lowerCamelCase , __lowerCamelCase )
# If remote code is not set, the default is to use local classes.
__A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
__A : int = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
__A : str = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCamelCase__( self ):
'''simple docstring'''
__A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' )
def UpperCamelCase__( self ):
'''simple docstring'''
__A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' )
self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' )
@is_staging_test
class __snake_case ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
@classmethod
def UpperCamelCase__( cls ):
'''simple docstring'''
__A : Optional[int] = TOKEN
HfFolder.save_token(__lowerCamelCase )
@classmethod
def UpperCamelCase__( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='''test-processor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' )
except HTTPError:
pass
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Tuple = WavaVecaProcessor.from_pretrained(__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__lowerCamelCase , '''test-processor''' ) , push_to_hub=__lowerCamelCase , use_auth_token=self._token )
__A : Tuple = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Optional[int] = WavaVecaProcessor.from_pretrained(__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__lowerCamelCase , '''test-processor-org''' ) , push_to_hub=__lowerCamelCase , use_auth_token=self._token , organization='''valid_org''' , )
__A : int = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def UpperCamelCase__( self ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
__A : Any = CustomFeatureExtractor.from_pretrained(__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
__A : List[Any] = os.path.join(__lowerCamelCase , '''vocab.txt''' )
with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
__A : Optional[int] = CustomTokenizer(__lowerCamelCase )
__A : Any = CustomProcessor(__lowerCamelCase , __lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token )
__A : Tuple = Repository(__lowerCamelCase , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token )
processor.save_pretrained(__lowerCamelCase )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''',
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__lowerCamelCase , '''tokenizer_config.json''' ) ) as f:
__A : Tuple = json.load(__lowerCamelCase )
self.assertDictEqual(
tokenizer_config['''auto_map'''] , {
'''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None],
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_feature_extraction.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_tokenization.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_processing.py''' ) ) )
repo.push_to_hub()
__A : Any = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=__lowerCamelCase )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
| 177 | 0 |
'''simple docstring'''
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def __magic_name__( lowerCamelCase = ""):
__lowerCAmelCase = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250'''
__lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase).text, '''html.parser''')
__lowerCAmelCase = soup.find_all('''td''', attrs='''titleColumn''')
__lowerCAmelCase = soup.find_all('''td''', class_='''ratingColumn imdbRating''')
return {
title.a.text: float(rating.strong.text)
for title, rating in zip(lowerCamelCase, lowerCamelCase)
}
def __magic_name__( lowerCamelCase = "IMDb_Top_250_Movies.csv"):
__lowerCAmelCase = get_imdb_top_aaa_movies()
with open(lowerCamelCase, '''w''', newline='''''') as out_file:
__lowerCAmelCase = csv.writer(lowerCamelCase)
writer.writerow(['''Movie title''', '''IMDb rating'''])
for title, rating in movies.items():
writer.writerow([title, rating])
if __name__ == "__main__":
write_movies()
| 717 |
'''simple docstring'''
import json
import sys
def __magic_name__( lowerCamelCase, lowerCamelCase):
with open(lowerCamelCase, encoding='''utf-8''') as f:
__lowerCAmelCase = json.load(lowerCamelCase)
__lowerCAmelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' ''']
for benchmark_name in sorted(lowerCamelCase):
__lowerCAmelCase = results[benchmark_name]
__lowerCAmelCase = benchmark_name.split('''/''')[-1]
output_md.append(F"""### Benchmark: {benchmark_file_name}""")
__lowerCAmelCase = '''| metric |'''
__lowerCAmelCase = '''|--------|'''
__lowerCAmelCase = '''| new / old (diff) |'''
for metric_name in sorted(lowerCamelCase):
__lowerCAmelCase = benchmark_res[metric_name]
__lowerCAmelCase = metric_vals['''new''']
__lowerCAmelCase = metric_vals.get('''old''', lowerCamelCase)
__lowerCAmelCase = metric_vals.get('''diff''', lowerCamelCase)
__lowerCAmelCase = F""" {new_val:f}""" if isinstance(lowerCamelCase, (int, float)) else '''None'''
if old_val is not None:
val_str += F""" / {old_val:f}""" if isinstance(lowerCamelCase, (int, float)) else "None"
if dif_val is not None:
val_str += F""" ({dif_val:f})""" if isinstance(lowerCamelCase, (int, float)) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append('''</details>''')
with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f:
f.writelines('''\n'''.join(lowerCamelCase))
if __name__ == "__main__":
_UpperCAmelCase : str = sys.argv[1]
_UpperCAmelCase : Optional[Any] = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 474 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __SCREAMING_SNAKE_CASE :
def __init__( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=13 , UpperCAmelCase__ : Any=32 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=[10, 20, 30, 40] , UpperCAmelCase__ : Any=[2, 2, 3, 2] , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[Any]=10 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[int]=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Dict=[2, 3, 4] , UpperCAmelCase__ : Optional[int]=None , ):
'''simple docstring'''
lowercase : List[Any] =parent
lowercase : Tuple =batch_size
lowercase : List[str] =image_size
lowercase : List[Any] =num_channels
lowercase : Union[str, Any] =num_stages
lowercase : int =hidden_sizes
lowercase : Any =depths
lowercase : Tuple =is_training
lowercase : str =use_labels
lowercase : List[Any] =intermediate_size
lowercase : int =hidden_act
lowercase : Union[str, Any] =num_labels
lowercase : Optional[int] =initializer_range
lowercase : int =out_features
lowercase : List[str] =out_indices
lowercase : str =scope
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
lowercase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase : Dict =None
if self.use_labels:
lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_labels )
lowercase : Dict =self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] ):
'''simple docstring'''
lowercase : Dict =ConvNextVaModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase : Optional[Any] =model(UpperCAmelCase__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int ):
'''simple docstring'''
lowercase : Dict =ConvNextVaForImageClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase : str =model(UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ):
'''simple docstring'''
lowercase : Union[str, Any] =ConvNextVaBackbone(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase : Optional[int] =model(UpperCAmelCase__ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowercase : Optional[Any] =None
lowercase : str =ConvNextVaBackbone(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowercase : Optional[Any] =model(UpperCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
lowercase : Any =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase : str =config_and_inputs
lowercase : Any ={'''pixel_values''': pixel_values}
return config, inputs_dict
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase : str =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase : List[str] =config_and_inputs
lowercase : Optional[Any] ={'''pixel_values''': pixel_values, '''labels''': labels}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ):
lowerCamelCase_ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase_ = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
lowercase : Dict =ConvNextVaModelTester(self )
lowercase : str =ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return
@unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
lowercase , lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_with_labels()
lowercase : Optional[int] =True
if model_class.__name__ in [
*get_values(UpperCAmelCase__ ),
*get_values(UpperCAmelCase__ ),
]:
continue
lowercase : Dict =model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.train()
lowercase : Optional[Any] =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ )
lowercase : List[Any] =model(**UpperCAmelCase__ ).loss
loss.backward()
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
lowercase , lowercase : Any =self.model_tester.prepare_config_and_inputs_with_labels()
lowercase : List[Any] =False
lowercase : Any =True
if (
model_class.__name__
in [*get_values(UpperCAmelCase__ ), *get_values(UpperCAmelCase__ )]
or not model_class.supports_gradient_checkpointing
):
continue
lowercase : Any =model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.gradient_checkpointing_enable()
model.train()
lowercase : Optional[Any] =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ )
lowercase : int =model(**UpperCAmelCase__ ).loss
loss.backward()
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Dict =model_class(UpperCAmelCase__ )
lowercase : Union[str, Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase : int =[*signature.parameters.keys()]
lowercase : Optional[Any] =['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__ )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
lowercase : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple ):
lowercase : int =model_class(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
with torch.no_grad():
lowercase : Any =model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) )
lowercase : Dict =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase : List[Any] =self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : List[str] =True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase : Tuple =True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@slow
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase : List[Any] =ConvNextVaModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
def _lowerCAmelCase ( ) -> List[Any]:
lowercase : Union[str, Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
lowercase : Tuple =ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(UpperCAmelCase__ )
lowercase : int =self.default_image_processor
lowercase : List[str] =prepare_img()
lowercase : List[Any] =preprocessor(images=UpperCAmelCase__ , return_tensors='''pt''' ).to(UpperCAmelCase__ )
# forward pass
with torch.no_grad():
lowercase : Dict =model(**UpperCAmelCase__ )
# verify the logits
lowercase : Optional[Any] =torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase__ )
lowercase : Tuple =torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(UpperCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
| 92 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCamelCase : int = logging.get_logger(__name__)
__lowerCamelCase : List[str] = "https://openaipublic.azureedge.net/jukebox/models/"
__lowerCamelCase : List[Any] = {
"jukebox-1b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"1b_lyrics/prior_level_2.pth.tar",
],
"jukebox-5b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"5b_lyrics/prior_level_2.pth.tar",
],
}
def lowerCamelCase_(lowerCamelCase_ ) -> int:
if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10:
UpperCAmelCase = key.replace(".model.1.bias" , ".conv1d_1.bias" )
elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10:
UpperCAmelCase = key.replace(".model.1.weight" , ".conv1d_1.weight" )
elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10:
UpperCAmelCase = key.replace(".model.3.bias" , ".conv1d_2.bias" )
elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10:
UpperCAmelCase = key.replace(".model.3.weight" , ".conv1d_2.weight" )
if "conditioner_blocks.0." in key:
UpperCAmelCase = key.replace("conditioner_blocks.0" , "conditioner_blocks" )
if "prime_prior" in key:
UpperCAmelCase = key.replace("prime_prior" , "encoder" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
UpperCAmelCase = key.replace(".emb." , "." )
if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(".k" , ".codebook" )
if "y_emb." in key:
return key.replace("y_emb." , "metadata_embedding." )
if "x_emb.emb." in key:
UpperCAmelCase = key.replace("0.x_emb.emb" , "embed_tokens" )
if "prime_state_ln" in key:
return key.replace("prime_state_ln" , "encoder.final_layer_norm" )
if ".ln" in key:
return key.replace(".ln" , ".layer_norm" )
if "_ln" in key:
return key.replace("_ln" , "_layer_norm" )
if "prime_state_proj" in key:
return key.replace("prime_state_proj" , "encoder.proj_in" )
if "prime_x_out" in key:
return key.replace("prime_x_out" , "encoder.lm_head" )
if "prior.x_out" in key:
return key.replace("x_out" , "fc_proj_out" )
if "x_emb" in key:
return key.replace("x_emb" , "embed_tokens" )
return key
def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int:
UpperCAmelCase = {}
import re
UpperCAmelCase = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
UpperCAmelCase = re.compile(
r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
UpperCAmelCase = re.compile(
r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" )
UpperCAmelCase = re.compile(
r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
UpperCAmelCase = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_encoder_block_conv_in.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] )
UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'
UpperCAmelCase = re_encoder_block_conv_in.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_encoder_block_resnet.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_encoder_block_resnet.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] )
UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]]
UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'
UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
UpperCAmelCase = prefix + resnet_block
UpperCAmelCase = re_encoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_encoder_block_proj_out.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_encoder_block_proj_out.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'
UpperCAmelCase = re_encoder_block_proj_out.sub(lowerCamelCase_ , lowerCamelCase_ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_decoder_block_conv_out.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2
UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'
UpperCAmelCase = re_decoder_block_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_decoder_block_resnet.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_decoder_block_resnet.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2
UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]]
UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'
UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
UpperCAmelCase = prefix + resnet_block
UpperCAmelCase = re_decoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_decoder_block_proj_in.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_decoder_block_proj_in.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'
UpperCAmelCase = re_decoder_block_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_prior_cond_conv_out.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2
UpperCAmelCase = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'
UpperCAmelCase = re_prior_cond_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_prior_cond_resnet.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_prior_cond_resnet.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2
UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]]
UpperCAmelCase = F'conditioner_blocks.upsampler.upsample_block.{block_index}.'
UpperCAmelCase = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
UpperCAmelCase = prefix + resnet_block
UpperCAmelCase = re_prior_cond_resnet.sub(lowerCamelCase_ , lowerCamelCase_ )
elif re_prior_cond_proj_in.fullmatch(lowerCamelCase_ ):
UpperCAmelCase = re_prior_cond_proj_in.match(lowerCamelCase_ )
UpperCAmelCase = regex_match.groups()
UpperCAmelCase = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}'
UpperCAmelCase = re_prior_cond_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ )
# keep original key
else:
UpperCAmelCase = original_key
UpperCAmelCase = replace_key(lowerCamelCase_ )
if F'{key_prefix}.{key}' not in model_state_dict or key is None:
print(F'failed converting {original_key} to {key}, does not match' )
# handle missmatched shape
elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape:
UpperCAmelCase = model_state_dict[F'{key_prefix}.{key}']
print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' )
UpperCAmelCase = original_key
UpperCAmelCase = original_key
UpperCAmelCase = value
return new_dict
@torch.no_grad()
def lowerCamelCase_(lowerCamelCase_=None , lowerCamelCase_=None ) -> str:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ):
UpperCAmelCase = requests.get(F'{PREFIX}{file}' , allow_redirects=lowerCamelCase_ )
os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=lowerCamelCase_ )
open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , "wb" ).write(r.content )
UpperCAmelCase = MODEL_MAPPING[model_name.split("/" )[-1]]
UpperCAmelCase = JukeboxConfig.from_pretrained(lowerCamelCase_ )
UpperCAmelCase = JukeboxModel(lowerCamelCase_ )
UpperCAmelCase = []
UpperCAmelCase = {}
for i, dict_name in enumerate(lowerCamelCase_ ):
UpperCAmelCase = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["model"]
UpperCAmelCase = {}
for k in old_dic.keys():
if k.endswith(".b" ):
UpperCAmelCase = old_dic[k]
elif k.endswith(".w" ):
UpperCAmelCase = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
UpperCAmelCase = old_dic[k]
else:
UpperCAmelCase = old_dic[k]
UpperCAmelCase = "vqvae" if i == 0 else F'priors.{3 - i}'
UpperCAmelCase = fix_jukebox_keys(lowerCamelCase_ , model.state_dict() , lowerCamelCase_ , lowerCamelCase_ )
weight_dict.append(lowerCamelCase_ )
UpperCAmelCase = weight_dict.pop(0 )
model.vqvae.load_state_dict(lowerCamelCase_ )
for i in range(len(lowerCamelCase_ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ )
with open(F'{pytorch_dump_folder_path}/mapping.json' , "w" ) as txtfile:
json.dump(lowerCamelCase_ , lowerCamelCase_ )
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCamelCase_ )
return weight_dict
if __name__ == "__main__":
__lowerCamelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="jukebox-5b-lyrics",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="jukebox-5b-lyrics-converted",
type=str,
help="Path to the output PyTorch model directory.",
)
__lowerCamelCase : Optional[int] = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 323 | 0 |
'''simple docstring'''
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def __UpperCAmelCase ( a_):
snake_case_ = os.path.join(args.tf_model_dir , 'parameters.json')
snake_case_ = json.loads(open(a_).read())
if not params:
raise ValueError(
f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''')
if not args.output.endswith('.pt'):
snake_case_ = args.output + '.pt'
snake_case_ = OrderedDict()
with tf.device('/CPU:0'):
snake_case_ = tf.train.load_checkpoint(args.tf_model_dir)
snake_case_ = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
snake_case_ = reader.get_tensor(a_).astype(np.floataa)
if key_name.endswith('/adam_m') or key_name.endswith('/adam_v'):
continue
if key_name.startswith('pasts/'):
if key_name.startswith('pasts/mlp'):
snake_case_ = int(key_name[9])
elif key_name.startswith('pasts/out'):
snake_case_ = 8
snake_case_ = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ = torch.tensor(a_)
elif key_name.startswith('model/moe'):
snake_case_ = int(key_name[9:].split('/')[0])
if key_name.endswith('/switch_gating/kernel'):
snake_case_ = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player
snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ = torch.tensor(a_)
elif key_name.endswith('/softmlp/kernel'):
snake_case_ = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player
snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ = torch.tensor(a_)
elif key_name.endswith('/wo/kernel') or key_name.endswith('/wi/kernel'):
snake_case_ = key_name[-9:-7]
for i in range(16):
snake_case_ = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer)
snake_case_ = (
vnp[i].transpose([1, 0]).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
snake_case_ = torch.tensor(a_)
elif key_name.startswith('model/mlp'):
snake_case_ = int(key_name[9:].split('/')[0])
if key_name.endswith('/p1/kernel'):
snake_case_ = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player
snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ = torch.tensor(a_)
elif key_name.endswith('/p1/bias'):
snake_case_ = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player
snake_case_ = vnp.copy() # same because it is one dimensional
snake_case_ = torch.tensor(a_)
elif key_name.endswith('/p2/kernel'):
snake_case_ = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player
snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ = torch.tensor(a_)
elif key_name.endswith('/p2/bias'):
snake_case_ = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player
snake_case_ = vnp.copy() # same because it is one dimensional
snake_case_ = torch.tensor(a_)
elif key_name.startswith('model/ln'):
snake_case_ = int(key_name[8:].split('/')[0])
if key_name.endswith('/b'):
snake_case_ = 'model.blocks.%d.feed_forward.norm.bias' % player
snake_case_ = vnp.copy() # same because it is one dimensional
snake_case_ = torch.tensor(a_)
elif key_name.endswith('/g'):
snake_case_ = 'model.blocks.%d.feed_forward.norm.weight' % player
snake_case_ = vnp.copy() # same because it is one dimensional
snake_case_ = torch.tensor(a_)
elif key_name.startswith('model/att'):
snake_case_ = int(key_name[9:].split('/')[0])
if key_name.endswith('/qkv/kernel'):
snake_case_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
snake_case_ = state[:, 0, :, :]
snake_case_ = state[:, 1, :, :]
snake_case_ = state[:, 2, :, :]
snake_case_ = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]])
.transpose([1, 0])
.copy()
) # Mesh-Tensorflow is a diagonal matrix
snake_case_ = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]])
.transpose([1, 0])
.copy()
) # Mesh-Tensorflow is a diagonal matrix
snake_case_ = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]])
.transpose([1, 0])
.copy()
) # Mesh-Tensorflow is a diagonal matrix
snake_case_ = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player
snake_case_ = torch.tensor(a_)
snake_case_ = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player
snake_case_ = torch.tensor(a_)
snake_case_ = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player
snake_case_ = torch.tensor(a_)
elif key_name.endswith('/o/kernel'):
snake_case_ = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player
snake_case_ = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy()
) # Mesh-Tensorflow is a diagonal matrix
snake_case_ = torch.tensor(a_)
elif key_name.startswith('model/an'):
snake_case_ = int(key_name[8:].split('/')[0])
if key_name.endswith('/b'):
snake_case_ = 'model.blocks.%d.self_attn.norm.bias' % player
snake_case_ = vnp.copy() # same because it is one dimensional
snake_case_ = torch.tensor(a_)
elif key_name.endswith('/g'):
snake_case_ = 'model.blocks.%d.self_attn.norm.weight' % player
snake_case_ = vnp.copy() # same because it is one dimensional
snake_case_ = torch.tensor(a_)
elif (
key_name.startswith('model/wte')
or key_name.startswith('model/wpe')
or key_name.startswith('model/ete')
):
snake_case_ = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[
key_name[-3:]
]
snake_case_ = 'model.%s.weight' % nlayer
snake_case_ = vnp.copy() # same in embedded
snake_case_ = torch.tensor(a_)
if key_name.startswith('model/wte'):
snake_case_ = 'lm_head.weight'
snake_case_ = vnp.copy() # same in embedded
snake_case_ = torch.tensor(a_)
elif key_name.startswith('model/wob'):
snake_case_ = 'final_logits_bias'
snake_case_ = vnp.copy() # same in embedded
snake_case_ = state.reshape((1, -1))
snake_case_ = torch.tensor(a_)
elif key_name == "model/dense/kernel":
snake_case_ = 'model.last_project.weight'
snake_case_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ = torch.tensor(a_)
elif key_name == "model/dense_1/bias":
snake_case_ = 'model.last_project.bias'
snake_case_ = vnp.copy() # same because it is one dimensional
snake_case_ = torch.tensor(a_)
torch.save(a_ , args.output)
if __name__ == "__main__":
lowercase = argparse.ArgumentParser(
description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model")
parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model")
lowercase = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 703 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class UpperCamelCase_ ( snake_case_ ):
'''simple docstring'''
lowerCAmelCase = 42
class UpperCamelCase_ ( snake_case_ , snake_case_ ):
'''simple docstring'''
@register_to_config
def __init__( self , a = 3 , a = 3 , a = ("DownEncoderBlock2D",) , a = ("UpDecoderBlock2D",) , a = (64,) , a = 1 , a = "silu" , a = 3 , a = 32 , a = 2_56 , a = 32 , a = None , a = 0.18_215 , a = "group" , ) -> Any:
super().__init__()
# pass init params to Encoder
snake_case_ = Encoder(
in_channels=a , out_channels=a , down_block_types=a , block_out_channels=a , layers_per_block=a , act_fn=a , norm_num_groups=a , double_z=a , )
snake_case_ = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case_ = nn.Convad(a , a , 1 )
snake_case_ = VectorQuantizer(a , a , beta=0.25 , remap=a , sane_index_shape=a )
snake_case_ = nn.Convad(a , a , 1 )
# pass init params to Decoder
snake_case_ = Decoder(
in_channels=a , out_channels=a , up_block_types=a , block_out_channels=a , layers_per_block=a , act_fn=a , norm_num_groups=a , norm_type=a , )
@apply_forward_hook
def _UpperCamelCase ( self , a , a = True ) -> VQEncoderOutput:
snake_case_ = self.encoder(a )
snake_case_ = self.quant_conv(a )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=a )
@apply_forward_hook
def _UpperCamelCase ( self , a , a = False , a = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case_ , snake_case_ , snake_case_ = self.quantize(a )
else:
snake_case_ = h
snake_case_ = self.post_quant_conv(a )
snake_case_ = self.decoder(a , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=a )
def _UpperCamelCase ( self , a , a = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case_ = sample
snake_case_ = self.encode(a ).latents
snake_case_ = self.decode(a ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=a )
| 607 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Dict , snake_case : str ):
"""simple docstring"""
_snake_case : Optional[Any] = []
self.adlist.append(
{'value': '', 'next_states': [], 'fail_state': 0, 'output': []} )
for keyword in keywords:
self.add_keyword(a__ )
self.set_fail_transitions()
def __UpperCAmelCase ( self : str , snake_case : int , snake_case : Optional[Any] ):
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def __UpperCAmelCase ( self : Tuple , snake_case : Tuple ):
"""simple docstring"""
_snake_case : Any = 0
for character in keyword:
_snake_case : Optional[int] = self.find_next_state(a__ , a__ )
if next_state is None:
self.adlist.append(
{
'value': character,
'next_states': [],
'fail_state': 0,
'output': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
_snake_case : int = len(self.adlist ) - 1
else:
_snake_case : str = next_state
self.adlist[current_state]["output"].append(a__ )
def __UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
_snake_case : Optional[Any] = deque()
for node in self.adlist[0]["next_states"]:
q.append(a__ )
_snake_case : Dict = 0
while q:
_snake_case : List[str] = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(a__ )
_snake_case : List[str] = self.adlist[r]['fail_state']
while (
self.find_next_state(a__ , self.adlist[child]['value'] ) is None
and state != 0
):
_snake_case : Optional[Any] = self.adlist[state]['fail_state']
_snake_case : Optional[int] = self.find_next_state(
a__ , self.adlist[child]['value'] )
if self.adlist[child]["fail_state"] is None:
_snake_case : str = 0
_snake_case : Dict = (
self.adlist[child]['output']
+ self.adlist[self.adlist[child]['fail_state']]['output']
)
def __UpperCAmelCase ( self : Union[str, Any] , snake_case : Tuple ):
"""simple docstring"""
_snake_case : int = {} # returns a dict with keywords and list of its occurrences
_snake_case : List[Any] = 0
for i in range(len(a__ ) ):
while (
self.find_next_state(a__ , string[i] ) is None
and current_state != 0
):
_snake_case : List[str] = self.adlist[current_state]['fail_state']
_snake_case : int = self.find_next_state(a__ , string[i] )
if next_state is None:
_snake_case : Union[str, Any] = 0
else:
_snake_case : int = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
_snake_case : List[Any] = []
result[key].append(i - len(a__ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 517 |
'''simple docstring'''
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def UpperCamelCase_( snake_case : Optional[int] ):
'''simple docstring'''
snake_case_ = torch.exp(snake_case )
snake_case_ = torch.sum(snake_case , dim=1 ) # sum of exp(x_i)
snake_case_ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(snake_case ) - B / A
class _snake_case ( nn.Module ):
def __init__( self , a__ ) -> List[str]:
'''simple docstring'''
super().__init__()
snake_case_ = config.output_attentions
snake_case_ = config.output_hidden_states
snake_case_ = nn.ModuleList([BertLayer(a__ ) for _ in range(config.num_hidden_layers )] )
snake_case_ = nn.ModuleList([BertHighway(a__ ) for _ in range(config.num_hidden_layers )] )
snake_case_ = [-1 for _ in range(config.num_hidden_layers )]
def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]:
'''simple docstring'''
if (type(a__ ) is float) or (type(a__ ) is int):
for i in range(len(self.early_exit_entropy ) ):
snake_case_ = x
else:
snake_case_ = x
def lowerCAmelCase__ ( self , a__ ) -> Tuple:
'''simple docstring'''
snake_case_ = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def lowerCAmelCase__ ( self , a__ , a__=None , a__=None , a__=None , a__=None , ) -> Any:
'''simple docstring'''
snake_case_ = ()
snake_case_ = ()
snake_case_ = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
snake_case_ = all_hidden_states + (hidden_states,)
snake_case_ = layer_module(
a__ , a__ , head_mask[i] , a__ , a__ )
snake_case_ = layer_outputs[0]
if self.output_attentions:
snake_case_ = all_attentions + (layer_outputs[1],)
snake_case_ = (hidden_states,)
if self.output_hidden_states:
snake_case_ = current_outputs + (all_hidden_states,)
if self.output_attentions:
snake_case_ = current_outputs + (all_attentions,)
snake_case_ = self.highway[i](a__ )
# logits, pooled_output
if not self.training:
snake_case_ = highway_exit[0]
snake_case_ = entropy(a__ )
snake_case_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
snake_case_ = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
snake_case_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(a__ , i + 1 )
else:
snake_case_ = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
snake_case_ = all_hidden_states + (hidden_states,)
snake_case_ = (hidden_states,)
if self.output_hidden_states:
snake_case_ = outputs + (all_hidden_states,)
if self.output_attentions:
snake_case_ = outputs + (all_attentions,)
snake_case_ = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"The Bert Model transformer with early exiting (DeeBERT). " , lowercase_ , )
class _snake_case ( lowercase_ ):
def __init__( self , a__ ) -> Tuple:
'''simple docstring'''
super().__init__(a__ )
snake_case_ = config
snake_case_ = BertEmbeddings(a__ )
snake_case_ = DeeBertEncoder(a__ )
snake_case_ = BertPooler(a__ )
self.init_weights()
def lowerCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
self.encoder.init_highway_pooler(self.pooler )
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
return self.embeddings.word_embeddings
def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = value
def lowerCAmelCase__ ( self , a__ ) -> Dict:
'''simple docstring'''
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(a__ )
@add_start_docstrings_to_model_forward(a__ )
def lowerCAmelCase__ ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ) -> Optional[int]:
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" )
elif input_ids is not None:
snake_case_ = input_ids.size()
elif inputs_embeds is not None:
snake_case_ = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds" )
snake_case_ = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
snake_case_ = torch.ones(a__ , device=a__ )
if encoder_attention_mask is None:
snake_case_ = torch.ones(a__ , device=a__ )
if token_type_ids is None:
snake_case_ = torch.zeros(a__ , dtype=torch.long , device=a__ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
snake_case_ = self.get_extended_attention_mask(a__ , a__ , a__ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
snake_case_ = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
snake_case_ = encoder_attention_mask[:, None, None, :]
snake_case_ = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
snake_case_ = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
snake_case_ = self.get_head_mask(a__ , self.config.num_hidden_layers )
snake_case_ = self.embeddings(
input_ids=a__ , position_ids=a__ , token_type_ids=a__ , inputs_embeds=a__ )
snake_case_ = self.encoder(
a__ , attention_mask=a__ , head_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , )
snake_case_ = encoder_outputs[0]
snake_case_ = self.pooler(a__ )
snake_case_ = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class _snake_case ( lowercase_ ):
def __init__( self , a__ , a__ ) -> List[Any]:
'''simple docstring'''
snake_case_ = message
snake_case_ = exit_layer # start from 1!
class _snake_case ( nn.Module ):
def __init__( self , a__ ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
snake_case_ = BertPooler(a__ )
snake_case_ = nn.Dropout(config.hidden_dropout_prob )
snake_case_ = nn.Linear(config.hidden_size , config.num_labels )
def lowerCAmelCase__ ( self , a__ ) -> List[Any]:
'''simple docstring'''
snake_case_ = encoder_outputs[0]
snake_case_ = self.pooler(a__ )
# "return" pooler_output
# BertModel
snake_case_ = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
snake_case_ = bmodel_output[1]
snake_case_ = self.dropout(a__ )
snake_case_ = self.classifier(a__ )
return logits, pooled_output
@add_start_docstrings(
"Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowercase_ , )
class _snake_case ( lowercase_ ):
def __init__( self , a__ ) -> Tuple:
'''simple docstring'''
super().__init__(a__ )
snake_case_ = config.num_labels
snake_case_ = config.num_hidden_layers
snake_case_ = DeeBertModel(a__ )
snake_case_ = nn.Dropout(config.hidden_dropout_prob )
snake_case_ = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(a__ )
def lowerCAmelCase__ ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=-1 , a__=False , ) -> List[Any]:
'''simple docstring'''
snake_case_ = self.num_layers
try:
snake_case_ = self.bert(
a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
snake_case_ = outputs[1]
snake_case_ = self.dropout(a__ )
snake_case_ = self.classifier(a__ )
snake_case_ = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
snake_case_ = e.message
snake_case_ = e.exit_layer
snake_case_ = outputs[0]
if not self.training:
snake_case_ = entropy(a__ )
snake_case_ = []
snake_case_ = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
snake_case_ = MSELoss()
snake_case_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
snake_case_ = CrossEntropyLoss()
snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
snake_case_ = []
for highway_exit in outputs[-1]:
snake_case_ = highway_exit[0]
if not self.training:
highway_logits_all.append(a__ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
snake_case_ = MSELoss()
snake_case_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
snake_case_ = CrossEntropyLoss()
snake_case_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(a__ )
if train_highway:
snake_case_ = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
snake_case_ = (loss,) + outputs
if not self.training:
snake_case_ = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
snake_case_ = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 400 | 0 |
'''simple docstring'''
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger(__name__)
set_seed(770)
UpperCamelCase_ = {
"""c_attn""": """att_proj""",
"""c_proj""": """out_proj""",
"""c_fc""": """in_proj""",
"""transformer.""": """""",
"""h.""": """layers.""",
"""ln_1""": """layernorm_1""",
"""ln_2""": """layernorm_2""",
"""ln_f""": """layernorm_final""",
"""wpe""": """position_embeds_layer""",
"""wte""": """input_embeds_layer""",
}
UpperCamelCase_ = {
"""text_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """text.pt""",
},
"""coarse_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """coarse.pt""",
},
"""fine_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """fine.pt""",
},
"""text""": {
"""repo_id""": """suno/bark""",
"""file_name""": """text_2.pt""",
},
"""coarse""": {
"""repo_id""": """suno/bark""",
"""file_name""": """coarse_2.pt""",
},
"""fine""": {
"""repo_id""": """suno/bark""",
"""file_name""": """fine_2.pt""",
},
}
UpperCamelCase_ = os.path.dirname(os.path.abspath(__file__))
UpperCamelCase_ = os.path.join(os.path.expanduser("""~"""), """.cache""")
UpperCamelCase_ = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""")
def _lowerCAmelCase ( __magic_name__ : List[Any] , __magic_name__ : str=False ) -> Any:
lowercase : List[str] =model_type
if use_small:
key += "_small"
return os.path.join(_lowerCamelCase , REMOTE_MODEL_PATHS[key]['''file_name'''] )
def _lowerCAmelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ) -> Optional[Any]:
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
hf_hub_download(repo_id=_lowerCamelCase , filename=_lowerCamelCase , local_dir=_lowerCamelCase )
def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : List[str]=False , __magic_name__ : List[str]="text" ) -> int:
if model_type == "text":
lowercase : Any =BarkSemanticModel
lowercase : Dict =BarkSemanticConfig
lowercase : Tuple =BarkSemanticGenerationConfig
elif model_type == "coarse":
lowercase : Optional[int] =BarkCoarseModel
lowercase : Union[str, Any] =BarkCoarseConfig
lowercase : Optional[Any] =BarkCoarseGenerationConfig
elif model_type == "fine":
lowercase : List[str] =BarkFineModel
lowercase : Optional[Any] =BarkFineConfig
lowercase : Any =BarkFineGenerationConfig
else:
raise NotImplementedError()
lowercase : List[Any] =f'''{model_type}_small''' if use_small else model_type
lowercase : Optional[int] =REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(_lowerCamelCase ):
logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' )
_download(model_info['''repo_id'''] , model_info['''file_name'''] )
lowercase : Optional[Any] =torch.load(_lowerCamelCase , map_location=_lowerCamelCase )
# this is a hack
lowercase : Any =checkpoint["model_args"]
if "input_vocab_size" not in model_args:
lowercase : Union[str, Any] =model_args["vocab_size"]
lowercase : Tuple =model_args["vocab_size"]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
lowercase : Optional[Any] =model_args.pop('''n_head''' )
lowercase : Optional[Any] =model_args.pop('''n_embd''' )
lowercase : Any =model_args.pop('''n_layer''' )
lowercase : int =ConfigClass(**checkpoint['''model_args'''] )
lowercase : Optional[Any] =ModelClass(config=_lowerCamelCase )
lowercase : int =GenerationConfigClass()
lowercase : Any =model_generation_config
lowercase : Optional[int] =checkpoint["model"]
# fixup checkpoint
lowercase : Dict ="_orig_mod."
for k, v in list(state_dict.items() ):
if k.startswith(_lowerCamelCase ):
# replace part of the key with corresponding layer name in HF implementation
lowercase : List[Any] =k[len(_lowerCamelCase ) :]
for old_layer_name in new_layer_name_dict:
lowercase : List[str] =new_k.replace(_lowerCamelCase , new_layer_name_dict[old_layer_name] )
lowercase : Optional[int] =state_dict.pop(_lowerCamelCase )
lowercase : Tuple =set(state_dict.keys() ) - set(model.state_dict().keys() )
lowercase : str ={k for k in extra_keys if not k.endswith('''.attn.bias''' )}
lowercase : str =set(model.state_dict().keys() ) - set(state_dict.keys() )
lowercase : str ={k for k in missing_keys if not k.endswith('''.attn.bias''' )}
if len(_lowerCamelCase ) != 0:
raise ValueError(f'''extra keys found: {extra_keys}''' )
if len(_lowerCamelCase ) != 0:
raise ValueError(f'''missing keys: {missing_keys}''' )
model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
lowercase : List[str] =model.num_parameters(exclude_embeddings=_lowerCamelCase )
lowercase : Optional[Any] =checkpoint["best_val_loss"].item()
logger.info(f'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(_lowerCamelCase , 3 )} loss''' )
model.eval()
model.to(_lowerCamelCase )
del checkpoint, state_dict
return model
def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : str=False , __magic_name__ : Any="text" ) -> List[Any]:
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
lowercase : Dict ="cpu" # do conversion on cpu
lowercase : Tuple =_get_ckpt_path(_lowerCamelCase , use_small=_lowerCamelCase )
lowercase : str =_load_model(_lowerCamelCase , _lowerCamelCase , model_type=_lowerCamelCase , use_small=_lowerCamelCase )
# load bark initial model
lowercase : Optional[Any] =_bark_load_model(_lowerCamelCase , '''cpu''' , model_type=_lowerCamelCase , use_small=_lowerCamelCase )
if model_type == "text":
lowercase : Tuple =bark_model["model"]
if model.num_parameters(exclude_embeddings=_lowerCamelCase ) != bark_model.get_num_params():
raise ValueError('''initial and new models don\'t have the same number of parameters''' )
# check if same output as the bark model
lowercase : Union[str, Any] =5
lowercase : Tuple =10
if model_type in ["text", "coarse"]:
lowercase : int =torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int )
lowercase : int =bark_model(_lowerCamelCase )[0]
lowercase : Dict =model(_lowerCamelCase )
# take last logits
lowercase : Dict =output_new_model_total.logits[:, [-1], :]
else:
lowercase : str =3
lowercase : Optional[int] =8
lowercase : List[str] =torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
lowercase : Optional[Any] =model(_lowerCamelCase , _lowerCamelCase )
lowercase : Optional[int] =bark_model(_lowerCamelCase , _lowerCamelCase )
lowercase : List[Any] =output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError('''initial and new outputs don\'t have the same shape''' )
if (output_new_model - output_old_model).abs().max().item() > 1E-3:
raise ValueError('''initial and new outputs are not equal''' )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Dict , ) -> Dict:
lowercase : str =os.path.join(_lowerCamelCase , _lowerCamelCase )
lowercase : List[Any] =BarkSemanticConfig.from_pretrained(os.path.join(_lowerCamelCase , '''config.json''' ) )
lowercase : Dict =BarkCoarseConfig.from_pretrained(os.path.join(_lowerCamelCase , '''config.json''' ) )
lowercase : List[Any] =BarkFineConfig.from_pretrained(os.path.join(_lowerCamelCase , '''config.json''' ) )
lowercase : Dict =EncodecConfig.from_pretrained('''facebook/encodec_24khz''' )
lowercase : int =BarkSemanticModel.from_pretrained(_lowerCamelCase )
lowercase : Tuple =BarkCoarseModel.from_pretrained(_lowerCamelCase )
lowercase : Optional[Any] =BarkFineModel.from_pretrained(_lowerCamelCase )
lowercase : Optional[int] =EncodecModel.from_pretrained('''facebook/encodec_24khz''' )
lowercase : int =BarkConfig.from_sub_model_configs(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
lowercase : Tuple =BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
lowercase : Union[str, Any] =BarkModel(_lowerCamelCase )
lowercase : Any =semantic
lowercase : Any =coarseAcoustic
lowercase : Any =fineAcoustic
lowercase : Tuple =codec
lowercase : Any =bark_generation_config
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
bark.save_pretrained(_lowerCamelCase , repo_id=_lowerCamelCase , push_to_hub=_lowerCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""")
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""")
UpperCamelCase_ = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 717 |
'''simple docstring'''
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
UpperCamelCase_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( lowercase__ ):
lowerCamelCase_ = 'vision-encoder-decoder'
lowerCamelCase_ = True
def __init__( self : Optional[int] , **UpperCAmelCase__ : Tuple ):
'''simple docstring'''
super().__init__(**UpperCAmelCase__ )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F'''A configuraton of type {self.model_type} cannot be instantiated because '''
F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' )
lowercase : Optional[Any] =kwargs.pop('''encoder''' )
lowercase : List[Any] =encoder_config.pop('''model_type''' )
lowercase : List[str] =kwargs.pop('''decoder''' )
lowercase : Dict =decoder_config.pop('''model_type''' )
lowercase : Union[str, Any] =AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ )
lowercase : List[str] =AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ )
lowercase : str =True
@classmethod
def lowerCamelCase_ ( cls : List[str] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Optional[int] ):
'''simple docstring'''
logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' )
lowercase : int =True
lowercase : Optional[Any] =True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase : int =copy.deepcopy(self.__dict__ )
lowercase : Union[str, Any] =self.encoder.to_dict()
lowercase : Union[str, Any] =self.decoder.to_dict()
lowercase : int =self.__class__.model_type
return output
class __SCREAMING_SNAKE_CASE ( lowercase__ ):
lowerCamelCase_ = version.parse('1.11' )
@property
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return 1E-4
@property
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} )
class __SCREAMING_SNAKE_CASE ( lowercase__ ):
@property
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
lowercase : List[str] =OrderedDict()
lowercase : Tuple ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
lowercase : Optional[int] ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
lowercase : int ={0: '''batch''', 1: '''encoder_sequence'''}
return common_inputs
def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , ):
'''simple docstring'''
import torch
lowercase : Optional[Any] =OrderedDict()
lowercase : List[Any] =super().generate_dummy_inputs(
UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ )
lowercase , lowercase : Optional[int] =dummy_input['''input_ids'''].shape
lowercase : Union[str, Any] =(batch, encoder_sequence, self._config.encoder_hidden_size)
lowercase : List[str] =dummy_input.pop('''input_ids''' )
lowercase : Tuple =dummy_input.pop('''attention_mask''' )
lowercase : Union[str, Any] =torch.zeros(UpperCAmelCase__ )
return common_inputs
class __SCREAMING_SNAKE_CASE ( lowercase__ ):
@property
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : PretrainedConfig ):
'''simple docstring'''
return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase__ )
def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default" ):
'''simple docstring'''
lowercase : List[Any] =encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase__ , UpperCAmelCase__ )
| 88 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class lowerCamelCase_ ( snake_case__ ):
'''simple docstring'''
__UpperCAmelCase = "poolformer"
def __init__( self , snake_case_=3 , snake_case_=1_6 , snake_case_=1_6 , snake_case_=3 , snake_case_=4.0 , snake_case_=[2, 2, 6, 2] , snake_case_=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[2, 1, 1, 1] , snake_case_=4 , snake_case_=0.0 , snake_case_="gelu" , snake_case_=True , snake_case_=1e-5 , snake_case_=0.0_2 , **snake_case_ , ) -> List[Any]:
'''simple docstring'''
__lowercase = num_channels
__lowercase = patch_size
__lowercase = stride
__lowercase = padding
__lowercase = pool_size
__lowercase = hidden_sizes
__lowercase = mlp_ratio
__lowercase = depths
__lowercase = patch_sizes
__lowercase = strides
__lowercase = num_encoder_blocks
__lowercase = drop_path_rate
__lowercase = hidden_act
__lowercase = use_layer_scale
__lowercase = layer_scale_init_value
__lowercase = initializer_range
super().__init__(**snake_case_ )
class lowerCamelCase_ ( snake_case__ ):
'''simple docstring'''
__UpperCAmelCase = version.parse("1.11" )
@property
def A ( self ) -> Any:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def A ( self ) -> Any:
'''simple docstring'''
return 2e-3
| 639 | '''simple docstring'''
def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError("Input must be an integer" )
if input_num <= 0:
raise ValueError("Input must be positive" )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 244 | 0 |
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
lowercase : Optional[Any] = logging.getLogger(__name__)
class __A( __UpperCAmelCase ):
def _UpperCamelCase ( self, A, A, A=None, A=None ):
"""simple docstring"""
_UpperCamelCase = self.layer[current_layer](A, A, head_mask[current_layer] )
_UpperCamelCase = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , )
class __A( __UpperCAmelCase ):
def __init__( self, A ):
"""simple docstring"""
super().__init__(A )
_UpperCamelCase = BertEncoderWithPabee(A )
self.init_weights()
_UpperCamelCase = 0
_UpperCamelCase = 0
_UpperCamelCase = 0
_UpperCamelCase = 0
def _UpperCamelCase ( self, A ):
"""simple docstring"""
_UpperCamelCase = threshold
def _UpperCamelCase ( self, A ):
"""simple docstring"""
_UpperCamelCase = patience
def _UpperCamelCase ( self ):
"""simple docstring"""
_UpperCamelCase = 0
_UpperCamelCase = 0
def _UpperCamelCase ( self ):
"""simple docstring"""
_UpperCamelCase = self.inference_layers_num / self.inference_instances_num
_UpperCamelCase = (
F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ='''
F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'''
)
print(A )
@add_start_docstrings_to_model_forward(A )
def _UpperCamelCase ( self, A=None, A=None, A=None, A=None, A=None, A=None, A=None, A=None, A=None, A=None, A=False, ):
"""simple docstring"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' )
elif input_ids is not None:
_UpperCamelCase = input_ids.size()
elif inputs_embeds is not None:
_UpperCamelCase = inputs_embeds.size()[:-1]
else:
raise ValueError('''You have to specify either input_ids or inputs_embeds''' )
_UpperCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_UpperCamelCase = torch.ones(A, device=A )
if token_type_ids is None:
_UpperCamelCase = torch.zeros(A, dtype=torch.long, device=A )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_UpperCamelCase = self.get_extended_attention_mask(A, A, A )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = encoder_hidden_states.size()
_UpperCamelCase = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
_UpperCamelCase = torch.ones(A, device=A )
_UpperCamelCase = self.invert_attention_mask(A )
else:
_UpperCamelCase = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_UpperCamelCase = self.get_head_mask(A, self.config.num_hidden_layers )
_UpperCamelCase = self.embeddings(
input_ids=A, position_ids=A, token_type_ids=A, inputs_embeds=A )
_UpperCamelCase = embedding_output
if self.training:
_UpperCamelCase = []
for i in range(self.config.num_hidden_layers ):
_UpperCamelCase = self.encoder.adaptive_forward(
A, current_layer=A, attention_mask=A, head_mask=A )
_UpperCamelCase = self.pooler(A )
_UpperCamelCase = output_layers[i](output_dropout(A ) )
res.append(A )
elif self.patience == 0: # Use all layers for inference
_UpperCamelCase = self.encoder(
A, attention_mask=A, head_mask=A, encoder_hidden_states=A, encoder_attention_mask=A, )
_UpperCamelCase = self.pooler(encoder_outputs[0] )
_UpperCamelCase = [output_layers[self.config.num_hidden_layers - 1](A )]
else:
_UpperCamelCase = 0
_UpperCamelCase = None
_UpperCamelCase = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
_UpperCamelCase = self.encoder.adaptive_forward(
A, current_layer=A, attention_mask=A, head_mask=A )
_UpperCamelCase = self.pooler(A )
_UpperCamelCase = output_layers[i](A )
if regression:
_UpperCamelCase = logits.detach()
if patient_result is not None:
_UpperCamelCase = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
_UpperCamelCase = 0
else:
_UpperCamelCase = logits.detach().argmax(dim=1 )
if patient_result is not None:
_UpperCamelCase = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(A ) ):
patient_counter += 1
else:
_UpperCamelCase = 0
_UpperCamelCase = logits
if patient_counter == self.patience:
break
_UpperCamelCase = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , )
class __A( __UpperCAmelCase ):
def __init__( self, A ):
"""simple docstring"""
super().__init__(A )
_UpperCamelCase = config.num_labels
_UpperCamelCase = BertModelWithPabee(A )
_UpperCamelCase = nn.Dropout(config.hidden_dropout_prob )
_UpperCamelCase = nn.ModuleList(
[nn.Linear(config.hidden_size, self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(A )
def _UpperCamelCase ( self, A=None, A=None, A=None, A=None, A=None, A=None, A=None, ):
"""simple docstring"""
_UpperCamelCase = self.bert(
input_ids=A, attention_mask=A, token_type_ids=A, position_ids=A, head_mask=A, inputs_embeds=A, output_dropout=self.dropout, output_layers=self.classifiers, regression=self.num_labels == 1, )
_UpperCamelCase = (logits[-1],)
if labels is not None:
_UpperCamelCase = None
_UpperCamelCase = 0
for ix, logits_item in enumerate(A ):
if self.num_labels == 1:
# We are doing regression
_UpperCamelCase = MSELoss()
_UpperCamelCase = loss_fct(logits_item.view(-1 ), labels.view(-1 ) )
else:
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits_item.view(-1, self.num_labels ), labels.view(-1 ) )
if total_loss is None:
_UpperCamelCase = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
_UpperCamelCase = (total_loss / total_weights,) + outputs
return outputs
| 105 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase : Optional[int] = logging.get_logger(__name__)
lowercase : List[Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class __A( __UpperCAmelCase ):
__A = "detr"
__A = ["past_key_values"]
__A = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self, A=True, A=None, A=3, A=100, A=6, A=2048, A=8, A=6, A=2048, A=8, A=0.0, A=0.0, A=True, A="relu", A=256, A=0.1, A=0.0, A=0.0, A=0.02, A=1.0, A=False, A="sine", A="resnet50", A=True, A=False, A=1, A=5, A=2, A=1, A=1, A=5, A=2, A=0.1, **A, ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(A, A ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(A )
# set timm attributes to None
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = decoder_layerdrop
_UpperCamelCase = encoder_layers
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
super().__init__(is_encoder_decoder=A, **A )
@property
def _UpperCamelCase ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def _UpperCamelCase ( self ):
"""simple docstring"""
return self.d_model
@classmethod
def _UpperCamelCase ( cls, A, **A ):
"""simple docstring"""
return cls(backbone_config=A, **A )
def _UpperCamelCase ( self ):
"""simple docstring"""
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
class __A( __UpperCAmelCase ):
__A = version.parse("1.11" )
@property
def _UpperCamelCase ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def _UpperCamelCase ( self ):
"""simple docstring"""
return 1E-5
@property
def _UpperCamelCase ( self ):
"""simple docstring"""
return 12
| 105 | 1 |
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_lowerCAmelCase: List[str] = logging.getLogger()
@unittest.skip('Temporarily disable the doc tests.' )
@require_torch
@require_tf
@slow
class lowercase_ (unittest.TestCase ):
def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> str:
a__ =[file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))]
if identifier is not None:
a__ =[file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_):
for n_ in n_identifier:
a__ =[file for file in files if n_ not in file]
else:
a__ =[file for file in files if n_identifier not in file]
a__ =ignore_files or []
ignore_files.append('__init__.py')
a__ =[file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , lowercase_)
if only_modules:
a__ =file.split('.')[0]
try:
a__ =getattr(lowercase_ , lowercase_)
a__ =doctest.DocTestSuite(lowercase_)
a__ =unittest.TextTestRunner().run(lowercase_)
self.assertIs(len(result.failures) , 0)
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""")
else:
a__ =doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS)
self.assertIs(result.failed , 0)
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =Path('src/transformers')
a__ ='modeling'
a__ =[
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_)
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =Path('src/transformers')
a__ ='tokenization'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def __UpperCamelCase ( self) -> int:
a__ =Path('src/transformers')
a__ ='configuration'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def __UpperCamelCase ( self) -> Tuple:
a__ =Path('src/transformers')
a__ =['configuration', 'modeling', 'tokenization']
self.analyze_directory(lowercase_ , n_identifier=lowercase_)
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =Path('docs/source')
a__ =['favicon.ico']
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
| 20 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 20 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ = logging.get_logger(__name__)
snake_case_ = {
'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
_A = "vit_mae"
def __init__( self , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3072 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=224 , lowercase__=16 , lowercase__=3 , lowercase__=True , lowercase__=16 , lowercase__=512 , lowercase__=8 , lowercase__=2048 , lowercase__=0.75 , lowercase__=False , **lowercase__ , ):
"""simple docstring"""
super().__init__(**lowercase__ )
SCREAMING_SNAKE_CASE_ : List[str] = hidden_size
SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers
SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act
SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range
SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps
SCREAMING_SNAKE_CASE_ : Dict = image_size
SCREAMING_SNAKE_CASE_ : Dict = patch_size
SCREAMING_SNAKE_CASE_ : List[str] = num_channels
SCREAMING_SNAKE_CASE_ : Optional[int] = qkv_bias
SCREAMING_SNAKE_CASE_ : str = decoder_num_attention_heads
SCREAMING_SNAKE_CASE_ : Tuple = decoder_hidden_size
SCREAMING_SNAKE_CASE_ : Any = decoder_num_hidden_layers
SCREAMING_SNAKE_CASE_ : Union[str, Any] = decoder_intermediate_size
SCREAMING_SNAKE_CASE_ : int = mask_ratio
SCREAMING_SNAKE_CASE_ : Any = norm_pix_loss
| 68 |
'''simple docstring'''
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = False , lowercase__ = None , lowercase__ = True , lowercase__ = "arrow" , **lowercase__ , ):
"""simple docstring"""
super().__init__(
split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , **lowercase__ , )
SCREAMING_SNAKE_CASE_ : Any = load_from_cache_file
SCREAMING_SNAKE_CASE_ : Optional[int] = file_format
SCREAMING_SNAKE_CASE_ : List[Any] = Spark(
df=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , working_dir=lowercase__ , **lowercase__ , )
def __lowerCamelCase ( self ):
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
SCREAMING_SNAKE_CASE_ : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=lowercase__ , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 68 | 1 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class _a ( unittest.TestCase ):
def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0.0_2 ,) -> int:
_snake_case = parent
_snake_case = batch_size
_snake_case = image_size
_snake_case = patch_size
_snake_case = num_channels
_snake_case = is_training
_snake_case = use_labels
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = type_sequence_label_size
_snake_case = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_snake_case = (image_size // patch_size) ** 2
_snake_case = num_patches + 1
def _lowercase ( self ) -> Optional[int]:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = ViTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,)
return config, pixel_values
def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str:
_snake_case = FlaxViTModel(config=_SCREAMING_SNAKE_CASE )
_snake_case = model(_SCREAMING_SNAKE_CASE )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
_snake_case = (self.image_size, self.image_size)
_snake_case = (self.patch_size, self.patch_size)
_snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) )
def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any:
_snake_case = self.type_sequence_label_size
_snake_case = FlaxViTForImageClassification(config=_SCREAMING_SNAKE_CASE )
_snake_case = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_snake_case = 1
_snake_case = FlaxViTForImageClassification(_SCREAMING_SNAKE_CASE )
_snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_snake_case = model(_SCREAMING_SNAKE_CASE )
def _lowercase ( self ) -> Tuple:
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) ,
) = config_and_inputs
_snake_case = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _a ( __lowerCAmelCase , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ : List[Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def _lowercase ( self ) -> None:
_snake_case = FlaxViTModelTester(self )
_snake_case = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,has_text_modality=_SCREAMING_SNAKE_CASE ,hidden_size=37 )
def _lowercase ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase ( self ) -> Union[str, Any]:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def _lowercase ( self ) -> Tuple:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE )
def _lowercase ( self ) -> Optional[Any]:
_snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(_SCREAMING_SNAKE_CASE )
_snake_case = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE )
def _lowercase ( self ) -> Optional[int]:
_snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
_snake_case = model_class(_SCREAMING_SNAKE_CASE )
@jax.jit
def model_jitted(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ):
return model(pixel_values=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
with self.subTest("JIT Enabled" ):
_snake_case = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_snake_case = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(_SCREAMING_SNAKE_CASE ) )
for jitted_output, output in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
self.assertEqual(jitted_output.shape ,output.shape )
@slow
def _lowercase ( self ) -> Dict:
for model_class_name in self.all_model_classes:
_snake_case = model_class_name.from_pretrained("google/vit-base-patch16-224" )
_snake_case = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
| 185 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase_ : List[Any] = {
'''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''],
'''processing_git''': ['''GitProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ : Optional[Any] = [
'''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GitForCausalLM''',
'''GitModel''',
'''GitPreTrainedModel''',
'''GitVisionModel''',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
UpperCamelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 185 | 1 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 6008_5147_5143 ) -> Dict:
try:
snake_case__ = int(__SCREAMING_SNAKE_CASE )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
snake_case__ = 2
snake_case__ = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
snake_case__ = i
while n % i == 0:
snake_case__ = n // i
i += 1
return int(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 704 |
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
lowerCamelCase__ : int = """src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
lowerCamelCase__ : List[Any] = importlib.util.spec_from_file_location(
"""transformers""",
os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
lowerCamelCase__ : List[Any] = spec.loader.load_module()
lowerCamelCase__ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
lowerCamelCase__ : Union[str, Any] = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""")
lowerCamelCase__ : int = {
"""CLIPConfigMixin""",
"""DecisionTransformerConfigMixin""",
"""EncoderDecoderConfigMixin""",
"""RagConfigMixin""",
"""SpeechEncoderDecoderConfigMixin""",
"""VisionEncoderDecoderConfigMixin""",
"""VisionTextDualEncoderConfigMixin""",
}
def SCREAMING_SNAKE_CASE ( ) -> List[str]:
snake_case__ = []
for config_class in list(CONFIG_MAPPING.values() ):
snake_case__ = False
# source code of `config_class`
snake_case__ = inspect.getsource(__lowerCAmelCase )
snake_case__ = _re_checkpoint.findall(__lowerCAmelCase )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
snake_case__ , snake_case__ = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
snake_case__ = F"""https://huggingface.co/{ckpt_name}"""
if ckpt_link == ckpt_link_from_name:
snake_case__ = True
break
snake_case__ = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
snake_case__ = '''\n'''.join(sorted(__lowerCAmelCase ) )
raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 208 | 0 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
lowercase = logging.getLogger()
def __UpperCAmelCase ( a_ , a_):
snake_case_ = '\n'.join(a_)
Path(a_).open('w').writelines(a_)
lowercase = "patrickvonplaten/t5-tiny-random"
lowercase = "sshleifer/bart-tiny-random"
lowercase = "sshleifer/tiny-mbart"
lowercase = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class UpperCamelCase_ ( snake_case_ ):
'''simple docstring'''
def _UpperCamelCase ( self , a ) -> Tuple:
snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source'
snake_case_ = input_file_name.parent / 'utest_output.txt'
assert not output_file_name.exists()
snake_case_ = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.']
_dump_articles(a , a )
snake_case_ = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' )
snake_case_ = 'translation_en_to_de' if model == T5_TINY else 'summarization'
snake_case_ = F'''
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
'''.split()
with patch.object(a , 'argv' , a ):
run_generate()
assert Path(a ).exists()
# os.remove(Path(output_file_name))
def _UpperCamelCase ( self ) -> str:
self.run_eval_tester(a )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _UpperCamelCase ( self , a ) -> List[str]:
self.run_eval_tester(a )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _UpperCamelCase ( self , a ) -> str:
snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source'
snake_case_ = input_file_name.parent / 'utest_output.txt'
assert not output_file_name.exists()
snake_case_ = {
'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'],
'de': [
'Maschinelles Lernen ist großartig, oder?',
'Ich esse gerne Bananen',
'Morgen ist wieder ein toller Tag!',
],
}
snake_case_ = Path(self.get_auto_remove_tmp_dir() )
snake_case_ = str(tmp_dir / 'scores.json' )
snake_case_ = str(tmp_dir / 'val.target' )
_dump_articles(a , text['en'] )
_dump_articles(a , text['de'] )
snake_case_ = 'translation_en_to_de' if model == T5_TINY else 'summarization'
snake_case_ = F'''
run_eval_search.py
{model}
{str(a )}
{str(a )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
'''.split()
testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] )
with patch.object(a , 'argv' , a ):
with CaptureStdout() as cs:
run_search()
snake_case_ = [' num_beams | length_penalty', model, 'Best score args']
snake_case_ = ['Info']
if "translation" in task:
expected_strings.append('bleu' )
else:
expected_strings.extend(a )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(a ).exists()
os.remove(Path(a ) )
| 198 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
lowercase = TypeVar("T")
class UpperCamelCase_ ( Generic[T] ):
'''simple docstring'''
lowerCAmelCase = 42 # Cache store of keys
lowerCAmelCase = 42 # References of the keys in cache
lowerCAmelCase = 1_0 # Maximum capacity of cache
def __init__( self , a ) -> None:
snake_case_ = deque()
snake_case_ = set()
if not n:
snake_case_ = sys.maxsize
elif n < 0:
raise ValueError('n should be an integer greater than 0.' )
else:
snake_case_ = n
def _UpperCamelCase ( self , a ) -> None:
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
snake_case_ = self.dq_store.pop()
self.key_reference.remove(a )
else:
self.dq_store.remove(a )
self.dq_store.appendleft(a )
self.key_reference.add(a )
def _UpperCamelCase ( self ) -> None:
for k in self.dq_store:
print(a )
def __repr__( self ) -> str:
return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase = LRUCache(4)
lru_cache.refer("A")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("A")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 198 | 1 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def A_ ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(_UpperCAmelCase ):
requests.request('GET' , 'https://huggingface.co' )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request('GET' , 'https://huggingface.co' , timeout=1.0 )
@pytest.mark.integration
def A_ ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request('GET' , 'https://huggingface.co' )
def A_ ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(_UpperCAmelCase ):
http_head('https://huggingface.co' )
| 716 |
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _A ( unittest.TestCase):
def UpperCAmelCase ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : Optional[int] = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , )
return model
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , )
return model
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , )
SCREAMING_SNAKE_CASE_ : Dict = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , )
return vqvae, unet
@slow
def UpperCAmelCase ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE_ : Any = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDPMScheduler()
SCREAMING_SNAKE_CASE_ : str = AudioDiffusionPipeline(vqvae=_SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 )
SCREAMING_SNAKE_CASE_ : List[Any] = pipe(generator=_SCREAMING_SNAKE_CASE , steps=4 )
SCREAMING_SNAKE_CASE_ : Any = output.audios[0]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images[0]
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 )
SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(generator=_SCREAMING_SNAKE_CASE , steps=4 , return_dict=_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : List[Any] = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
SCREAMING_SNAKE_CASE_ : List[Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
SCREAMING_SNAKE_CASE_ : List[Any] = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10]
SCREAMING_SNAKE_CASE_ : Any = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
SCREAMING_SNAKE_CASE_ : Optional[int] = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
SCREAMING_SNAKE_CASE_ : str = DDIMScheduler()
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_vqvae_and_unet
SCREAMING_SNAKE_CASE_ : int = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : str = pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
np.random.seed(0 )
SCREAMING_SNAKE_CASE_ : Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
SCREAMING_SNAKE_CASE_ : str = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 )
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(raw_audio=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , start_step=5 , steps=10 )
SCREAMING_SNAKE_CASE_ : int = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
SCREAMING_SNAKE_CASE_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
SCREAMING_SNAKE_CASE_ : int = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
SCREAMING_SNAKE_CASE_ : Dict = self.dummy_unet_condition
SCREAMING_SNAKE_CASE_ : Union[str, Any] = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=_SCREAMING_SNAKE_CASE , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
np.random.seed(0 )
SCREAMING_SNAKE_CASE_ : List[Any] = torch.rand((1, 1, 10) )
SCREAMING_SNAKE_CASE_ : Any = pipe(generator=_SCREAMING_SNAKE_CASE , encoding=_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images[0]
SCREAMING_SNAKE_CASE_ : Dict = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class _A ( unittest.TestCase):
def UpperCAmelCase ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch_device
SCREAMING_SNAKE_CASE_ : str = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' )
SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 )
SCREAMING_SNAKE_CASE_ : List[Any] = pipe(generator=_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Any = output.audios[0]
SCREAMING_SNAKE_CASE_ : Optional[Any] = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
SCREAMING_SNAKE_CASE_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
SCREAMING_SNAKE_CASE_ : Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 353 | 0 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class __UpperCamelCase :
"""simple docstring"""
def UpperCAmelCase__ ( self : Tuple , _A : Optional[int] ):
"""simple docstring"""
raise NotImplementedError()
def UpperCAmelCase__ ( self : Any ):
"""simple docstring"""
raise NotImplementedError()
class __UpperCamelCase ( lowerCAmelCase__ ):
"""simple docstring"""
def __init__( self : Any , _A : "AutoTokenizer" , _A : bool = False , **_A : Optional[Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = tokenizer
__SCREAMING_SNAKE_CASE : Optional[Any] = skip_prompt
__SCREAMING_SNAKE_CASE : Optional[Any] = decode_kwargs
# variables used in the streaming process
__SCREAMING_SNAKE_CASE : Union[str, Any] = []
__SCREAMING_SNAKE_CASE : Union[str, Any] = 0
__SCREAMING_SNAKE_CASE : Union[str, Any] = True
def UpperCAmelCase__ ( self : List[Any] , _A : str ):
"""simple docstring"""
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('''TextStreamer only supports batch size 1''' )
elif len(value.shape ) > 1:
__SCREAMING_SNAKE_CASE : Union[str, Any] = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
__SCREAMING_SNAKE_CASE : int = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('''\n''' ):
__SCREAMING_SNAKE_CASE : Any = text[self.print_len :]
__SCREAMING_SNAKE_CASE : str = []
__SCREAMING_SNAKE_CASE : Union[str, Any] = 0
# If the last token is a CJK character, we print the characters.
elif len(_A ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
__SCREAMING_SNAKE_CASE : Dict = text[self.print_len :]
self.print_len += len(_A )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = text[self.print_len : text.rfind(''' ''' ) + 1]
self.print_len += len(_A )
self.on_finalized_text(_A )
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
if len(self.token_cache ) > 0:
__SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
__SCREAMING_SNAKE_CASE : Dict = text[self.print_len :]
__SCREAMING_SNAKE_CASE : Union[str, Any] = []
__SCREAMING_SNAKE_CASE : int = 0
else:
__SCREAMING_SNAKE_CASE : Dict = ''''''
__SCREAMING_SNAKE_CASE : List[Any] = True
self.on_finalized_text(_A , stream_end=_A )
def UpperCAmelCase__ ( self : Any , _A : str , _A : bool = False ):
"""simple docstring"""
print(_A , flush=_A , end='''''' if not stream_end else None )
def UpperCAmelCase__ ( self : str , _A : List[Any] ):
"""simple docstring"""
if (
(cp >= 0x4E_00 and cp <= 0x9F_FF)
or (cp >= 0x34_00 and cp <= 0x4D_BF) #
or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) #
or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) #
or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) #
or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) #
or (cp >= 0xF9_00 and cp <= 0xFA_FF)
or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) #
): #
return True
return False
class __UpperCamelCase ( lowerCAmelCase__ ):
"""simple docstring"""
def __init__( self : Optional[Any] , _A : "AutoTokenizer" , _A : bool = False , _A : Optional[float] = None , **_A : Optional[Any] ):
"""simple docstring"""
super().__init__(_A , _A , **_A )
__SCREAMING_SNAKE_CASE : int = Queue()
__SCREAMING_SNAKE_CASE : List[Any] = None
__SCREAMING_SNAKE_CASE : int = timeout
def UpperCAmelCase__ ( self : Optional[int] , _A : str , _A : bool = False ):
"""simple docstring"""
self.text_queue.put(_A , timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal , timeout=self.timeout )
def __iter__( self : str ):
"""simple docstring"""
return self
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 74 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
A__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(
UpperCamelCase_ ,R'''
top_k (`int`, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
''' ,)
class __snake_case ( UpperCamelCase_ ):
def UpperCAmelCase__ ( self : Optional[Any] , A_ : GenericTensor):
if self.framework == "tf":
lowerCAmelCase_ : Dict = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()
elif self.framework == "pt":
lowerCAmelCase_ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A_)
else:
raise ValueError('''Unsupported framework''')
return masked_index
def UpperCAmelCase__ ( self : Tuple , A_ : GenericTensor):
lowerCAmelCase_ : List[str] = self.get_masked_index(A_)
lowerCAmelCase_ : Union[str, Any] = np.prod(masked_index.shape)
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , )
def UpperCAmelCase__ ( self : str , A_ : GenericTensor):
if isinstance(A_ , A_):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0])
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(A_)
def UpperCAmelCase__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : Optional[int]=None , **A_ : List[str]):
if return_tensors is None:
lowerCAmelCase_ : Optional[int] = self.framework
lowerCAmelCase_ : Optional[Any] = self.tokenizer(A_ , return_tensors=A_)
self.ensure_exactly_one_mask_token(A_)
return model_inputs
def UpperCAmelCase__ ( self : List[str] , A_ : str):
lowerCAmelCase_ : Union[str, Any] = self.model(**A_)
lowerCAmelCase_ : List[str] = model_inputs['''input_ids''']
return model_outputs
def UpperCAmelCase__ ( self : str , A_ : str , A_ : str=5 , A_ : int=None):
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
lowerCAmelCase_ : int = target_ids.shape[0]
lowerCAmelCase_ : List[Any] = model_outputs['''input_ids'''][0]
lowerCAmelCase_ : int = model_outputs['''logits''']
if self.framework == "tf":
lowerCAmelCase_ : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0]
lowerCAmelCase_ : Optional[Any] = outputs.numpy()
lowerCAmelCase_ : List[str] = outputs[0, masked_index, :]
lowerCAmelCase_ : List[Any] = stable_softmax(A_ , axis=-1)
if target_ids is not None:
lowerCAmelCase_ : str = tf.gather_nd(tf.squeeze(A_ , 0) , target_ids.reshape(-1 , 1))
lowerCAmelCase_ : Any = tf.expand_dims(A_ , 0)
lowerCAmelCase_ : List[Any] = tf.math.top_k(A_ , k=A_)
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = topk.values.numpy(), topk.indices.numpy()
else:
lowerCAmelCase_ : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A_).squeeze(-1)
# Fill mask pipeline supports only one ${mask_token} per sample
lowerCAmelCase_ : Dict = outputs[0, masked_index, :]
lowerCAmelCase_ : Dict = logits.softmax(dim=-1)
if target_ids is not None:
lowerCAmelCase_ : str = probs[..., target_ids]
lowerCAmelCase_ , lowerCAmelCase_ : int = probs.topk(A_)
lowerCAmelCase_ : Union[str, Any] = []
lowerCAmelCase_ : Optional[int] = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())):
lowerCAmelCase_ : int = []
for v, p in zip(_values , _predictions):
# Copy is important since we're going to modify this array in place
lowerCAmelCase_ : Dict = input_ids.numpy().copy()
if target_ids is not None:
lowerCAmelCase_ : str = target_ids[p].tolist()
lowerCAmelCase_ : List[Any] = p
# Filter padding out:
lowerCAmelCase_ : Tuple = tokens[np.where(tokens != self.tokenizer.pad_token_id)]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowerCAmelCase_ : Any = self.tokenizer.decode(A_ , skip_special_tokens=A_)
lowerCAmelCase_ : str = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p]), '''sequence''': sequence}
row.append(A_)
result.append(A_)
if single_mask:
return result[0]
return result
def UpperCAmelCase__ ( self : int , A_ : Any , A_ : List[Any]=None):
if isinstance(A_ , A_):
lowerCAmelCase_ : List[str] = [targets]
try:
lowerCAmelCase_ : Union[str, Any] = self.tokenizer.get_vocab()
except Exception:
lowerCAmelCase_ : str = {}
lowerCAmelCase_ : Any = []
for target in targets:
lowerCAmelCase_ : List[str] = vocab.get(A_ , A_)
if id_ is None:
lowerCAmelCase_ : Optional[int] = self.tokenizer(
A_ , add_special_tokens=A_ , return_attention_mask=A_ , return_token_type_ids=A_ , max_length=1 , truncation=A_ , )['''input_ids''']
if len(A_) == 0:
logger.warning(
F"""The specified target token `{target}` does not exist in the model vocabulary. """
'''We cannot replace it with anything meaningful, ignoring it''')
continue
lowerCAmelCase_ : Union[str, Any] = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"""The specified target token `{target}` does not exist in the model vocabulary. """
F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.""")
target_ids.append(id_)
lowerCAmelCase_ : List[str] = list(set(A_))
if len(A_) == 0:
raise ValueError('''At least one target must be provided when passed.''')
lowerCAmelCase_ : Tuple = np.array(A_)
return target_ids
def UpperCAmelCase__ ( self : List[Any] , A_ : Optional[int]=None , A_ : Tuple=None):
lowerCAmelCase_ : int = {}
if targets is not None:
lowerCAmelCase_ : Optional[Any] = self.get_target_ids(A_ , A_)
lowerCAmelCase_ : str = target_ids
if top_k is not None:
lowerCAmelCase_ : int = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''')
return {}, {}, postprocess_params
def __call__( self : str , A_ : Tuple , *A_ : Dict , **A_ : Optional[Any]):
lowerCAmelCase_ : Tuple = super().__call__(A_ , **A_)
if isinstance(A_ , A_) and len(A_) == 1:
return outputs[0]
return outputs
| 171 | 0 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int =MobileNetVaConfig(layer_norm_eps=0.001 )
if "_quant" in model_name:
raise ValueError('Quantized models are not supported.' )
SCREAMING_SNAKE_CASE_ : Dict =re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' ,lowerCAmelCase_ )
if matches:
SCREAMING_SNAKE_CASE_ : Any =float(matches[1] )
SCREAMING_SNAKE_CASE_ : Optional[int] =int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
SCREAMING_SNAKE_CASE_ : Tuple =1001
SCREAMING_SNAKE_CASE_ : Any ='imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE_ : str ='huggingface/label-files'
SCREAMING_SNAKE_CASE_ : int =json.load(open(hf_hub_download(lowerCAmelCase_ ,lowerCAmelCase_ ,repo_type='dataset' ) ,'r' ) )
SCREAMING_SNAKE_CASE_ : str ={int(lowerCAmelCase_ ) + 1: v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE_ : Dict ='background'
SCREAMING_SNAKE_CASE_ : List[Any] =idalabel
SCREAMING_SNAKE_CASE_ : int ={v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE__ ( ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] ='http://images.cocodataset.org/val2017/000000039769.jpg'
SCREAMING_SNAKE_CASE_ : int =Image.open(requests.get(lowerCAmelCase_ ,stream=lowerCAmelCase_ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : str=False ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] =get_mobilenet_va_config(lowerCAmelCase_ )
# Load 🤗 model
SCREAMING_SNAKE_CASE_ : Tuple =MobileNetVaForImageClassification(lowerCAmelCase_ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
SCREAMING_SNAKE_CASE_ : str =MobileNetVaImageProcessor(
crop_size={'width': config.image_size, 'height': config.image_size} ,size={'shortest_edge': config.image_size + 32} ,)
SCREAMING_SNAKE_CASE_ : str =image_processor(images=prepare_img() ,return_tensors='pt' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =model(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE_ : Dict =outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
SCREAMING_SNAKE_CASE_ : List[Any] =torch.tensor([-4.1739, -1.1233, 3.1205] )
elif model_name == "mobilenet_v1_0.75_192":
SCREAMING_SNAKE_CASE_ : int =torch.tensor([-3.9440, -2.3141, -0.3333] )
else:
SCREAMING_SNAKE_CASE_ : Dict =None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] ,lowerCAmelCase_ ,atol=1e-4 )
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCAmelCase_ )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(lowerCAmelCase_ )
if push_to_hub:
print('Pushing to the hub...' )
SCREAMING_SNAKE_CASE_ : Optional[Any] ='google/' + model_name
image_processor.push_to_hub(lowerCAmelCase_ )
model.push_to_hub(lowerCAmelCase_ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='mobilenet_v1_1.0_224',
type=str,
help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.',
)
parser.add_argument(
'--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 715 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class lowerCAmelCase_ ( __A ):
'''simple docstring'''
_lowercase = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} )
_lowercase = Features({'text': Value('string' )} )
_lowercase = Features({'labels': ClassLabel} )
_lowercase = "text"
_lowercase = "labels"
def __lowerCamelCase ( self , __UpperCAmelCase ):
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , __UpperCAmelCase ):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =copy.deepcopy(self )
SCREAMING_SNAKE_CASE_ : List[str] =self.label_schema.copy()
SCREAMING_SNAKE_CASE_ : Tuple =features[self.label_column]
SCREAMING_SNAKE_CASE_ : str =label_schema
return task_template
@property
def __lowerCamelCase ( self ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 153 | 0 |
def a_ ( __magic_name__ = 1_000 ) -> int:
"""simple docstring"""
snake_case : Any = -1
snake_case : Any = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
snake_case : Optional[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a)
snake_case : Optional[Any] = n - a - b
if c * c == (a * a + b * b):
snake_case : int = a * b * c
if candidate >= product:
snake_case : List[Any] = candidate
return product
if __name__ == "__main__":
print(f"{solution() = }")
| 598 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _UpperCAmelCase ( __a , unittest.TestCase):
__a : Any = CTRLTokenizer
__a : Any = False
__a : str = False
def __snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_UpperCAmelCase : int = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""]
_UpperCAmelCase : Any = dict(zip(_A , range(len(_A ) ) ) )
_UpperCAmelCase : Optional[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""]
_UpperCAmelCase : int = {"""unk_token""": """<unk>"""}
_UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
_UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_A ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_A ) )
def __snake_case ( self , **_A ) -> Any:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **_A )
def __snake_case ( self , _A ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase : str = """adapt react readapt apt"""
_UpperCAmelCase : List[str] = """adapt react readapt apt"""
return input_text, output_text
def __snake_case ( self ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_UpperCAmelCase : Optional[Any] = """adapt react readapt apt"""
_UpperCAmelCase : int = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split()
_UpperCAmelCase : Any = tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
_UpperCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token]
_UpperCAmelCase : Dict = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
| 238 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_: List[str] = logging.get_logger(__name__)
def _lowercase ( UpperCAmelCase_):
"""simple docstring"""
snake_case__ : List[str] = DPTConfig()
if "large" in checkpoint_url:
snake_case__ : List[Any] = 1_024
snake_case__ : List[Any] = 4_096
snake_case__ : Optional[int] = 24
snake_case__ : Dict = 16
snake_case__ : Any = [5, 11, 17, 23]
snake_case__ : List[str] = [256, 512, 1_024, 1_024]
snake_case__ : Dict = (1, 384, 384)
if "ade" in checkpoint_url:
snake_case__ : str = True
snake_case__ : List[Any] = 150
snake_case__ : str = """huggingface/label-files"""
snake_case__ : List[str] = """ade20k-id2label.json"""
snake_case__ : Dict = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="""dataset""")) , """r"""))
snake_case__ : int = {int(UpperCAmelCase_): v for k, v in idalabel.items()}
snake_case__ : Optional[Any] = idalabel
snake_case__ : int = {v: k for k, v in idalabel.items()}
snake_case__ : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def _lowercase ( UpperCAmelCase_):
"""simple docstring"""
snake_case__ : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_)
def _lowercase ( UpperCAmelCase_):
"""simple docstring"""
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
snake_case__ : Dict = name.replace("""pretrained.model""" , """dpt.encoder""")
if "pretrained.model" in name:
snake_case__ : Any = name.replace("""pretrained.model""" , """dpt.embeddings""")
if "patch_embed" in name:
snake_case__ : int = name.replace("""patch_embed""" , """patch_embeddings""")
if "pos_embed" in name:
snake_case__ : Tuple = name.replace("""pos_embed""" , """position_embeddings""")
if "attn.proj" in name:
snake_case__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""")
if "proj" in name and "project" not in name:
snake_case__ : str = name.replace("""proj""" , """projection""")
if "blocks" in name:
snake_case__ : Dict = name.replace("""blocks""" , """layer""")
if "mlp.fc1" in name:
snake_case__ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""")
if "mlp.fc2" in name:
snake_case__ : Dict = name.replace("""mlp.fc2""" , """output.dense""")
if "norm1" in name:
snake_case__ : Optional[Any] = name.replace("""norm1""" , """layernorm_before""")
if "norm2" in name:
snake_case__ : int = name.replace("""norm2""" , """layernorm_after""")
if "scratch.output_conv" in name:
snake_case__ : int = name.replace("""scratch.output_conv""" , """head""")
if "scratch" in name:
snake_case__ : List[str] = name.replace("""scratch""" , """neck""")
if "layer1_rn" in name:
snake_case__ : Any = name.replace("""layer1_rn""" , """convs.0""")
if "layer2_rn" in name:
snake_case__ : Tuple = name.replace("""layer2_rn""" , """convs.1""")
if "layer3_rn" in name:
snake_case__ : str = name.replace("""layer3_rn""" , """convs.2""")
if "layer4_rn" in name:
snake_case__ : Dict = name.replace("""layer4_rn""" , """convs.3""")
if "refinenet" in name:
snake_case__ : Dict = int(name[len("""neck.refinenet""") : len("""neck.refinenet""") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
snake_case__ : Optional[int] = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4)}')
if "out_conv" in name:
snake_case__ : int = name.replace("""out_conv""" , """projection""")
if "resConfUnit1" in name:
snake_case__ : Any = name.replace("""resConfUnit1""" , """residual_layer1""")
if "resConfUnit2" in name:
snake_case__ : Tuple = name.replace("""resConfUnit2""" , """residual_layer2""")
if "conv1" in name:
snake_case__ : Optional[Any] = name.replace("""conv1""" , """convolution1""")
if "conv2" in name:
snake_case__ : Tuple = name.replace("""conv2""" , """convolution2""")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
snake_case__ : List[str] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""")
if "pretrained.act_postprocess2.0.project.0" in name:
snake_case__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""")
if "pretrained.act_postprocess3.0.project.0" in name:
snake_case__ : Any = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""")
if "pretrained.act_postprocess4.0.project.0" in name:
snake_case__ : Union[str, Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
snake_case__ : str = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""")
if "pretrained.act_postprocess1.4" in name:
snake_case__ : Optional[int] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""")
if "pretrained.act_postprocess2.3" in name:
snake_case__ : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""")
if "pretrained.act_postprocess2.4" in name:
snake_case__ : Optional[int] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""")
if "pretrained.act_postprocess3.3" in name:
snake_case__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""")
if "pretrained.act_postprocess4.3" in name:
snake_case__ : Any = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""")
if "pretrained.act_postprocess4.4" in name:
snake_case__ : Union[str, Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""")
if "pretrained" in name:
snake_case__ : Optional[Any] = name.replace("""pretrained""" , """dpt""")
if "bn" in name:
snake_case__ : int = name.replace("""bn""" , """batch_norm""")
if "head" in name:
snake_case__ : Optional[Any] = name.replace("""head""" , """head.head""")
if "encoder.norm" in name:
snake_case__ : Optional[int] = name.replace("""encoder.norm""" , """layernorm""")
if "auxlayer" in name:
snake_case__ : Tuple = name.replace("""auxlayer""" , """auxiliary_head.head""")
return name
def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_):
"""simple docstring"""
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ : Dict = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight')
snake_case__ : Tuple = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias')
# next, add query, keys and values (in that order) to the state dict
snake_case__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size]
snake_case__ : Union[str, Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ : Union[str, Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :]
def _lowercase ( ):
"""simple docstring"""
snake_case__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case__ : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_).raw)
return im
@torch.no_grad()
def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_):
"""simple docstring"""
snake_case__ , snake_case__ : List[Any] = get_dpt_config(UpperCAmelCase_)
# load original state_dict from URL
snake_case__ : Union[str, Any] = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location="""cpu""")
# remove certain keys
remove_ignore_keys_(UpperCAmelCase_)
# rename keys
for key in state_dict.copy().keys():
snake_case__ : Optional[Any] = state_dict.pop(UpperCAmelCase_)
snake_case__ : Optional[int] = val
# read in qkv matrices
read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_)
# load HuggingFace model
snake_case__ : Union[str, Any] = DPTForSemanticSegmentation(UpperCAmelCase_) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase_)
model.load_state_dict(UpperCAmelCase_)
model.eval()
# Check outputs on an image
snake_case__ : Optional[int] = 480 if """ade""" in checkpoint_url else 384
snake_case__ : Dict = DPTImageProcessor(size=UpperCAmelCase_)
snake_case__ : Tuple = prepare_img()
snake_case__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors="""pt""")
# forward pass
snake_case__ : List[str] = model(**UpperCAmelCase_).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase_).predicted_depth
# Assert logits
snake_case__ : int = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
snake_case__ : str = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(UpperCAmelCase_)
assert (
torch.allclose(outputs[0, 0, :3, :3] , UpperCAmelCase_ , atol=1e-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , UpperCAmelCase_)
)
Path(UpperCAmelCase_).mkdir(exist_ok=UpperCAmelCase_)
print(F'Saving model to {pytorch_dump_folder_path}')
model.save_pretrained(UpperCAmelCase_)
print(F'Saving image processor to {pytorch_dump_folder_path}')
image_processor.save_pretrained(UpperCAmelCase_)
if push_to_hub:
print("""Pushing model to hub...""")
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase_ , UpperCAmelCase_) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=UpperCAmelCase_ , )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase_ , UpperCAmelCase_) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=UpperCAmelCase_ , )
if __name__ == "__main__":
lowercase_: Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
lowercase_: List[str] = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 127 |
from __future__ import annotations
from typing import Any
class lowercase__ :
"""simple docstring"""
def __init__( self : str , __a : int ):
snake_case__ : Any = num_of_nodes
snake_case__ : list[list[int]] = []
snake_case__ : dict[int, int] = {}
def lowercase ( self : Any , __a : int , __a : int , __a : int ):
self.m_edges.append([u_node, v_node, weight] )
def lowercase ( self : int , __a : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def lowercase ( self : Dict , __a : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
snake_case__ : Optional[Any] = self.find_component(__a )
def lowercase ( self : Union[str, Any] , __a : list[int] , __a : int , __a : int ):
if component_size[u_node] <= component_size[v_node]:
snake_case__ : int = v_node
component_size[v_node] += component_size[u_node]
self.set_component(__a )
elif component_size[u_node] >= component_size[v_node]:
snake_case__ : Any = self.find_component(__a )
component_size[u_node] += component_size[v_node]
self.set_component(__a )
def lowercase ( self : int ):
snake_case__ : Tuple = []
snake_case__ : Optional[Any] = 0
snake_case__ : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
snake_case__ : int = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
snake_case__ , snake_case__ , snake_case__ : List[Any] = edge
snake_case__ : int = self.m_component[u]
snake_case__ : Tuple = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
snake_case__ : int = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(__a , __a ):
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = edge
snake_case__ : Optional[int] = self.m_component[u]
snake_case__ : Tuple = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(__a , __a , __a )
print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' )
num_of_components -= 1
snake_case__ : Union[str, Any] = [-1] * self.m_num_of_nodes
print(f'The total weight of the minimal spanning tree is: {mst_weight}' )
def _lowercase ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 127 | 1 |
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __magic_name__ ( lowercase , lowercase , lowercase ) -> Any:
"""simple docstring"""
if gpta_config_file == "":
lowercase_ : Any = GPTaConfig()
else:
lowercase_ : Optional[Any] = GPTaConfig.from_json_file(_lowerCamelCase )
lowercase_ : Tuple = GPTaModel(_lowerCamelCase )
# Load weights from numpy
load_tf_weights_in_gpta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Save pytorch-model
lowercase_ : List[str] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
lowercase_ : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , _lowerCamelCase )
print(f"""Save configuration file to {pytorch_config_dump_path}""" )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--gpt2_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained OpenAI model. \n"""
"""This specifies the model architecture."""
),
)
UpperCAmelCase_ = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path) | 458 |
'''simple docstring'''
def _UpperCamelCase (_lowerCamelCase : int )-> int:
'''simple docstring'''
__snake_case = abs(_lowerCamelCase )
__snake_case = 0
while n > 0:
res += n % 10
n //= 10
return res
def _UpperCamelCase (_lowerCamelCase : int )-> int:
'''simple docstring'''
__snake_case = abs(_lowerCamelCase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def _UpperCamelCase (_lowerCamelCase : int )-> int:
'''simple docstring'''
return sum(int(_lowerCamelCase ) for c in str(abs(_lowerCamelCase ) ) )
def _UpperCamelCase ()-> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(_lowerCamelCase : Callable , _lowerCamelCase : int ) -> None:
__snake_case = f'''{func.__name__}({value})'''
__snake_case = timeit(f'''__main__.{call}''' , setup='''import __main__''' )
print(f'''{call:56} = {func(_lowerCamelCase )} -- {timing:.4f} seconds''' )
for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(_lowerCamelCase , _lowerCamelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 24 | 0 |
"""simple docstring"""
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
_A = """src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
_A = direct_transformers_import(PATH_TO_TRANSFORMERS)
_A = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
_A = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""")
_A = {
"""DecisionTransformerConfig""",
"""EncoderDecoderConfig""",
"""MusicgenConfig""",
"""RagConfig""",
"""SpeechEncoderDecoderConfig""",
"""TimmBackboneConfig""",
"""VisionEncoderDecoderConfig""",
"""VisionTextDualEncoderConfig""",
"""LlamaConfig""",
}
def lowercase_ ( __UpperCAmelCase ) -> str:
lowerCAmelCase__ : Union[str, Any] = None
# source code of `config_class`
lowerCAmelCase__ : List[Any] = inspect.getsource(__UpperCAmelCase )
lowerCAmelCase__ : Union[str, Any] = _re_checkpoint.findall(__UpperCAmelCase )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("""/""" ):
lowerCAmelCase__ : Optional[Any] = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
lowerCAmelCase__ : Dict = f"""https://huggingface.co/{ckpt_name}"""
if ckpt_link == ckpt_link_from_name:
lowerCAmelCase__ : Optional[Any] = ckpt_name
break
return checkpoint
def lowercase_ ( ) -> Dict:
lowerCAmelCase__ : Union[str, Any] = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
lowerCAmelCase__ : Dict = get_checkpoint_from_config_class(__UpperCAmelCase )
lowerCAmelCase__ : Union[str, Any] = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
lowerCAmelCase__ : int = """\n""".join(sorted(__UpperCAmelCase ) )
raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 507 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _lowerCamelCase ( unittest.TestCase ):
def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : Tuple = inspect.getfile(accelerate.test_utils )
lowerCAmelCase__ : Optional[Any] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
lowerCAmelCase__ : List[str] = test_metrics
@require_cpu
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
self.test_metrics.main()
@require_multi_gpu
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
print(f"""Found {torch.cuda.device_count()} devices.""" )
lowerCAmelCase__ : str = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
| 507 | 1 |
from __future__ import annotations
def _lowerCamelCase ( lowerCamelCase_: list[int] , lowerCamelCase_: int ):
'''simple docstring'''
A : list[list[int]] = []
A : list[int] = []
A : Tuple = 0
A : Tuple = sum(lowerCamelCase_ )
create_state_space_tree(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return result
def _lowerCamelCase ( lowerCamelCase_: list[int] , lowerCamelCase_: int , lowerCamelCase_: int , lowerCamelCase_: list[int] , lowerCamelCase_: list[list[int]] , lowerCamelCase_: int , ):
'''simple docstring'''
if sum(lowerCamelCase_ ) > max_sum or (remaining_nums_sum + sum(lowerCamelCase_ )) < max_sum:
return
if sum(lowerCamelCase_ ) == max_sum:
result.append(lowerCamelCase_ )
return
for index in range(lowerCamelCase_ , len(lowerCamelCase_ ) ):
create_state_space_tree(
lowerCamelCase_ , lowerCamelCase_ , index + 1 , [*path, nums[index]] , lowerCamelCase_ , remaining_nums_sum - nums[index] , )
UpperCamelCase_ = [3, 34, 4, 12, 5, 2]
UpperCamelCase_ = 9
UpperCamelCase_ = generate_sum_of_subsets_soln(nums, max_sum)
print(*result) | 256 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
UpperCamelCase_ = logging.get_logger(__name__)
class _SCREAMING_SNAKE_CASE ( snake_case ):
lowerCamelCase_ = 'upernet'
def __init__( self : Optional[int] , snake_case_ : Dict=None , snake_case_ : Any=512 , snake_case_ : str=0.02 , snake_case_ : Optional[int]=[1, 2, 3, 6] , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[Any]=0.4 , snake_case_ : Dict=384 , snake_case_ : List[Any]=256 , snake_case_ : str=1 , snake_case_ : Dict=False , snake_case_ : str=255 , **snake_case_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(**snake_case_ )
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
A : List[str] = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
elif isinstance(snake_case_ , snake_case_ ):
A : Union[str, Any] = backbone_config.get('''model_type''' )
A : Union[str, Any] = CONFIG_MAPPING[backbone_model_type]
A : str = config_class.from_dict(snake_case_ )
A : List[str] = backbone_config
A : str = hidden_size
A : Any = initializer_range
A : str = pool_scales
A : List[str] = use_auxiliary_head
A : Optional[Any] = auxiliary_loss_weight
A : Tuple = auxiliary_in_channels
A : Optional[Any] = auxiliary_channels
A : int = auxiliary_num_convs
A : Any = auxiliary_concat_input
A : Union[str, Any] = loss_ignore_index
def _UpperCAmelCase ( self : str ):
"""simple docstring"""
A : Optional[Any] = copy.deepcopy(self.__dict__ )
A : str = self.backbone_config.to_dict()
A : List[str] = self.__class__.model_type
return output | 256 | 1 |
import unittest
from knapsack import greedy_knapsack as kp
class lowerCAmelCase__ ( unittest.TestCase ):
def A_ ( self ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = [10, 20, 30, 40, 50, 60]
_UpperCamelCase = [2, 4, 6, 8, 10, 12]
_UpperCamelCase = 1_00
self.assertEqual(kp.calc_profit(a , a , a ) , 2_10 )
def A_ ( self ) -> str:
'''simple docstring'''
self.assertRaisesRegex(a , """max_weight must greater than zero.""" )
def A_ ( self ) -> Dict:
'''simple docstring'''
self.assertRaisesRegex(a , """Weight can not be negative.""" )
def A_ ( self ) -> List[str]:
'''simple docstring'''
self.assertRaisesRegex(a , """Profit can not be negative.""" )
def A_ ( self ) -> Dict:
'''simple docstring'''
self.assertRaisesRegex(a , """max_weight must greater than zero.""" )
def A_ ( self ) -> Dict:
'''simple docstring'''
self.assertRaisesRegex(
a , """The length of profit and weight must be same.""" )
if __name__ == "__main__":
unittest.main()
| 202 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
UpperCamelCase_ : List[Any] = StableDiffusionInpaintPipeline
UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCamelCase_ : Tuple = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCamelCase_ : int = frozenset([] )
def A_ ( self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , )
_UpperCamelCase = PNDMScheduler(skip_prk_steps=a )
torch.manual_seed(0 )
_UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
_UpperCamelCase = CLIPTextModel(a )
_UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_UpperCamelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def A_ ( self , a , a=0 ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a )
_UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_UpperCamelCase = Image.fromarray(np.uinta(a ) ).convert("""RGB""" ).resize((64, 64) )
_UpperCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(a ).startswith("""mps""" ):
_UpperCamelCase = torch.manual_seed(a )
else:
_UpperCamelCase = torch.Generator(device=a ).manual_seed(a )
_UpperCamelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def A_ ( self ) -> Dict:
'''simple docstring'''
_UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = StableDiffusionInpaintPipeline(**a )
_UpperCamelCase = sd_pipe.to(a )
sd_pipe.set_progress_bar_config(disable=a )
_UpperCamelCase = self.get_dummy_inputs(a )
_UpperCamelCase = sd_pipe(**a ).images
_UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def A_ ( self ) -> Tuple:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def A_ ( self ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A_ ( self ) -> Dict:
'''simple docstring'''
_UpperCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_UpperCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_UpperCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
_UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
_UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
_UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
_UpperCamelCase = torch.manual_seed(0 )
_UpperCamelCase = pipe(
prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , )
_UpperCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def A_ ( self ) -> str:
'''simple docstring'''
_UpperCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_UpperCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_UpperCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
_UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
_UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
a , torch_dtype=torch.floataa , safety_checker=a , )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing()
_UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
_UpperCamelCase = torch.manual_seed(0 )
_UpperCamelCase = pipe(
prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , )
_UpperCamelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def A_ ( self ) -> Dict:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_UpperCamelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting"""
_UpperCamelCase = PNDMScheduler.from_pretrained(a , subfolder="""scheduler""" )
_UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(
a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , )
pipe.to(a )
pipe.set_progress_bar_config(disable=a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
_UpperCamelCase = torch.manual_seed(0 )
_UpperCamelCase = pipe(
prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="""np""" , )
_UpperCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 202 | 1 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
a_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=768 )-> Optional[Any]:
'''simple docstring'''
super().__init__(__UpperCAmelCase )
lowerCAmelCase__ = proj_size
lowerCAmelCase__ = CLIPVisionModel(__UpperCAmelCase )
lowerCAmelCase__ = PaintByExampleMapper(__UpperCAmelCase )
lowerCAmelCase__ = nn.LayerNorm(config.hidden_size )
lowerCAmelCase__ = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
lowerCAmelCase__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.model(pixel_values=__UpperCAmelCase )
lowerCAmelCase__ = clip_output.pooler_output
lowerCAmelCase__ = self.mapper(latent_states[:, None] )
lowerCAmelCase__ = self.final_layer_norm(__UpperCAmelCase )
lowerCAmelCase__ = self.proj_out(__UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class lowercase__ ( nn.Module ):
def __init__( self , __UpperCAmelCase )-> Dict:
'''simple docstring'''
super().__init__()
lowerCAmelCase__ = (config.num_hidden_layers + 1) // 5
lowerCAmelCase__ = config.hidden_size
lowerCAmelCase__ = 1
lowerCAmelCase__ = nn.ModuleList(
[
BasicTransformerBlock(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , activation_fn="gelu" , attention_bias=__UpperCAmelCase )
for _ in range(__UpperCAmelCase )
] )
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
for block in self.blocks:
lowerCAmelCase__ = block(__UpperCAmelCase )
return hidden_states
| 339 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] )
lowerCAmelCase__ = get_activation("gelu" )
self.assertTrue(torch.allclose(gelu_python(__UpperCAmelCase ) , torch_builtin(__UpperCAmelCase ) ) )
self.assertFalse(torch.allclose(gelu_python(__UpperCAmelCase ) , gelu_new(__UpperCAmelCase ) ) )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] )
lowerCAmelCase__ = get_activation("gelu" )
lowerCAmelCase__ = get_activation("gelu_10" )
lowerCAmelCase__ = torch_builtin(__UpperCAmelCase )
lowerCAmelCase__ = geluaa(__UpperCAmelCase )
lowerCAmelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 )
self.assertTrue(torch.max(__UpperCAmelCase ).item() == 10.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
get_activation("gelu" )
get_activation("gelu_10" )
get_activation("gelu_fast" )
get_activation("gelu_new" )
get_activation("gelu_python" )
get_activation("gelu_pytorch_tanh" )
get_activation("linear" )
get_activation("mish" )
get_activation("quick_gelu" )
get_activation("relu" )
get_activation("sigmoid" )
get_activation("silu" )
get_activation("swish" )
get_activation("tanh" )
with self.assertRaises(__UpperCAmelCase ):
get_activation("bogus" )
with self.assertRaises(__UpperCAmelCase ):
get_activation(__UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = get_activation("gelu" )
lowerCAmelCase__ = 1
lowerCAmelCase__ = get_activation("gelu" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(__UpperCAmelCase ):
lowerCAmelCase__ = acta.a
| 339 | 1 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any], lowerCamelCase : Any ):
'''simple docstring'''
lowercase__ = data
lowercase__ = None
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : str ):
'''simple docstring'''
lowercase__ = None
lowercase__ = None
def __iter__( self : Dict ):
'''simple docstring'''
lowercase__ = self.head
while self.head:
yield node.data
lowercase__ = node.next
if node == self.head:
break
def __len__( self : Tuple ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self : List[Any] ):
'''simple docstring'''
return "->".join(str(lowerCamelCase ) for item in iter(self ) )
def lowercase__ ( self : int, lowerCamelCase : Any ):
'''simple docstring'''
self.insert_nth(len(self ), lowerCamelCase )
def lowercase__ ( self : List[Any], lowerCamelCase : Any ):
'''simple docstring'''
self.insert_nth(0, lowerCamelCase )
def lowercase__ ( self : Optional[int], lowerCamelCase : int, lowerCamelCase : Any ):
'''simple docstring'''
if index < 0 or index > len(self ):
raise IndexError('''list index out of range.''' )
lowercase__ = Node(lowerCamelCase )
if self.head is None:
lowercase__ = new_node # first node points itself
lowercase__ = lowercase__ = new_node
elif index == 0: # insert at head
lowercase__ = self.head
lowercase__ = lowercase__ = new_node
else:
lowercase__ = self.head
for _ in range(index - 1 ):
lowercase__ = temp.next
lowercase__ = temp.next
lowercase__ = new_node
if index == len(self ) - 1: # insert at tail
lowercase__ = new_node
def lowercase__ ( self : int ):
'''simple docstring'''
return self.delete_nth(0 )
def lowercase__ ( self : Dict ):
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def lowercase__ ( self : Union[str, Any], lowerCamelCase : int = 0 ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise IndexError('''list index out of range.''' )
lowercase__ = self.head
if self.head == self.tail: # just one node
lowercase__ = lowercase__ = None
elif index == 0: # delete head node
lowercase__ = self.tail.next.next
lowercase__ = self.head.next
else:
lowercase__ = self.head
for _ in range(index - 1 ):
lowercase__ = temp.next
lowercase__ = temp.next
lowercase__ = temp.next.next
if index == len(self ) - 1: # delete at tail
lowercase__ = temp
return delete_node.data
def lowercase__ ( self : Tuple ):
'''simple docstring'''
return len(self ) == 0
def a ( ):
'''simple docstring'''
lowercase__ = CircularLinkedList()
assert len(lowerCamelCase_ ) == 0
assert circular_linked_list.is_empty() is True
assert str(lowerCamelCase_ ) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1 )
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0 )
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5 ):
assert len(lowerCamelCase_ ) == i
circular_linked_list.insert_nth(lowerCamelCase_ , i + 1 )
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) )
circular_linked_list.insert_tail(6 )
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 7 ) )
circular_linked_list.insert_head(0 )
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(0 , 7 ) )
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) )
assert circular_linked_list.delete_nth(2 ) == 3
circular_linked_list.insert_nth(2 , 3 )
assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) )
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str, lowerCamelCase : Any, lowerCamelCase : Tuple=7, lowerCamelCase : str=3, lowerCamelCase : Tuple=18, lowerCamelCase : int=30, lowerCamelCase : Tuple=400, lowerCamelCase : Any=True, lowerCamelCase : Any=None, lowerCamelCase : List[str]=True, lowerCamelCase : Union[str, Any]=None, ):
'''simple docstring'''
lowercase__ = size if size is not None else {'''shortest_edge''': 20}
lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = num_channels
lowercase__ = image_size
lowercase__ = min_resolution
lowercase__ = max_resolution
lowercase__ = do_resize
lowercase__ = size
lowercase__ = do_center_crop
lowercase__ = crop_size
def lowercase__ ( self : Any ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = MobileNetVaImageProcessingTester(self )
@property
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Dict ):
'''simple docstring'''
lowercase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCamelCase, '''crop_size''' ) )
def lowercase__ ( self : Any ):
'''simple docstring'''
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} )
lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowercase__ ( self : Any ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, Image.Image )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, np.ndarray )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self : str ):
'''simple docstring'''
# Initialize image_processing
lowercase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase, torch.Tensor )
# Test not batched input
lowercase__ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
| 671 | 0 |
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ) -> Any:
SCREAMING_SNAKE_CASE_ = [1]
for i in range(2 , __UpperCAmelCase ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = list(range(__UpperCAmelCase ) )
# Find permutation
while factorials:
SCREAMING_SNAKE_CASE_ = factorials.pop()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__UpperCAmelCase , __UpperCAmelCase )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class lowerCamelCase_ :
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return self.get_dummy_input()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." )
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ):
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 32
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes
SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states}
if include_temb:
SCREAMING_SNAKE_CASE_ = 128
SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
if include_res_hidden_states_tuple:
SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 )
SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),)
if include_encoder_hidden_states:
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase )
if include_skip_sample:
SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
return dummy_input
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 128,
}
if self.block_type == "up":
SCREAMING_SNAKE_CASE_ = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
SCREAMING_SNAKE_CASE_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
unet_block.to(_lowerCAmelCase )
unet_block.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
self.assertEqual(output.shape , self.output_shape )
SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:]
SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase )
loss.backward() | 31 | 1 |
import os
from collections.abc import Iterator
def _lowercase ( _UpperCAmelCase = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ):
lowerCamelCase =[d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip("""./""" )
def _lowercase ( _UpperCAmelCase ) -> Dict:
return F"""{i * " "}*""" if i else "\n##"
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> str:
lowerCamelCase =old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F"""{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}""" )
return new_path
def _lowercase ( _UpperCAmelCase = "." ) -> None:
lowerCamelCase =""""""
for filepath in sorted(good_file_paths(_UpperCAmelCase ) ):
lowerCamelCase , lowerCamelCase =os.path.split(_UpperCAmelCase )
if filepath != old_path:
lowerCamelCase =print_path(_UpperCAmelCase , _UpperCAmelCase )
lowerCamelCase =(filepath.count(os.sep ) + 1) if filepath else 0
lowerCamelCase =F"""{filepath}/{filename}""".replace(""" """ , """%20""" )
lowerCamelCase =os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(F"""{md_prefix(_UpperCAmelCase )} [{filename}]({url})""" )
if __name__ == "__main__":
print_directory_md('''.''')
| 713 |
import math
from collections.abc import Iterator
from itertools import takewhile
def _lowercase ( _UpperCAmelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowercase ( ) -> Iterator[int]:
lowerCamelCase =2
while True:
if is_prime(_UpperCAmelCase ):
yield num
num += 1
def _lowercase ( _UpperCAmelCase = 2_00_00_00 ) -> int:
return sum(takewhile(lambda _UpperCAmelCase : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 269 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase = {
"""configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""],
"""tokenization_convbert""": ["""ConvBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""ConvBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvBertForMaskedLM""",
"""ConvBertForMultipleChoice""",
"""ConvBertForQuestionAnswering""",
"""ConvBertForSequenceClassification""",
"""ConvBertForTokenClassification""",
"""ConvBertLayer""",
"""ConvBertModel""",
"""ConvBertPreTrainedModel""",
"""load_tf_weights_in_convbert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFConvBertForMaskedLM""",
"""TFConvBertForMultipleChoice""",
"""TFConvBertForQuestionAnswering""",
"""TFConvBertForSequenceClassification""",
"""TFConvBertForTokenClassification""",
"""TFConvBertLayer""",
"""TFConvBertModel""",
"""TFConvBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 474 |
"""simple docstring"""
a__ : Optional[int] = [
999,
800,
799,
600,
599,
500,
400,
399,
377,
355,
333,
311,
288,
266,
244,
222,
200,
199,
177,
155,
133,
111,
88,
66,
44,
22,
0,
]
a__ : Optional[int] = [
999,
976,
952,
928,
905,
882,
858,
857,
810,
762,
715,
714,
572,
429,
428,
286,
285,
238,
190,
143,
142,
118,
95,
71,
47,
24,
0,
]
a__ : int = [
999,
988,
977,
966,
955,
944,
933,
922,
911,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
350,
300,
299,
266,
233,
200,
199,
179,
159,
140,
120,
100,
99,
88,
77,
66,
55,
44,
33,
22,
11,
0,
]
a__ : Union[str, Any] = [
999,
995,
992,
989,
985,
981,
978,
975,
971,
967,
964,
961,
957,
956,
951,
947,
942,
937,
933,
928,
923,
919,
914,
913,
908,
903,
897,
892,
887,
881,
876,
871,
870,
864,
858,
852,
846,
840,
834,
828,
827,
820,
813,
806,
799,
792,
785,
784,
777,
770,
763,
756,
749,
742,
741,
733,
724,
716,
707,
699,
698,
688,
677,
666,
656,
655,
645,
634,
623,
613,
612,
598,
584,
570,
569,
555,
541,
527,
526,
505,
484,
483,
462,
440,
439,
396,
395,
352,
351,
308,
307,
264,
263,
220,
219,
176,
132,
88,
44,
0,
]
a__ : int = [
999,
997,
995,
992,
990,
988,
986,
984,
981,
979,
977,
975,
972,
970,
968,
966,
964,
961,
959,
957,
956,
954,
951,
949,
946,
944,
941,
939,
936,
934,
931,
929,
926,
924,
921,
919,
916,
914,
913,
910,
907,
905,
902,
899,
896,
893,
891,
888,
885,
882,
879,
877,
874,
871,
870,
867,
864,
861,
858,
855,
852,
849,
846,
843,
840,
837,
834,
831,
828,
827,
824,
821,
817,
814,
811,
808,
804,
801,
798,
795,
791,
788,
785,
784,
780,
777,
774,
770,
766,
763,
760,
756,
752,
749,
746,
742,
741,
737,
733,
730,
726,
722,
718,
714,
710,
707,
703,
699,
698,
694,
690,
685,
681,
677,
673,
669,
664,
660,
656,
655,
650,
646,
641,
636,
632,
627,
622,
618,
613,
612,
607,
602,
596,
591,
586,
580,
575,
570,
569,
563,
557,
551,
545,
539,
533,
527,
526,
519,
512,
505,
498,
491,
484,
483,
474,
466,
457,
449,
440,
439,
428,
418,
407,
396,
395,
381,
366,
352,
351,
330,
308,
307,
286,
264,
263,
242,
220,
219,
176,
175,
132,
131,
88,
44,
0,
]
a__ : Optional[Any] = [
999,
991,
982,
974,
966,
958,
950,
941,
933,
925,
916,
908,
900,
899,
874,
850,
825,
800,
799,
700,
600,
500,
400,
300,
200,
100,
0,
]
a__ : Union[str, Any] = [
999,
992,
985,
978,
971,
964,
957,
949,
942,
935,
928,
921,
914,
907,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
300,
299,
200,
199,
100,
99,
0,
]
a__ : Optional[int] = [
999,
996,
992,
989,
985,
982,
979,
975,
972,
968,
965,
961,
958,
955,
951,
948,
944,
941,
938,
934,
931,
927,
924,
920,
917,
914,
910,
907,
903,
900,
899,
891,
884,
876,
869,
861,
853,
846,
838,
830,
823,
815,
808,
800,
799,
788,
777,
766,
755,
744,
733,
722,
711,
700,
699,
688,
677,
666,
655,
644,
633,
622,
611,
600,
599,
585,
571,
557,
542,
528,
514,
500,
499,
485,
471,
457,
442,
428,
414,
400,
399,
379,
359,
340,
320,
300,
299,
279,
259,
240,
220,
200,
199,
166,
133,
100,
99,
66,
33,
0,
]
| 589 | 0 |
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
__A = TypeVar('T')
class SCREAMING_SNAKE_CASE ( Generic[T] ):
"""simple docstring"""
def __init__( self: Tuple , __A: list[T] , __A: Callable[[T, T], T] ) -> str:
_A = None
_A = len(__SCREAMING_SNAKE_CASE )
_A = [any_type for _ in range(self.N )] + arr
_A = fnc
self.build()
def __A ( self: Optional[int] ) -> int:
for p in range(self.N - 1 , 0 , -1 ):
_A = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def __A ( self: List[Any] , __A: int , __A: T ) -> int:
p += self.N
_A = v
while p > 1:
_A = p // 2
_A = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def __A ( self: List[Any] , __A: int , __A: int ) -> List[str]: # noqa: E741
_A ,_A = l + self.N, r + self.N
_A = None
while l <= r:
if l % 2 == 1:
_A = self.st[l] if res is None else self.fn(__SCREAMING_SNAKE_CASE , self.st[l] )
if r % 2 == 0:
_A = self.st[r] if res is None else self.fn(__SCREAMING_SNAKE_CASE , self.st[r] )
_A ,_A = (l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
__A = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12]
__A = {
0: 7,
1: 2,
2: 6,
3: -14,
4: 5,
5: 4,
6: 7,
7: -10,
8: 9,
9: 10,
10: 12,
11: 1,
}
__A = SegmentTree(test_array, min)
__A = SegmentTree(test_array, max)
__A = SegmentTree(test_array, lambda a, b: a + b)
def __A ( ):
'''simple docstring'''
for i in range(len(_UpperCAmelCase ) ):
for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ):
_A = reduce(_UpperCAmelCase , test_array[i : j + 1] )
_A = reduce(_UpperCAmelCase , test_array[i : j + 1] )
_A = reduce(lambda _lowercase , _lowercase : a + b , test_array[i : j + 1] )
assert min_range == min_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase )
assert max_range == max_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase )
assert sum_range == sum_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase )
test_all_segments()
for index, value in test_updates.items():
__A = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 716 |
import flax.linen as nn
import jax
import jax.numpy as jnp
class SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
A_ = 42
A_ = jnp.floataa
def __A ( self: Tuple ) -> Tuple:
_A = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Dict , __A: Dict ) -> Tuple:
_A ,_A ,_A ,_A = hidden_states.shape
_A = jax.image.resize(
__A , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , )
_A = self.conv(__A )
return hidden_states
class SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
A_ = 42
A_ = jnp.floataa
def __A ( self: List[str] ) -> Tuple:
_A = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Union[str, Any] , __A: List[Any] ) -> Union[str, Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
_A = self.conv(__A )
return hidden_states
class SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
A_ = 42
A_ = None
A_ = 0.0
A_ = None
A_ = jnp.floataa
def __A ( self: Dict ) -> Dict:
_A = self.in_channels if self.out_channels is None else self.out_channels
_A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_A = nn.Conv(
__A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
_A = nn.Dense(__A , dtype=self.dtype )
_A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_A = nn.Dropout(self.dropout_prob )
_A = nn.Conv(
__A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
_A = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
_A = None
if use_nin_shortcut:
_A = nn.Conv(
__A , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , )
def __call__( self: Dict , __A: List[Any] , __A: List[Any] , __A: Any=True ) -> List[Any]:
_A = hidden_states
_A = self.norma(__A )
_A = nn.swish(__A )
_A = self.conva(__A )
_A = self.time_emb_proj(nn.swish(__A ) )
_A = jnp.expand_dims(jnp.expand_dims(__A , 1 ) , 1 )
_A = hidden_states + temb
_A = self.norma(__A )
_A = nn.swish(__A )
_A = self.dropout(__A , __A )
_A = self.conva(__A )
if self.conv_shortcut is not None:
_A = self.conv_shortcut(__A )
return hidden_states + residual
| 62 | 0 |
def __lowerCamelCase ( _lowercase = 600851475143 ) -> int:
try:
UpperCamelCase = int(_lowercase )
except (TypeError, ValueError):
raise TypeError('Parameter n must be int or castable to int.' )
if n <= 0:
raise ValueError('Parameter n must be greater than or equal to one.' )
UpperCamelCase = 2
UpperCamelCase = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
UpperCamelCase = i
while n % i == 0:
UpperCamelCase = n // i
i += 1
return int(_lowercase )
if __name__ == "__main__":
print(F"{solution() = }")
| 282 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase_ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu"""
def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : Tuple=100 , __magic_name__ : Optional[int]=" " ) -> List[str]:
lowercase : List[Any] =text.split(__magic_name__ )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__magic_name__ ) , __magic_name__ )]
def _lowerCAmelCase ( __magic_name__ : dict ) -> dict:
lowercase , lowercase : int =[], []
for title, text in zip(documents['''title'''] , documents['''text'''] ):
if text is not None:
for passage in split_text(__magic_name__ ):
titles.append(title if title is not None else '''''' )
texts.append(__magic_name__ )
return {"title": titles, "text": texts}
def _lowerCAmelCase ( __magic_name__ : dict , __magic_name__ : DPRContextEncoder , __magic_name__ : DPRContextEncoderTokenizerFast ) -> dict:
lowercase : Dict =ctx_tokenizer(
documents['''title'''] , documents['''text'''] , truncation=__magic_name__ , padding='''longest''' , return_tensors='''pt''' )['''input_ids''']
lowercase : Optional[int] =ctx_encoder(input_ids.to(device=__magic_name__ ) , return_dict=__magic_name__ ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def _lowerCAmelCase ( __magic_name__ : "RagExampleArguments" , __magic_name__ : "ProcessingArguments" , __magic_name__ : "IndexHnswArguments" , ) -> str:
######################################
logger.info('''Step 1 - Create the dataset''' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase : Tuple =load_dataset(
'''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase : Optional[int] =dataset.map(__magic_name__ , batched=__magic_name__ , num_proc=processing_args.num_proc )
# And compute the embeddings
lowercase : Any =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__magic_name__ )
lowercase : Any =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
lowercase : Optional[int] =Features(
{'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space
lowercase : Optional[Any] =dataset.map(
partial(__magic_name__ , ctx_encoder=__magic_name__ , ctx_tokenizer=__magic_name__ ) , batched=__magic_name__ , batch_size=processing_args.batch_size , features=__magic_name__ , )
# And finally save your dataset
lowercase : Optional[Any] =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' )
dataset.save_to_disk(__magic_name__ )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('''Step 2 - Index the dataset''' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase : Union[str, Any] =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('''embeddings''' , custom_index=__magic_name__ )
# And save the index
lowercase : Dict =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' )
dataset.get_index('''embeddings''' ).save(__magic_name__ )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class __SCREAMING_SNAKE_CASE :
lowerCamelCase_ = field(
default=str(Path(lowercase__ ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , )
lowerCamelCase_ = field(
default=lowercase__ , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , )
lowerCamelCase_ = field(
default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , )
lowerCamelCase_ = field(
default='facebook/dpr-ctx_encoder-multiset-base' , metadata={
'help': (
'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or'
' \'facebook/dpr-ctx_encoder-multiset-base\''
)
} , )
lowerCamelCase_ = field(
default=str(Path(lowercase__ ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
lowerCamelCase_ = field(
default=lowercase__ , metadata={
'help': 'The number of processes to use to split the documents into passages. Default is single process.'
} , )
lowerCamelCase_ = field(
default=16 , metadata={
'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.'
} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
lowerCamelCase_ = field(
default=7_68 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , )
lowerCamelCase_ = field(
default=1_28 , metadata={
'help': (
'The number of bi-directional links created for every new element during the HNSW index construction.'
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase_ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 92 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : str =logging.get_logger(__name__)
lowerCAmelCase : Dict ={
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'cvt'
def __init__( self : Union[str, Any] , _UpperCamelCase : Any=3 , _UpperCamelCase : List[str]=[7, 3, 3] , _UpperCamelCase : Dict=[4, 2, 2] , _UpperCamelCase : List[Any]=[2, 1, 1] , _UpperCamelCase : Union[str, Any]=[64, 192, 384] , _UpperCamelCase : Optional[int]=[1, 3, 6] , _UpperCamelCase : Dict=[1, 2, 10] , _UpperCamelCase : List[Any]=[4.0, 4.0, 4.0] , _UpperCamelCase : str=[0.0, 0.0, 0.0] , _UpperCamelCase : Any=[0.0, 0.0, 0.0] , _UpperCamelCase : List[str]=[0.0, 0.0, 0.1] , _UpperCamelCase : int=[True, True, True] , _UpperCamelCase : Tuple=[False, False, True] , _UpperCamelCase : str=["dw_bn", "dw_bn", "dw_bn"] , _UpperCamelCase : List[Any]=[3, 3, 3] , _UpperCamelCase : Tuple=[1, 1, 1] , _UpperCamelCase : List[str]=[2, 2, 2] , _UpperCamelCase : List[str]=[1, 1, 1] , _UpperCamelCase : int=[1, 1, 1] , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : int=1E-1_2 , **_UpperCamelCase : List[str] , ) ->List[Any]:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : int = num_channels
_lowerCamelCase : Tuple = patch_sizes
_lowerCamelCase : List[Any] = patch_stride
_lowerCamelCase : List[Any] = patch_padding
_lowerCamelCase : int = embed_dim
_lowerCamelCase : Dict = num_heads
_lowerCamelCase : Tuple = depth
_lowerCamelCase : Any = mlp_ratio
_lowerCamelCase : Tuple = attention_drop_rate
_lowerCamelCase : Dict = drop_rate
_lowerCamelCase : Any = drop_path_rate
_lowerCamelCase : Dict = qkv_bias
_lowerCamelCase : int = cls_token
_lowerCamelCase : int = qkv_projection_method
_lowerCamelCase : List[Any] = kernel_qkv
_lowerCamelCase : List[str] = padding_kv
_lowerCamelCase : Dict = stride_kv
_lowerCamelCase : Any = padding_q
_lowerCamelCase : int = stride_q
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
| 15 | from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K)
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
UpperCamelCase__ : int = random.Random()
def __UpperCamelCase( _A : Any , _A : Union[str, Any]=1.0 , _A : str=None , _A : List[str]=None ):
'''simple docstring'''
if rng is None:
UpperCAmelCase__ : int = global_rng
UpperCAmelCase__ : List[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class _lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=7 ,lowerCamelCase_=400 ,lowerCamelCase_=2000 ,lowerCamelCase_=1 ,lowerCamelCase_=0.0 ,lowerCamelCase_=16000 ,lowerCamelCase_=True ,lowerCamelCase_=80 ,lowerCamelCase_=16 ,lowerCamelCase_=64 ,lowerCamelCase_="hann_window" ,lowerCamelCase_=80 ,lowerCamelCase_=7600 ,lowerCamelCase_=1e-10 ,lowerCamelCase_=True ,) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = parent
UpperCAmelCase__ : Tuple = batch_size
UpperCAmelCase__ : Optional[int] = min_seq_length
UpperCAmelCase__ : int = max_seq_length
UpperCAmelCase__ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCAmelCase__ : List[Any] = feature_size
UpperCAmelCase__ : List[str] = padding_value
UpperCAmelCase__ : Optional[Any] = sampling_rate
UpperCAmelCase__ : Optional[int] = do_normalize
UpperCAmelCase__ : Tuple = num_mel_bins
UpperCAmelCase__ : Optional[Any] = hop_length
UpperCAmelCase__ : Any = win_length
UpperCAmelCase__ : Optional[int] = win_function
UpperCAmelCase__ : List[str] = fmin
UpperCAmelCase__ : str = fmax
UpperCAmelCase__ : Optional[Any] = mel_floor
UpperCAmelCase__ : Any = return_attention_mask
def lowerCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def lowerCAmelCase__ ( self ,lowerCamelCase_=False ,lowerCamelCase_=False ) -> Tuple:
'''simple docstring'''
def _flatten(lowerCamelCase_ ):
return list(itertools.chain(*lowerCamelCase_ ) )
if equal_length:
UpperCAmelCase__ : Any = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCAmelCase__ : Optional[Any] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff )
]
if numpify:
UpperCAmelCase__ : List[Any] = [np.asarray(lowerCamelCase_ ) for x in speech_inputs]
return speech_inputs
def lowerCAmelCase__ ( self ,lowerCamelCase_=False ,lowerCamelCase_=False ) -> List[str]:
'''simple docstring'''
if equal_length:
UpperCAmelCase__ : Optional[int] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
UpperCAmelCase__ : Tuple = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff )
]
if numpify:
UpperCAmelCase__ : Tuple = [np.asarray(lowerCamelCase_ ) for x in speech_inputs]
return speech_inputs
@require_torch
class _lowercase ( lowerCAmelCase ,unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase_ : List[Any] = SpeechTaFeatureExtractor
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase__ : List[str] = SpeechTaFeatureExtractionTester(self )
def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str:
'''simple docstring'''
self.assertTrue(np.all(np.mean(lowerCamelCase_ ,axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ ,axis=0 ) - 1 ) < 1e-3 ) )
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCAmelCase__ : Dict = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
UpperCAmelCase__ : int = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs]
# Test not batched input
UpperCAmelCase__ : Optional[Any] = feat_extract(speech_inputs[0] ,return_tensors='''np''' ).input_values
UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] ,return_tensors='''np''' ).input_values
self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) )
# Test batched
UpperCAmelCase__ : Union[str, Any] = feat_extract(lowerCamelCase_ ,return_tensors='''np''' ).input_values
UpperCAmelCase__ : List[str] = feat_extract(lowerCamelCase_ ,return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ ,lowerCamelCase_ ):
self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) )
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
UpperCAmelCase__ : Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad''']
UpperCAmelCase__ : Optional[Any] = [None, 1600, None]
for max_length, padding in zip(lowerCamelCase_ ,lowerCamelCase_ ):
UpperCAmelCase__ : str = feat_extract(lowerCamelCase_ ,padding=lowerCamelCase_ ,max_length=lowerCamelCase_ ,return_tensors='''np''' )
UpperCAmelCase__ : Any = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def lowerCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ : Optional[Any] = range(800 ,1400 ,200 )
UpperCAmelCase__ : Dict = [floats_list((1, x) )[0] for x in lengths]
UpperCAmelCase__ : List[str] = ['''longest''', '''max_length''', '''do_not_pad''']
UpperCAmelCase__ : List[str] = [None, 1600, None]
for max_length, padding in zip(lowerCamelCase_ ,lowerCamelCase_ ):
UpperCAmelCase__ : Union[str, Any] = feat_extract(lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding=lowerCamelCase_ )
UpperCAmelCase__ : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
UpperCAmelCase__ : List[str] = feat_extract(
lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=1000 ,padding='''max_length''' ,return_tensors='''np''' )
UpperCAmelCase__ : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowerCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
UpperCAmelCase__ : Tuple = feat_extract(
lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=1000 ,padding='''longest''' ,return_tensors='''np''' )
UpperCAmelCase__ : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
UpperCAmelCase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
UpperCAmelCase__ : Optional[Any] = feat_extract(
lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=2000 ,padding='''longest''' ,return_tensors='''np''' )
UpperCAmelCase__ : Optional[Any] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
def lowerCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase__ : str = np.random.rand(100 ).astype(np.floataa )
UpperCAmelCase__ : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCAmelCase__ : List[str] = feature_extractor.pad([{'''input_values''': inputs}] ,return_tensors='''np''' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCAmelCase__ : int = feature_extractor.pad([{'''input_values''': inputs}] ,return_tensors='''pt''' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def lowerCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCAmelCase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )]
UpperCAmelCase__ : Dict = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs]
# Test feature size
UpperCAmelCase__ : int = feature_extractor(audio_target=lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors='''np''' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
UpperCAmelCase__ : Any = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_values
UpperCAmelCase__ : List[Any] = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_values
self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) )
# Test batched
UpperCAmelCase__ : Optional[int] = feature_extractor(lowerCamelCase_ ,return_tensors='''np''' ).input_values
UpperCAmelCase__ : Optional[int] = feature_extractor(lowerCamelCase_ ,return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ ,lowerCamelCase_ ):
self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCAmelCase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCAmelCase__ : Union[str, Any] = np.asarray(lowerCamelCase_ )
UpperCAmelCase__ : str = feature_extractor(lowerCamelCase_ ,return_tensors='''np''' ).input_values
UpperCAmelCase__ : Union[str, Any] = feature_extractor(lowerCamelCase_ ,return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ ,lowerCamelCase_ ):
self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) )
def lowerCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : Any = self.feat_extract_tester.prepare_inputs_for_target()
UpperCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ : Any = feat_extract.model_input_names[0]
UpperCAmelCase__ : Dict = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) for x, y in zip(lowerCamelCase_ ,processed_features[input_name] ) ) )
UpperCAmelCase__ : str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase_ )
UpperCAmelCase__ : str = BatchFeature({input_name: speech_inputs} ,tensor_type='''np''' )
UpperCAmelCase__ : Union[str, Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCAmelCase__ : str = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase_ )
UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ : List[Any] = feat_extract.model_input_names[0]
UpperCAmelCase__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ,tensor_type='''pt''' )
UpperCAmelCase__ : Dict = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCAmelCase__ : List[str] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ : Any = self.feat_extract_tester.prepare_inputs_for_target()
UpperCAmelCase__ : List[str] = feat_extract.model_input_names[0]
UpperCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase__ : Union[str, Any] = feat_extract.num_mel_bins # hack!
UpperCAmelCase__ : int = feat_extract.pad(lowerCamelCase_ ,padding='''longest''' ,return_tensors='''np''' )[input_name]
UpperCAmelCase__ : Dict = feat_extract.pad(lowerCamelCase_ ,padding='''longest''' ,return_tensors='''pt''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase__ : str = self.feat_extract_dict
UpperCAmelCase__ : List[str] = True
UpperCAmelCase__ : List[str] = self.feature_extraction_class(**lowerCamelCase_ )
UpperCAmelCase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target()
UpperCAmelCase__ : List[Any] = [len(lowerCamelCase_ ) for x in speech_inputs]
UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0]
UpperCAmelCase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase__ : Dict = feat_extract.num_mel_bins # hack!
UpperCAmelCase__ : str = feat_extract.pad(lowerCamelCase_ ,padding='''longest''' ,return_tensors='''np''' )
self.assertIn('''attention_mask''' ,lowerCamelCase_ )
self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,lowerCamelCase_ )
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase__ : Tuple = self.feat_extract_dict
UpperCAmelCase__ : List[Any] = True
UpperCAmelCase__ : Optional[int] = self.feature_extraction_class(**lowerCamelCase_ )
UpperCAmelCase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target()
UpperCAmelCase__ : List[str] = [len(lowerCamelCase_ ) for x in speech_inputs]
UpperCAmelCase__ : Optional[Any] = feat_extract.model_input_names[0]
UpperCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase__ : str = min(lowerCamelCase_ )
UpperCAmelCase__ : Tuple = feat_extract.num_mel_bins # hack!
UpperCAmelCase__ : Union[str, Any] = feat_extract.pad(
lowerCamelCase_ ,padding='''max_length''' ,max_length=lowerCamelCase_ ,truncation=lowerCamelCase_ ,return_tensors='''np''' )
self.assertIn('''attention_mask''' ,lowerCamelCase_ )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> int:
'''simple docstring'''
from datasets import load_dataset
UpperCAmelCase__ : str = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' )
# automatic decoding with librispeech
UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(lowerCamelCase_ ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03,
3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03,
2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04,
4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03,
7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04,
4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] )
# fmt: on
UpperCAmelCase__ : str = self._load_datasamples(1 )
UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor()
UpperCAmelCase__ : Union[str, Any] = feature_extractor(lowerCamelCase_ ,return_tensors='''pt''' ).input_values
self.assertEquals(input_values.shape ,(1, 93680) )
self.assertTrue(torch.allclose(input_values[0, :30] ,lowerCamelCase_ ,atol=1e-6 ) )
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase__ : Dict = torch.tensor(
[-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777,
-3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386,
-3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571,
-3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] )
# fmt: on
UpperCAmelCase__ : int = self._load_datasamples(1 )
UpperCAmelCase__ : List[str] = SpeechTaFeatureExtractor()
UpperCAmelCase__ : str = feature_extractor(audio_target=lowerCamelCase_ ,return_tensors='''pt''' ).input_values
self.assertEquals(input_values.shape ,(1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] ,lowerCamelCase_ ,atol=1e-4 ) )
| 614 | '''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__)
UpperCamelCase__ : Dict = 50 # max width of layer names
UpperCamelCase__ : Any = 70 # max width of quantizer names
def __UpperCamelCase( _A : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = parser.add_argument_group('''quant_trainer arguments''' )
group.add_argument('''--wprec''' , type=_A , default=8 , help='''weight precision''' )
group.add_argument('''--aprec''' , type=_A , default=8 , help='''activation precision''' )
group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' )
group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' )
group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' )
group.add_argument('''--quant-disable-keyword''' , type=_A , nargs='''+''' , help='''disable quantizers by keyword''' )
group.add_argument('''--quant-disable-layer-module''' , type=_A , help='''disable quantizers by keyword under layer.''' )
group.add_argument('''--quant-enable-layer-module''' , type=_A , help='''enable quantizers by keyword under layer''' )
group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' )
group.add_argument('''--percentile''' , default=_A , type=_A , help='''percentile for PercentileCalibrator''' )
group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' )
group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_A , help='''clip gelu output maximum value to N''' )
group.add_argument(
'''--recalibrate-weights''' , action='''store_true''' , help=(
'''recalibrate weight amaxes by taking the max of the weights.'''
''' amaxes will be computed with the current quantization granularity (axis).'''
) , )
def __UpperCamelCase( _A : Tuple ):
'''simple docstring'''
if args.calibrator == "max":
UpperCAmelCase__ : str = '''max'''
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('''Specify --percentile when using percentile calibrator''' )
UpperCAmelCase__ : Dict = '''histogram'''
elif args.calibrator == "mse":
UpperCAmelCase__ : Any = '''histogram'''
else:
raise ValueError(F'''Invalid calibrator {args.calibrator}''' )
UpperCAmelCase__ : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=_A )
UpperCAmelCase__ : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_A )
quant_nn.QuantLinear.set_default_quant_desc_weight(_A )
def __UpperCamelCase( _A : Any , _A : Any , _A : Any=False , _A : Optional[Any]=False ):
'''simple docstring'''
logger.info('''Configuring Model for Quantization''' )
logger.info(F'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_A , ['''embeddings'''] , which='''weight''' , _disabled=_A )
if args.quant_disable:
set_quantizer_by_name(_A , [''''''] , _disabled=_A )
if args.quant_disable_keyword:
set_quantizer_by_name(_A , args.quant_disable_keyword , _disabled=_A )
if args.quant_disable_layer_module:
set_quantizer_by_name(_A , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_A )
if args.quant_enable_layer_module:
set_quantizer_by_name(_A , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_A )
if args.recalibrate_weights:
recalibrate_weights(_A )
if args.fuse_qkv:
fuse_qkv(_A , _A )
if args.clip_gelu:
clip_gelu(_A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_A )
def __UpperCamelCase( _A : str ):
'''simple docstring'''
logger.info('''Enabling Calibration''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F'''{name:80}: {module}''' )
def __UpperCamelCase( _A : Tuple , _A : Any ):
'''simple docstring'''
logger.info('''Loading calibrated amax''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('''percentile''' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_A )
def __UpperCamelCase( _A : Dict , _A : Optional[int] ):
'''simple docstring'''
def fusea(_A : Optional[Any] , _A : Optional[Any] , _A : Dict ):
for mod in [qq, qk, qv]:
if not hasattr(_A , '''_amax''' ):
print(''' WARNING: NO AMAX BUFFER''' )
return
UpperCAmelCase__ : Dict = qq._amax.detach().item()
UpperCAmelCase__ : List[Any] = qk._amax.detach().item()
UpperCAmelCase__ : Optional[int] = qv._amax.detach().item()
UpperCAmelCase__ : Dict = max(_A , _A , _A )
qq._amax.fill_(_A )
qk._amax.fill_(_A )
qv._amax.fill_(_A )
logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('''.attention.self''' ):
logger.info(F'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def __UpperCamelCase( _A : Dict , _A : Any ):
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ):
UpperCAmelCase__ : Union[str, Any] = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_A )
UpperCAmelCase__ : Tuple = mod._input_quantizer._amax.data.detach().item()
logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def __UpperCamelCase( _A : str ):
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_A , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase__ : int = mod.weight.shape[0]
UpperCAmelCase__ : Tuple = mod._weight_quantizer._amax.detach()
UpperCAmelCase__ : Optional[int] = torch.ones(_A , dtype=amax.dtype , device=amax.device ) * amax
print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def __UpperCamelCase( _A : List[str] ):
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_A , '''_weight_quantizer''' ):
if not hasattr(mod.weight_quantizer , '''_amax''' ):
print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase__ : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase__ : Optional[Any] = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase__ : int = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_A , keepdims=_A ).detach()
logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
UpperCAmelCase__ : str = amax
def __UpperCamelCase( _A : Dict , _A : Tuple=25 , _A : Any=1_80 , _A : Optional[int]=None ):
'''simple docstring'''
if ignore is None:
UpperCAmelCase__ : Dict = []
elif not isinstance(_A , _A ):
UpperCAmelCase__ : int = [ignore]
UpperCAmelCase__ : Optional[int] = 0
for name, mod in model.named_modules():
if not hasattr(_A , '''weight''' ):
continue
UpperCAmelCase__ : Dict = max(_A , len(_A ) )
for name, mod in model.named_modules():
UpperCAmelCase__ : str = getattr(_A , '''_input_quantizer''' , _A )
UpperCAmelCase__ : int = getattr(_A , '''_weight_quantizer''' , _A )
if not hasattr(_A , '''weight''' ):
continue
if type(_A ) in ignore:
continue
if [True for s in ignore if type(_A ) is str and s in name]:
continue
UpperCAmelCase__ : Dict = F'''Act:{input_q.extra_repr()}'''
UpperCAmelCase__ : int = F'''Wgt:{weight_q.extra_repr()}'''
UpperCAmelCase__ : Dict = F'''{name:{name_width}} {act_str} {wgt_str}'''
if len(_A ) <= line_width:
logger.info(_A )
else:
logger.info(F'''{name:{name_width}} {act_str}''' )
logger.info(F'''{' ':{name_width}} {wgt_str}''' )
def __UpperCamelCase( _A : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = 0
for name, mod in model.named_modules():
if isinstance(_A , pytorch_quantization.nn.TensorQuantizer ):
print(F'''{name:80} {mod}''' )
count += 1
print(F'''{count} TensorQuantizers found in model''' )
def __UpperCamelCase( _A : Dict , _A : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = getattr(_A , _A , _A )
if quantizer_mod is not None:
assert hasattr(_A , _A )
setattr(_A , _A , _A )
else:
logger.warning(F'''{name} has no {quantizer}''' )
def __UpperCamelCase( _A : str , _A : Any , _A : Optional[int]="both" , **_A : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = F'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(_A , _A , '''_input_quantizer''' , _A , _A )
if which in ["weight", "both"]:
set_quantizer(_A , _A , '''_weight_quantizer''' , _A , _A )
logger.info(_A )
def __UpperCamelCase( _A : Tuple , _A : List[str] , **_A : Optional[Any] ):
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_A , '''_input_quantizer''' ) or hasattr(_A , '''_weight_quantizer''' ):
for n in names:
if re.search(_A , _A ):
set_quantizers(_A , _A , **_A )
elif name.endswith('''_quantizer''' ):
for n in names:
if re.search(_A , _A ):
UpperCAmelCase__ : str = F'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
setattr(_A , _A , _A )
logger.info(_A )
| 614 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger('''transformers.models.speecht5''')
_lowerCamelCase = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
_lowerCamelCase = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
_lowerCamelCase = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
_lowerCamelCase = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
_lowerCamelCase = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
_lowerCamelCase = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
_lowerCamelCase = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
_lowerCamelCase = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
_lowerCamelCase = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
_lowerCamelCase = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
_lowerCamelCase = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
_lowerCamelCase = []
_lowerCamelCase = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
_lowerCamelCase = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
_lowerCamelCase = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
_lowerCamelCase = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any ):
'''simple docstring'''
for attribute in key.split('''.''' ):
__SCREAMING_SNAKE_CASE : List[Any] = getattr(lowercase_ , lowercase_ )
if weight_type is not None:
__SCREAMING_SNAKE_CASE : Any = getattr(lowercase_ , lowercase_ ).shape
else:
__SCREAMING_SNAKE_CASE : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
__SCREAMING_SNAKE_CASE : List[Any] = value
elif weight_type == "weight_g":
__SCREAMING_SNAKE_CASE : Tuple = value
elif weight_type == "weight_v":
__SCREAMING_SNAKE_CASE : int = value
elif weight_type == "bias":
__SCREAMING_SNAKE_CASE : Optional[int] = value
elif weight_type == "running_mean":
__SCREAMING_SNAKE_CASE : Any = value
elif weight_type == "running_var":
__SCREAMING_SNAKE_CASE : Union[str, Any] = value
elif weight_type == "num_batches_tracked":
__SCREAMING_SNAKE_CASE : Any = value
else:
__SCREAMING_SNAKE_CASE : Dict = value
logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' )
def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : int ):
'''simple docstring'''
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
__SCREAMING_SNAKE_CASE : Dict = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowerCAmelCase_ ( lowercase_ : Any , lowercase_ : str , lowercase_ : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE : int = []
if task == "s2t":
__SCREAMING_SNAKE_CASE : Tuple = hf_model.speechta.encoder.prenet.feature_encoder
__SCREAMING_SNAKE_CASE : int = MAPPING_S2T
__SCREAMING_SNAKE_CASE : Optional[Any] = IGNORE_KEYS_S2T
elif task == "t2s":
__SCREAMING_SNAKE_CASE : str = None
__SCREAMING_SNAKE_CASE : Optional[Any] = MAPPING_T2S
__SCREAMING_SNAKE_CASE : Optional[Any] = IGNORE_KEYS_T2S
elif task == "s2s":
__SCREAMING_SNAKE_CASE : Any = hf_model.speechta.encoder.prenet.feature_encoder
__SCREAMING_SNAKE_CASE : int = MAPPING_S2S
__SCREAMING_SNAKE_CASE : List[str] = IGNORE_KEYS_S2S
else:
raise ValueError(F'''Unsupported task: {task}''' )
for name, value in fairseq_dict.items():
if should_ignore(lowercase_ , lowercase_ ):
logger.info(F'''{name} was ignored''' )
continue
__SCREAMING_SNAKE_CASE : List[Any] = False
if "conv_layers" in name:
load_conv_layer(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , )
__SCREAMING_SNAKE_CASE : int = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
__SCREAMING_SNAKE_CASE : List[Any] = key.split('''.*.''' )
if prefix in name and suffix in name:
__SCREAMING_SNAKE_CASE : List[Any] = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
__SCREAMING_SNAKE_CASE : int = True
if "*" in mapped_key:
__SCREAMING_SNAKE_CASE : str = name.split(lowercase_ )[0].split('''.''' )[-2]
__SCREAMING_SNAKE_CASE : Dict = mapped_key.replace('''*''' , lowercase_ )
if "weight_g" in name:
__SCREAMING_SNAKE_CASE : Optional[Any] = '''weight_g'''
elif "weight_v" in name:
__SCREAMING_SNAKE_CASE : Any = '''weight_v'''
elif "bias" in name:
__SCREAMING_SNAKE_CASE : Tuple = '''bias'''
elif "weight" in name:
__SCREAMING_SNAKE_CASE : List[Any] = '''weight'''
elif "running_mean" in name:
__SCREAMING_SNAKE_CASE : Tuple = '''running_mean'''
elif "running_var" in name:
__SCREAMING_SNAKE_CASE : Optional[int] = '''running_var'''
elif "num_batches_tracked" in name:
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''num_batches_tracked'''
else:
__SCREAMING_SNAKE_CASE : Optional[int] = None
set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
continue
if not is_used:
unused_weights.append(lowercase_ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[Any] = full_name.split('''conv_layers.''' )[-1]
__SCREAMING_SNAKE_CASE : Dict = name.split('''.''' )
__SCREAMING_SNAKE_CASE : List[Any] = int(items[0] )
__SCREAMING_SNAKE_CASE : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
__SCREAMING_SNAKE_CASE : Dict = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
__SCREAMING_SNAKE_CASE : List[Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
__SCREAMING_SNAKE_CASE : str = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
__SCREAMING_SNAKE_CASE : Optional[int] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowercase_ )
@torch.no_grad()
def lowerCAmelCase_ ( lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : int=None , lowercase_ : Dict=None , lowercase_ : str=None , ):
'''simple docstring'''
if config_path is not None:
__SCREAMING_SNAKE_CASE : Dict = SpeechTaConfig.from_pretrained(lowercase_ )
else:
__SCREAMING_SNAKE_CASE : Any = SpeechTaConfig()
if task == "s2t":
__SCREAMING_SNAKE_CASE : Any = config.max_text_positions
__SCREAMING_SNAKE_CASE : List[Any] = SpeechTaForSpeechToText(lowercase_ )
elif task == "t2s":
__SCREAMING_SNAKE_CASE : Optional[int] = 1876
__SCREAMING_SNAKE_CASE : Optional[int] = 600
__SCREAMING_SNAKE_CASE : Optional[Any] = config.max_speech_positions
__SCREAMING_SNAKE_CASE : List[Any] = SpeechTaForTextToSpeech(lowercase_ )
elif task == "s2s":
__SCREAMING_SNAKE_CASE : Dict = 1876
__SCREAMING_SNAKE_CASE : Dict = config.max_speech_positions
__SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaForSpeechToSpeech(lowercase_ )
else:
raise ValueError(F'''Unknown task name: {task}''' )
if vocab_path:
__SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaTokenizer(lowercase_ , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
__SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken('''<mask>''' , lstrip=lowercase_ , rstrip=lowercase_ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
__SCREAMING_SNAKE_CASE : str = SpeechTaFeatureExtractor()
__SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ )
processor.save_pretrained(lowercase_ )
__SCREAMING_SNAKE_CASE : List[Any] = torch.load(lowercase_ )
recursively_load_weights(fairseq_checkpoint['''model'''] , lowercase_ , lowercase_ )
model.save_pretrained(lowercase_ )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(lowercase_ )
model.push_to_hub(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
_lowerCamelCase = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 719 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class snake_case ( __UpperCAmelCase , __UpperCAmelCase ):
lowerCamelCase__ = '''nat'''
lowerCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , _lowerCamelCase :int=4 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :Optional[int]=6_4 , _lowerCamelCase :Optional[Any]=[3, 4, 6, 5] , _lowerCamelCase :Optional[int]=[2, 4, 8, 1_6] , _lowerCamelCase :str=7 , _lowerCamelCase :int=3.0 , _lowerCamelCase :Optional[Any]=True , _lowerCamelCase :List[str]=0.0 , _lowerCamelCase :str=0.0 , _lowerCamelCase :int=0.1 , _lowerCamelCase :int="gelu" , _lowerCamelCase :Dict=0.0_2 , _lowerCamelCase :str=1e-5 , _lowerCamelCase :List[Any]=0.0 , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :Dict=None , **_lowerCamelCase :Union[str, Any] , ):
super().__init__(**_lowerCamelCase )
__SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size
__SCREAMING_SNAKE_CASE : int = num_channels
__SCREAMING_SNAKE_CASE : List[str] = embed_dim
__SCREAMING_SNAKE_CASE : List[str] = depths
__SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase )
__SCREAMING_SNAKE_CASE : str = num_heads
__SCREAMING_SNAKE_CASE : Any = kernel_size
__SCREAMING_SNAKE_CASE : Tuple = mlp_ratio
__SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias
__SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : Any = drop_path_rate
__SCREAMING_SNAKE_CASE : Dict = hidden_act
__SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps
__SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__SCREAMING_SNAKE_CASE : List[Any] = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) )
__SCREAMING_SNAKE_CASE : Any = layer_scale_init_value
__SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = get_aligned_output_features_output_indices(
out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
| 401 | 0 |
'''simple docstring'''
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def UpperCAmelCase__ ( ) -> Optional[Any]:
__lowerCamelCase : Union[str, Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__lowerCamelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' )
return image
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Tuple:
__lowerCamelCase : Optional[Any] = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> int:
__lowerCamelCase : List[Any] = dct.pop(UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = val
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ) -> List[Any]:
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__lowerCamelCase : Tuple = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' )
__lowerCamelCase : int = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' )
# next, set bias in the state dict
__lowerCamelCase : List[Any] = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) )
__lowerCamelCase : Any = qkv_bias
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Optional[int]:
__lowerCamelCase : int = 3_64 if 'coco' in model_name else 2_24
__lowerCamelCase : List[Any] = BlipaVisionConfig(image_size=UpperCAmelCase_ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__lowerCamelCase : Union[str, Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=UpperCAmelCase_ ).to_dict()
elif "opt-6.7b" in model_name:
__lowerCamelCase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=UpperCAmelCase_ ).to_dict()
elif "t5-xl" in model_name:
__lowerCamelCase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__lowerCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__lowerCamelCase : Tuple = BlipaConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ )
return config, image_size
@torch.no_grad()
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=False ) -> Dict:
__lowerCamelCase : Tuple = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__lowerCamelCase : Union[str, Any] = tokenizer('\n' , add_special_tokens=UpperCAmelCase_ ).input_ids[0]
__lowerCamelCase , __lowerCamelCase : str = get_blipa_config(UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
__lowerCamelCase : Tuple = BlipaForConditionalGeneration(UpperCAmelCase_ ).eval()
__lowerCamelCase : int = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__lowerCamelCase , __lowerCamelCase : int = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__lowerCamelCase : Any = 'cuda' if torch.cuda.is_available() else 'cpu'
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = load_model_and_preprocess(
name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ )
original_model.eval()
print('Done!' )
# update state dict keys
__lowerCamelCase : Dict = original_model.state_dict()
__lowerCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ )
for src, dest in rename_keys:
rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__lowerCamelCase : Optional[Any] = state_dict.pop(UpperCAmelCase_ )
if key.startswith('Qformer.bert' ):
__lowerCamelCase : Dict = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__lowerCamelCase : int = key.replace('self' , 'attention' )
if "opt_proj" in key:
__lowerCamelCase : Any = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__lowerCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__lowerCamelCase : Dict = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__lowerCamelCase : Optional[int] = key.replace('t5' , 'language' )
__lowerCamelCase : str = val
# read in qv biases
read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase , __lowerCamelCase : List[str] = hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ )
assert len(UpperCAmelCase_ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__lowerCamelCase : Optional[Any] = load_demo_image()
__lowerCamelCase : Any = vis_processors['eval'](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ )
__lowerCamelCase : Dict = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ )
# create processor
__lowerCamelCase : Tuple = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ )
__lowerCamelCase : List[str] = BlipaProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ )
__lowerCamelCase : str = processor(images=UpperCAmelCase_ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase_ )
# make sure processor creates exact same pixel values
assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ )
original_model.to(UpperCAmelCase_ )
hf_model.to(UpperCAmelCase_ )
with torch.no_grad():
if "opt" in model_name:
__lowerCamelCase : Optional[Any] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__lowerCamelCase : List[str] = hf_model(UpperCAmelCase_ , UpperCAmelCase_ ).logits
else:
__lowerCamelCase : Tuple = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__lowerCamelCase : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__lowerCamelCase : Dict = hf_model(UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__lowerCamelCase : List[Any] = torch.tensor(
[[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=UpperCAmelCase_ )
assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__lowerCamelCase : Tuple = torch.tensor(
[[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=UpperCAmelCase_ )
else:
# cast to same type
__lowerCamelCase : Optional[int] = logits.dtype
assert torch.allclose(original_logits.to(UpperCAmelCase_ ) , UpperCAmelCase_ , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__lowerCamelCase : str = ''
__lowerCamelCase : str = tokenizer(UpperCAmelCase_ , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = original_model.generate({'image': original_pixel_values} )
__lowerCamelCase : int = hf_model.generate(
UpperCAmelCase_ , UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , UpperCAmelCase_ )
__lowerCamelCase : Any = input_ids.shape[1]
__lowerCamelCase : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCAmelCase_ )
__lowerCamelCase : Dict = [text.strip() for text in output_text]
print('HF generation:' , UpperCAmelCase_ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(UpperCAmelCase_ )
hf_model.save_pretrained(UpperCAmelCase_ )
if push_to_hub:
processor.push_to_hub(F'nielsr/{model_name}' )
hf_model.push_to_hub(F'nielsr/{model_name}' )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
A__ : Optional[int] = [
"""blip2-opt-2.7b""",
"""blip2-opt-6.7b""",
"""blip2-opt-2.7b-coco""",
"""blip2-opt-6.7b-coco""",
"""blip2-flan-t5-xl""",
"""blip2-flan-t5-xl-coco""",
"""blip2-flan-t5-xxl""",
]
parser.add_argument(
"""--model_name""",
default="""blip2-opt-2.7b""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
A__ : Any = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __magic_name__ (__lowercase ):
lowerCamelCase__ = ['''image_processor''', '''tokenizer''']
lowerCamelCase__ = '''LayoutLMv2ImageProcessor'''
lowerCamelCase__ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''')
def __init__( self , _a=None , _a=None , **_a ) -> List[Any]:
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , _a , )
lowerCAmelCase_ = kwargs.pop("feature_extractor" )
lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_a , _a )
def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
lowerCAmelCase_ = self.image_processor(images=_a , return_tensors=_a )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_a , _a ):
lowerCAmelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase_ = features["words"]
lowerCAmelCase_ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel values
lowerCAmelCase_ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
lowerCAmelCase_ = self.get_overflowing_images(_a , encoded_inputs["overflow_to_sample_mapping"] )
lowerCAmelCase_ = images
return encoded_inputs
def __a ( self , _a , _a ) -> Tuple:
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
lowerCAmelCase_ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_a ) != len(_a ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f" {len(_a )} and {len(_a )}" )
return images_with_overflow
def __a ( self , *_a , **_a ) -> int:
return self.tokenizer.batch_decode(*_a , **_a )
def __a ( self , *_a , **_a ) -> Union[str, Any]:
return self.tokenizer.decode(*_a , **_a )
@property
def __a ( self ) -> Dict:
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def __a ( self ) -> Dict:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , )
return self.image_processor_class
@property
def __a ( self ) -> Any:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , )
return self.image_processor
| 700 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __magic_name__ (unittest.TestCase ):
def __a ( self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __a ( self ) -> Dict:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 3
lowerCAmelCase_ = (32, 32)
lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
@property
def __a ( self ) -> int:
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def __a ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def __a ( self ) -> int:
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(_a )
@property
def __a ( self ) -> List[str]:
def extract(*_a , **_a ):
class __magic_name__ :
def __init__( self ) -> List[str]:
lowerCAmelCase_ = torch.ones([0] )
def __a ( self , _a ) -> int:
self.pixel_values.to(_a )
return self
return Out()
return extract
def __a ( self ) -> Dict:
lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Union[str, Any]:
lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Any:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_a )
assert isinstance(_a , _a )
assert isinstance(pipe.scheduler , _a )
assert pipe.safety_checker is None
lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_a )
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(_a )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def __a ( self ) -> Any:
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
lowerCAmelCase_ = unet.half()
lowerCAmelCase_ = vae.half()
lowerCAmelCase_ = bert.half()
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __magic_name__ (unittest.TestCase ):
def __a ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self ) -> Any:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a )
lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
lowerCAmelCase_ = 4003660346
lowerCAmelCase_ = 7
# without safety guidance (sld_guidance_scale = 0)
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Optional[Any]:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a )
lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "padme amidala taking a bath artwork, safe for work, no nudity"
lowerCAmelCase_ = 2734971755
lowerCAmelCase_ = 7
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> int:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
lowerCAmelCase_ = 1044355234
lowerCAmelCase_ = 12
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 226 | 0 |
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class __A ( A_ , unittest.TestCase ):
UpperCamelCase :Optional[int] = RoFormerTokenizer
UpperCamelCase :Union[str, Any] = RoFormerTokenizerFast
UpperCamelCase :Optional[Any] = True
UpperCamelCase :Any = True
def _snake_case (self ):
super().setUp()
def _snake_case (self , **__magic_name__ ):
return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__magic_name__ )
def _snake_case (self , **__magic_name__ ):
return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__magic_name__ )
def _snake_case (self ):
lowerCamelCase__ : Union[str, Any] = """永和服装饰品有限公司,今天天气非常好"""
lowerCamelCase__ : Tuple = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好"""
return input_text, output_text
def _snake_case (self ):
lowerCamelCase__ : Dict = self.get_tokenizer()
lowerCamelCase__ ,lowerCamelCase__ : Any = self.get_chinese_input_output_texts()
lowerCamelCase__ : List[Any] = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , output_text.split() )
lowerCamelCase__ : Dict = tokens + [tokenizer.unk_token]
lowerCamelCase__ : Optional[int] = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def _snake_case (self ):
lowerCamelCase__ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase__ ,lowerCamelCase__ : List[str] = self.get_chinese_input_output_texts()
lowerCamelCase__ : str = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , output_text.split() )
lowerCamelCase__ : List[Any] = tokens + [tokenizer.unk_token]
lowerCamelCase__ : Any = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def _snake_case (self ):
pass
def _snake_case (self ):
pass
def _snake_case (self ):
pass
| 157 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
_lowercase = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __A :
UpperCamelCase :Dict = PegasusConfig
UpperCamelCase :Dict = {}
UpperCamelCase :Union[str, Any] = '''gelu'''
def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=False , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=20 , __magic_name__=2 , __magic_name__=1 , __magic_name__=0 , ):
lowerCamelCase__ : Union[str, Any] = parent
lowerCamelCase__ : str = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : str = is_training
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : List[str] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : int = intermediate_size
lowerCamelCase__ : int = hidden_dropout_prob
lowerCamelCase__ : str = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : int = eos_token_id
lowerCamelCase__ : Tuple = pad_token_id
lowerCamelCase__ : List[str] = bos_token_id
def _snake_case (self ):
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
lowerCamelCase__ : Any = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
lowerCamelCase__ : Any = np.concatenate([input_ids, eos_tensor] , axis=1 )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : int = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCamelCase__ : Dict = prepare_pegasus_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ )
return config, inputs_dict
def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ):
lowerCamelCase__ : Optional[int] = 20
lowerCamelCase__ : str = model_class_name(__magic_name__ )
lowerCamelCase__ : List[str] = model.encode(inputs_dict["""input_ids"""] )
lowerCamelCase__ ,lowerCamelCase__ : List[Any] = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowerCamelCase__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , __magic_name__ , __magic_name__ )
lowerCamelCase__ : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCamelCase__ : List[str] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__ : str = model.decode(
decoder_input_ids[:, :-1] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , decoder_position_ids=__magic_name__ , )
lowerCamelCase__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCamelCase__ : Union[str, Any] = model.decode(
decoder_input_ids[:, -1:] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__magic_name__ , )
lowerCamelCase__ : Dict = model.decode(__magic_name__ , __magic_name__ )
lowerCamelCase__ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ):
lowerCamelCase__ : List[str] = 20
lowerCamelCase__ : Optional[int] = model_class_name(__magic_name__ )
lowerCamelCase__ : List[Any] = model.encode(inputs_dict["""input_ids"""] )
lowerCamelCase__ ,lowerCamelCase__ : Optional[int] = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowerCamelCase__ : str = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowerCamelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , __magic_name__ , __magic_name__ )
lowerCamelCase__ : List[str] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__ : Optional[Any] = model.decode(
decoder_input_ids[:, :-1] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , decoder_position_ids=__magic_name__ , )
lowerCamelCase__ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCamelCase__ : str = model.decode(
decoder_input_ids[:, -1:] , __magic_name__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__magic_name__ , decoder_position_ids=__magic_name__ , )
lowerCamelCase__ : Optional[int] = model.decode(__magic_name__ , __magic_name__ , decoder_attention_mask=__magic_name__ )
lowerCamelCase__ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def _A (UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , ) ->Optional[Any]:
'''simple docstring'''
if attention_mask is None:
lowerCamelCase__ : List[Any] = np.not_equal(UpperCamelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowerCamelCase__ : Dict = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __A ( A_ , unittest.TestCase ):
UpperCamelCase :int = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
UpperCamelCase :int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
UpperCamelCase :Union[str, Any] = True
UpperCamelCase :Optional[int] = False
UpperCamelCase :Optional[Any] = False
UpperCamelCase :List[str] = False
def _snake_case (self ):
lowerCamelCase__ : Dict = FlaxPegasusModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__magic_name__ )
def _snake_case (self ):
self.config_tester.run_common_tests()
def _snake_case (self ):
lowerCamelCase__ ,lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__magic_name__ , __magic_name__ , __magic_name__ )
def _snake_case (self ):
lowerCamelCase__ ,lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__magic_name__ , __magic_name__ , __magic_name__ )
def _snake_case (self ):
lowerCamelCase__ ,lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCamelCase__ : Any = self._prepare_for_class(__magic_name__ , __magic_name__ )
lowerCamelCase__ : Optional[Any] = model_class(__magic_name__ )
@jax.jit
def encode_jitted(__magic_name__ , __magic_name__=None , **__magic_name__ ):
return model.encode(input_ids=__magic_name__ , attention_mask=__magic_name__ )
with self.subTest("""JIT Enabled""" ):
lowerCamelCase__ : str = encode_jitted(**__magic_name__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowerCamelCase__ : Optional[Any] = encode_jitted(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for jitted_output, output in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case (self ):
lowerCamelCase__ ,lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCamelCase__ : Tuple = model_class(__magic_name__ )
lowerCamelCase__ : Any = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
lowerCamelCase__ : str = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__magic_name__ , __magic_name__ , __magic_name__ ):
return model.decode(
decoder_input_ids=__magic_name__ , decoder_attention_mask=__magic_name__ , encoder_outputs=__magic_name__ , )
with self.subTest("""JIT Enabled""" ):
lowerCamelCase__ : int = decode_jitted(**__magic_name__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowerCamelCase__ : Optional[int] = decode_jitted(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for jitted_output, output in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case (self ):
for model_class_name in self.all_model_classes:
lowerCamelCase__ : Tuple = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__magic_name__ )
lowerCamelCase__ : List[Any] = np.ones((1, 1) )
lowerCamelCase__ : Optional[int] = model(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@slow
def _snake_case (self ):
lowerCamelCase__ : str = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
lowerCamelCase__ : Any = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
lowerCamelCase__ : List[Any] = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
lowerCamelCase__ : str = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
lowerCamelCase__ : Optional[Any] = tokenizer(__magic_name__ , return_tensors="""np""" , truncation=__magic_name__ , max_length=512 , padding=__magic_name__ )
lowerCamelCase__ : Union[str, Any] = model.generate(**__magic_name__ , num_beams=2 ).sequences
lowerCamelCase__ : List[Any] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
assert tgt_text == decoded
| 157 | 1 |
'''simple docstring'''
def _UpperCAmelCase ( __A : str , __A : str ):
def get_matched_characters(__A : str , __A : str ) -> str:
a_ : Union[str, Any] = []
a_ : int = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
a_ : Any = int(max(0 , i - limit ) )
a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(__A )
a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}'
return "".join(__A )
# matching characters
a_ : Optional[Any] = get_matched_characters(__A , __A )
a_ : int = get_matched_characters(__A , __A )
a_ : Any = len(__A )
# transposition
a_ : List[Any] = (
len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2
)
if not match_count:
a_ : Dict = 0.0
else:
a_ : Optional[int] = (
1
/ 3
* (
match_count / len(__A )
+ match_count / len(__A )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
a_ : List[str] = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('hello', 'world'))
| 666 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json',
}
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ):
snake_case__ = "bloom"
snake_case__ = ["past_key_values"]
snake_case__ = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
}
def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any:
a_ : Optional[int] = vocab_size
# Backward compatibility with n_embed kwarg
a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE )
a_ : Optional[int] = hidden_size if n_embed is None else n_embed
a_ : int = n_layer
a_ : str = n_head
a_ : Optional[int] = layer_norm_epsilon
a_ : Dict = initializer_range
a_ : List[str] = use_cache
a_ : Dict = pretraining_tp
a_ : Optional[Any] = apply_residual_connection_post_layernorm
a_ : Optional[Any] = hidden_dropout
a_ : List[str] = attention_dropout
a_ : Dict = bos_token_id
a_ : Optional[int] = eos_token_id
a_ : Any = slow_but_exact
super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ):
snake_case__ = version.parse("1.12" )
def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]:
super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE )
if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ):
# TODO: how to do that better?
a_ : Tuple = 0
@property
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE )
a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def SCREAMING_SNAKE_CASE ( self : Any ) -> int:
return self._config.n_layer
@property
def SCREAMING_SNAKE_CASE ( self : int ) -> int:
return self._config.n_head
@property
def SCREAMING_SNAKE_CASE ( self : int ) -> float:
return 1e-3
def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
a_ , a_ : Any = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
a_ : str = seqlen + 2
a_ : Any = self._config.hidden_size // self.num_attention_heads
a_ : Optional[int] = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
a_ : Any = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
a_ : List[str] = [
(torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
a_ : Union[str, Any] = common_inputs['''attention_mask''']
if self.use_past:
a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype
a_ : List[Any] = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int:
return 13
| 666 | 1 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
_UpperCamelCase = logging.getLogger(__name__)
class __magic_name__ ( a_ ):
"""simple docstring"""
def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ):
'''simple docstring'''
super().__init__(
lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , )
__A : str = None
def lowerCAmelCase__ ( self , lowerCamelCase ):
'''simple docstring'''
logger.info("initializing retrieval" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("dist initialized" )
# needs to be set manually
__A : Any = self._infer_socket_ifname()
# avoid clash with the NCCL port
__A : Optional[int] = str(distributed_port + 1 )
__A : Optional[Any] = dist.new_group(ranks=lowerCamelCase , backend="gloo" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("dist not initialized / main" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return dist.get_rank(group=self.process_group ) == 0
def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=torch.floataa ):
'''simple docstring'''
__A : List[str] = torch.empty(lowerCamelCase , dtype=lowerCamelCase )
dist.scatter(lowerCamelCase , src=0 , scatter_list=lowerCamelCase , group=self.process_group )
return target_tensor
def lowerCAmelCase__ ( self ):
'''simple docstring'''
__A : Union[str, Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__A : Optional[Any] = next((addr for addr in addrs if addr.startswith("e" )) , lowerCamelCase )
return ifname
def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
if not dist.is_initialized():
__A : str = self._main_retrieve(lowerCamelCase , lowerCamelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase )
# distributed training
__A : List[str] = dist.get_world_size(group=self.process_group )
# gather logic
__A : List[Any] = None
if self._is_main():
__A : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCamelCase )]
dist.gather(torch.tensor(lowerCamelCase ) , dst=0 , gather_list=lowerCamelCase , group=self.process_group )
# scatter logic
__A : Optional[int] = question_hidden_states.shape[0]
__A : Dict = []
__A : List[str] = []
if self._is_main():
assert len(lowerCamelCase ) == world_size
__A : int = self._main_retrieve(torch.cat(lowerCamelCase ).numpy() , lowerCamelCase )
__A : Optional[int] = torch.tensor(lowerCamelCase ), torch.tensor(lowerCamelCase )
__A : Optional[Any] = self._chunk_tensor(lowerCamelCase , lowerCamelCase )
__A : int = self._chunk_tensor(lowerCamelCase , lowerCamelCase )
__A : Optional[Any] = self._scattered(lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa )
__A : int = self._scattered(lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCamelCase )
| 111 |
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def lowerCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : list[int] ,lowerCamelCase : int ):
_A : Optional[Any] = [0] * no_of_processes
_A : List[Any] = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(lowerCamelCase ):
_A : int = burst_time[i]
_A : list[int] = []
_A : Tuple = 0
_A : Dict = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
_A : Optional[int] = []
_A : Optional[int] = -1
for i in range(lowerCamelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(lowerCamelCase )
if len(lowerCamelCase ) > 0:
_A : List[str] = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
_A : Tuple = i
total_time += burst_time[target_process]
completed += 1
_A : str = 0
_A : Optional[Any] = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowerCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : int ,lowerCamelCase : list[int] ):
_A : List[str] = [0] * no_of_processes
for i in range(lowerCamelCase ):
_A : Optional[int] = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print('''[TEST CASE 01]''')
A : int = 4
A : Any = [2, 5, 3, 7]
A : str = [0, 0, 0, 0]
A : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
A : Dict = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''')
for i, process_id in enumerate(list(range(1, 5))):
print(
f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 128 | 0 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class _SCREAMING_SNAKE_CASE (unittest.TestCase ):
def __snake_case ( self : List[Any] )->None:
__SCREAMING_SNAKE_CASE : int = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
__SCREAMING_SNAKE_CASE : Union[str, Any] = Vector()
def __snake_case ( self : int )->None:
__SCREAMING_SNAKE_CASE : Any = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCamelCase ) , "(0,0,0,0,0,1)" )
def __snake_case ( self : List[Any] )->None:
__SCREAMING_SNAKE_CASE : int = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCamelCase ) , 4 )
def __snake_case ( self : str )->None:
__SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2] )
__SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 2, 3, 4, 5] )
__SCREAMING_SNAKE_CASE : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
__SCREAMING_SNAKE_CASE : str = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 )
def __snake_case ( self : Dict )->None:
__SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 2, 3] )
__SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def __snake_case ( self : Union[str, Any] )->None:
__SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2, 3] )
__SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def __snake_case ( self : Union[str, Any] )->None:
__SCREAMING_SNAKE_CASE : Any = Vector([1, 2, 3] )
__SCREAMING_SNAKE_CASE : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
__SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" )
self.assertEqual((a * b) , 0 )
def __snake_case ( self : int )->None:
self.assertEqual(str(zero_vector(1_0 ) ).count("0" ) , 1_0 )
def __snake_case ( self : Optional[int] )->None:
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" )
def __snake_case ( self : int )->None:
__SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 2, 3] )
__SCREAMING_SNAKE_CASE : str = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCamelCase , UpperCamelCase ) ) , "(3,4,7)" )
def __snake_case ( self : Any )->None:
__SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 0, 0, 0, 0, 0] )
__SCREAMING_SNAKE_CASE : Tuple = x.copy()
self.assertEqual(str(UpperCamelCase ) , str(UpperCamelCase ) )
def __snake_case ( self : List[str] )->None:
__SCREAMING_SNAKE_CASE : Optional[int] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCamelCase ) , "(0,1,0)" )
def __snake_case ( self : int )->None:
__SCREAMING_SNAKE_CASE : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(UpperCamelCase ) )
def __snake_case ( self : Optional[int] )->None:
__SCREAMING_SNAKE_CASE : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__SCREAMING_SNAKE_CASE : List[Any] = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCamelCase , UpperCamelCase ) )
def __snake_case ( self : Any )->None:
__SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__SCREAMING_SNAKE_CASE : int = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase , UpperCamelCase ) )
def __snake_case ( self : Optional[Any] )->None:
__SCREAMING_SNAKE_CASE : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def __snake_case ( self : Optional[Any] )->None:
__SCREAMING_SNAKE_CASE : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
__SCREAMING_SNAKE_CASE : str = Vector([1, 2, 3] )
self.assertEqual("(14,32,50)" , str(a * x ) )
self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) )
def __snake_case ( self : List[str] )->None:
__SCREAMING_SNAKE_CASE : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(UpperCamelCase ) )
def __snake_case ( self : int )->None:
__SCREAMING_SNAKE_CASE : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 )
def __snake_case ( self : Optional[int] )->None:
__SCREAMING_SNAKE_CASE : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__SCREAMING_SNAKE_CASE : Tuple = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 )
self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) )
def __snake_case ( self : Any )->None:
__SCREAMING_SNAKE_CASE : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__SCREAMING_SNAKE_CASE : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 )
self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) )
def __snake_case ( self : str )->None:
self.assertEqual(
"|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 447 |
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class _SCREAMING_SNAKE_CASE :
pass
| 447 | 1 |
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
lowercase__ = True
except (ImportError, ModuleNotFoundError):
lowercase__ = False
if NLTK_AVAILABLE:
with FileLock(""".lock""") as lock:
nltk.download("""punkt""", quiet=True)
def __lowerCamelCase ( __UpperCamelCase ) -> str:
"""simple docstring"""
re.sub("<n>" , "" , __UpperCamelCase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(__UpperCamelCase ) )
| 610 |
"""simple docstring"""
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowercase__ = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None ) -> Tuple:
"""simple docstring"""
require_version(deps[pkg] , __UpperCamelCase )
| 610 | 1 |
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> bool:
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> bool:
_UpperCAmelCase = credit_card_number
_UpperCAmelCase = 0
_UpperCAmelCase = len(__snake_case ) - 2
for i in range(__snake_case , -1 , -2 ):
# double the value of every second digit
_UpperCAmelCase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 1_0
digit += 1
_UpperCAmelCase = cc_number[:i] + str(__snake_case ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__snake_case ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 1_0 == 0
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> bool:
_UpperCAmelCase = f"""{credit_card_number} is an invalid credit card number because"""
if not credit_card_number.isdigit():
print(f"""{error_message} it has nonnumerical characters.""" )
return False
if not 1_3 <= len(__snake_case ) <= 1_6:
print(f"""{error_message} of its length.""" )
return False
if not validate_initial_digits(__snake_case ):
print(f"""{error_message} of its first two digits.""" )
return False
if not luhn_validation(__snake_case ):
print(f"""{error_message} it fails the Luhn check.""" )
return False
print(f"""{credit_card_number} is a valid credit card number.""" )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number('''4111111111111111''')
validate_credit_card_number('''32323''') | 708 |
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(UpperCAmelCase ) , '''Tatoeba directory does not exist.''' )
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCamelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
return TatoebaConverter(save_dir=lowerCamelCase )
@slow
def lowerCamelCase ( self : Tuple ) -> int:
"""simple docstring"""
self.resolver.convert_models(["""heb-eng"""] )
@slow
def lowerCamelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=lowerCamelCase )
assert mmeta["long_pair"] == "heb-eng" | 402 | 0 |
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , _a , _a , _a ) -> List[str]:
_a : List[Any] = name
_a : List[str] = value
_a : List[str] = weight
def __repr__( self ) -> Optional[int]:
return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"""
def __lowercase ( self ) -> List[Any]:
return self.value
def __lowercase ( self ) -> int:
return self.name
def __lowercase ( self ) -> Optional[int]:
return self.weight
def __lowercase ( self ) -> Optional[Any]:
return self.value / self.weight
def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]:
"""simple docstring"""
_a : Optional[int] = []
for i in range(len(__a ) ):
menu.append(Things(name[i] ,value[i] ,weight[i] ) )
return menu
def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]:
"""simple docstring"""
_a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a )
_a : Any = []
_a , _a : Optional[int] = 0.0, 0.0
for i in range(len(__a ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def __UpperCAmelCase ( ) -> int:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
'''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''',
'''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : int = "mobilenet_v1"
def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]:
super().__init__(**_a )
if depth_multiplier <= 0:
raise ValueError('''depth_multiplier must be greater than zero.''' )
_a : Tuple = num_channels
_a : str = image_size
_a : Tuple = depth_multiplier
_a : Any = min_depth
_a : int = hidden_act
_a : Optional[Any] = tf_padding
_a : str = classifier_dropout_prob
_a : Optional[int] = initializer_range
_a : Any = layer_norm_eps
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : str = version.parse("1.11" )
@property
def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([('''pixel_values''', {0: '''batch'''})] )
@property
def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([('''logits''', {0: '''batch'''})] )
else:
return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] )
@property
def __lowercase ( self ) -> float:
return 1e-4
| 14 | 1 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
__lowercase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
__lowercase : Any = 256
class _A ( snake_case ):
'''simple docstring'''
__lowerCamelCase : Tuple = ['''melgan''']
def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,):
'''simple docstring'''
super().__init__()
# From MELGAN
snake_case : str = math.log(1E-5 ) # Matches MelGAN training.
snake_case : List[Any] = 4.0 # Largest value for most examples
snake_case : Optional[int] = 128
self.register_modules(
notes_encoder=SCREAMING_SNAKE_CASE_ ,continuous_encoder=SCREAMING_SNAKE_CASE_ ,decoder=SCREAMING_SNAKE_CASE_ ,scheduler=SCREAMING_SNAKE_CASE_ ,melgan=SCREAMING_SNAKE_CASE_ ,)
def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=(-1.0, 1.0) ,SCREAMING_SNAKE_CASE_=False ):
'''simple docstring'''
snake_case , snake_case : int = output_range
if clip:
snake_case : str = torch.clip(SCREAMING_SNAKE_CASE_ ,self.min_value ,self.max_value )
# Scale to [0, 1].
snake_case : Dict = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=(-1.0, 1.0) ,SCREAMING_SNAKE_CASE_=False ):
'''simple docstring'''
snake_case , snake_case : Any = input_range
snake_case : Optional[Any] = torch.clip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if clip else outputs
# Scale to [0, 1].
snake_case : Any = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case : Any = input_tokens > 0
snake_case , snake_case : List[Any] = self.notes_encoder(
encoder_input_tokens=SCREAMING_SNAKE_CASE_ ,encoder_inputs_mask=SCREAMING_SNAKE_CASE_ )
snake_case , snake_case : Any = self.continuous_encoder(
encoder_inputs=SCREAMING_SNAKE_CASE_ ,encoder_inputs_mask=SCREAMING_SNAKE_CASE_ )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case : Dict = noise_time
if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ):
snake_case : List[str] = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device )
elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0:
snake_case : Tuple = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
snake_case : Optional[Any] = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device )
snake_case : str = self.decoder(
encodings_and_masks=SCREAMING_SNAKE_CASE_ ,decoder_input_tokens=SCREAMING_SNAKE_CASE_ ,decoder_noise_time=SCREAMING_SNAKE_CASE_ )
return logits
@torch.no_grad()
def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 100 ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = "numpy" ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 1 ,):
'''simple docstring'''
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(SCREAMING_SNAKE_CASE_ )}.""" )
snake_case : Any = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa )
snake_case : str = np.zeros([1, 0, self.n_dims] ,np.floataa )
snake_case : Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=SCREAMING_SNAKE_CASE_ ,device=self.device )
for i, encoder_input_tokens in enumerate(SCREAMING_SNAKE_CASE_ ):
if i == 0:
snake_case : List[Any] = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device ,dtype=self.decoder.dtype )
# The first chunk has no previous context.
snake_case : Any = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=SCREAMING_SNAKE_CASE_ ,device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
snake_case : List[Any] = ones
snake_case : str = self.scale_features(
SCREAMING_SNAKE_CASE_ ,output_range=[-1.0, 1.0] ,clip=SCREAMING_SNAKE_CASE_ )
snake_case : List[str] = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=SCREAMING_SNAKE_CASE_ ,continuous_mask=SCREAMING_SNAKE_CASE_ ,)
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
snake_case : int = randn_tensor(
shape=encoder_continuous_inputs.shape ,generator=SCREAMING_SNAKE_CASE_ ,device=self.device ,dtype=self.decoder.dtype ,)
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
snake_case : Tuple = self.decode(
encodings_and_masks=SCREAMING_SNAKE_CASE_ ,input_tokens=SCREAMING_SNAKE_CASE_ ,noise_time=t / self.scheduler.config.num_train_timesteps ,)
# Compute previous output: x_t -> x_t-1
snake_case : Optional[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ).prev_sample
snake_case : List[Any] = self.scale_to_features(SCREAMING_SNAKE_CASE_ ,input_range=[-1.0, 1.0] )
snake_case : str = mel[:1]
snake_case : Dict = mel.cpu().float().numpy()
snake_case : Optional[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )
logger.info("""Generated segment""" ,SCREAMING_SNAKE_CASE_ )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
"""Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
"""Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" )
if output_type == "numpy":
snake_case : List[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
snake_case : List[Any] = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE_ )
| 315 |
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def lowercase ( __A : bytes , __A : int ) -> np.array:
'''simple docstring'''
snake_case : List[str] = f"""{sampling_rate}"""
snake_case : Union[str, Any] = """1"""
snake_case : List[str] = """f32le"""
snake_case : Optional[Any] = [
"""ffmpeg""",
"""-i""",
"""pipe:0""",
"""-ac""",
ac,
"""-ar""",
ar,
"""-f""",
format_for_conversion,
"""-hide_banner""",
"""-loglevel""",
"""quiet""",
"""pipe:1""",
]
try:
with subprocess.Popen(__A , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
snake_case : str = ffmpeg_process.communicate(__A )
except FileNotFoundError as error:
raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error
snake_case : int = output_stream[0]
snake_case : Tuple = np.frombuffer(__A , np.floataa )
if audio.shape[0] == 0:
raise ValueError("""Malformed soundfile""" )
return audio
def lowercase ( __A : int , __A : float , __A : str = "f32le" , ) -> Optional[Any]:
'''simple docstring'''
snake_case : Dict = f"""{sampling_rate}"""
snake_case : int = """1"""
if format_for_conversion == "s16le":
snake_case : Dict = 2
elif format_for_conversion == "f32le":
snake_case : Optional[Any] = 4
else:
raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" )
snake_case : Dict = platform.system()
if system == "Linux":
snake_case : List[str] = """alsa"""
snake_case : Union[str, Any] = """default"""
elif system == "Darwin":
snake_case : Optional[int] = """avfoundation"""
snake_case : str = """:0"""
elif system == "Windows":
snake_case : List[str] = """dshow"""
snake_case : Union[str, Any] = """default"""
snake_case : Union[str, Any] = [
"""ffmpeg""",
"""-f""",
format_,
"""-i""",
input_,
"""-ac""",
ac,
"""-ar""",
ar,
"""-f""",
format_for_conversion,
"""-fflags""",
"""nobuffer""",
"""-hide_banner""",
"""-loglevel""",
"""quiet""",
"""pipe:1""",
]
snake_case : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
snake_case : Optional[Any] = _ffmpeg_stream(__A , __A )
for item in iterator:
yield item
def lowercase ( __A : int , __A : float , __A : Optional[int] = None , __A : Optional[Union[Tuple[float, float], float]] = None , __A : str = "f32le" , ) -> Optional[Any]:
'''simple docstring'''
if stream_chunk_s is not None:
snake_case : List[str] = stream_chunk_s
else:
snake_case : Tuple = chunk_length_s
snake_case : Optional[Any] = ffmpeg_microphone(__A , __A , format_for_conversion=__A )
if format_for_conversion == "s16le":
snake_case : List[Any] = np.intaa
snake_case : Dict = 2
elif format_for_conversion == "f32le":
snake_case : List[Any] = np.floataa
snake_case : Optional[Any] = 4
else:
raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" )
if stride_length_s is None:
snake_case : Tuple = chunk_length_s / 6
snake_case : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(__A , (int, float) ):
snake_case : int = [stride_length_s, stride_length_s]
snake_case : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
snake_case : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
snake_case : str = datetime.datetime.now()
snake_case : Tuple = datetime.timedelta(seconds=__A )
for item in chunk_bytes_iter(__A , __A , stride=(stride_left, stride_right) , stream=__A ):
# Put everything back in numpy scale
snake_case : List[str] = np.frombuffer(item["""raw"""] , dtype=__A )
snake_case : List[Any] = (
item["""stride"""][0] // size_of_sample,
item["""stride"""][1] // size_of_sample,
)
snake_case : Tuple = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def lowercase ( __A : Optional[Any] , __A : int , __A : Tuple[int, int] , __A : bool = False ) -> List[Any]:
'''simple docstring'''
snake_case : Optional[Any] = b""""""
snake_case , snake_case : str = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" )
snake_case : List[Any] = 0
for raw in iterator:
acc += raw
if stream and len(__A ) < chunk_len:
snake_case : Dict = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(__A ) >= chunk_len:
# We are flushing the accumulator
snake_case : str = (_stride_left, stride_right)
snake_case : str = {"""raw""": acc[:chunk_len], """stride""": stride}
if stream:
snake_case : Optional[Any] = False
yield item
snake_case : int = stride_left
snake_case : Union[str, Any] = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(__A ) > stride_left:
snake_case : Dict = {"""raw""": acc, """stride""": (_stride_left, 0)}
if stream:
snake_case : Tuple = False
yield item
def lowercase ( __A : Optional[int] , __A : int ) -> List[str]:
'''simple docstring'''
snake_case : List[str] = 2**24 # 16Mo
try:
with subprocess.Popen(__A , stdout=subprocess.PIPE , bufsize=__A ) as ffmpeg_process:
while True:
snake_case : Union[str, Any] = ffmpeg_process.stdout.read(__A )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
| 315 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
__snake_case : Optional[int] = None
__snake_case : int = logging.get_logger(__name__)
__snake_case : Dict = "▁"
__snake_case : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
__snake_case : Optional[int] = {
"vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"},
"tokenizer_file": {
"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json"
},
}
__snake_case : List[Any] = {
"google/pegasus-xsum": 512,
}
class A ( a ):
__UpperCAmelCase : Any = VOCAB_FILES_NAMES
__UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Dict = PegasusTokenizer
__UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_=None , snake_case_=None , snake_case_="<pad>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<mask_2>" , snake_case_="<mask_1>" , snake_case_=None , snake_case_=1_0_3 , **snake_case_ , ) -> List[str]:
_a = offset
if additional_special_tokens is not None:
if not isinstance(snake_case_ , snake_case_ ):
raise TypeError(
F'''additional_special_tokens should be of type {type(snake_case_ )}, but is'''
F''' {type(snake_case_ )}''' )
_a = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F'''<unk_{i}>''' for i in range(len(snake_case_ ) , self.offset - 1 )
]
if len(set(snake_case_ ) ) != len(snake_case_ ):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' )
_a = additional_special_tokens_extended
else:
_a = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )]
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , pad_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , mask_token=snake_case_ , mask_token_sent=snake_case_ , offset=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , )
_a = vocab_file
_a = False if not self.vocab_file else True
def __lowerCAmelCase ( self , snake_case_ ) -> Union[str, Any]:
_a = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"There should be 3 special tokens: mask_token, pad_token, and eos_token +"
F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' )
return [1 if x in all_special_ids else 0 for x in seq]
def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> Optional[int]:
if already_has_special_tokens:
return self._special_token_mask(snake_case_ )
elif token_ids_a is None:
return self._special_token_mask(snake_case_ ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> int:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Any:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(snake_case_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_a = os.path.join(
snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ):
copyfile(self.vocab_file , snake_case_ )
return (out_vocab_file,)
| 131 |
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def _snake_case ( lowercase__ ):
_lowerCamelCase : int = int(number**0.5 )
return number == sq * sq
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
_lowerCamelCase : int = x_den * y_den * z_den
_lowerCamelCase : int = gcd(lowercase__ , lowercase__ )
top //= hcf
bottom //= hcf
return top, bottom
def _snake_case ( lowercase__ = 35 ):
_lowerCamelCase : set = set()
_lowerCamelCase : int
_lowerCamelCase : Fraction = Fraction(0 )
_lowerCamelCase : tuple[int, int]
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
_lowerCamelCase : int = x_num * y_den + x_den * y_num
_lowerCamelCase : List[Any] = x_den * y_den
_lowerCamelCase : int = gcd(lowercase__ , lowercase__ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_lowerCamelCase : Optional[Any] = add_three(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
unique_s.add(lowercase__ )
# n=2
_lowerCamelCase : Tuple = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
_lowerCamelCase : Dict = x_den * x_den * y_den * y_den
if is_sq(lowercase__ ) and is_sq(lowercase__ ):
_lowerCamelCase : Dict = int(sqrt(lowercase__ ) )
_lowerCamelCase : Optional[Any] = int(sqrt(lowercase__ ) )
_lowerCamelCase : List[Any] = gcd(lowercase__ , lowercase__ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_lowerCamelCase : Union[str, Any] = add_three(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
unique_s.add(lowercase__ )
# n=-1
_lowerCamelCase : List[str] = x_num * y_num
_lowerCamelCase : int = x_den * y_num + x_num * y_den
_lowerCamelCase : Dict = gcd(lowercase__ , lowercase__ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_lowerCamelCase : List[str] = add_three(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
unique_s.add(lowercase__ )
# n=2
_lowerCamelCase : Tuple = x_num * x_num * y_num * y_num
_lowerCamelCase : List[str] = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(lowercase__ ) and is_sq(lowercase__ ):
_lowerCamelCase : Optional[int] = int(sqrt(lowercase__ ) )
_lowerCamelCase : Optional[int] = int(sqrt(lowercase__ ) )
_lowerCamelCase : Dict = gcd(lowercase__ , lowercase__ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_lowerCamelCase : int = add_three(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
unique_s.add(lowercase__ )
for num, den in unique_s:
total += Fraction(lowercase__ , lowercase__ )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F"{solution() = }") | 630 | 0 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
A__ : Any =logging.get_logger(__name__)
A__ : Any ={
'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json',
}
class __A ( _SCREAMING_SNAKE_CASE ):
lowerCamelCase ='''instructblip_vision_model'''
def __init__( self : Tuple , lowerCamelCase : Optional[int]=14_08 , lowerCamelCase : str=61_44 , lowerCamelCase : List[Any]=39 , lowerCamelCase : Optional[Any]=16 , lowerCamelCase : Optional[int]=2_24 , lowerCamelCase : Any=14 , lowerCamelCase : str="gelu" , lowerCamelCase : str=1e-6 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Dict=1e-1_0 , lowerCamelCase : Optional[Any]=True , **lowerCamelCase : List[str] , ):
"""simple docstring"""
super().__init__(**lowerCamelCase )
__A : int = hidden_size
__A : List[str] = intermediate_size
__A : Tuple = num_hidden_layers
__A : str = num_attention_heads
__A : str = patch_size
__A : Dict = image_size
__A : Any = initializer_range
__A : int = attention_dropout
__A : str = layer_norm_eps
__A : Optional[Any] = hidden_act
__A : List[str] = qkv_bias
@classmethod
def lowercase_( cls : Union[str, Any] , lowerCamelCase : Union[str, os.PathLike] , **lowerCamelCase : str ):
"""simple docstring"""
cls._set_token_in_kwargs(lowerCamelCase )
__A , __A : int = cls.get_config_dict(lowerCamelCase , **lowerCamelCase )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
__A : Tuple = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowerCamelCase , **lowerCamelCase )
class __A ( _SCREAMING_SNAKE_CASE ):
lowerCamelCase ='''instructblip_qformer'''
def __init__( self : Tuple , lowerCamelCase : int=3_05_22 , lowerCamelCase : Tuple=7_68 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Tuple=12 , lowerCamelCase : str=30_72 , lowerCamelCase : int="gelu" , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int=5_12 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : List[str]=1e-1_2 , lowerCamelCase : int=0 , lowerCamelCase : List[str]="absolute" , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : List[Any]=14_08 , **lowerCamelCase : List[Any] , ):
"""simple docstring"""
super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase )
__A : List[Any] = vocab_size
__A : List[str] = hidden_size
__A : str = num_hidden_layers
__A : str = num_attention_heads
__A : List[Any] = hidden_act
__A : str = intermediate_size
__A : List[Any] = hidden_dropout_prob
__A : Tuple = attention_probs_dropout_prob
__A : Optional[Any] = max_position_embeddings
__A : Optional[int] = initializer_range
__A : Any = layer_norm_eps
__A : List[Any] = position_embedding_type
__A : List[str] = cross_attention_frequency
__A : Dict = encoder_hidden_size
@classmethod
def lowercase_( cls : Any , lowerCamelCase : Union[str, os.PathLike] , **lowerCamelCase : Union[str, Any] ):
"""simple docstring"""
cls._set_token_in_kwargs(lowerCamelCase )
__A , __A : List[str] = cls.get_config_dict(lowerCamelCase , **lowerCamelCase )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
__A : Optional[int] = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowerCamelCase , **lowerCamelCase )
class __A ( _SCREAMING_SNAKE_CASE ):
lowerCamelCase ='''instructblip'''
lowerCamelCase =True
def __init__( self : Any , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : Any=None , lowerCamelCase : Any=32 , **lowerCamelCase : int ):
"""simple docstring"""
super().__init__(**lowerCamelCase )
if vision_config is None:
__A : int = {}
logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" )
if qformer_config is None:
__A : Dict = {}
logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" )
if text_config is None:
__A : Any = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
__A : List[Any] = InstructBlipVisionConfig(**lowerCamelCase )
__A : Union[str, Any] = InstructBlipQFormerConfig(**lowerCamelCase )
__A : Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
__A : List[str] = CONFIG_MAPPING[text_model_type](**lowerCamelCase )
__A : Optional[int] = self.text_config.tie_word_embeddings
__A : Dict = self.text_config.is_encoder_decoder
__A : Optional[int] = num_query_tokens
__A : int = self.vision_config.hidden_size
__A : str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__A : Optional[Any] = 1.0
__A : Optional[int] = 0.02
@classmethod
def lowercase_( cls : List[str] , lowerCamelCase : InstructBlipVisionConfig , lowerCamelCase : InstructBlipQFormerConfig , lowerCamelCase : PretrainedConfig , **lowerCamelCase : Optional[int] , ):
"""simple docstring"""
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCamelCase , )
def lowercase_( self : List[Any] ):
"""simple docstring"""
__A : Tuple = copy.deepcopy(self.__dict__ )
__A : Optional[int] = self.vision_config.to_dict()
__A : Optional[Any] = self.qformer_config.to_dict()
__A : List[Any] = self.text_config.to_dict()
__A : Optional[int] = self.__class__.model_type
return output
| 499 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def A_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int:
"""simple docstring"""
__A : Optional[int] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"""
__A : Tuple = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert("""RGB""" )
__A : Optional[Any] = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ),
] )
__A : Optional[int] = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE )
return image
def A_ ( __SCREAMING_SNAKE_CASE : int ) -> Optional[int]:
"""simple docstring"""
if "visual_encoder" in key:
__A : Dict = re.sub("""visual_encoder*""" , """vision_model.encoder""" , __SCREAMING_SNAKE_CASE )
if "blocks" in key:
__A : Dict = re.sub(R"""blocks""" , """layers""" , __SCREAMING_SNAKE_CASE )
if "attn" in key:
__A : Union[str, Any] = re.sub(R"""attn""" , """self_attn""" , __SCREAMING_SNAKE_CASE )
if "norm1" in key:
__A : str = re.sub(R"""norm1""" , """layer_norm1""" , __SCREAMING_SNAKE_CASE )
if "norm2" in key:
__A : List[Any] = re.sub(R"""norm2""" , """layer_norm2""" , __SCREAMING_SNAKE_CASE )
if "encoder.norm" in key:
__A : Optional[Any] = re.sub(R"""encoder.norm""" , """post_layernorm""" , __SCREAMING_SNAKE_CASE )
if "encoder.patch_embed.proj" in key:
__A : Optional[int] = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , __SCREAMING_SNAKE_CASE )
if "encoder.pos_embed" in key:
__A : Union[str, Any] = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , __SCREAMING_SNAKE_CASE )
if "encoder.cls_token" in key:
__A : Tuple = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , __SCREAMING_SNAKE_CASE )
if "self_attn" in key:
__A : Tuple = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , __SCREAMING_SNAKE_CASE )
return key
@torch.no_grad()
def A_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=None ) -> int:
"""simple docstring"""
if config_path is not None:
__A : Any = BlipConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
else:
__A : List[Any] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
__A : List[Any] = BlipForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval()
__A : List[str] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth"""
__A : List[str] = blip_decoder(pretrained=__SCREAMING_SNAKE_CASE , image_size=384 , vit="""base""" )
__A : List[str] = pt_model.eval()
__A : int = pt_model.state_dict()
for key in modified_state_dict.copy():
__A : Tuple = modified_state_dict.pop(__SCREAMING_SNAKE_CASE )
__A : Dict = rename_key(__SCREAMING_SNAKE_CASE )
__A : Tuple = value
hf_model.load_state_dict(__SCREAMING_SNAKE_CASE )
__A : List[Any] = 384
__A : Dict = load_demo_image(image_size=__SCREAMING_SNAKE_CASE , device="""cpu""" )
__A : Dict = BertTokenizer.from_pretrained("""bert-base-uncased""" )
__A : Optional[Any] = tokenizer(["""a picture of"""] ).input_ids
__A : int = hf_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
__A : str = hf_model.generate(__SCREAMING_SNAKE_CASE )
assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(__SCREAMING_SNAKE_CASE )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
__A : List[Any] = (
"""https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth"""
)
__A : List[Any] = blip_vqa(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit="""base""" )
vqa_model.eval()
__A : List[Any] = vqa_model.state_dict()
for key in modified_state_dict.copy():
__A : List[Any] = modified_state_dict.pop(__SCREAMING_SNAKE_CASE )
__A : int = rename_key(__SCREAMING_SNAKE_CASE )
__A : Union[str, Any] = value
__A : Any = BlipForQuestionAnswering(__SCREAMING_SNAKE_CASE )
hf_vqa_model.load_state_dict(__SCREAMING_SNAKE_CASE )
__A : Tuple = ["""How many dogs are in this image?"""]
__A : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids
__A : List[str] = hf_vqa_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" )
__A : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth"""
__A : List[str] = blip_itm(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit="""base""" )
itm_model.eval()
__A : List[str] = itm_model.state_dict()
for key in modified_state_dict.copy():
__A : Optional[Any] = modified_state_dict.pop(__SCREAMING_SNAKE_CASE )
__A : str = rename_key(__SCREAMING_SNAKE_CASE )
__A : Any = value
__A : List[Any] = BlipForImageTextRetrieval(__SCREAMING_SNAKE_CASE )
__A : Tuple = ["""A picture of a woman with a dog sitting in a beach"""]
__A : List[str] = tokenizer(
__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding="""max_length""" , truncation=__SCREAMING_SNAKE_CASE , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(__SCREAMING_SNAKE_CASE )
hf_itm_model.eval()
__A : Any = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE )
__A : Optional[Any] = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE )
assert out[0].item() == 0.2_110_687_494_277_954
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" )
if __name__ == "__main__":
A__ : Tuple =argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
A__ : Any =parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 499 | 1 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
lowerCamelCase : Dict =logging.get_logger(__name__)
class __a :
_lowerCAmelCase : str
_lowerCAmelCase : str = None
@staticmethod
def __lowercase ( ):
'''simple docstring'''
raise NotImplementedError
def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
raise NotImplementedError
def __lowercase ( self : str , SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
raise NotImplementedError
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' )
@classmethod
def __lowercase ( cls : Tuple ):
'''simple docstring'''
return F'`pip install {cls.pip_package or cls.name}`'
class __a ( A__ ):
_lowerCAmelCase : str = '''optuna'''
@staticmethod
def __lowercase ( ):
'''simple docstring'''
return is_optuna_available()
def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
return run_hp_search_optuna(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
return default_hp_space_optuna(SCREAMING_SNAKE_CASE )
class __a ( A__ ):
_lowerCAmelCase : Union[str, Any] = '''ray'''
_lowerCAmelCase : Any = '''\'ray[tune]\''''
@staticmethod
def __lowercase ( ):
'''simple docstring'''
return is_ray_available()
def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
return run_hp_search_ray(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
return default_hp_space_ray(SCREAMING_SNAKE_CASE )
class __a ( A__ ):
_lowerCAmelCase : Optional[int] = '''sigopt'''
@staticmethod
def __lowercase ( ):
'''simple docstring'''
return is_sigopt_available()
def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
return run_hp_search_sigopt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return default_hp_space_sigopt(SCREAMING_SNAKE_CASE )
class __a ( A__ ):
_lowerCAmelCase : Optional[int] = '''wandb'''
@staticmethod
def __lowercase ( ):
'''simple docstring'''
return is_wandb_available()
def __lowercase ( self : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
return run_hp_search_wandb(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return default_hp_space_wandb(SCREAMING_SNAKE_CASE )
lowerCamelCase : str ={
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def SCREAMING_SNAKE_CASE ( ) -> str:
UpperCamelCase__ : Dict = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(__lowerCAmelCase ) > 0:
UpperCamelCase__ : Optional[int] = available_backends[0].name
if len(__lowerCAmelCase ) > 1:
logger.info(
f'{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.' )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f' - To install {backend.name} run {backend.pip_install()}'
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) ) | 228 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCamelCase : List[Any] ={
'''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Optional[int] =[
'''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegaForCausalLM''',
'''MegaForMaskedLM''',
'''MegaForMultipleChoice''',
'''MegaForQuestionAnswering''',
'''MegaForSequenceClassification''',
'''MegaForTokenClassification''',
'''MegaModel''',
'''MegaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowerCamelCase : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 228 | 1 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> int:
lowerCAmelCase__ : Any = []
for part_id in partition_order:
lowerCAmelCase__ : Tuple = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect()
for row_idx, row in enumerate(UpperCamelCase ):
expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCAmelCase ( ) -> Union[str, Any]:
lowerCAmelCase__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ : List[str] = spark.range(100 ).repartition(1 )
lowerCAmelCase__ : Dict = Spark(UpperCamelCase )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCAmelCase ( ) -> Any:
lowerCAmelCase__ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ : List[Any] = spark.range(10 ).repartition(2 )
lowerCAmelCase__ : Union[str, Any] = [1, 0]
lowerCAmelCase__ : int = _generate_iterable_examples(UpperCamelCase , UpperCamelCase ) # Reverse the partitions.
lowerCAmelCase__ : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , UpperCamelCase )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCAmelCase ( ) -> List[str]:
lowerCAmelCase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ : List[str] = spark.range(10 ).repartition(1 )
lowerCAmelCase__ : Dict = SparkExamplesIterable(UpperCamelCase )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(UpperCamelCase ):
assert row_id == F"""0_{i}"""
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCAmelCase ( ) -> Dict:
lowerCAmelCase__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ : Tuple = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch('''numpy.random.Generator''' ) as generator_mock:
lowerCAmelCase__ : str = lambda UpperCamelCase : x.reverse()
lowerCAmelCase__ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [2, 1, 0] )
lowerCAmelCase__ : Dict = SparkExamplesIterable(UpperCamelCase ).shuffle_data_sources(UpperCamelCase )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(UpperCamelCase ):
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCAmelCase ( ) -> str:
lowerCAmelCase__ : Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ : str = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
lowerCAmelCase__ : Union[str, Any] = SparkExamplesIterable(UpperCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowerCAmelCase__ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [0, 2] )
for i, (row_id, row_dict) in enumerate(UpperCamelCase ):
lowerCAmelCase__ , lowerCAmelCase__ : Any = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
lowerCAmelCase__ : int = SparkExamplesIterable(UpperCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowerCAmelCase__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [1, 3] )
for i, (row_id, row_dict) in enumerate(UpperCamelCase ):
lowerCAmelCase__ , lowerCAmelCase__ : Dict = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCAmelCase ( ) -> Any:
lowerCAmelCase__ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ : int = spark.range(100 ).repartition(1 )
lowerCAmelCase__ : int = Spark(UpperCamelCase )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 706 |
lowerCAmelCase_ = 6_55_21
def __lowerCAmelCase ( UpperCamelCase ) -> int:
lowerCAmelCase__ : List[str] = 1
lowerCAmelCase__ : List[Any] = 0
for plain_chr in plain_text:
lowerCAmelCase__ : Union[str, Any] = (a + ord(UpperCamelCase )) % MOD_ADLER
lowerCAmelCase__ : Optional[Any] = (b + a) % MOD_ADLER
return (b << 16) | a
| 470 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowercase = logging.get_logger(__name__)
_lowercase = {
'''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''',
}
class __snake_case ( A__ , A__ ):
"""simple docstring"""
UpperCamelCase_ = 'resnet'
UpperCamelCase_ = ['basic', 'bottleneck']
def __init__( self : List[str] ,lowerCAmelCase__ : Any=3 ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Tuple=[2_56, 5_12, 10_24, 20_48] ,lowerCAmelCase__ : Union[str, Any]=[3, 4, 6, 3] ,lowerCAmelCase__ : Tuple="bottleneck" ,lowerCAmelCase__ : Dict="relu" ,lowerCAmelCase__ : Dict=False ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Tuple=None ,**lowerCAmelCase__ : List[str] ,) -> Any:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
if layer_type not in self.layer_types:
raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
lowerCAmelCase_ : int = num_channels
lowerCAmelCase_ : Optional[int] = embedding_size
lowerCAmelCase_ : List[Any] = hidden_sizes
lowerCAmelCase_ : List[str] = depths
lowerCAmelCase_ : Union[str, Any] = layer_type
lowerCAmelCase_ : Optional[Any] = hidden_act
lowerCAmelCase_ : Tuple = downsample_in_first_stage
lowerCAmelCase_ : Any = ["stem"] + [f'''stage{idx}''' for idx in range(1 ,len(lowerCamelCase__ ) + 1 )]
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_aligned_output_features_output_indices(
out_features=lowerCamelCase__ ,out_indices=lowerCamelCase__ ,stage_names=self.stage_names )
class __snake_case ( A__ ):
"""simple docstring"""
UpperCamelCase_ = version.parse('1.11' )
@property
def UpperCAmelCase_ ( self : Tuple ) -> List[str]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
return 1e-3
| 659 |
"""simple docstring"""
from __future__ import annotations
from math import ceil, floor, sqrt
def lowerCAmelCase_( lowercase_ : int = 2_00_00_00 ) -> int:
_lowerCamelCase = [0]
_lowerCamelCase = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
_lowerCamelCase = 0
# the area corresponding to the grid that gives the product closest to target
_lowerCamelCase = 0
# an estimate of b, using the quadratic formula
_lowerCamelCase = 42
# the largest integer less than b_estimate
_lowerCamelCase = 42
# the largest integer less than b_estimate
_lowerCamelCase = 42
# the triangle number corresponding to b_floor
_lowerCamelCase = 42
# the triangle number corresponding to b_ceil
_lowerCamelCase = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
_lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
_lowerCamelCase = floor(lowercase_ )
_lowerCamelCase = ceil(lowercase_ )
_lowerCamelCase = triangle_numbers[b_floor]
_lowerCamelCase = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
_lowerCamelCase = triangle_b_first_guess * triangle_a
_lowerCamelCase = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
_lowerCamelCase = triangle_b_second_guess * triangle_a
_lowerCamelCase = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F"""{solution() = }""")
| 661 | 0 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class _lowercase :
def __init__( self ):
snake_case__ : Optional[Any] =""""""
snake_case__ : List[str] =""""""
snake_case__ : Dict =[]
snake_case__ : Tuple =0
snake_case__ : Optional[int] =2_5_6
snake_case__ : str =0
snake_case__ : Any =0
snake_case__ : Tuple =0
snake_case__ : List[Any] =0
def lowercase__ ( self , a ):
snake_case__ : Union[str, Any] =cva.imread(a , 0 )
snake_case__ : Optional[int] =copy.deepcopy(self.img )
snake_case__ , snake_case__ , snake_case__ : Optional[Any] =plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" )
snake_case__ : Any =np.sum(a )
for i in range(len(a ) ):
snake_case__ : Any =x[i] / self.k
self.sk += prk
snake_case__ : Union[str, Any] =(self.L - 1) * self.sk
if self.rem != 0:
snake_case__ : List[Any] =int(last % last )
snake_case__ : str =int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(a )
snake_case__ : Tuple =int(np.ma.count(self.img ) / self.img[1].size )
snake_case__ : List[Any] =self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
snake_case__ : Any =self.img[j][i]
if num != self.last_list[num]:
snake_case__ : Union[str, Any] =self.last_list[num]
cva.imwrite("""output_data/output.jpg""" , self.img )
def lowercase__ ( self ):
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def lowercase__ ( self ):
cva.imshow("""Output-Image""" , self.img )
cva.imshow("""Input-Image""" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
__lowerCamelCase : Optional[Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""")
__lowerCamelCase : Union[str, Any] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 448 |
def A__ ( _a : list ):
'''simple docstring'''
if len(_a ) <= 1:
return [tuple(_a )]
snake_case__ : Optional[int] =[]
def generate(_a : int , _a : list ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , _a )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
snake_case__ , snake_case__ : Dict =arr[k - 1], arr[i]
else: # k is odd
snake_case__ , snake_case__ : int =arr[k - 1], arr[0]
generate(k - 1 , _a )
generate(len(_a ) , _a )
return res
if __name__ == "__main__":
__lowerCamelCase : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip()
__lowerCamelCase : Any = [int(item) for item in user_input.split(""",""")]
print(heaps(arr))
| 448 | 1 |
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""}
UpperCAmelCase_ = {
"""vocab_file""": {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""",
},
"""emoji_file""": {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""",
},
}
UpperCAmelCase_ = {
"""abeja/gpt-neox-japanese-2.7b""": 2_0_4_8,
}
def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :Any ) -> List[str]:
with open(a__ , '''r''' , encoding='''utf-8''' ) as f:
_A = json.loads(f.read() )
_A = collections.OrderedDict()
_A = collections.OrderedDict()
_A = collections.OrderedDict()
with open(a__ , '''r''' , encoding='''utf-8''' ) as f:
_A = f.readlines()
_A = [[t.rstrip('''\n''' )] if (t == ',' or ',' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token]
for idx, b in enumerate(a__ ):
_A = b
_A = idx
for wd in b:
_A = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class lowerCamelCase__ ( lowercase_):
"""simple docstring"""
a__ : List[str] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = ['''input_ids''', '''attention_mask''']
def __init__( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : str="<|endoftext|>" , __lowerCAmelCase : List[str]="<|endoftext|>" , __lowerCAmelCase : Optional[Any]="<|startoftext|>" , __lowerCAmelCase : str="<|endoftext|>" , __lowerCAmelCase : Any=False , **__lowerCAmelCase : List[Any] , ) -> Optional[int]:
super().__init__(
unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , do_clean_text=__lowerCAmelCase , **__lowerCAmelCase , )
if not os.path.isfile(__lowerCAmelCase ):
raise ValueError(
f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'''
''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' )
if not os.path.isfile(__lowerCAmelCase ):
raise ValueError(
f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'''
''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' )
_A = do_clean_text
_A = load_vocab_and_emoji(__lowerCAmelCase , __lowerCAmelCase )
_A = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def snake_case_ ( self : Optional[int] ) -> List[str]:
return len(self.raw_vocab )
def snake_case_ ( self : str ) -> str:
return dict(self.raw_vocab , **self.added_tokens_encoder )
def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] ) -> List[str]:
return self.subword_tokenizer.tokenize(__lowerCAmelCase , clean=self.do_clean_text )
def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] ) -> int:
return self.vocab.get(__lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case_ ( self : List[str] , __lowerCAmelCase : Tuple ) -> Optional[int]:
return self.subword_tokenizer.convert_id_to_token(__lowerCAmelCase )
def snake_case_ ( self : List[Any] , __lowerCAmelCase : Dict ) -> Any:
_A = ''.join(__lowerCAmelCase ).strip()
return out_string
def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : "Conversation" ) -> Optional[int]:
_A = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [self.eos_token_id] )
if len(__lowerCAmelCase ) > self.model_max_length:
_A = input_ids[-self.model_max_length :]
return input_ids
def snake_case_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Optional[int]:
_A = 0
if os.path.isdir(__lowerCAmelCase ):
_A = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
_A = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] )
else:
_A = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file']
)
_A = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file']
)
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
''' Please check that the vocabulary is not corrupted!''' )
_A = token_index
writer.write(''','''.join(__lowerCAmelCase ) + '''\n''' )
index += 1
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
json.dump(self.emoji , __lowerCAmelCase )
return vocab_file, emoji_file
class lowerCamelCase__ ( lowercase_):
"""simple docstring"""
def __init__( self : str , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ) -> List[Any]:
_A = vocab # same as swe
_A = ids_to_tokens # same as bpe
_A = emoji
_A = np.max([len(__lowerCAmelCase ) for w in self.vocab.keys()] )
_A = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' )
_A = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' )
_A = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' )
_A = re.compile(
R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' )
_A = re.compile(
R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' )
_A = re.compile(
R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' )
_A = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'
_A = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'
_A = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} )
def __len__( self : int ) -> Union[str, Any]:
return len(self.ids_to_tokens )
def snake_case_ ( self : Dict , __lowerCAmelCase : List[str] ) -> List[str]:
_A = self.content_repattera.sub('''<URL>''' , __lowerCAmelCase )
_A = self.content_repattera.sub('''<EMAIL>''' , __lowerCAmelCase )
_A = self.content_repattera.sub('''<TEL>''' , __lowerCAmelCase )
_A = self.content_repattera.sub('''<DATE>''' , __lowerCAmelCase )
_A = self.content_repattera.sub('''<DATE>''' , __lowerCAmelCase )
_A = self.content_repattera.sub('''<PRICE>''' , __lowerCAmelCase )
_A = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
_A = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' )
return content
def snake_case_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> str:
_A = text.replace(''' ''' , '''<SP>''' )
_A = text.replace(''' ''' , '''<SP>''' )
_A = text.replace('''\r\n''' , '''<BR>''' )
_A = text.replace('''\n''' , '''<BR>''' )
_A = text.replace('''\r''' , '''<BR>''' )
_A = text.replace('''\t''' , '''<TAB>''' )
_A = text.replace('''—''' , '''ー''' )
_A = text.replace('''−''' , '''ー''' )
for k, v in self.emoji["emoji"].items():
if k in text:
_A = text.replace(__lowerCAmelCase , __lowerCAmelCase )
if clean:
_A = self.clean_text(__lowerCAmelCase )
def check_simbol(__lowerCAmelCase : Dict ):
_A = x.encode()
if len(__lowerCAmelCase ) == 1 and len(__lowerCAmelCase ) == 2:
_A = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xc_2_a_1 and c <= 0xc_2_b_f)
or (c >= 0xc_7_8_0 and c <= 0xc_7_8_3)
or (c >= 0xc_a_b_9 and c <= 0xc_b_b_f)
or (c >= 0xc_c_8_0 and c <= 0xc_d_a_2)
):
return True
return False
def checkuae(__lowerCAmelCase : List[Any] ):
_A = x.encode()
if len(__lowerCAmelCase ) == 1 and len(__lowerCAmelCase ) == 3:
_A = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xe_2_8_0_8_0 and c <= 0xe_2_b_0_7_f:
return True
return False
_A = 0
_A = []
while pos < len(__lowerCAmelCase ):
_A = min(len(__lowerCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3
_A = [] # (token_id, token, pos)
for e in range(__lowerCAmelCase , __lowerCAmelCase , -1 ):
_A = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__lowerCAmelCase ) > 2:
_A = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(__lowerCAmelCase ) > 0:
# the smallest token_id is adopted
_A = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x[0] )[0]
result.append(__lowerCAmelCase )
_A = e
else:
_A = pos + 1
_A = text[pos:end]
if check_simbol(__lowerCAmelCase ):
result.append('''<KIGOU>''' )
elif checkuae(__lowerCAmelCase ):
result.append('''<U2000U2BFF>''' )
else:
for i in wd.encode('''utf-8''' ):
result.append('''<|byte%d|>''' % i )
_A = end
return result
def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str="\n" ) -> Union[str, Any]:
_A = []
_A = []
_A = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(__lowerCAmelCase ) > 0:
words.append(bytearray(__lowerCAmelCase ).decode('''utf-8''' , errors='''replace''' ) )
_A = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['''emoji_inv'''][word] )
elif word == "<SP>":
words.append(''' ''' )
elif word == "<BR>":
words.append(__lowerCAmelCase )
elif word == "<TAB>":
words.append('''\t''' )
elif word == "<BLOCK>":
words.append('''▀''' )
elif word == "<KIGOU>":
words.append('''ǀ''' )
elif word == "<U2000U2BFF>":
words.append('''‖''' )
else:
words.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
words.append(bytearray(__lowerCAmelCase ).decode('''utf-8''' , errors='''replace''' ) )
_A = ''.join(__lowerCAmelCase )
return text
| 2 |
'''simple docstring'''
import copy
import random
from transformers import CLIPTokenizer
class SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
def __init__( self : int , *snake_case : Optional[Any] , **snake_case : Optional[int] ):
"""simple docstring"""
super().__init__(*snake_case , **snake_case )
_snake_case : Tuple = {}
def __UpperCAmelCase ( self : int , snake_case : List[Any] , *snake_case : Optional[Any] , **snake_case : List[Any] ):
"""simple docstring"""
_snake_case : str = super().add_tokens(snake_case , *snake_case , **snake_case )
if num_added_tokens == 0:
raise ValueError(
F"""The tokenizer already contains the token {placeholder_token}. Please pass a different"""
' `placeholder_token` that is not already in the tokenizer.' )
def __UpperCAmelCase ( self : Union[str, Any] , snake_case : Optional[int] , *snake_case : Dict , snake_case : int=1 , **snake_case : int ):
"""simple docstring"""
_snake_case : str = []
if num_vec_per_token == 1:
self.try_adding_tokens(snake_case , *snake_case , **snake_case )
output.append(snake_case )
else:
_snake_case : Optional[Any] = []
for i in range(snake_case ):
_snake_case : int = placeholder_token + F"""_{i}"""
self.try_adding_tokens(snake_case , *snake_case , **snake_case )
output.append(snake_case )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F"""The tokenizer already has placeholder token {token} that can get confused with"""
F""" {placeholder_token}keep placeholder tokens independent""" )
_snake_case : Dict = output
def __UpperCAmelCase ( self : Union[str, Any] , snake_case : str , snake_case : Dict=False , snake_case : List[str]=1.0 ):
"""simple docstring"""
if isinstance(snake_case , snake_case ):
_snake_case : int = []
for i in range(len(snake_case ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
_snake_case : Union[str, Any] = self.token_map[placeholder_token]
_snake_case : Any = tokens[: 1 + int(len(snake_case ) * prop_tokens_to_load )]
if vector_shuffle:
_snake_case : Union[str, Any] = copy.copy(snake_case )
random.shuffle(snake_case )
_snake_case : List[str] = text.replace(snake_case , ' '.join(snake_case ) )
return text
def __call__( self : List[Any] , snake_case : Optional[int] , *snake_case : Any , snake_case : int=False , snake_case : str=1.0 , **snake_case : Optional[Any] ):
"""simple docstring"""
return super().__call__(
self.replace_placeholder_tokens_in_text(
snake_case , vector_shuffle=snake_case , prop_tokens_to_load=snake_case ) , *snake_case , **snake_case , )
def __UpperCAmelCase ( self : int , snake_case : List[str] , *snake_case : List[Any] , snake_case : Optional[int]=False , snake_case : Optional[Any]=1.0 , **snake_case : Any ):
"""simple docstring"""
return super().encode(
self.replace_placeholder_tokens_in_text(
snake_case , vector_shuffle=snake_case , prop_tokens_to_load=snake_case ) , *snake_case , **snake_case , )
| 517 | 0 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__A : Any = logging.getLogger(__name__)
def lowercase ( __snake_case : str , __snake_case : Optional[int] ):
return (preds == labels).mean()
@dataclass
class _UpperCAmelCase :
SCREAMING_SNAKE_CASE_ : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
SCREAMING_SNAKE_CASE_ : Optional[str] = field(
default=_A , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
SCREAMING_SNAKE_CASE_ : Optional[str] = field(
default=_A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
SCREAMING_SNAKE_CASE_ : Optional[str] = field(
default=_A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class _UpperCAmelCase :
SCREAMING_SNAKE_CASE_ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
SCREAMING_SNAKE_CASE_ : str = field(metadata={"help": "Should contain the data files for the task."} )
SCREAMING_SNAKE_CASE_ : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
SCREAMING_SNAKE_CASE_ : bool = field(
default=_A , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def lowercase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowercase_ : str = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __snake_case )
# Set seed
set_seed(training_args.seed )
try:
lowercase_ : Optional[int] = processors[data_args.task_name]()
lowercase_ : List[str] = processor.get_labels()
lowercase_ : List[Any] = len(__snake_case )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase_ : Optional[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
lowercase_ : Dict = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase_ : Optional[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase_ : int = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase_ : Any = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(__snake_case : EvalPrediction ) -> Dict:
lowercase_ : Dict = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(__snake_case , p.label_ids )}
# Data collator
lowercase_ : Any = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase_ : str = Trainer(
model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase_ : List[str] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase_ : Union[str, Any] = trainer.evaluate()
lowercase_ : Tuple = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(__snake_case , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , __snake_case , __snake_case )
writer.write('''%s = %s\n''' % (key, value) )
results.update(__snake_case )
return results
def lowercase ( __snake_case : str ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 717 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class _UpperCAmelCase ( unittest.TestCase ):
def A ( self : Tuple ) -> Optional[Any]:
lowercase_ : Any = inspect.getfile(accelerate.test_utils )
lowercase_ : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
lowercase_ : Union[str, Any] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
lowercase_ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def A ( self : List[str] ) -> List[str]:
print(F'''Found {torch.cuda.device_count()} devices.''' )
lowercase_ : int = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(A , env=os.environ.copy() )
@require_multi_gpu
def A ( self : List[Any] ) -> List[Any]:
print(F'''Found {torch.cuda.device_count()} devices.''' )
lowercase_ : List[str] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(F'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(A , env=os.environ.copy() )
@require_multi_gpu
def A ( self : str ) -> Union[str, Any]:
lowercase_ : Tuple = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(A , env=os.environ.copy() )
@require_multi_gpu
def A ( self : Optional[int] ) -> Optional[Any]:
print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
lowercase_ : Optional[int] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(A , env=os.environ.copy() )
if __name__ == "__main__":
__A : List[Any] = Accelerator()
__A : Dict = (accelerator.state.process_index + 2, 10)
__A : Tuple = torch.randint(0, 10, shape).to(accelerator.device)
__A : Optional[Any] = ''''''
__A : Optional[int] = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
__A : int = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
__A : Optional[int] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 141 | 0 |
import functools
def __UpperCAmelCase ( a_ , a_):
snake_case_ = len(__SCREAMING_SNAKE_CASE)
snake_case_ = len(__SCREAMING_SNAKE_CASE)
@functools.cache
def min_distance(a_ , a_) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
snake_case_ = int(worda[indexa] != worda[indexa]) # current letters not identical
return min(
1 + min_distance(indexa + 1 , __SCREAMING_SNAKE_CASE) , 1 + min_distance(__SCREAMING_SNAKE_CASE , indexa + 1) , diff + min_distance(indexa + 1 , indexa + 1) , )
return min_distance(0 , 0)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 198 | """simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : int = 2_00 ):
lowercase_ : str = [1, 2, 5, 10, 20, 50, 1_00, 2_00]
lowercase_ : Dict = [0] * (pence + 1)
lowercase_ : List[Any] = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(__SCREAMING_SNAKE_CASE , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 7_3682
| 425 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Dict = logging.get_logger(__name__)
a__ : Any = {'''vocab_file''': '''spm_char.model'''}
a__ : Optional[Any] = {
'''vocab_file''': {
'''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''',
'''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''',
'''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''',
}
}
a__ : int = {
'''microsoft/speecht5_asr''': 1_024,
'''microsoft/speecht5_tts''': 1_024,
'''microsoft/speecht5_vc''': 1_024,
}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Dict = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Any = vocab_file
SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCamelCase )
@property
def __lowerCAmelCase ( self ) ->Tuple:
return self.sp_model.get_piece_size()
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Tuple = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : int = self.__dict__.copy()
SCREAMING_SNAKE_CASE : Dict = None
return state
def __setstate__( self , _lowerCamelCase ) ->str:
SCREAMING_SNAKE_CASE : List[str] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]:
return self.sp_model.piece_to_id(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.IdToPiece(_lowerCamelCase )
return token
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : int = []
SCREAMING_SNAKE_CASE : str = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_lowerCamelCase ) + token
SCREAMING_SNAKE_CASE : str = []
else:
current_sub_tokens.append(_lowerCamelCase )
out_string += self.sp_model.decode(_lowerCamelCase )
return out_string.strip()
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = [1]
if token_ids_a is None:
return ([0] * len(_lowerCamelCase )) + suffix_ones
return ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 333 |
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = None , ):
"""simple docstring"""
if config_name_or_path is None:
SCREAMING_SNAKE_CASE : int = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base'''
if generator_tokenizer_name_or_path is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = question_encoder_name_or_path
SCREAMING_SNAKE_CASE : Optional[Any] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration
# Save model.
SCREAMING_SNAKE_CASE : List[str] = RagConfig.from_pretrained(a__ )
SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(a__ )
SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = gen_config
SCREAMING_SNAKE_CASE : List[Any] = question_encoder_config
SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained_question_encoder_generator(
a__ , a__ , config=a__ )
rag_model.save_pretrained(a__ )
# Sanity check.
model_class.from_pretrained(a__ )
# Save tokenizers.
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(a__ )
gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' )
SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(a__ )
question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' )
if __name__ == "__main__":
a__ : List[Any] = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''',
choices=['''rag_sequence''', '''rag_token'''],
required=True,
type=str,
help='''RAG model type: rag_sequence, rag_token''',
)
parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''')
parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''')
parser.add_argument(
'''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier'''
)
parser.add_argument(
'''--generator_tokenizer_name_or_path''',
type=str,
help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''',
)
parser.add_argument(
'''--question_encoder_tokenizer_name_or_path''',
type=str,
help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''',
)
parser.add_argument(
'''--config_name_or_path''',
type=str,
help=(
'''Identifier of the model config to use, if not provided, resolves to a base config for a given'''
''' ``model_type``'''
),
)
a__ : Dict = parser.parse_args()
a__ : Tuple = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 333 | 1 |
def __SCREAMING_SNAKE_CASE ( lowercase_ = 1000 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 462 |
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=2 , lowercase__=3_2 , lowercase__=1_6 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=3_2 , lowercase__=4 , lowercase__=[0, 1, 2, 3] , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=[1, 3_8_4, 2_4, 2_4] , lowercase__=True , lowercase__=None , ):
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Tuple = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : Tuple = patch_size
__UpperCAmelCase : int = num_channels
__UpperCAmelCase : Optional[Any] = is_training
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : Any = backbone_out_indices
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : Union[str, Any] = num_labels
__UpperCAmelCase : List[Any] = backbone_featmap_shape
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Optional[int] = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
__UpperCAmelCase : Optional[Any] = (image_size // patch_size) ** 2
__UpperCAmelCase : Any = num_patches + 1
def A( self):
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
__UpperCAmelCase : List[str] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels)
__UpperCAmelCase : Dict = self.get_config()
return config, pixel_values, labels
def A( self):
__UpperCAmelCase : Dict = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [9_6, 1_9_2, 3_8_4, 7_6_8],
'''num_groups''': 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowercase__ , backbone_featmap_shape=self.backbone_featmap_shape , )
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : List[str] = DPTModel(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Dict = model(lowercase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : List[str] = self.num_labels
__UpperCAmelCase : Optional[Any] = DPTForDepthEstimation(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : str = model(lowercase__)
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size))
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : str = model(lowercase__ , labels=lowercase__)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size))
def A( self):
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs
__UpperCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
_lowerCAmelCase : Optional[int] = (
{
'''depth-estimation''': DPTForDepthEstimation,
'''feature-extraction''': DPTModel,
'''image-segmentation''': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_lowerCAmelCase : Any = False
_lowerCAmelCase : str = False
_lowerCAmelCase : List[Any] = False
def A( self):
__UpperCAmelCase : Any = DPTModelTester(self)
__UpperCAmelCase : str = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7)
def A( self):
self.config_tester.run_common_tests()
@unittest.skip(reason='''DPT does not use inputs_embeds''')
def A( self):
pass
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(lowercase__)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
__UpperCAmelCase : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear))
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class(lowercase__)
__UpperCAmelCase : int = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : List[str] = [*signature.parameters.keys()]
__UpperCAmelCase : str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*lowercase__)
def A( self):
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__)
def A( self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = True
if model_class in get_values(lowercase__):
continue
__UpperCAmelCase : List[Any] = model_class(lowercase__)
model.to(lowercase__)
model.train()
__UpperCAmelCase : Any = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__)
__UpperCAmelCase : Any = model(**lowercase__).loss
loss.backward()
def A( self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
__UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = False
__UpperCAmelCase : str = True
if model_class in get_values(lowercase__) or not model_class.supports_gradient_checkpointing:
continue
__UpperCAmelCase : Tuple = model_class(lowercase__)
model.to(lowercase__)
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase : Tuple = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__)
__UpperCAmelCase : Union[str, Any] = model(**lowercase__).loss
loss.backward()
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = _config_zero_init(lowercase__)
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(config=lowercase__)
# Skip the check for the backbone
__UpperCAmelCase : List[Any] = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
__UpperCAmelCase : Optional[Any] = [F"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''')
def A( self):
pass
@slow
def A( self):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
__UpperCAmelCase : Optional[int] = DPTModel.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
def A( self):
# We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[str] = '''add'''
with self.assertRaises(lowercase__):
__UpperCAmelCase : Optional[Any] = DPTForDepthEstimation(lowercase__)
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
@slow
class lowerCamelCase ( unittest.TestCase ):
def A( self):
__UpperCAmelCase : str = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''')
__UpperCAmelCase : str = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''').to(lowercase__)
__UpperCAmelCase : List[str] = prepare_img()
__UpperCAmelCase : Tuple = image_processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__)
# forward pass
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**lowercase__)
__UpperCAmelCase : str = outputs.predicted_depth
# verify the predicted depth
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 3_8_4, 3_8_4))
self.assertEqual(predicted_depth.shape , lowercase__)
__UpperCAmelCase : List[str] = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]]).to(lowercase__)
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , lowercase__ , atol=1e-4))
| 462 | 1 |
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 46 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ):
"""simple docstring"""
__A = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ):
"""simple docstring"""
__A = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ):
"""simple docstring"""
__A = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ):
"""simple docstring"""
__A = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ):
"""simple docstring"""
__A = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ):
"""simple docstring"""
__A = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ):
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
| 46 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
A_ = logging.get_logger(__name__)
A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
A_ = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
A_ = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
A_ = {f'''funnel-transformer/{name}''': 512 for name in _model_names}
A_ = {f'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names}
class UpperCAmelCase ( __lowercase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE_ = FunnelTokenizer
SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ = 2
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="##" , **SCREAMING_SNAKE_CASE_ , ) -> Tuple:
'''simple docstring'''
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , bos_token=_A , eos_token=_A , clean_text=_A , tokenize_chinese_chars=_A , strip_accents=_A , wordpieces_prefix=_A , **_A , )
lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _A ) != do_lower_case
or normalizer_state.get('strip_accents' , _A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars
):
lowerCamelCase_ = getattr(_A , normalizer_state.pop('type' ) )
lowerCamelCase_ = do_lower_case
lowerCamelCase_ = strip_accents
lowerCamelCase_ = tokenize_chinese_chars
lowerCamelCase_ = normalizer_class(**_A )
lowerCamelCase_ = do_lower_case
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
'''simple docstring'''
lowerCamelCase_ = [self.sep_token_id]
lowerCamelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
'''simple docstring'''
lowerCamelCase_ = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
| 42 |
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
SCREAMING_SNAKE_CASE = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
SCREAMING_SNAKE_CASE = direct_transformers_import(PATH_TO_TRANSFORMERS)
SCREAMING_SNAKE_CASE = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
SCREAMING_SNAKE_CASE = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)')
SCREAMING_SNAKE_CASE = {
'DecisionTransformerConfig',
'EncoderDecoderConfig',
'MusicgenConfig',
'RagConfig',
'SpeechEncoderDecoderConfig',
'TimmBackboneConfig',
'VisionEncoderDecoderConfig',
'VisionTextDualEncoderConfig',
'LlamaConfig',
}
def _lowerCamelCase ( __A : Tuple ) -> List[str]:
_UpperCAmelCase : Union[str, Any] = None
# source code of `config_class`
_UpperCAmelCase : Dict = inspect.getsource(__A )
_UpperCAmelCase : Dict = _re_checkpoint.findall(__A )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith('''/''' ):
_UpperCAmelCase : int = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
_UpperCAmelCase : Any = f'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
_UpperCAmelCase : str = ckpt_name
break
return checkpoint
def _lowerCamelCase ( ) -> Any:
_UpperCAmelCase : Optional[int] = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
_UpperCAmelCase : int = get_checkpoint_from_config_class(__A )
_UpperCAmelCase : Optional[int] = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__A )
if len(__A ) > 0:
_UpperCAmelCase : Any = '''\n'''.join(sorted(__A ) )
raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 485 | 0 |
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
__lowercase = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
__lowercase = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
__lowercase = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
"""simple docstring"""
def __snake_case ( self : Optional[Any]):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def __snake_case ( self : Dict):
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float")),
"references": datasets.Sequence(datasets.Value("float")),
}
else:
return {
"predictions": datasets.Value("float"),
"references": datasets.Value("float"),
}
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]="uniform_average" , __UpperCAmelCase : List[Any]=True):
a : int = mean_squared_error(
__A , __A , sample_weight=__A , multioutput=__A , squared=__A)
return {"mse": mse}
| 711 |
"""simple docstring"""
from timeit import timeit
def lowercase ( A_ )-> int:
'''simple docstring'''
if number < 0:
raise ValueError("the value of input must not be negative" )
a : Dict = 0
while number:
number &= number - 1
result += 1
return result
def lowercase ( A_ )-> int:
'''simple docstring'''
if number < 0:
raise ValueError("the value of input must not be negative" )
a : int = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def lowercase ( )-> None:
'''simple docstring'''
def do_benchmark(A_ ) -> None:
a : Tuple = "import __main__ as z"
print(F'''Benchmark when {number = }:''' )
print(F'''{get_set_bits_count_using_modulo_operator(A_ ) = }''' )
a : List[Any] = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=A_ )
print(F'''timeit() runs in {timing} seconds''' )
print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(A_ ) = }''' )
a : Dict = timeit(
"z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=A_ , )
print(F'''timeit() runs in {timing} seconds''' )
for number in (25, 37, 58, 0):
do_benchmark(A_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 135 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__A : int = {
'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'ResNetForImageClassification',
'ResNetModel',
'ResNetPreTrainedModel',
'ResNetBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFResNetForImageClassification',
'TFResNetModel',
'TFResNetPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = [
'FlaxResNetForImageClassification',
'FlaxResNetModel',
'FlaxResNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
__A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 394 |
'''simple docstring'''
class _UpperCamelCase :
'''simple docstring'''
def __init__( self , _a ):
"""simple docstring"""
# we need a list not a string, so do something to change the type
a__ = arr.split(',' )
def lowercase__ ( self ):
"""simple docstring"""
a__ = [int(self.array[0] )] * len(self.array )
a__ = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
a__ = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
a__ = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
__A : str = input('please input some numbers:')
__A : int = SubArray(whole_array)
__A : str = array.solve_sub_array()
print(('the results is:', re))
| 394 | 1 |
"""simple docstring"""
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( A , A , A ) -> List[Any]:
'''simple docstring'''
return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :]
def __a ( A , A , A , A="attention" ) -> Optional[int]:
'''simple docstring'''
A__ = A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] )
A__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] )
A__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] )
A__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] )
A__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def __a ( A , A , A , A=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
A__ = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :]
A__ = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :]
A__ = (wi_a, wi_a)
else:
A__ = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :]
A__ = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :]
return wi, wo
def __a ( A , A , A , A ) -> Any:
'''simple docstring'''
return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i]
def __a ( A , *, A , A , A = False ) -> Optional[Any]:
'''simple docstring'''
A__ = traverse_util.flatten_dict(variables["target"] )
A__ = {"/".join(A ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
A__ = "encoder/encoder/mlp/wi_0/kernel" in old
print("Split MLP:" , A )
A__ = collections.OrderedDict()
# Shared embeddings.
A__ = old["token_embedder/embedding"]
# Encoder.
for i in range(A ):
# Block i, layer 0 (Self Attention).
A__ = tax_layer_norm_lookup(A , A , "encoder" , "pre_attention_layer_norm" )
A__ , A__ , A__ , A__ = tax_attention_lookup(A , A , "encoder" , "attention" )
A__ = layer_norm
A__ = k.T
A__ = o.T
A__ = q.T
A__ = v.T
# Block i, layer 1 (MLP).
A__ = tax_layer_norm_lookup(A , A , "encoder" , "pre_mlp_layer_norm" )
A__ , A__ = tax_mlp_lookup(A , A , "encoder" , A )
A__ = layer_norm
if split_mlp_wi:
A__ = wi[0].T
A__ = wi[1].T
else:
A__ = wi.T
A__ = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
A__ = tax_relpos_bias_lookup(
A , A , "encoder" ).T
A__ = old["encoder/encoder_norm/scale"]
if not scalable_attention:
A__ = tax_relpos_bias_lookup(
A , 0 , "encoder" ).T
A__ = tax_relpos_bias_lookup(
A , 0 , "decoder" ).T
if not is_encoder_only:
# Decoder.
for i in range(A ):
# Block i, layer 0 (Self Attention).
A__ = tax_layer_norm_lookup(A , A , "decoder" , "pre_self_attention_layer_norm" )
A__ , A__ , A__ , A__ = tax_attention_lookup(A , A , "decoder" , "self_attention" )
A__ = layer_norm
A__ = k.T
A__ = o.T
A__ = q.T
A__ = v.T
# Block i, layer 1 (Cross Attention).
A__ = tax_layer_norm_lookup(A , A , "decoder" , "pre_cross_attention_layer_norm" )
A__ , A__ , A__ , A__ = tax_attention_lookup(A , A , "decoder" , "encoder_decoder_attention" )
A__ = layer_norm
A__ = k.T
A__ = o.T
A__ = q.T
A__ = v.T
# Block i, layer 2 (MLP).
A__ = tax_layer_norm_lookup(A , A , "decoder" , "pre_mlp_layer_norm" )
A__ , A__ = tax_mlp_lookup(A , A , "decoder" , A )
A__ = layer_norm
if split_mlp_wi:
A__ = wi[0].T
A__ = wi[1].T
else:
A__ = wi.T
A__ = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
A__ = tax_relpos_bias_lookup(A , A , "decoder" ).T
A__ = old["decoder/decoder_norm/scale"]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
A__ = old["decoder/logits_dense/kernel"].T
return new
def __a ( A , A ) -> Dict:
'''simple docstring'''
A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
A__ = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
A__ = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head." )
A__ = state_dict["shared.weight"]
return state_dict
def __a ( A , A , A , A , A ) -> Tuple:
'''simple docstring'''
A__ = checkpoints.load_tax_checkpoint(A )
A__ = convert_tax_to_pytorch(
A , num_layers=config.num_layers , is_encoder_only=A , scalable_attention=A )
A__ = make_state_dict(A , A )
model.load_state_dict(A , strict=A )
def __a ( A , A , A , A = False , A = False , ) -> Optional[Any]:
'''simple docstring'''
A__ = MTaConfig.from_json_file(A )
print(f"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
A__ = UMTaEncoderModel(A )
else:
A__ = UMTaForConditionalGeneration(A )
# Load weights from tf checkpoint
load_tax_weights_in_ta(A , A , A , A , A )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(A )
# Verify that we can load the checkpoint.
model.from_pretrained(A )
print("Done" )
if __name__ == "__main__":
__UpperCAmelCase =argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""")
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False
)
parser.add_argument(
"""--scalable_attention""",
action="""store_true""",
help="""Whether the model uses scaled attention (umt5 model)""",
default=False,
)
__UpperCAmelCase =parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
) | 261 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
lowercase__ : str = StableDiffusionInstructPixaPixPipeline
lowercase__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""}
lowercase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowercase__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS
lowercase__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def lowercase_ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ )
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
A__ = CLIPTextModel(UpperCamelCase__ )
A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
A__ = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ):
'''simple docstring'''
A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ )
A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
A__ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("RGB" )
if str(UpperCamelCase__ ).startswith("mps" ):
A__ = torch.manual_seed(UpperCamelCase__ )
else:
A__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ )
A__ = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"image_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def lowercase_ ( self ):
'''simple docstring'''
A__ = "cpu" # ensure determinism for the device-dependent torch.Generator
A__ = self.get_dummy_components()
A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A__ = sd_pipe.to(UpperCamelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A__ = self.get_dummy_inputs(UpperCamelCase__ )
A__ = sd_pipe(**UpperCamelCase__ ).images
A__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase_ ( self ):
'''simple docstring'''
A__ = "cpu" # ensure determinism for the device-dependent torch.Generator
A__ = self.get_dummy_components()
A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A__ = sd_pipe.to(UpperCamelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A__ = self.get_dummy_inputs(UpperCamelCase__ )
A__ = "french fries"
A__ = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ )
A__ = output.images
A__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase_ ( self ):
'''simple docstring'''
A__ = "cpu" # ensure determinism for the device-dependent torch.Generator
A__ = self.get_dummy_components()
A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A__ = sd_pipe.to(UpperCamelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A__ = self.get_dummy_inputs(UpperCamelCase__ )
A__ = [inputs["prompt"]] * 2
A__ = np.array(inputs["image"] ).astype(np.floataa ) / 255.0
A__ = torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ )
A__ = image / 2 + 0.5
A__ = image.permute(0 , 3 , 1 , 2 )
A__ = image.repeat(2 , 1 , 1 , 1 )
A__ = sd_pipe(**UpperCamelCase__ ).images
A__ = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
A__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase_ ( self ):
'''simple docstring'''
A__ = "cpu" # ensure determinism for the device-dependent torch.Generator
A__ = self.get_dummy_components()
A__ = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" )
A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A__ = sd_pipe.to(UpperCamelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A__ = self.get_dummy_inputs(UpperCamelCase__ )
A__ = sd_pipe(**UpperCamelCase__ ).images
A__ = image[0, -3:, -3:, -1]
A__ = [round(UpperCamelCase__ , 4 ) for x in image_slice.flatten().tolist()]
print(",".join([str(UpperCamelCase__ ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
A__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase_ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def lowercase_ ( self ):
'''simple docstring'''
A__ = self.get_dummy_components()
A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ )
A__ = VaeImageProcessor(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ )
A__ = pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A__ = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="pt" ) )[0]
A__ = components["vae"]
A__ = self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="pt" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
A__ = vae.encode(inputs[image_param] ).latent_dist.mode()
A__ = pipe(**UpperCamelCase__ )[0]
A__ = np.abs(out - out_latents_inputs ).max()
self.assertLess(UpperCamelCase__ , 1e-4 , "passing latents as image input generate different result from passing image" )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def lowercase_ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self , UpperCamelCase__=0 ):
'''simple docstring'''
A__ = torch.manual_seed(UpperCamelCase__ )
A__ = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" )
A__ = {
"prompt": "turn him into a cyborg",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"image_guidance_scale": 1.0,
"output_type": "numpy",
}
return inputs
def lowercase_ ( self ):
'''simple docstring'''
A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A__ = self.get_inputs()
A__ = pipe(**UpperCamelCase__ ).images
A__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
A__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def lowercase_ ( self ):
'''simple docstring'''
A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ )
A__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A__ = self.get_inputs()
A__ = pipe(**UpperCamelCase__ ).images
A__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
A__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def lowercase_ ( self ):
'''simple docstring'''
A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ )
A__ = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A__ = self.get_inputs()
A__ = pipe(**UpperCamelCase__ ).images
A__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
A__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def lowercase_ ( self ):
'''simple docstring'''
A__ = 0
def callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None:
A__ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
A__ = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
A__ = latents[0, -3:, -3:, -1]
A__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
A__ = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
A__ = latents[0, -3:, -3:, -1]
A__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
A__ = False
A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa )
A__ = pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A__ = self.get_inputs()
pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def lowercase_ ( self ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa )
A__ = pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
A__ = self.get_inputs()
A__ = pipe(**UpperCamelCase__ )
A__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def lowercase_ ( self ):
'''simple docstring'''
A__ = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
A__ = inputs["image"].resize((5_04, 5_04) )
A__ = "timbrooks/instruct-pix2pix"
A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained(
UpperCamelCase__ , safety_checker=UpperCamelCase__ , )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
pipe.enable_attention_slicing()
A__ = pipe(**UpperCamelCase__ )
A__ = output.images[0]
A__ = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 5_04, 3)
A__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 | 261 | 1 |
from typing import Dict
from .base import GenericTensor, Pipeline
class __UpperCAmelCase ( __A ):
"""simple docstring"""
def snake_case_ ( self , __A=None , __A=None , __A=None , **__A ):
if tokenize_kwargs is None:
__a = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"""truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" )
__a = truncation
__a = tokenize_kwargs
__a = {}
if return_tensors is not None:
__a = return_tensors
return preprocess_params, {}, postprocess_params
def snake_case_ ( self , __A , **__A ):
__a = self.framework
__a = self.tokenizer(__A , return_tensors=__A , **__A )
return model_inputs
def snake_case_ ( self , __A ):
__a = self.model(**__A )
return model_outputs
def snake_case_ ( self , __A , __A=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self , *__A , **__A ):
return super().__call__(*__A , **__A )
| 99 | """simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] ={
'a': 'AAAAA',
'b': 'AAAAB',
'c': 'AAABA',
'd': 'AAABB',
'e': 'AABAA',
'f': 'AABAB',
'g': 'AABBA',
'h': 'AABBB',
'i': 'ABAAA',
'j': 'BBBAA',
'k': 'ABAAB',
'l': 'ABABA',
'm': 'ABABB',
'n': 'ABBAA',
'o': 'ABBAB',
'p': 'ABBBA',
'q': 'ABBBB',
'r': 'BAAAA',
's': 'BAAAB',
't': 'BAABA',
'u': 'BAABB',
'v': 'BBBAB',
'w': 'BABAA',
'x': 'BABAB',
'y': 'BABBA',
'z': 'BABBB',
' ': ' ',
}
SCREAMING_SNAKE_CASE__ : str ={value: key for key, value in encode_dict.items()}
def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str:
_lowerCamelCase : Dict = ''''''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('''encode() accepts only letters of the alphabet and spaces''' )
return encoded
def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str:
if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set():
raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' )
_lowerCamelCase : List[Any] = ''''''
for word in coded.split():
while len(SCREAMING_SNAKE_CASE_ ) != 0:
decoded += decode_dict[word[:5]]
_lowerCamelCase : Union[str, Any] = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 434 | 0 |
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] ='0.21.0'
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 558 | """simple docstring"""
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class _UpperCAmelCase ( a_ ):
"""simple docstring"""
def __init__( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ) -> List[Any]:
_lowerCamelCase : Tuple = 1.0 if scale is None else scale
_lowerCamelCase : int = 0.0 if loc is None else loc
super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] )
@property
def a__ ( self ) -> Dict:
return self.base_dist.mean * self.scale + self.loc
@property
def a__ ( self ) -> List[str]:
return self.base_dist.variance * self.scale**2
@property
def a__ ( self ) -> Union[str, Any]:
return self.variance.sqrt()
class _UpperCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> None:
super().__init__(**_lowercase )
_lowerCamelCase : Union[str, Any] = args_dim
_lowerCamelCase : Union[str, Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] )
_lowerCamelCase : str = domain_map
def a__ ( self , _lowercase ) -> Tuple[torch.Tensor]:
_lowerCamelCase : Any = [proj(_lowercase ) for proj in self.proj]
return self.domain_map(*_lowercase )
class _UpperCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowercase ) -> Union[str, Any]:
super().__init__()
_lowerCamelCase : Optional[Any] = function
def a__ ( self , _lowercase , *_lowercase ) -> str:
return self.function(_lowercase , *_lowercase )
class _UpperCAmelCase :
"""simple docstring"""
__snake_case = 42
__snake_case = 42
__snake_case = 42
def __init__( self , _lowercase = 1 ) -> None:
_lowerCamelCase : int = dim
_lowerCamelCase : Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim}
def a__ ( self , _lowercase ) -> Dict:
if self.dim == 1:
return self.distribution_class(*_lowercase )
else:
return Independent(self.distribution_class(*_lowercase ) , 1 )
def a__ ( self , _lowercase , _lowercase = None , _lowercase = None , ) -> Distribution:
_lowerCamelCase : Any = self._base_distribution(_lowercase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim )
@property
def a__ ( self ) -> Tuple:
return () if self.dim == 1 else (self.dim,)
@property
def a__ ( self ) -> int:
return len(self.event_shape )
@property
def a__ ( self ) -> float:
return 0.0
def a__ ( self , _lowercase ) -> nn.Module:
return ParameterProjection(
in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def a__ ( self , *_lowercase ) -> int:
raise NotImplementedError()
@staticmethod
def a__ ( _lowercase ) -> torch.Tensor:
return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0
class _UpperCAmelCase ( a_ ):
"""simple docstring"""
__snake_case = {"df": 1, "loc": 1, "scale": 1}
__snake_case = StudentT
@classmethod
def a__ ( cls , _lowercase , _lowercase , _lowercase ) -> List[Any]:
_lowerCamelCase : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
_lowerCamelCase : List[Any] = 2.0 + cls.squareplus(_lowercase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class _UpperCAmelCase ( a_ ):
"""simple docstring"""
__snake_case = {"loc": 1, "scale": 1}
__snake_case = Normal
@classmethod
def a__ ( cls , _lowercase , _lowercase ) -> List[Any]:
_lowerCamelCase : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class _UpperCAmelCase ( a_ ):
"""simple docstring"""
__snake_case = {"total_count": 1, "logits": 1}
__snake_case = NegativeBinomial
@classmethod
def a__ ( cls , _lowercase , _lowercase ) -> int:
_lowerCamelCase : str = cls.squareplus(_lowercase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def a__ ( self , _lowercase ) -> Distribution:
_lowerCamelCase, _lowerCamelCase : int = distr_args
if self.dim == 1:
return self.distribution_class(total_count=_lowercase , logits=_lowercase )
else:
return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 )
def a__ ( self , _lowercase , _lowercase = None , _lowercase = None ) -> Distribution:
_lowerCamelCase, _lowerCamelCase : Optional[int] = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 558 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
a_ = logging.get_logger(__name__)
a_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ = {
"""vocab_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"""
),
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"""
),
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""",
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"""
),
"""bert-base-multilingual-cased""": (
"""https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-cased""": (
"""https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"""
),
},
}
a_ = {
"""bert-base-uncased""": 512,
"""bert-large-uncased""": 512,
"""bert-base-cased""": 512,
"""bert-large-cased""": 512,
"""bert-base-multilingual-uncased""": 512,
"""bert-base-multilingual-cased""": 512,
"""bert-base-chinese""": 512,
"""bert-base-german-cased""": 512,
"""bert-large-uncased-whole-word-masking""": 512,
"""bert-large-cased-whole-word-masking""": 512,
"""bert-large-uncased-whole-word-masking-finetuned-squad""": 512,
"""bert-large-cased-whole-word-masking-finetuned-squad""": 512,
"""bert-base-cased-finetuned-mrpc""": 512,
"""bert-base-german-dbmdz-cased""": 512,
"""bert-base-german-dbmdz-uncased""": 512,
"""TurkuNLP/bert-base-finnish-cased-v1""": 512,
"""TurkuNLP/bert-base-finnish-uncased-v1""": 512,
"""wietsedv/bert-base-dutch-cased""": 512,
}
a_ = {
"""bert-base-uncased""": {"""do_lower_case""": True},
"""bert-large-uncased""": {"""do_lower_case""": True},
"""bert-base-cased""": {"""do_lower_case""": False},
"""bert-large-cased""": {"""do_lower_case""": False},
"""bert-base-multilingual-uncased""": {"""do_lower_case""": True},
"""bert-base-multilingual-cased""": {"""do_lower_case""": False},
"""bert-base-chinese""": {"""do_lower_case""": False},
"""bert-base-german-cased""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False},
"""bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-cased""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True},
"""TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False},
"""TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True},
"""wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False},
}
class __snake_case ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase = BertTokenizer
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase="[UNK]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="[PAD]" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ):
'''simple docstring'''
super().__init__(
__lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , )
__A : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __lowerCamelCase ) != tokenize_chinese_chars
):
__A : Optional[Any] = getattr(__lowerCamelCase , normalizer_state.pop('''type''' ) )
__A : Optional[Any] = do_lower_case
__A : str = strip_accents
__A : Optional[int] = tokenize_chinese_chars
__A : List[Any] = normalizer_class(**__lowerCamelCase )
__A : List[Any] = do_lower_case
def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None ):
'''simple docstring'''
__A : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ):
'''simple docstring'''
__A : Union[str, Any] = [self.sep_token_id]
__A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ):
'''simple docstring'''
__A : str = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase )
return tuple(__lowerCamelCase )
| 177 |
"""simple docstring"""
from collections import namedtuple
a_ = namedtuple("""from_to""", """from_ to""")
a_ = {
"""cubicmeter""": from_to(1, 1),
"""litre""": from_to(0.001, 1000),
"""kilolitre""": from_to(1, 1),
"""gallon""": from_to(0.00454, 264.172),
"""cubicyard""": from_to(0.76455, 1.30795),
"""cubicfoot""": from_to(0.028, 35.3147),
"""cup""": from_to(0.000236588, 4226.75),
}
def __lowercase ( snake_case_ : float ,snake_case_ : str ,snake_case_ : str ) ->float:
'''simple docstring'''
if from_type not in METRIC_CONVERSION:
raise ValueError(
F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n"""
+ ''', '''.join(snake_case_ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n"""
+ ''', '''.join(snake_case_ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 177 | 1 |
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowerCAmelCase_ ( unittest.TestCase ):
def a_ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : int = ["a", "b", "c"]
# Defaults to last layer if both are None
_UpperCAmelCase : Tuple = get_aligned_output_features_output_indices(a_ , a_ , a_ )
self.assertEqual(a_ , ['''c'''] )
self.assertEqual(a_ , [2] )
# Out indices set to match out features
_UpperCAmelCase : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , a_ , a_ )
self.assertEqual(a_ , ['''a''', '''c'''] )
self.assertEqual(a_ , [0, 2] )
# Out features set to match out indices
_UpperCAmelCase : Tuple = get_aligned_output_features_output_indices(a_ , [0, 2] , a_ )
self.assertEqual(a_ , ['''a''', '''c'''] )
self.assertEqual(a_ , [0, 2] )
# Out features selected from negative indices
_UpperCAmelCase : Dict = get_aligned_output_features_output_indices(a_ , [-3, -1] , a_ )
self.assertEqual(a_ , ['''a''', '''c'''] )
self.assertEqual(a_ , [-3, -1] )
def a_ ( self : str ) -> str:
'''simple docstring'''
with self.assertRaises(a_ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , a_ )
# Out features must be a list
with self.assertRaises(a_ ):
verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] )
# Out features must be a subset of stage names
with self.assertRaises(a_ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] )
# Out indices must be a list or tuple
with self.assertRaises(a_ ):
verify_out_features_out_indices(a_ , 0 , ['''a''', '''b'''] )
# Out indices must be a subset of stage names
with self.assertRaises(a_ ):
verify_out_features_out_indices(a_ , (0, 1) , ['''a'''] )
# Out features and out indices must be the same length
with self.assertRaises(a_ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] )
# Out features should match out indices
with self.assertRaises(a_ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] )
# Out features and out indices should be in order
with self.assertRaises(a_ ):
verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] )
# Check passes with valid inputs
verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] )
def a_ ( self : str ) -> Dict:
'''simple docstring'''
_UpperCAmelCase : List[Any] = BackboneMixin()
_UpperCAmelCase : List[Any] = ["a", "b", "c"]
_UpperCAmelCase : Optional[int] = ["a", "c"]
_UpperCAmelCase : Dict = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
_UpperCAmelCase : Union[str, Any] = ["a", "b"]
self.assertEqual(backbone.out_features , ['''a''', '''b'''] )
self.assertEqual(backbone.out_indices , [0, 1] )
_UpperCAmelCase : str = [-3, -1]
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 707 |
def _A ( _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase : Tuple = len(_UpperCamelCase )
_UpperCAmelCase : Tuple = len(_UpperCamelCase )
_UpperCAmelCase : Dict = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
_UpperCAmelCase : List[Any] = True
for i in range(_UpperCamelCase ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
_UpperCAmelCase : List[Any] = True
if a[i].islower():
_UpperCAmelCase : str = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 416 | 0 |
'''simple docstring'''
from math import isqrt
def snake_case__ ( UpperCamelCase ) -> Optional[int]:
_UpperCamelCase : Dict = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,UpperCamelCase ,UpperCamelCase ):
_UpperCamelCase : List[str] = False
return [i for i in range(2 ,UpperCamelCase ) if is_prime[i]]
def snake_case__ ( UpperCamelCase = 10**8 ) -> Optional[int]:
_UpperCamelCase : int = calculate_prime_numbers(max_number // 2 )
_UpperCamelCase : Any = 0
_UpperCamelCase : Any = 0
_UpperCamelCase : int = len(UpperCamelCase ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 683 | __lowercase = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.6_0_9_3_4_4,
"knot": 1.8_5_2,
}
__lowercase = {
"km/h": 1.0,
"m/s": 0.2_7_7_7_7_7_7_7_8,
"mph": 0.6_2_1_3_7_1_1_9_2,
"knot": 0.5_3_9_9_5_6_8_0_3,
}
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
__UpperCamelCase :int = (
f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n"""
f"""Valid values are: {', '.join(SCREAMING_SNAKE_CASE )}"""
)
raise ValueError(SCREAMING_SNAKE_CASE )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 167 | 0 |
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
a = logging.getLogger(__name__)
a = tf.data.AUTOTUNE
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase :Tuple = argparse.ArgumentParser(description='Train a masked language model on TPU.' )
parser.add_argument(
'--pretrained_model_config' , type=__magic_name__ , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , )
parser.add_argument(
'--tokenizer' , type=__magic_name__ , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , )
parser.add_argument(
'--per_replica_batch_size' , type=__magic_name__ , default=8 , help='Batch size per TPU core.' , )
parser.add_argument(
'--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , )
parser.add_argument(
'--tpu_name' , type=__magic_name__ , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , )
parser.add_argument(
'--tpu_zone' , type=__magic_name__ , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , )
parser.add_argument(
'--gcp_project' , type=__magic_name__ , help='Google cloud project name. Only used for non-Colab TPU nodes.' )
parser.add_argument(
'--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , )
parser.add_argument(
'--train_dataset' , type=__magic_name__ , help='Path to training dataset to load. If the path begins with `gs://`'
' then the dataset will be loaded from a Google Cloud Storage bucket.' , )
parser.add_argument(
'--shuffle_buffer_size' , type=__magic_name__ , default=2**18 , help='Size of the shuffle buffer (in samples)' , )
parser.add_argument(
'--eval_dataset' , type=__magic_name__ , help='Path to evaluation dataset to load. If the path begins with `gs://`'
' then the dataset will be loaded from a Google Cloud Storage bucket.' , )
parser.add_argument(
'--num_epochs' , type=__magic_name__ , default=1 , help='Number of epochs to train for.' , )
parser.add_argument(
'--learning_rate' , type=__magic_name__ , default=1e-4 , help='Learning rate to use for training.' , )
parser.add_argument(
'--weight_decay_rate' , type=__magic_name__ , default=1e-3 , help='Weight decay rate to use for training.' , )
parser.add_argument(
'--max_length' , type=__magic_name__ , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , )
parser.add_argument(
'--mlm_probability' , type=__magic_name__ , default=0.15 , help='Fraction of tokens to mask during training.' , )
parser.add_argument('--output_dir' , type=__magic_name__ , required=__magic_name__ , help='Path to save model checkpoints to.' )
parser.add_argument('--hub_model_id' , type=__magic_name__ , help='Model ID to upload to on the Hugging Face Hub.' )
_lowerCAmelCase :Any = parser.parse_args()
return args
def UpperCamelCase_( __magic_name__ : Dict ):
"""simple docstring"""
try:
if args.tpu_name:
_lowerCAmelCase :Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
_lowerCAmelCase :str = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or '
'--gcp_project. When running on a TPU VM, use --tpu_name local.' )
tf.config.experimental_connect_to_cluster(__magic_name__ )
tf.tpu.experimental.initialize_tpu_system(__magic_name__ )
return tpu
def UpperCamelCase_( __magic_name__ : Optional[int] ):
"""simple docstring"""
_lowerCAmelCase :str = 0
for file in file_list:
_lowerCAmelCase :str = file.split('/' )[-1]
_lowerCAmelCase :Union[str, Any] = re.search(r'-\d+-(\d+)\.tfrecord' , __magic_name__ ).group(1 )
_lowerCAmelCase :Dict = int(__magic_name__ )
num_samples += sample_count
return num_samples
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=None ):
"""simple docstring"""
_lowerCAmelCase :Dict = count_samples(__magic_name__ )
_lowerCAmelCase :List[str] = tf.data.Dataset.from_tensor_slices(__magic_name__ )
if shuffle:
_lowerCAmelCase :Union[str, Any] = dataset.shuffle(len(__magic_name__ ) )
_lowerCAmelCase :int = tf.data.TFRecordDataset(__magic_name__ , num_parallel_reads=__magic_name__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
_lowerCAmelCase :str = dataset.apply(tf.data.experimental.assert_cardinality(__magic_name__ ) )
_lowerCAmelCase :Optional[int] = dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ )
if shuffle:
assert shuffle_buffer_size is not None
_lowerCAmelCase :Any = dataset.shuffle(args.shuffle_buffer_size )
_lowerCAmelCase :Any = dataset.batch(__magic_name__ , drop_remainder=__magic_name__ )
_lowerCAmelCase :Optional[int] = dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ )
_lowerCAmelCase :str = dataset.prefetch(__magic_name__ )
return dataset
def UpperCamelCase_( __magic_name__ : Dict ):
"""simple docstring"""
if not args.no_tpu:
_lowerCAmelCase :Dict = initialize_tpu(__magic_name__ )
_lowerCAmelCase :Optional[int] = tf.distribute.TPUStrategy(__magic_name__ )
else:
_lowerCAmelCase :List[str] = tf.distribute.OneDeviceStrategy(device='/gpu:0' )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' )
_lowerCAmelCase :str = AutoTokenizer.from_pretrained(args.tokenizer )
_lowerCAmelCase :Dict = AutoConfig.from_pretrained(args.pretrained_model_config )
_lowerCAmelCase :Dict = tokenizer.vocab_size
_lowerCAmelCase :Tuple = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) )
if not training_records:
raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" )
_lowerCAmelCase :Optional[int] = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) )
if not eval_records:
raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" )
_lowerCAmelCase :Dict = count_samples(__magic_name__ )
_lowerCAmelCase :Any = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
_lowerCAmelCase :Optional[Any] = steps_per_epoch * args.num_epochs
with strategy.scope():
_lowerCAmelCase :int = TFAutoModelForMaskedLM.from_config(__magic_name__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
_lowerCAmelCase :List[str] = create_optimizer(
num_train_steps=__magic_name__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=__magic_name__ , metrics=['accuracy'] )
def decode_fn(__magic_name__ : Tuple ):
_lowerCAmelCase :int = {
'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(__magic_name__ , __magic_name__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
_lowerCAmelCase :Dict = DataCollatorForLanguageModeling(
tokenizer=__magic_name__ , mlm_probability=args.mlm_probability , mlm=__magic_name__ , return_tensors='tf' )
def mask_with_collator(__magic_name__ : Union[str, Any] ):
# TF really needs an isin() function
_lowerCAmelCase :Optional[Any] = (
~tf.cast(batch['attention_mask'] , tf.bool )
| (batch['input_ids'] == tokenizer.cls_token_id)
| (batch['input_ids'] == tokenizer.sep_token_id)
)
_lowerCAmelCase :Any = data_collator.tf_mask_tokens(
batch['input_ids'] , vocab_size=len(__magic_name__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__magic_name__ , )
return batch
_lowerCAmelCase :List[str] = args.per_replica_batch_size * strategy.num_replicas_in_sync
_lowerCAmelCase :Optional[int] = prepare_dataset(
__magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , shuffle_buffer_size=args.shuffle_buffer_size , )
_lowerCAmelCase :int = prepare_dataset(
__magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , )
_lowerCAmelCase :Tuple = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__magic_name__ ) )
model.fit(
__magic_name__ , validation_data=__magic_name__ , epochs=args.num_epochs , callbacks=__magic_name__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
a = parse_args()
main(args) | 718 |
from math import sqrt
def UpperCamelCase_( __magic_name__ : int = 1000000 ):
"""simple docstring"""
_lowerCAmelCase :int = 0
_lowerCAmelCase :int = 0
_lowerCAmelCase :int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(__magic_name__ , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(F'''{solution() = }''') | 382 | 0 |
"""simple docstring"""
import unittest
from transformers import GPTNeoXJapaneseConfig, is_torch_available
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : int , UpperCamelCase : Dict , UpperCamelCase : List[str]=13 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : Any=True , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=True , UpperCamelCase : str=99 , UpperCamelCase : int=32 , UpperCamelCase : Any=5 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : Any=4 , UpperCamelCase : int="gelu" , UpperCamelCase : Dict=0.0 , UpperCamelCase : str=0.1 , UpperCamelCase : List[Any]=True , UpperCamelCase : Tuple=512 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : int=2 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Optional[int]=3 , UpperCamelCase : List[Any]=4 , UpperCamelCase : Union[str, Any]=None , ):
'''simple docstring'''
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : List[str] = seq_length
__UpperCAmelCase : Dict = is_training
__UpperCAmelCase : Optional[Any] = use_input_mask
__UpperCAmelCase : Optional[Any] = use_token_type_ids
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : List[str] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_multiple_size
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Union[str, Any] = hidden_dropout
__UpperCAmelCase : List[Any] = attention_dropout
__UpperCAmelCase : Optional[int] = weight_tying
__UpperCAmelCase : Any = max_position_embeddings
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : str = num_labels
__UpperCAmelCase : int = num_choices
__UpperCAmelCase : Optional[Any] = scope
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Optional[Any] = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : str = None
if self.use_labels:
__UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : List[Any] = self.get_config()
return config, input_ids, input_mask, token_labels
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return GPTNeoXJapaneseConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase : Dict = True
return config, input_ids, input_mask, token_labels
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : int = GPTNeoXJapaneseModel(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : Tuple = model(UpperCamelCase , attention_mask=UpperCamelCase )
__UpperCAmelCase : str = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : Dict ):
'''simple docstring'''
__UpperCAmelCase : str = True
__UpperCAmelCase : int = GPTNeoXJapaneseModel(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : int = model(UpperCamelCase , attention_mask=UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : str = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , use_cache=UpperCamelCase )
__UpperCAmelCase : List[Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : List[str] = model(UpperCamelCase , attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase )
__UpperCAmelCase : List[Any] = output_from_no_past["""hidden_states"""][0]
__UpperCAmelCase : Tuple = model(
UpperCamelCase , attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : str = config_and_inputs
__UpperCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else ()
__a = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else ()
__a = (
{"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM}
if is_torch_available()
else {}
)
__a = False
__a = False
__a = False
__a = False
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : List[str] = GPTNeoXJapaneseModelTester(self )
__UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_decoder()
__UpperCAmelCase : List[str] = None
self.model_tester.create_and_check_model_as_decoder(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = """abeja/gpt-neox-japanese-2.7b"""
__UpperCAmelCase : List[str] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""]
__UpperCAmelCase : Any = [
"""データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""",
"""100年後に必要とされる会社は、「人」が中心の会社です。""",
"""フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""",
"""国境の長いトンネルを抜けると、そこは雪国だった。""",
"""美味しい日本食といえば、やっぱりお寿司ですよね。""",
]
__UpperCAmelCase : Dict = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = []
for prompt in prompts:
__UpperCAmelCase : Optional[Any] = tokenizer(UpperCamelCase , return_tensors="""pt""" ).input_ids
__UpperCAmelCase : Any = model.generate(UpperCamelCase , max_length=50 )
__UpperCAmelCase : Dict = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )
predicted_outputs += generated_string
self.assertListEqual(UpperCamelCase , UpperCamelCase )
| 139 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def lowerCamelCase ( _UpperCamelCase : Callable , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> np.array:
'''simple docstring'''
__UpperCAmelCase : Tuple = int(np.ceil((x_end - xa) / step_size ) )
__UpperCAmelCase : Optional[int] = np.zeros((n + 1,) )
__UpperCAmelCase : List[Any] = ya
__UpperCAmelCase : List[Any] = xa
for k in range(_UpperCamelCase ):
__UpperCAmelCase : str = y[k] + step_size * ode_func(_UpperCamelCase , y[k] )
__UpperCAmelCase : Tuple = y[k] + (
(step_size / 2) * (ode_func(_UpperCamelCase , y[k] ) + ode_func(x + step_size , _UpperCamelCase ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 139 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A : Tuple = logging.get_logger(__name__)
A : List[Any] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
}
A : List[str] = {
"""vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""},
"""merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""},
}
A : str = {
"""ctrl""": 256,
}
A : Optional[Any] = {
"""Pregnancy""": 168_629,
"""Christianity""": 7_675,
"""Explain""": 106_423,
"""Fitness""": 63_440,
"""Saving""": 63_163,
"""Ask""": 27_171,
"""Ass""": 95_985,
"""Joke""": 163_509,
"""Questions""": 45_622,
"""Thoughts""": 49_605,
"""Retail""": 52_342,
"""Feminism""": 164_338,
"""Writing""": 11_992,
"""Atheism""": 192_263,
"""Netflix""": 48_616,
"""Computing""": 39_639,
"""Opinion""": 43_213,
"""Alone""": 44_967,
"""Funny""": 58_917,
"""Gaming""": 40_358,
"""Human""": 4_088,
"""India""": 1_331,
"""Joker""": 77_138,
"""Diet""": 36_206,
"""Legal""": 11_859,
"""Norman""": 4_939,
"""Tip""": 72_689,
"""Weight""": 52_343,
"""Movies""": 46_273,
"""Running""": 23_425,
"""Science""": 2_090,
"""Horror""": 37_793,
"""Confession""": 60_572,
"""Finance""": 12_250,
"""Politics""": 16_360,
"""Scary""": 191_985,
"""Support""": 12_654,
"""Technologies""": 32_516,
"""Teenage""": 66_160,
"""Event""": 32_769,
"""Learned""": 67_460,
"""Notion""": 182_770,
"""Wikipedia""": 37_583,
"""Books""": 6_665,
"""Extract""": 76_050,
"""Confessions""": 102_701,
"""Conspiracy""": 75_932,
"""Links""": 63_674,
"""Narcissus""": 150_425,
"""Relationship""": 54_766,
"""Relationships""": 134_796,
"""Reviews""": 41_671,
"""News""": 4_256,
"""Translation""": 26_820,
"""multilingual""": 128_406,
}
def snake_case_ ( a__ : Any ):
"""simple docstring"""
__lowercase = set()
__lowercase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowercase = char
__lowercase = set(a__ )
return pairs
class SCREAMING_SNAKE_CASE( __A ):
snake_case_ : Optional[int] = VOCAB_FILES_NAMES
snake_case_ : Any = PRETRAINED_VOCAB_FILES_MAP
snake_case_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ : Union[str, Any] = CONTROL_CODES
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<unk>" , **lowerCamelCase__ ) -> Any:
"""simple docstring"""
super().__init__(unk_token=lowerCamelCase__ , **lowerCamelCase__ )
with open(lowerCamelCase__ , encoding="""utf-8""" ) as vocab_handle:
__lowercase = json.load(lowerCamelCase__ )
__lowercase = {v: k for k, v in self.encoder.items()}
with open(lowerCamelCase__ , encoding="""utf-8""" ) as merges_handle:
__lowercase = merges_handle.read().split("""\n""" )[1:-1]
__lowercase = [tuple(merge.split() ) for merge in merges]
__lowercase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) )
__lowercase = {}
@property
def snake_case__ ( self ) -> List[Any]:
"""simple docstring"""
return len(self.encoder )
def snake_case__ ( self ) -> int:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def snake_case__ ( self , lowerCamelCase__ ) -> Any:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
__lowercase = tuple(lowerCamelCase__ )
__lowercase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
__lowercase = get_pairs(lowerCamelCase__ )
if not pairs:
return token
while True:
__lowercase = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__lowercase ,__lowercase = bigram
__lowercase = []
__lowercase = 0
while i < len(lowerCamelCase__ ):
try:
__lowercase = word.index(lowerCamelCase__ , lowerCamelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowercase = j
if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowercase = tuple(lowerCamelCase__ )
__lowercase = new_word
if len(lowerCamelCase__ ) == 1:
break
else:
__lowercase = get_pairs(lowerCamelCase__ )
__lowercase = """@@ """.join(lowerCamelCase__ )
__lowercase = word[:-4]
__lowercase = word
return word
def snake_case__ ( self , lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = []
__lowercase = re.findall(R"""\S+\n?""" , lowerCamelCase__ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) )
return split_tokens
def snake_case__ ( self , lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) )
def snake_case__ ( self , lowerCamelCase__ ) -> List[Any]:
"""simple docstring"""
return self.decoder.get(lowerCamelCase__ , self.unk_token )
def snake_case__ ( self , lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
__lowercase = """ """.join(lowerCamelCase__ ).replace("""@@ """ , """""" ).strip()
return out_string
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCamelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__lowercase = os.path.join(
lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__lowercase = os.path.join(
lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + """\n""" )
__lowercase = 0
with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__lowercase = token_index
writer.write(""" """.join(lowerCamelCase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 163 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ):
def snake_case__ ( self ) -> Optional[Any]:
"""simple docstring"""
return datasets.DatasetInfo(
features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=lowerCamelCase__ , )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )]
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ):
def snake_case__ ( self ) -> int:
"""simple docstring"""
return datasets.DatasetInfo(
features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=lowerCamelCase__ , )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
"""simple docstring"""
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} )
]
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
"""simple docstring"""
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(lowerCamelCase__ )
def snake_case_ ( ):
"""simple docstring"""
return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
def snake_case_ ( ):
"""simple docstring"""
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
class SCREAMING_SNAKE_CASE( __A ):
@require_beam
def snake_case__ ( self ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__lowercase = DummyBeamDataset(cache_dir=lowerCamelCase__ , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
__lowercase = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , lowerCamelCase__ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowerCamelCase__ )
self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def snake_case__ ( self ) -> List[Any]:
"""simple docstring"""
import apache_beam as beam
__lowercase = beam.io.parquetio.WriteToParquet
__lowercase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__lowercase = DummyBeamDataset(cache_dir=lowerCamelCase__ , beam_runner="""DirectRunner""" )
with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock:
__lowercase = partial(lowerCamelCase__ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
__lowercase = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , lowerCamelCase__ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowerCamelCase__ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) )
self.assertTrue(
os.path.exists(os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def snake_case__ ( self ) -> Dict:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__lowercase = DummyBeamDataset(cache_dir=lowerCamelCase__ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def snake_case__ ( self ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__lowercase = NestedBeamDataset(cache_dir=lowerCamelCase__ , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) )
__lowercase = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , lowerCamelCase__ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , lowerCamelCase__ )
self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(lowerCamelCase__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
| 163 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a ={
'configuration_time_series_transformer': [
'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TimeSeriesTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a =[
'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TimeSeriesTransformerForPrediction',
'TimeSeriesTransformerModel',
'TimeSeriesTransformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
a =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 530 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 | 0 |
"""simple docstring"""
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
__A = """sshleifer/bart-tiny-random"""
__A = """patrickvonplaten/t5-tiny-random"""
@require_torch
class a ( unittest.TestCase ):
@cached_property
def lowerCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]:
return AutoConfig.from_pretrained(lowerCamelCase_ )
def lowerCAmelCase_ ( self : Any ) -> List[Any]:
__a , *__a = create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def lowerCAmelCase_ ( self : Tuple ) -> Any:
__a , *__a = create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=1 , d=lowerCamelCase_ )
def lowerCAmelCase_ ( self : Optional[Any] ) -> Dict:
__a , *__a = create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=1 , d=lowerCamelCase_ )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def lowerCAmelCase_ ( self : List[str] ) -> List[Any]:
__a , *__a = create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def lowerCAmelCase_ ( self : int ) -> Optional[int]:
with self.assertRaises(lowerCamelCase_ ):
create_student_by_copying_alternating_layers(lowerCamelCase_ , tempfile.mkdtemp() , e=lowerCamelCase_ , d=lowerCamelCase_ )
| 173 | """simple docstring"""
__A = 6_55_21
def UpperCamelCase ( _lowerCAmelCase : str ):
__a = 1
__a = 0
for plain_chr in plain_text:
__a = (a + ord(_lowerCAmelCase )) % MOD_ADLER
__a = (b + a) % MOD_ADLER
return (b << 16) | a
| 173 | 1 |
'''simple docstring'''
import math
def UpperCamelCase__ ( __magic_name__ : int ) -> int:
'''simple docstring'''
if not isinstance(__magic_name__ , __magic_name__ ):
snake_case__ : Union[str, Any] = f"Input value of [number={number}] must be an integer"
raise TypeError(__magic_name__ )
if number < 1:
snake_case__ : Optional[int] = f"Input value of [number={number}] must be > 0"
raise ValueError(__magic_name__ )
elif number == 1:
return 3
elif number == 2:
return 5
else:
snake_case__ : Optional[int] = int(math.log(number // 3 , 2 ) ) + 2
snake_case__ : str = [3, 5]
snake_case__ : List[Any] = 2
snake_case__ : Optional[Any] = 3
for block in range(1 , __magic_name__ ):
for _ in range(__magic_name__ ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
A_ : Optional[int] = 0
try:
A_ : Dict = proth(number)
except ValueError:
print(F'ValueError: there is no {number}th Proth number')
continue
print(F'The {number}th Proth number: {value}')
| 38 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ : int = logging.get_logger(__name__)
lowerCAmelCase_ : Any = {
'''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''',
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class UpperCamelCase_ ( a_ ):
_A : int = 'wav2vec2'
def __init__( self , snake_case__=32 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=1_28 , snake_case__=16 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__=3_20 , snake_case__=2 , snake_case__=0.1 , snake_case__=1_00 , snake_case__=2_56 , snake_case__=2_56 , snake_case__=0.1 , snake_case__="sum" , snake_case__=False , snake_case__=False , snake_case__=2_56 , snake_case__=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=5_12 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ )
UpperCAmelCase = hidden_size
UpperCAmelCase = feat_extract_norm
UpperCAmelCase = feat_extract_activation
UpperCAmelCase = list(snake_case__ )
UpperCAmelCase = list(snake_case__ )
UpperCAmelCase = list(snake_case__ )
UpperCAmelCase = conv_bias
UpperCAmelCase = num_conv_pos_embeddings
UpperCAmelCase = num_conv_pos_embedding_groups
UpperCAmelCase = len(self.conv_dim )
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = feat_proj_dropout
UpperCAmelCase = final_dropout
UpperCAmelCase = layerdrop
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = initializer_range
UpperCAmelCase = vocab_size
UpperCAmelCase = do_stable_layer_norm
UpperCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCAmelCase = num_codevectors_per_group
UpperCAmelCase = num_codevector_groups
UpperCAmelCase = contrastive_logits_temperature
UpperCAmelCase = feat_quantizer_dropout
UpperCAmelCase = num_negatives
UpperCAmelCase = codevector_dim
UpperCAmelCase = proj_codevector_dim
UpperCAmelCase = diversity_loss_weight
# ctc loss
UpperCAmelCase = ctc_loss_reduction
UpperCAmelCase = ctc_zero_infinity
# adapter
UpperCAmelCase = add_adapter
UpperCAmelCase = adapter_kernel_size
UpperCAmelCase = adapter_stride
UpperCAmelCase = num_adapter_layers
UpperCAmelCase = output_hidden_size or hidden_size
UpperCAmelCase = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = list(snake_case__ )
UpperCAmelCase = list(snake_case__ )
UpperCAmelCase = list(snake_case__ )
UpperCAmelCase = xvector_output_dim
@property
def UpperCamelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 673 | 0 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Dict = {'tokenizer_file': 'tokenizer.json'}
__SCREAMING_SNAKE_CASE : str = {
'tokenizer_file': {
'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json',
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json',
},
}
class lowercase_ ( __snake_case ):
_lowerCamelCase = VOCAB_FILES_NAMES
_lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase = ['input_ids', 'attention_mask']
_lowerCamelCase = None
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="<unk>" , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<pad>" , lowercase_=False , lowercase_=False , **lowercase_ , ):
super().__init__(
lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , add_prefix_space=lowercase_ , clean_up_tokenization_spaces=lowercase_ , **lowercase_ , )
_snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowercase_ ) != add_prefix_space:
_snake_case : Union[str, Any] = getattr(lowercase_ , pre_tok_state.pop("type" ) )
_snake_case : List[str] = add_prefix_space
_snake_case : List[str] = pre_tok_class(**lowercase_ )
_snake_case : Tuple = add_prefix_space
def UpperCamelCase ( self , *lowercase_ , **lowercase_ ):
_snake_case : Dict = kwargs.get("is_split_into_words" , lowercase_ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"""
" pretokenized inputs." )
return super()._batch_encode_plus(*lowercase_ , **lowercase_ )
def UpperCamelCase ( self , *lowercase_ , **lowercase_ ):
_snake_case : Any = kwargs.get("is_split_into_words" , lowercase_ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"""
" pretokenized inputs." )
return super()._encode_plus(*lowercase_ , **lowercase_ )
def UpperCamelCase ( self , lowercase_ , lowercase_ = None ):
_snake_case : Any = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
def UpperCamelCase ( self , lowercase_ ):
_snake_case : Optional[Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] )
if len(lowercase_ ) > self.model_max_length:
_snake_case : int = input_ids[-self.model_max_length :]
return input_ids | 580 | import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class lowercase_ ( nn.Module ):
def __init__( self ):
super().__init__()
_snake_case : Optional[int] = nn.Linear(3 , 4 )
_snake_case : Any = nn.BatchNormad(4 )
_snake_case : List[str] = nn.Linear(4 , 5 )
def UpperCamelCase ( self , lowercase_ ):
return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) )
class lowercase_ ( __snake_case ):
def UpperCamelCase ( self , lowercase_ , *lowercase_ , **lowercase_ ):
return (args[0] + 1,) + args[1:], kwargs
class lowercase_ ( __snake_case ):
def UpperCamelCase ( self , lowercase_ , lowercase_ ):
return output + 1
class lowercase_ ( unittest.TestCase ):
def UpperCamelCase ( self ):
_snake_case : List[str] = ModelForTest()
_snake_case : List[str] = ModelHook()
add_hook_to_module(lowercase_ , lowercase_ )
self.assertEqual(test_model._hf_hook , lowercase_ )
self.assertTrue(hasattr(lowercase_ , "_old_forward" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , "forward" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] )
remove_hook_from_module(lowercase_ )
self.assertFalse(hasattr(lowercase_ , "_hf_hook" ) )
self.assertFalse(hasattr(lowercase_ , "_old_forward" ) )
def UpperCamelCase ( self ):
_snake_case : Optional[Any] = ModelForTest()
_snake_case : Any = ModelHook()
add_hook_to_module(lowercase_ , lowercase_ )
add_hook_to_module(lowercase_ , lowercase_ , append=lowercase_ )
self.assertEqual(isinstance(test_model._hf_hook , lowercase_ ) , lowercase_ )
self.assertEqual(len(test_model._hf_hook.hooks ) , 2 )
self.assertTrue(hasattr(lowercase_ , "_old_forward" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , "forward" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] )
remove_hook_from_module(lowercase_ )
self.assertFalse(hasattr(lowercase_ , "_hf_hook" ) )
self.assertFalse(hasattr(lowercase_ , "_old_forward" ) )
def UpperCamelCase ( self ):
_snake_case : Union[str, Any] = ModelForTest()
_snake_case : Tuple = torch.randn(2 , 3 )
_snake_case : List[str] = test_model(x + 1 )
_snake_case : str = test_model(x + 2 )
_snake_case : int = PreForwardHook()
add_hook_to_module(lowercase_ , lowercase_ )
_snake_case : Any = test_model(lowercase_ )
self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
_snake_case : str = PreForwardHook()
add_hook_to_module(lowercase_ , lowercase_ )
_snake_case : Union[str, Any] = test_model(lowercase_ )
self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) )
# You need to use the sequential hook to chain two or more hooks
_snake_case : Optional[Any] = SequentialHook(PreForwardHook() , PreForwardHook() )
add_hook_to_module(lowercase_ , lowercase_ )
_snake_case : Optional[Any] = test_model(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1e-5 )
def UpperCamelCase ( self ):
_snake_case : Optional[Any] = ModelForTest()
_snake_case : Dict = torch.randn(2 , 3 )
_snake_case : List[str] = test_model(lowercase_ )
_snake_case : Any = PostForwardHook()
add_hook_to_module(lowercase_ , lowercase_ )
_snake_case : Optional[int] = test_model(lowercase_ )
self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1e-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
_snake_case : Tuple = PostForwardHook()
add_hook_to_module(lowercase_ , lowercase_ )
_snake_case : Any = test_model(lowercase_ )
self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1e-5 ) )
# You need to use the sequential hook to chain two or more hooks
_snake_case : Union[str, Any] = SequentialHook(PostForwardHook() , PostForwardHook() )
add_hook_to_module(lowercase_ , lowercase_ )
_snake_case : Any = test_model(lowercase_ )
assert torch.allclose(lowercase_ , output + 2 , atol=1e-5 )
def UpperCamelCase ( self ):
_snake_case : Dict = ModelForTest()
_snake_case : List[str] = torch.randn(2 , 3 )
_snake_case : int = test_model(lowercase_ )
_snake_case : str = PostForwardHook()
add_hook_to_module(lowercase_ , lowercase_ )
_snake_case : Dict = test_model(lowercase_ )
self.assertTrue(torch.allclose(lowercase_ , output + 1 ) )
self.assertTrue(outputa.requires_grad )
_snake_case : Dict = True
_snake_case : str = test_model(lowercase_ )
self.assertFalse(outputa.requires_grad )
@require_multi_gpu
def UpperCamelCase ( self ):
_snake_case : List[Any] = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) )
self.assertEqual(model.lineara.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) )
self.assertEqual(model.lineara.weight.device , torch.device(1 ) )
# We can still make a forward pass. The input does not need to be on any particular device
_snake_case : str = torch.randn(2 , 3 )
_snake_case : int = model(lowercase_ )
self.assertEqual(output.device , torch.device(1 ) )
# We can add a general hook to put back output on same device as input.
add_hook_to_module(lowercase_ , AlignDevicesHook(io_same_device=lowercase_ ) )
_snake_case : str = torch.randn(2 , 3 ).to(0 )
_snake_case : Dict = model(lowercase_ )
self.assertEqual(output.device , torch.device(0 ) )
def UpperCamelCase ( self ):
_snake_case : Any = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
# This will move each submodule on different devices
_snake_case : Tuple = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True}
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_ ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) )
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
# Buffers are not included in the offload by default, so are on the execution device
_snake_case : Optional[Any] = torch.device(hook_kwargs["execution_device"] )
self.assertEqual(model.batchnorm.running_mean.device , lowercase_ )
_snake_case : List[str] = torch.randn(2 , 3 )
_snake_case : Any = model(lowercase_ )
self.assertEqual(output.device , lowercase_ )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
# Now test with buffers included in the offload
_snake_case : Dict = {
"execution_device": 0 if torch.cuda.is_available() else "cpu",
"offload": True,
"offload_buffers": True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_ ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_ ) )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) )
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) )
_snake_case : List[str] = torch.randn(2 , 3 )
_snake_case : List[str] = model(lowercase_ )
self.assertEqual(output.device , lowercase_ )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
def UpperCamelCase ( self ):
_snake_case : Tuple = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
# This will move each submodule on different devices
_snake_case : Any = 0 if torch.cuda.is_available() else "cpu"
attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) )
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
# Buffers are not included in the offload by default, so are on the execution device
_snake_case : Optional[int] = torch.device(lowercase_ )
self.assertEqual(model.batchnorm.running_mean.device , lowercase_ )
_snake_case : Dict = torch.randn(2 , 3 )
_snake_case : int = model(lowercase_ )
self.assertEqual(output.device , lowercase_ )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase_ )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
# Now test with buffers included in the offload
attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ , offload_buffers=lowercase_ )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) )
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) )
_snake_case : int = torch.randn(2 , 3 )
_snake_case : str = model(lowercase_ )
self.assertEqual(output.device , lowercase_ )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase_ )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
def UpperCamelCase ( self ):
_snake_case : Optional[int] = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
# This will move each submodule on different devices
_snake_case : int = 0 if torch.cuda.is_available() else "cpu"
attach_align_device_hook(
lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) )
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
# Buffers are not included in the offload by default, so are on the execution device
_snake_case : int = torch.device(lowercase_ )
self.assertEqual(model.batchnorm.running_mean.device , lowercase_ )
_snake_case : Union[str, Any] = torch.randn(2 , 3 )
_snake_case : Dict = model(lowercase_ )
self.assertEqual(output.device , lowercase_ )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase_ )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
# Now test with buffers included in the offload
attach_align_device_hook(
lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() , offload_buffers=lowercase_ , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) )
self.assertEqual(model.lineara.weight.device , torch.device("meta" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) )
_snake_case : List[Any] = torch.randn(2 , 3 )
_snake_case : List[Any] = model(lowercase_ )
self.assertEqual(output.device , lowercase_ )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase_ )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) )
self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) | 580 | 1 |
import os
def __snake_case ( ) -> List[Any]:
with open(os.path.dirname(UpperCamelCase__ ) + '''/p022_names.txt''' ) as file:
_a = str(file.readlines()[0] )
_a = names.replace('''"''' , '''''' ).split(''',''' )
names.sort()
_a = 0
_a = 0
for i, name in enumerate(UpperCamelCase__ ):
for letter in name:
name_score += ord(UpperCamelCase__ ) - 64
total_score += (i + 1) * name_score
_a = 0
return total_score
if __name__ == "__main__":
print(solution())
| 487 | import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from tax import checkpoints
from transformers import (
AutoTokenizer,
PixaStructConfig,
PixaStructForConditionalGeneration,
PixaStructImageProcessor,
PixaStructProcessor,
PixaStructTextConfig,
PixaStructVisionConfig,
)
def lowerCamelCase_ ( UpperCamelCase__ : int ):
'''simple docstring'''
UpperCamelCase__ = checkpoints.load_tax_checkpoint(UpperCamelCase__ )
UpperCamelCase__ = flatten_dict(UpperCamelCase__ )
return flax_params
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ):
'''simple docstring'''
UpperCamelCase__ = {}
UpperCamelCase__ = {
'''token_embedder''': '''embeddings''',
'''encoder_norm''': '''layernorm''',
'''kernel''': '''weight''',
'''.out''': '''.output''',
'''scale''': '''weight''',
'''embedders_0.pos_embedding''': '''row_embedder.weight''',
'''embedders_1.pos_embedding''': '''column_embedder.weight''',
}
UpperCamelCase__ = {
'''query''': '''attention.query''',
'''key''': '''attention.key''',
'''value''': '''attention.value''',
'''output.dense''': '''output''',
'''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''',
'''pre_self_attention_layer_norm''': '''self_attention.layer_norm''',
'''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''',
'''mlp.''': '''mlp.DenseReluDense.''',
'''pre_mlp_layer_norm''': '''mlp.layer_norm''',
'''self_attention.o''': '''self_attention.attention.o''',
'''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''',
'''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''',
'''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.logits_dense.weight''': '''decoder.lm_head.weight''',
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
UpperCamelCase__ = '''.'''.join(key[1:] )
# rename the key
for old, new in CONVERSION_MAPPING.items():
UpperCamelCase__ = new_key.replace(UpperCamelCase__, UpperCamelCase__ )
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
UpperCamelCase__ = new_key.replace(UpperCamelCase__, UpperCamelCase__ )
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
UpperCamelCase__ = re.sub(r'''layers_(\d+)''', r'''layer.\1''', UpperCamelCase__ )
UpperCamelCase__ = new_key.replace('''encoder''', '''encoder.encoder''' )
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
UpperCamelCase__ = re.sub(r'''layers_(\d+)''', r'''layer.\1''', UpperCamelCase__ )
UpperCamelCase__ = flax_dict[key]
UpperCamelCase__ = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
UpperCamelCase__ = torch.from_numpy(converted_dict[key].T )
else:
UpperCamelCase__ = torch.from_numpy(converted_dict[key] )
return converted_torch_dict
def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Any, UpperCamelCase__ : Tuple=False, UpperCamelCase__ : List[str]=False ):
'''simple docstring'''
UpperCamelCase__ = get_flax_param(UpperCamelCase__ )
if not use_large:
UpperCamelCase__ = PixaStructVisionConfig()
UpperCamelCase__ = PixaStructTextConfig()
else:
UpperCamelCase__ = PixaStructVisionConfig(
hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18 )
UpperCamelCase__ = PixaStructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18 )
UpperCamelCase__ = PixaStructConfig(
vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=UpperCamelCase__ )
UpperCamelCase__ = PixaStructForConditionalGeneration(UpperCamelCase__ )
UpperCamelCase__ = rename_and_convert_flax_params(UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
UpperCamelCase__ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' )
UpperCamelCase__ = PixaStructImageProcessor()
UpperCamelCase__ = PixaStructProcessor(image_processor=UpperCamelCase__, tokenizer=UpperCamelCase__ )
if use_large:
UpperCamelCase__ = 4096
UpperCamelCase__ = True
# mkdir if needed
os.makedirs(UpperCamelCase__, exist_ok=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
print('''Model saved in {}'''.format(UpperCamelCase__ ) )
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""")
parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""")
lowercase = parser.parse_args()
convert_pixastruct_original_pytorch_checkpoint_to_hf(
args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
)
| 240 | 0 |
"""simple docstring"""
def lowerCamelCase__ ( UpperCAmelCase_ = 10_00 )-> int:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = 1, 1
UpperCamelCase = []
for i in range(1 , n + 1 ):
UpperCamelCase = prev_numerator + 2 * prev_denominator
UpperCamelCase = prev_numerator + prev_denominator
if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ):
result.append(UpperCAmelCase_ )
UpperCamelCase = numerator
UpperCamelCase = denominator
return len(UpperCAmelCase_ )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 556 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass(frozen=_lowerCAmelCase )
class __a :
UpperCamelCase_ : str
UpperCamelCase_ : str
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
@dataclass(frozen=_lowerCAmelCase )
class __a :
UpperCamelCase_ : List[int]
UpperCamelCase_ : Optional[List[int]] = None
UpperCamelCase_ : Optional[List[int]] = None
UpperCamelCase_ : Optional[Union[int, float]] = None
UpperCamelCase_ : Optional[int] = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class __a ( _lowerCAmelCase ):
UpperCamelCase_ : List[InputFeatures]
def __init__( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , )-> Dict:
"""simple docstring"""
UpperCamelCase = hans_processors[task]()
UpperCamelCase = os.path.join(
UpperCAmelCase_ , "cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(UpperCAmelCase_ ) , UpperCAmelCase_ , ) , )
UpperCamelCase = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
UpperCamelCase , UpperCamelCase = label_list[2], label_list[1]
UpperCamelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
UpperCamelCase = cached_features_file + ".lock"
with FileLock(UpperCAmelCase_ ):
if os.path.exists(UpperCAmelCase_ ) and not overwrite_cache:
logger.info(f"Loading features from cached file {cached_features_file}" )
UpperCamelCase = torch.load(UpperCAmelCase_ )
else:
logger.info(f"Creating features from dataset file at {data_dir}" )
UpperCamelCase = (
processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ )
)
logger.info("Training examples: %s" , len(UpperCAmelCase_ ) )
UpperCamelCase = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
logger.info("Saving features into cached file %s" , UpperCAmelCase_ )
torch.save(self.features , UpperCAmelCase_ )
def __len__( self : Optional[Any] )-> List[Any]:
"""simple docstring"""
return len(self.features )
def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Any )-> InputFeatures:
"""simple docstring"""
return self.features[i]
def _SCREAMING_SNAKE_CASE ( self : str )-> List[Any]:
"""simple docstring"""
return self.label_list
if is_tf_available():
import tensorflow as tf
class __a :
UpperCamelCase_ : List[InputFeatures]
def __init__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = 128 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , )-> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = hans_processors[task]()
UpperCamelCase = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
UpperCamelCase , UpperCamelCase = label_list[2], label_list[1]
UpperCamelCase = label_list
UpperCamelCase = processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ )
UpperCamelCase = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ):
if ex_index % 10_000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(UpperCAmelCase_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
UpperCamelCase = tf.data.Dataset.from_generator(
UpperCAmelCase_ , (
{
"example_id": tf.intaa,
"input_ids": tf.intaa,
"attention_mask": tf.intaa,
"token_type_ids": tf.intaa,
},
tf.intaa,
) , (
{
"example_id": tf.TensorShape([] ),
"input_ids": tf.TensorShape([None, None] ),
"attention_mask": tf.TensorShape([None, None] ),
"token_type_ids": tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Tuple:
"""simple docstring"""
return self.dataset
def __len__( self : List[Any] )-> List[Any]:
"""simple docstring"""
return len(self.features )
def __getitem__( self : Tuple , UpperCAmelCase_ : List[str] )-> InputFeatures:
"""simple docstring"""
return self.features[i]
def _SCREAMING_SNAKE_CASE ( self : List[str] )-> List[str]:
"""simple docstring"""
return self.label_list
class __a ( _lowerCAmelCase ):
def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : Tuple )-> Tuple:
"""simple docstring"""
return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , "heuristics_train_set.txt" ) ) , "train" )
def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : List[str] )-> Dict:
"""simple docstring"""
return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , "heuristics_evaluation_set.txt" ) ) , "dev" )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Optional[Any]:
"""simple docstring"""
return ["contradiction", "entailment", "neutral"]
def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str )-> str:
"""simple docstring"""
UpperCamelCase = []
for i, line in enumerate(UpperCAmelCase_ ):
if i == 0:
continue
UpperCamelCase = "%s-%s" % (set_type, line[0])
UpperCamelCase = line[5]
UpperCamelCase = line[6]
UpperCamelCase = line[7][2:] if line[7].startswith("ex" ) else line[7]
UpperCamelCase = line[0]
examples.append(InputExample(guid=UpperCAmelCase_ , text_a=UpperCAmelCase_ , text_b=UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) )
return examples
def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )-> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = {label: i for i, label in enumerate(UpperCAmelCase_ )}
UpperCamelCase = []
for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc="convert examples to features" ):
if ex_index % 1_00_00 == 0:
logger.info("Writing example %d" % (ex_index) )
UpperCamelCase = tokenizer(
example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , )
UpperCamelCase = label_map[example.label] if example.label in label_map else 0
UpperCamelCase = int(example.pairID )
features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) )
for i, example in enumerate(examples[:5] ):
logger.info("*** Example ***" )
logger.info(F"guid: {example}" )
logger.info(F"features: {features[i]}" )
return features
SCREAMING_SNAKE_CASE = {
"""hans""": 3,
}
SCREAMING_SNAKE_CASE = {
"""hans""": HansProcessor,
}
| 556 | 1 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE : List[str] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_SCREAMING_SNAKE_CASE : Any = 25_00_04
_SCREAMING_SNAKE_CASE : Any = 25_00_20
@require_sentencepiece
@require_tokenizers
class A__ ( snake_case__ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = MBartaaTokenizer
__magic_name__ = MBartaaTokenizerFast
__magic_name__ = True
__magic_name__ = True
def a_ ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case = MBartaaTokenizer(__snake_case , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__snake_case )
tokenizer.save_pretrained(self.tmpdirname )
def a_ ( self ):
snake_case = '''<s>'''
snake_case = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case )
def a_ ( self ):
snake_case = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__snake_case ) , 1_0_5_4 )
def a_ ( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 )
def a_ ( self ):
snake_case = MBartaaTokenizer(__snake_case , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__snake_case )
snake_case = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__snake_case , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
snake_case = tokenizer.convert_tokens_to_ids(__snake_case )
self.assertListEqual(
__snake_case , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
] , )
snake_case = tokenizer.convert_ids_to_tokens(__snake_case )
self.assertListEqual(
__snake_case , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a_ ( self ):
# fmt: off
snake_case = {'''input_ids''': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__snake_case , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a_ ( self ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
snake_case = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
snake_case = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case )
snake_case = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case )
snake_case = tempfile.mkdtemp()
snake_case = tokenizer_r.save_pretrained(__snake_case )
snake_case = tokenizer_p.save_pretrained(__snake_case )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
snake_case = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(__snake_case , __snake_case )
# Checks everything loads correctly in the same way
snake_case = tokenizer_r.from_pretrained(__snake_case )
snake_case = tokenizer_p.from_pretrained(__snake_case )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__snake_case , __snake_case ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__snake_case )
# Save tokenizer rust, legacy_format=True
snake_case = tempfile.mkdtemp()
snake_case = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case )
snake_case = tokenizer_p.save_pretrained(__snake_case )
# Checks it save with the same files
self.assertSequenceEqual(__snake_case , __snake_case )
# Checks everything loads correctly in the same way
snake_case = tokenizer_r.from_pretrained(__snake_case )
snake_case = tokenizer_p.from_pretrained(__snake_case )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__snake_case , __snake_case ) )
shutil.rmtree(__snake_case )
# Save tokenizer rust, legacy_format=False
snake_case = tempfile.mkdtemp()
snake_case = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case )
snake_case = tokenizer_p.save_pretrained(__snake_case )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
snake_case = tokenizer_r.from_pretrained(__snake_case )
snake_case = tokenizer_p.from_pretrained(__snake_case )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__snake_case , __snake_case ) )
shutil.rmtree(__snake_case )
@require_torch
@require_sentencepiece
@require_tokenizers
class A__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = 'facebook/mbart-large-50-one-to-many-mmt'
__magic_name__ = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
__magic_name__ = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
__magic_name__ = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2]
@classmethod
def a_ ( cls ):
snake_case = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
snake_case = 1
return cls
def a_ ( self ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 2_5_0_0_3_8 )
def a_ ( self ):
snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __snake_case )
def a_ ( self ):
self.assertIn(__snake_case , self.tokenizer.all_special_ids )
snake_case = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2]
snake_case = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case )
snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case )
self.assertEqual(__snake_case , __snake_case )
self.assertNotIn(self.tokenizer.eos_token , __snake_case )
def a_ ( self ):
snake_case = ['''this is gunna be a long sentence ''' * 2_0]
assert isinstance(src_text[0] , __snake_case )
snake_case = 1_0
snake_case = self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0]
self.assertEqual(ids[0] , __snake_case )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(__snake_case ) , __snake_case )
def a_ ( self ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] )
def a_ ( self ):
snake_case = tempfile.mkdtemp()
snake_case = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__snake_case )
snake_case = MBartaaTokenizer.from_pretrained(__snake_case )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case )
@require_torch
def a_ ( self ):
snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__snake_case , return_tensors='''pt''' )
snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a_ ( self ):
snake_case = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(__snake_case , __snake_case )
self.assertEqual((2, 1_4) , batch.input_ids.shape )
self.assertEqual((2, 1_4) , batch.attention_mask.shape )
snake_case = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __snake_case )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a_ ( self ):
snake_case = self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='''pt''' )
snake_case = self.tokenizer(
text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=1_0 , return_tensors='''pt''' )
snake_case = targets['''input_ids''']
snake_case = shift_tokens_right(__snake_case , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 )
@require_torch
def a_ ( self ):
snake_case = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(__snake_case ) , {
# en_XX, A, test, EOS
'''input_ids''': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 2_5_0_0_0_1,
} , )
| 550 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class A__ ( unittest.TestCase ):
"""simple docstring"""
def a_ ( self ):
snake_case = tempfile.mkdtemp()
snake_case = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
snake_case = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073],
'''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711],
'''do_convert_rgb''': True,
}
snake_case = os.path.join(self.tmpdirname , __snake_case )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__snake_case , __snake_case )
def a_ ( self , **__snake_case ):
return BertTokenizer.from_pretrained(self.tmpdirname , **__snake_case )
def a_ ( self , **__snake_case ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case )
def a_ ( self , **__snake_case ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case )
def a_ ( self ):
shutil.rmtree(self.tmpdirname )
def a_ ( self ):
snake_case = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
snake_case = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a_ ( self ):
snake_case = self.get_tokenizer()
snake_case = self.get_rust_tokenizer()
snake_case = self.get_image_processor()
snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case )
processor_slow.save_pretrained(self.tmpdirname )
snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case )
snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case )
processor_fast.save_pretrained(self.tmpdirname )
snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __snake_case )
self.assertIsInstance(processor_fast.tokenizer , __snake_case )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __snake_case )
self.assertIsInstance(processor_fast.image_processor , __snake_case )
def a_ ( self ):
snake_case = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
snake_case = self.get_image_processor(do_normalize=__snake_case )
snake_case = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=__snake_case )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __snake_case )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __snake_case )
def a_ ( self ):
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case )
snake_case = self.prepare_image_inputs()
snake_case = image_processor(__snake_case , return_tensors='''np''' )
snake_case = processor(images=__snake_case , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def a_ ( self ):
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case )
snake_case = '''Alexandra,T-shirt的价格是15便士。'''
snake_case = processor(text=__snake_case )
snake_case = tokenizer(__snake_case )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def a_ ( self ):
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case )
snake_case = '''Alexandra,T-shirt的价格是15便士。'''
snake_case = self.prepare_image_inputs()
snake_case = processor(text=__snake_case , images=__snake_case )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__snake_case ):
processor()
def a_ ( self ):
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case )
snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case = processor.batch_decode(__snake_case )
snake_case = tokenizer.batch_decode(__snake_case )
self.assertListEqual(__snake_case , __snake_case )
def a_ ( self ):
snake_case = self.get_image_processor()
snake_case = self.get_tokenizer()
snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case )
snake_case = '''Alexandra,T-shirt的价格是15便士。'''
snake_case = self.prepare_image_inputs()
snake_case = processor(text=__snake_case , images=__snake_case )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 550 | 1 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class _snake_case :
def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=2 ,_snake_case=24 ,_snake_case=16 ,_snake_case=True ,_snake_case=True ,_snake_case=32 ,_snake_case=5 ,_snake_case=4 ,_snake_case=37 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=10 ,_snake_case=0.02 ,_snake_case=None ,_snake_case=2 ,_snake_case=2 ,):
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : Dict = batch_size
UpperCAmelCase_ : Tuple = patch_size
UpperCAmelCase_ : int = max_length
UpperCAmelCase_ : Tuple = num_mel_bins
UpperCAmelCase_ : int = is_training
UpperCAmelCase_ : int = use_labels
UpperCAmelCase_ : Tuple = hidden_size
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : Dict = num_attention_heads
UpperCAmelCase_ : Optional[Any] = intermediate_size
UpperCAmelCase_ : str = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : Dict = initializer_range
UpperCAmelCase_ : Tuple = scope
UpperCAmelCase_ : Union[str, Any] = frequency_stride
UpperCAmelCase_ : Union[str, Any] = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
UpperCAmelCase_ : Dict = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
UpperCAmelCase_ : str = (self.max_length - self.patch_size) // self.time_stride + 1
UpperCAmelCase_ : List[Any] = frequency_out_dimension * time_out_dimension
UpperCAmelCase_ : int = num_patches + 2
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
UpperCAmelCase_ : Optional[Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase_ : Optional[Any] = self.get_config()
return config, input_values, labels
def UpperCamelCase__ ( self ):
return ASTConfig(
patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,)
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ):
UpperCAmelCase_ : List[Any] = ASTModel(config=_snake_case )
model.to(_snake_case )
model.eval()
UpperCAmelCase_ : Union[str, Any] = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Any = self.prepare_config_and_inputs()
(
UpperCAmelCase_
) : Dict = config_and_inputs
UpperCAmelCase_ : Optional[int] = {"input_values": input_values}
return config, inputs_dict
@require_torch
class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase):
__A : Optional[Any] =(
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
__A : List[Any] =(
{"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel}
if is_torch_available()
else {}
)
__A : int =False
__A : Tuple =False
__A : List[str] =False
__A : Optional[Any] =False
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ):
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : List[str] = ASTModelTester(self )
UpperCAmelCase_ : str = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ,hidden_size=37 )
def UpperCamelCase__ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="AST does not use inputs_embeds" )
def UpperCamelCase__ ( self ):
pass
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Dict = model_class(_snake_case )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
UpperCAmelCase_ : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : int = model_class(_snake_case )
UpperCAmelCase_ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Dict = [*signature.parameters.keys()]
UpperCAmelCase_ : Optional[int] = ["input_values"]
self.assertListEqual(arg_names[:1] ,_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[Any] = ASTModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def a__ ( ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" )
UpperCAmelCase_ : List[str] = torchaudio.load(_SCREAMING_SNAKE_CASE )
return audio, sampling_rate
@require_torch
@require_torchaudio
class _snake_case (unittest.TestCase):
@cached_property
def UpperCamelCase__ ( self ):
return (
ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" )
if is_torchaudio_available()
else None
)
@slow
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Optional[int] = self.default_feature_extractor
UpperCAmelCase_ : Tuple = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(_snake_case )
UpperCAmelCase_ : Any = self.default_feature_extractor
UpperCAmelCase_ : Dict = prepare_audio()
UpperCAmelCase_ : str = audio.squeeze().numpy()
UpperCAmelCase_ : Optional[Any] = feature_extractor(_snake_case ,sampling_rate=_snake_case ,return_tensors="pt" ).to(_snake_case )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : int = model(**_snake_case )
# verify the logits
UpperCAmelCase_ : int = torch.Size((1, 5_27) )
self.assertEqual(outputs.logits.shape ,_snake_case )
UpperCAmelCase_ : str = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1E-4 ) )
| 701 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class _snake_case :
def __init__( self ,_snake_case ,):
UpperCAmelCase_ : Optional[int] = parent
UpperCAmelCase_ : List[str] = 13
UpperCAmelCase_ : str = 7
UpperCAmelCase_ : Dict = True
UpperCAmelCase_ : List[Any] = True
UpperCAmelCase_ : str = True
UpperCAmelCase_ : str = 99
UpperCAmelCase_ : Tuple = 32
UpperCAmelCase_ : int = 2
UpperCAmelCase_ : List[Any] = 4
UpperCAmelCase_ : List[Any] = 37
UpperCAmelCase_ : int = "gelu"
UpperCAmelCase_ : Any = 0.1
UpperCAmelCase_ : Optional[Any] = 0.1
UpperCAmelCase_ : List[Any] = 5_12
UpperCAmelCase_ : Optional[Any] = 16
UpperCAmelCase_ : List[Any] = 2
UpperCAmelCase_ : List[Any] = 0.02
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Any = 4
UpperCAmelCase_ : Optional[int] = None
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Optional[int] = None
if self.use_labels:
UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] ,self.num_choices )
UpperCAmelCase_ : int = EsmConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase_ : str = True
UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ):
UpperCAmelCase_ : List[str] = TFEsmModel(config=_snake_case )
UpperCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask}
UpperCAmelCase_ : List[Any] = model(_snake_case )
UpperCAmelCase_ : Optional[int] = [input_ids, input_mask]
UpperCAmelCase_ : Optional[Any] = model(_snake_case )
UpperCAmelCase_ : str = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,):
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : List[Any] = TFEsmModel(config=_snake_case )
UpperCAmelCase_ : Dict = {
"input_ids": input_ids,
"attention_mask": input_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
UpperCAmelCase_ : Tuple = model(_snake_case )
UpperCAmelCase_ : Any = [input_ids, input_mask]
UpperCAmelCase_ : List[Any] = model(_snake_case ,encoder_hidden_states=_snake_case )
# Also check the case where encoder outputs are not passed
UpperCAmelCase_ : Any = model(_snake_case ,attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ):
UpperCAmelCase_ : Optional[Any] = TFEsmForMaskedLM(config=_snake_case )
UpperCAmelCase_ : Optional[Any] = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ):
UpperCAmelCase_ : List[str] = self.num_labels
UpperCAmelCase_ : List[str] = TFEsmForTokenClassification(config=_snake_case )
UpperCAmelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
UpperCAmelCase_ : Dict = model(_snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : List[Any] = config_and_inputs
UpperCAmelCase_ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase):
__A : Optional[int] =(
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
__A : int =(
{
"feature-extraction": TFEsmModel,
"fill-mask": TFEsmForMaskedLM,
"text-classification": TFEsmForSequenceClassification,
"token-classification": TFEsmForTokenClassification,
"zero-shot": TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
__A : Tuple =False
__A : Optional[Any] =False
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Dict = TFEsmModelTester(self )
UpperCAmelCase_ : Tuple = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 )
def UpperCamelCase__ ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Any = TFEsmModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip("Protein models do not support embedding resizing." )
def UpperCamelCase__ ( self ):
pass
@unittest.skip("Protein models do not support embedding resizing." )
def UpperCamelCase__ ( self ):
pass
def UpperCamelCase__ ( self ):
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Any = model_class(_snake_case )
assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
UpperCAmelCase_ : int = model.get_bias()
assert isinstance(_snake_case ,_snake_case )
for k, v in name.items():
assert isinstance(_snake_case ,tf.Variable )
else:
UpperCAmelCase_ : int = model.get_output_embeddings()
assert x is None
UpperCAmelCase_ : int = model.get_bias()
assert name is None
@require_tf
class _snake_case (unittest.TestCase):
@slow
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Optional[int] = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" )
UpperCAmelCase_ : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase_ : Optional[int] = model(_snake_case )[0]
UpperCAmelCase_ : str = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) ,_snake_case )
# compare the actual values for a slice.
UpperCAmelCase_ : Tuple = tf.constant(
[
[
[8.921518, -10.589814, -6.4671307],
[-6.3967156, -13.911377, -1.1211915],
[-7.781247, -13.951557, -3.740592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-2 ) )
@slow
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Any = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" )
UpperCAmelCase_ : Dict = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
UpperCAmelCase_ : Optional[Any] = model(_snake_case )[0]
# compare the actual values for a slice.
UpperCAmelCase_ : Tuple = tf.constant(
[
[
[0.14443092, 0.54125327, 0.3247739],
[0.30340484, 0.00526676, 0.31077722],
[0.32278043, -0.24987096, 0.3414628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
| 323 | 0 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class __lowercase( unittest.TestCase ):
'''simple docstring'''
def snake_case_ ( self ):
__lowerCamelCase : str = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
__lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__a )
__lowerCamelCase : str = -1
__lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a )
__lowerCamelCase : Optional[int] = model.generate(__a , max_new_tokens=10 , do_sample=__a )
__lowerCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__lowerCamelCase : int = TextStreamer(__a )
model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__lowerCamelCase : Tuple = cs.out[:-1]
self.assertEqual(__a , __a )
def snake_case_ ( self ):
__lowerCamelCase : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
__lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__a )
__lowerCamelCase : Tuple = -1
__lowerCamelCase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a )
__lowerCamelCase : int = model.generate(__a , max_new_tokens=10 , do_sample=__a )
__lowerCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] )
__lowerCamelCase : Optional[int] = TextIteratorStreamer(__a )
__lowerCamelCase : str = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer}
__lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a )
thread.start()
__lowerCamelCase : List[str] = ''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__a , __a )
def snake_case_ ( self ):
__lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
__lowerCamelCase : Tuple = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__a )
__lowerCamelCase : Optional[Any] = -1
__lowerCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a )
__lowerCamelCase : Optional[int] = model.generate(__a , max_new_tokens=10 , do_sample=__a )
__lowerCamelCase : Any = greedy_ids[:, input_ids.shape[1] :]
__lowerCamelCase : int = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__lowerCamelCase : int = TextStreamer(__a , skip_prompt=__a )
model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__lowerCamelCase : Dict = cs.out[:-1]
self.assertEqual(__a , __a )
def snake_case_ ( self ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
__lowerCamelCase : Dict = AutoTokenizer.from_pretrained('distilgpt2' )
__lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(__a )
__lowerCamelCase : Optional[int] = -1
__lowerCamelCase : List[str] = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__lowerCamelCase : str = TextStreamer(__a , skip_special_tokens=__a )
model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__lowerCamelCase : Optional[Any] = cs.out[:-1] # Remove the final "\n"
__lowerCamelCase : Tuple = tokenizer(__a , return_tensors='pt' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def snake_case_ ( self ):
__lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
__lowerCamelCase : int = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__a )
__lowerCamelCase : List[Any] = -1
__lowerCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a )
__lowerCamelCase : List[str] = TextIteratorStreamer(__a , timeout=0.001 )
__lowerCamelCase : Optional[Any] = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer}
__lowerCamelCase : Any = Thread(target=model.generate , kwargs=__a )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__a ):
__lowerCamelCase : Union[str, Any] = ''
for new_text in streamer:
streamer_text += new_text
| 594 |
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
a_ : Dict = logging.get_logger(__name__)
a_ : Dict = Dict[str, Any]
a_ : str = List[Prediction]
@add_end_docstrings(lowercase__ )
class __lowercase( lowercase__ ):
'''simple docstring'''
def __init__( self , *__a , **__a ):
super().__init__(*__a , **__a )
if self.framework == "tf":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , 'vision' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def snake_case_ ( self , **__a ):
__lowerCamelCase : List[str] = {}
if "threshold" in kwargs:
__lowerCamelCase : Optional[int] = kwargs['threshold']
return {}, {}, postprocess_kwargs
def __call__( self , *__a , **__a ):
return super().__call__(*__a , **__a )
def snake_case_ ( self , __a ):
__lowerCamelCase : Optional[Any] = load_image(__a )
__lowerCamelCase : Any = torch.IntTensor([[image.height, image.width]] )
__lowerCamelCase : Any = self.image_processor(images=[image] , return_tensors='pt' )
if self.tokenizer is not None:
__lowerCamelCase : List[str] = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' )
__lowerCamelCase : Dict = target_size
return inputs
def snake_case_ ( self , __a ):
__lowerCamelCase : Union[str, Any] = model_inputs.pop('target_size' )
__lowerCamelCase : Optional[Any] = self.model(**__a )
__lowerCamelCase : Any = outputs.__class__({'target_size': target_size, **outputs} )
if self.tokenizer is not None:
__lowerCamelCase : Optional[Any] = model_inputs['bbox']
return model_outputs
def snake_case_ ( self , __a , __a=0.9 ):
__lowerCamelCase : Dict = model_outputs['target_size']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
__lowerCamelCase , __lowerCamelCase : Dict = target_size[0].tolist()
def unnormalize(__a ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
__lowerCamelCase , __lowerCamelCase : Tuple = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
__lowerCamelCase : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
__lowerCamelCase : Union[str, Any] = [unnormalize(__a ) for bbox in model_outputs['bbox'].squeeze(0 )]
__lowerCamelCase : List[str] = ['score', 'label', 'box']
__lowerCamelCase : Tuple = [dict(zip(__a , __a ) ) for vals in zip(scores.tolist() , __a , __a ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
__lowerCamelCase : Optional[int] = self.image_processor.post_process_object_detection(__a , __a , __a )
__lowerCamelCase : Any = raw_annotations[0]
__lowerCamelCase : Any = raw_annotation['scores']
__lowerCamelCase : Tuple = raw_annotation['labels']
__lowerCamelCase : Union[str, Any] = raw_annotation['boxes']
__lowerCamelCase : List[str] = scores.tolist()
__lowerCamelCase : str = [self.model.config.idalabel[label.item()] for label in labels]
__lowerCamelCase : List[Any] = [self._get_bounding_box(__a ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
__lowerCamelCase : int = ['score', 'label', 'box']
__lowerCamelCase : int = [
dict(zip(__a , __a ) )
for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] )
]
return annotation
def snake_case_ ( self , __a ):
if self.framework != "pt":
raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = box.int().tolist()
__lowerCamelCase : Dict = {
'xmin': xmin,
'ymin': ymin,
'xmax': xmax,
'ymax': ymax,
}
return bbox
| 594 | 1 |
'''simple docstring'''
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Optional[Any] ={}
def A__ ( self : Any ) -> None:
'''simple docstring'''
print(self.vertex )
for i in self.vertex:
print(UpperCAmelCase , ''' -> ''' , ''' -> '''.join([str(UpperCAmelCase ) for j in self.vertex[i]] ) )
def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> None:
'''simple docstring'''
if from_vertex in self.vertex:
self.vertex[from_vertex].append(UpperCAmelCase )
else:
# else make a new vertex
lowercase : Any =[to_vertex]
def A__ ( self : List[str] ) -> None:
'''simple docstring'''
lowercase : Optional[int] =[False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(UpperCAmelCase , UpperCAmelCase )
def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : list ) -> None:
'''simple docstring'''
lowercase : int =True
print(UpperCAmelCase , end=''' ''' )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(UpperCAmelCase , UpperCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 8 |
'''simple docstring'''
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : List[Any] =str(bin(__A ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowercase : Union[str, Any] =str(bin(__A ) )[2:]
if shift_amount >= len(__A ):
return "0b0"
lowercase : Any =binary_number[: len(__A ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase_ ( __A : int , __A : int ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number
lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:]
lowercase : int =(
'''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number
)
if shift_amount >= len(__A ):
return "0b" + binary_number[0] * len(__A )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__A ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8 | 1 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowercase ( _a ,_a ,_a ,_a ,_a ,_a = None ,) -> Union[str, Any]:
UpperCAmelCase_: Union[str, Any] = {}
if train_file is not None:
UpperCAmelCase_: List[str] = [train_file]
if eval_file is not None:
UpperCAmelCase_: Union[str, Any] = [eval_file]
if test_file is not None:
UpperCAmelCase_: List[str] = [test_file]
UpperCAmelCase_: Optional[Any] = datasets.load_dataset("csv" ,data_files=_a )
UpperCAmelCase_: List[Any] = list(ds[list(files.keys() )[0]].features.keys() )
UpperCAmelCase_: Any = features_name.pop(_a )
UpperCAmelCase_: str = list(set(ds[list(files.keys() )[0]][label_name] ) )
UpperCAmelCase_: Union[str, Any] = {label: i for i, label in enumerate(_a )}
UpperCAmelCase_: Tuple = tokenizer.model_input_names
UpperCAmelCase_: Union[str, Any] = {}
if len(_a ) == 1:
for k in files.keys():
UpperCAmelCase_: Union[str, Any] = ds[k].map(
lambda _a : tokenizer.batch_encode_plus(
example[features_name[0]] ,truncation=_a ,max_length=_a ,padding="max_length" ) ,batched=_a ,)
elif len(_a ) == 2:
for k in files.keys():
UpperCAmelCase_: List[str] = ds[k].map(
lambda _a : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) ,truncation=_a ,max_length=_a ,padding="max_length" ,) ,batched=_a ,)
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
UpperCAmelCase_: Optional[int] = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase_: Union[str, Any] = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
UpperCAmelCase_: Any = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase_: List[str] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
UpperCAmelCase_: int = {k: v for k, v in ex.items() if k in input_names}
UpperCAmelCase_: Union[str, Any] = labelaid[ex[label_name]]
yield (d, label)
UpperCAmelCase_: Optional[Any] = (
tf.data.Dataset.from_generator(
_a ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,)
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
UpperCAmelCase_: List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
UpperCAmelCase_: Tuple = (
tf.data.Dataset.from_generator(
_a ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,)
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
UpperCAmelCase_: Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
UpperCAmelCase_: Union[str, Any] = (
tf.data.Dataset.from_generator(
_a ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,)
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
UpperCAmelCase_: str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_lowerCAmelCase = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase__ :
snake_case_ = field(metadata={'''help''': '''Which column contains the label'''} )
snake_case_ = field(default=snake_case__ , metadata={'''help''': '''The path of the training file'''} )
snake_case_ = field(default=snake_case__ , metadata={'''help''': '''The path of the development file'''} )
snake_case_ = field(default=snake_case__ , metadata={'''help''': '''The path of the test file'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=snake_case__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class UpperCAmelCase__ :
snake_case_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
snake_case_ = field(
default=snake_case__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
snake_case_ = field(
default=snake_case__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
snake_case_ = field(
default=snake_case__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def lowercase ( ) -> str:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Optional[Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,)
logger.info(
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, "
f"16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase_: List[str] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,)
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = get_tfds(
train_file=data_args.train_file ,eval_file=data_args.dev_file ,test_file=data_args.test_file ,tokenizer=_a ,label_column_id=data_args.label_column_id ,max_seq_length=data_args.max_seq_length ,)
UpperCAmelCase_: Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=len(_a ) ,labelaid=_a ,idalabel={id: label for label, id in labelaid.items()} ,finetuning_task="text-classification" ,cache_dir=model_args.cache_dir ,)
with training_args.strategy.scope():
UpperCAmelCase_: Any = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path ,from_pt=bool(".bin" in model_args.model_name_or_path ) ,config=_a ,cache_dir=model_args.cache_dir ,)
def compute_metrics(_a ) -> Dict:
UpperCAmelCase_: int = np.argmax(p.predictions ,axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
UpperCAmelCase_: List[Any] = TFTrainer(
model=_a ,args=_a ,train_dataset=_a ,eval_dataset=_a ,compute_metrics=_a ,)
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase_: List[Any] = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
UpperCAmelCase_: List[str] = trainer.evaluate()
UpperCAmelCase_: Optional[int] = os.path.join(training_args.output_dir ,"eval_results.txt" )
with open(_a ,"w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(f" {key} = {value}" )
writer.write(f"{key} = {value}\n" )
results.update(_a )
return results
if __name__ == "__main__":
main() | 137 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase__ ( unittest.TestCase ):
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: Any = tempfile.mkdtemp()
UpperCAmelCase_: Union[str, Any] = BlipImageProcessor()
UpperCAmelCase_: int = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
UpperCAmelCase_: int = BlipaProcessor(A__ , A__ )
processor.save_pretrained(self.tmpdirname )
def snake_case_ ( self , **A__ ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **A__ ).tokenizer
def snake_case_ ( self , **A__ ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **A__ ).image_processor
def snake_case_ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
UpperCAmelCase_: Optional[int] = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: Optional[int] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_: int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase_: int = self.get_image_processor(do_normalize=A__ , padding_value=1.0 )
UpperCAmelCase_: str = BlipaProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A__ )
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: Optional[Any] = self.get_image_processor()
UpperCAmelCase_: str = self.get_tokenizer()
UpperCAmelCase_: Tuple = BlipaProcessor(tokenizer=A__ , image_processor=A__ )
UpperCAmelCase_: List[str] = self.prepare_image_inputs()
UpperCAmelCase_: List[str] = image_processor(A__ , return_tensors="np" )
UpperCAmelCase_: List[Any] = processor(images=A__ , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: List[str] = self.get_image_processor()
UpperCAmelCase_: Any = self.get_tokenizer()
UpperCAmelCase_: Tuple = BlipaProcessor(tokenizer=A__ , image_processor=A__ )
UpperCAmelCase_: Optional[int] = "lower newer"
UpperCAmelCase_: int = processor(text=A__ )
UpperCAmelCase_: str = tokenizer(A__ , return_token_type_ids=A__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: Optional[int] = self.get_image_processor()
UpperCAmelCase_: Optional[Any] = self.get_tokenizer()
UpperCAmelCase_: Dict = BlipaProcessor(tokenizer=A__ , image_processor=A__ )
UpperCAmelCase_: Optional[Any] = "lower newer"
UpperCAmelCase_: Optional[int] = self.prepare_image_inputs()
UpperCAmelCase_: Dict = processor(text=A__ , images=A__ )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A__ ):
processor()
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: int = self.get_image_processor()
UpperCAmelCase_: Tuple = self.get_tokenizer()
UpperCAmelCase_: Tuple = BlipaProcessor(tokenizer=A__ , image_processor=A__ )
UpperCAmelCase_: Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase_: List[str] = processor.batch_decode(A__ )
UpperCAmelCase_: Optional[int] = tokenizer.batch_decode(A__ )
self.assertListEqual(A__ , A__ )
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: Tuple = self.get_image_processor()
UpperCAmelCase_: List[str] = self.get_tokenizer()
UpperCAmelCase_: Optional[Any] = BlipaProcessor(tokenizer=A__ , image_processor=A__ )
UpperCAmelCase_: Tuple = "lower newer"
UpperCAmelCase_: Optional[Any] = self.prepare_image_inputs()
UpperCAmelCase_: Union[str, Any] = processor(text=A__ , images=A__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 137 | 1 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class a ( __lowerCAmelCase ):
"""simple docstring"""
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Optional[Any]:
super().__init__(
lowerCAmelCase_ , split=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , num_proc=lowerCAmelCase_ , **lowerCAmelCase_ , )
_A = field
_A = path_or_paths if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else {self.split: path_or_paths}
_A = Json(
cache_dir=lowerCAmelCase_ , data_files=lowerCAmelCase_ , features=lowerCAmelCase_ , field=lowerCAmelCase_ , **lowerCAmelCase_ , )
def UpperCAmelCase ( self ) -> int:
# Build iterable dataset
if self.streaming:
_A = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_A = None
_A = None
_A = None
_A = None
self.builder.download_and_prepare(
download_config=lowerCAmelCase_ , download_mode=lowerCAmelCase_ , verification_mode=lowerCAmelCase_ , base_path=lowerCAmelCase_ , num_proc=self.num_proc , )
_A = self.builder.as_dataset(
split=self.split , verification_mode=lowerCAmelCase_ , in_memory=self.keep_in_memory )
return dataset
class a :
"""simple docstring"""
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> List[Any]:
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
_A = dataset
_A = path_or_buf
_A = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_A = num_proc
_A = """utf-8"""
_A = to_json_kwargs
def UpperCAmelCase ( self ) -> int:
_A = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase_ )
_A = self.to_json_kwargs.pop("""orient""" , """records""" )
_A = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False )
_A = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True )
_A = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase_ )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase_ ) as buffer:
_A = self._write(file_obj=lowerCAmelCase_ , orient=lowerCAmelCase_ , lines=lowerCAmelCase_ , index=lowerCAmelCase_ , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""" )
_A = self._write(
file_obj=self.path_or_buf , orient=lowerCAmelCase_ , lines=lowerCAmelCase_ , index=lowerCAmelCase_ , **self.to_json_kwargs )
return written
def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str:
_A , _A , _A , _A , _A = args
_A = query_table(
table=self.dataset.data , key=slice(lowerCAmelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , )
_A = batch.to_pandas().to_json(
path_or_buf=lowerCAmelCase_ , orient=lowerCAmelCase_ , lines=lowerCAmelCase_ , index=lowerCAmelCase_ , **lowerCAmelCase_ )
if not json_str.endswith("""\n""" ):
json_str += "\n"
return json_str.encode(self.encoding )
def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ , ) -> int:
_A = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_A = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(lowerCAmelCase_ )
else:
_A , _A = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase_ , lowerCAmelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowerCAmelCase_ )
return written
| 83 | def snake_case ( snake_case__ :int = 1_000_000) -> int:
_A = set(range(3 , snake_case__ , 2))
primes.add(2)
for p in range(3 , snake_case__ , 2):
if p not in primes:
continue
primes.difference_update(set(range(p * p , snake_case__ , snake_case__)))
_A = [float(snake_case__) for n in range(limit + 1)]
for p in primes:
for n in range(snake_case__ , limit + 1 , snake_case__):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:]))
if __name__ == "__main__":
print(F'''{solution() = }''')
| 83 | 1 |
import math
def lowercase__( A , A ):
snake_case__ : str = len(lowerCAmelCase_ )
snake_case__ : Dict = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) )
snake_case__ : Optional[int] = 0
while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x:
snake_case__ : str = step
step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) )
if prev >= n:
return -1
while arr[prev] < x:
snake_case__ : List[Any] = prev + 1
if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
lowerCamelCase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip()
lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')]
lowerCamelCase : int = int(input('Enter the number to be searched:\n'))
lowerCamelCase : Any = jump_search(arr, x)
if res == -1:
print('Number not found!')
else:
print(F"""Number {x} is at index {res}""")
| 170 |
"""simple docstring"""
import os
from pathlib import Path
def snake_case ( ) -> Tuple:
from torch.utils.cpp_extension import load
_snake_case = Path(lowerCAmelCase_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr'''
_snake_case = [
root / filename
for filename in [
'''vision.cpp''',
os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ),
os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ),
]
]
load(
'''MultiScaleDeformableAttention''' , lowerCAmelCase_ , with_cuda=lowerCAmelCase_ , extra_include_paths=[str(lowerCAmelCase_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[
'''-DCUDA_HAS_FP16=1''',
'''-D__CUDA_NO_HALF_OPERATORS__''',
'''-D__CUDA_NO_HALF_CONVERSIONS__''',
'''-D__CUDA_NO_HALF2_OPERATORS__''',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 103 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : Tuple = {
'''configuration_blenderbot_small''': [
'''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlenderbotSmallConfig''',
'''BlenderbotSmallOnnxConfig''',
],
'''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[Any] = ['''BlenderbotSmallTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = [
'''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlenderbotSmallForCausalLM''',
'''BlenderbotSmallForConditionalGeneration''',
'''BlenderbotSmallModel''',
'''BlenderbotSmallPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Any = [
'''TFBlenderbotSmallForConditionalGeneration''',
'''TFBlenderbotSmallModel''',
'''TFBlenderbotSmallPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = [
'''FlaxBlenderbotSmallForConditionalGeneration''',
'''FlaxBlenderbotSmallModel''',
'''FlaxBlenderbotSmallPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
__lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 718 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__lowerCamelCase : Dict = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def lowercase__ ( __A: List[Any] ):
'''simple docstring'''
__magic_name__ : int = test_results.split(''' ''' )
__magic_name__ : Optional[Any] = 0
__magic_name__ : int = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
__magic_name__ : Optional[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1]
for i, expression in enumerate(__A ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def lowercase__ ( __A: Dict ):
'''simple docstring'''
__magic_name__ : Tuple = {}
__magic_name__ : List[Any] = None
__magic_name__ : int = False
for line in failures_short_lines.split('''\n''' ):
if re.search(r'''_ \[doctest\]''' ,__A ):
__magic_name__ : Dict = True
__magic_name__ : Any = line.split(''' ''' )[2]
elif in_error and not line.split(''' ''' )[0].isdigit():
__magic_name__ : List[Any] = line
__magic_name__ : List[Any] = False
return failures
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Dict ) -> List[str]:
__magic_name__ : Union[str, Any] = title
__magic_name__ : List[Any] = doc_test_results['''time_spent'''].split(''',''' )[0]
__magic_name__ : Optional[Any] = doc_test_results['''success''']
__magic_name__ : Optional[Any] = doc_test_results['''failures''']
__magic_name__ : Union[str, Any] = self.n_success + self.n_failures
# Failures and success of the modeling tests
__magic_name__ : List[Any] = doc_test_results
@property
def UpperCAmelCase__ ( self : List[str] ) -> str:
__magic_name__ : Union[str, Any] = [self._time_spent]
__magic_name__ : str = 0
for time in time_spent:
__magic_name__ : List[Any] = time.split(''':''' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(lowerCamelCase_ ) == 1:
__magic_name__ : str = [0, 0, time_parts[0]]
__magic_name__ , __magic_name__ , __magic_name__ : List[Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
__magic_name__ , __magic_name__ , __magic_name__ : Dict = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F'''{int(lowerCamelCase_ )}h{int(lowerCamelCase_ )}m{int(lowerCamelCase_ )}s'''
@property
def UpperCAmelCase__ ( self : Dict ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
@property
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'''
F''' {self.time}.'''
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
@property
def UpperCAmelCase__ ( self : Dict ) -> Dict:
__magic_name__ : List[Any] = 40
__magic_name__ : Optional[Any] = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(lowerCamelCase_ , lowerCamelCase_ )}
__magic_name__ : Any = ''''''
for category, failures in category_failures.items():
if len(lowerCamelCase_ ) == 0:
continue
if report != "":
report += "\n\n"
report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(lowerCamelCase_ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'''The following examples had failures:\n\n\n{report}\n''',
},
}
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
__magic_name__ : List[str] = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(lowerCamelCase_ )
@staticmethod
def UpperCAmelCase__ ( ) -> List[Any]:
__magic_name__ : Dict = [
{
'''type''': '''section''',
'''text''': {
'''type''': '''plain_text''',
'''text''': '''There was an issue running the tests.''',
},
'''accessory''': {
'''type''': '''button''',
'''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True},
'''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
]
print('''Sending the following payload''' )
print(json.dumps({'''blocks''': json.loads(lowerCamelCase_ )} ) )
client.chat_postMessage(
channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=lowerCamelCase_ , )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]:
print('''Sending the following payload''' )
print(json.dumps({'''blocks''': json.loads(self.payload )} ) )
__magic_name__ : Tuple = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.'''
__magic_name__ : List[Any] = client.chat_postMessage(
channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=lowerCamelCase_ , )
def UpperCAmelCase__ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Any ) -> Optional[Any]:
__magic_name__ : Optional[Any] = ''''''
for key, value in failures.items():
__magic_name__ : int = value[:200] + ''' [Truncated]''' if len(lowerCamelCase_ ) > 250 else value
failures_text += F'''*{key}*\n_{value}_\n\n'''
__magic_name__ : Dict = job_name
__magic_name__ : Tuple = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}}
if job_link is not None:
__magic_name__ : int = {
'''type''': '''button''',
'''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True},
'''url''': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def UpperCAmelCase__ ( self : Any ) -> Tuple:
if self.thread_ts is None:
raise ValueError('''Can only post reply if a post has been made.''' )
__magic_name__ : List[str] = self.doc_test_results.pop('''job_link''' )
self.doc_test_results.pop('''failures''' )
self.doc_test_results.pop('''success''' )
self.doc_test_results.pop('''time_spent''' )
__magic_name__ : int = sorted(self.doc_test_results.items() , key=lambda lowerCamelCase_ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['''failures'''] ):
__magic_name__ : List[Any] = F'''*Num failures* :{len(job_result['failed'] )} \n'''
__magic_name__ : str = job_result['''failures''']
__magic_name__ : str = self.get_reply_blocks(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , text=lowerCamelCase_ )
print('''Sending the following reply''' )
print(json.dumps({'''blocks''': blocks} ) )
client.chat_postMessage(
channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=lowerCamelCase_ , thread_ts=self.thread_ts['''ts'''] , )
time.sleep(1 )
def lowercase__ ( ):
'''simple docstring'''
__magic_name__ : List[Any] = os.environ['''GITHUB_RUN_ID''']
__magic_name__ : Optional[int] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'''
__magic_name__ : Any = requests.get(__A ).json()
__magic_name__ : List[str] = {}
try:
jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} )
__magic_name__ : Optional[int] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 )
for i in range(__A ):
__magic_name__ : Optional[Any] = requests.get(url + F'''&page={i + 2}''' ).json()
jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} )
return jobs
except Exception as e:
print('''Unknown error, could not fetch links.''' ,__A )
return {}
def lowercase__ ( __A: str ):
'''simple docstring'''
__magic_name__ : List[str] = {}
if os.path.exists(__A ):
__magic_name__ : Any = os.listdir(__A )
for file in files:
try:
with open(os.path.join(__A ,__A ) ,encoding='''utf-8''' ) as f:
__magic_name__ : Dict = f.read()
except UnicodeDecodeError as e:
raise ValueError(F'''Could not open {os.path.join(__A ,__A )}.''' ) from e
return _artifact
def lowercase__ ( ):
'''simple docstring'''
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCamelCase_ : str ) -> int:
__magic_name__ : int = name
__magic_name__ : Dict = []
def __str__( self : List[str] ) -> Union[str, Any]:
return self.name
def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase_ : str ) -> Optional[Any]:
self.paths.append({'''name''': self.name, '''path''': path} )
__magic_name__ : Dict[str, Artifact] = {}
__magic_name__ : Tuple = filter(os.path.isdir ,os.listdir() )
for directory in directories:
__magic_name__ : int = directory
if artifact_name not in _available_artifacts:
__magic_name__ : List[Any] = Artifact(__A )
_available_artifacts[artifact_name].add_path(__A )
return _available_artifacts
if __name__ == "__main__":
__lowerCamelCase : Optional[int] = get_job_links()
__lowerCamelCase : Tuple = retrieve_available_artifacts()
__lowerCamelCase : Tuple = collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__lowerCamelCase : Tuple = {
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__lowerCamelCase : Optional[int] = github_actions_job_links.get('''run_doctests''')
__lowerCamelCase : Optional[Any] = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
__lowerCamelCase : Optional[int] = retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = handle_test_results(artifact['''stats'''])
__lowerCamelCase : Optional[Any] = failed
__lowerCamelCase : List[Any] = success
__lowerCamelCase : int = time_spent[1:-1] + ''', '''
__lowerCamelCase : Dict = extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
__lowerCamelCase : List[Any] = line.replace('''FAILED ''', '''''')
__lowerCamelCase : int = line.split()[0].replace('''\n''', '''''')
if "::" in line:
__lowerCamelCase , __lowerCamelCase : List[str] = line.split('''::''')
else:
__lowerCamelCase , __lowerCamelCase : Optional[int] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__lowerCamelCase : Union[str, Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
__lowerCamelCase : List[Any] = all_failures[test] if test in all_failures else '''N/A'''
__lowerCamelCase : int = failure
break
__lowerCamelCase : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 501 | 0 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
UpperCamelCase__ : Union[str, Any] = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase_ ( lowercase_ ):
__a : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
__a : bool = field(default=lowercase_ , metadata={"help": "Whether to SortishSamler or not."} )
__a : bool = field(
default=lowercase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
__a : bool = field(default=lowercase_ , metadata={"help": "whether to use adafactor"} )
__a : Optional[float] = field(
default=lowercase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
__a : Optional[float] = field(
default=lowercase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
__a : Optional[float] = field(default=lowercase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
__a : Optional[float] = field(
default=lowercase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
__a : Optional[str] = field(
default="linear" , metadata={"help": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
| 105 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
class __lowerCAmelCase :
'''simple docstring'''
def __init__(self : str , UpperCamelCase : list[str] ):
'''simple docstring'''
lowercase__ = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(UpperCamelCase )
self.set_fail_transitions()
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : str ):
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : str ):
'''simple docstring'''
lowercase__ = 0
for character in keyword:
lowercase__ = self.find_next_state(UpperCamelCase , UpperCamelCase )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
lowercase__ = len(self.adlist ) - 1
else:
lowercase__ = next_state
self.adlist[current_state]["output"].append(UpperCamelCase )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
lowercase__ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCamelCase )
lowercase__ = 0
while q:
lowercase__ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCamelCase )
lowercase__ = self.adlist[r]['''fail_state''']
while (
self.find_next_state(UpperCamelCase , self.adlist[child]['''value'''] ) is None
and state != 0
):
lowercase__ = self.adlist[state]['''fail_state''']
lowercase__ = self.find_next_state(
UpperCamelCase , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
lowercase__ = 0
lowercase__ = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : str ):
'''simple docstring'''
lowercase__ = {} # returns a dict with keywords and list of its occurrences
lowercase__ = 0
for i in range(len(UpperCamelCase ) ):
while (
self.find_next_state(UpperCamelCase , string[i] ) is None
and current_state != 0
):
lowercase__ = self.adlist[current_state]['''fail_state''']
lowercase__ = self.find_next_state(UpperCamelCase , string[i] )
if next_state is None:
lowercase__ = 0
else:
lowercase__ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
lowercase__ = []
result[key].append(i - len(UpperCamelCase ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 460 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class SCREAMING_SNAKE_CASE ( snake_case ):
"""simple docstring"""
A_ = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
A_ = "CIDAS/clipseg-rd64-refined"
A_ = "image_segmenter"
A_ = CLIPSegForImageSegmentation
A_ = ["image", "text"]
A_ = ["image"]
def __init__( self: Optional[int] , *__A: Optional[int] , **__A: Tuple ) -> Dict:
requires_backends(self , ['''vision'''] )
super().__init__(*__A , **__A )
def __A ( self: Any , __A: "Image" , __A: str ) -> List[Any]:
return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors='''pt''' )
def __A ( self: int , __A: Optional[int] ) -> str:
with torch.no_grad():
_A = self.model(**__A ).logits
return logits
def __A ( self: Optional[int] , __A: Dict ) -> Union[str, Any]:
_A = outputs.cpu().detach().numpy()
_A = 0
_A = 1
return Image.fromarray((array * 2_55).astype(np.uinta ) )
| 721 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self: Optional[int] , __A: Union[str, Any] , __A: int=2 , __A: List[str]=True , __A: List[Any]=False , __A: Union[str, Any]=10 , __A: Optional[int]=3 , __A: List[Any]=32 * 4 , __A: Dict=32 * 6 , __A: Optional[Any]=4 , __A: Any=32 , ) -> str:
_A = parent
_A = batch_size
_A = is_training
_A = use_auxiliary_loss
_A = num_queries
_A = num_channels
_A = min_size
_A = max_size
_A = num_labels
_A = mask_feature_size
def __A ( self: Dict ) -> Optional[int]:
_A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__A )
_A = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__A )
_A = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__A ) > 0.5
).float()
_A = (torch.rand((self.batch_size, self.num_labels) , device=__A ) > 0.5).long()
_A = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def __A ( self: Optional[Any] ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def __A ( self: Dict ) -> Tuple:
_A ,_A ,_A ,_A ,_A = self.prepare_config_and_inputs()
_A = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask}
return config, inputs_dict
def __A ( self: Optional[int] , __A: Union[str, Any] , __A: Dict ) -> int:
_A = output.encoder_hidden_states
_A = output.pixel_decoder_hidden_states
_A = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__A ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__A ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__A ) , config.decoder_config.decoder_layers )
def __A ( self: Optional[Any] , __A: Union[str, Any] , __A: Optional[Any] , __A: Any , __A: Dict=False ) -> Any:
with torch.no_grad():
_A = MaskFormerModel(config=__A )
model.to(__A )
model.eval()
_A = model(pixel_values=__A , pixel_mask=__A )
_A = model(__A , output_hidden_states=__A )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__A , __A )
def __A ( self: Optional[Any] , __A: Union[str, Any] , __A: Optional[Any] , __A: Union[str, Any] , __A: Union[str, Any] , __A: List[Any] ) -> int:
_A = MaskFormerForInstanceSegmentation(config=__A )
model.to(__A )
model.eval()
def comm_check_on_output(__A: int ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_A = model(pixel_values=__A , pixel_mask=__A )
_A = model(__A )
comm_check_on_output(__A )
_A = model(
pixel_values=__A , pixel_mask=__A , mask_labels=__A , class_labels=__A )
comm_check_on_output(__A )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ):
"""simple docstring"""
A_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
A_ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
A_ = False
A_ = False
A_ = False
A_ = False
def __A ( self: int ) -> Tuple:
_A = MaskFormerModelTester(self )
_A = ConfigTester(self , config_class=__A , has_text_modality=__A )
def __A ( self: List[Any] ) -> Dict:
self.config_tester.run_common_tests()
def __A ( self: Optional[Any] ) -> int:
_A ,_A = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__A , **__A , output_hidden_states=__A )
def __A ( self: Dict ) -> Optional[Any]:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__A )
@unittest.skip(reason='''MaskFormer does not use inputs_embeds''' )
def __A ( self: int ) -> Tuple:
pass
@unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' )
def __A ( self: List[Any] ) -> Any:
pass
@unittest.skip(reason='''MaskFormer is not a generative model''' )
def __A ( self: Union[str, Any] ) -> Optional[int]:
pass
@unittest.skip(reason='''MaskFormer does not use token embeddings''' )
def __A ( self: int ) -> List[str]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def __A ( self: Union[str, Any] ) -> List[Any]:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __A ( self: List[Any] ) -> Any:
pass
def __A ( self: Dict ) -> Optional[Any]:
_A ,_A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(__A )
_A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A = [*signature.parameters.keys()]
_A = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __A )
@slow
def __A ( self: int ) -> Optional[Any]:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_A = MaskFormerModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def __A ( self: Optional[Any] ) -> Optional[int]:
_A = (self.model_tester.min_size,) * 2
_A = {
'''pixel_values''': torch.randn((2, 3, *size) , device=__A ),
'''mask_labels''': torch.randn((2, 10, *size) , device=__A ),
'''class_labels''': torch.zeros(2 , 10 , device=__A ).long(),
}
_A = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__A )
_A = model(**__A )
self.assertTrue(outputs.loss is not None )
def __A ( self: Optional[Any] ) -> List[Any]:
_A ,_A = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__A , **__A , output_hidden_states=__A )
def __A ( self: Any ) -> Tuple:
_A ,_A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(__A ).to(__A )
_A = model(**__A , output_attentions=__A )
self.assertTrue(outputs.attentions is not None )
def __A ( self: Dict ) -> Union[str, Any]:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_A = self.all_model_classes[1]
_A ,_A ,_A ,_A ,_A = self.model_tester.prepare_config_and_inputs()
_A = model_class(__A )
model.to(__A )
model.train()
_A = model(__A , mask_labels=__A , class_labels=__A ).loss
loss.backward()
def __A ( self: Tuple ) -> Optional[Any]:
# only MaskFormerForInstanceSegmentation has the loss
_A = self.all_model_classes[1]
_A ,_A ,_A ,_A ,_A = self.model_tester.prepare_config_and_inputs()
_A = True
_A = True
_A = model_class(__A )
model.to(__A )
model.train()
_A = model(__A , mask_labels=__A , class_labels=__A )
_A = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_A = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_A = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_A = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__A )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__A = 1e-4
def __A ( ):
'''simple docstring'''
_A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_vision
@slow
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self: Union[str, Any] ) -> Optional[int]:
return (
MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' )
if is_vision_available()
else None
)
def __A ( self: List[Any] ) -> Any:
_A = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__A )
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(__A , return_tensors='''pt''' ).to(__A )
_A = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__A , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_A = model(**__A )
_A = torch.tensor(
[[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(__A )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __A , atol=__A ) )
_A = torch.tensor(
[[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(__A )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __A , atol=__A ) )
_A = torch.tensor(
[[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(__A )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __A , atol=__A ) )
def __A ( self: Dict ) -> Dict:
_A = (
MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' )
.to(__A )
.eval()
)
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(__A , return_tensors='''pt''' ).to(__A )
_A = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__A , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_A = model(**__A )
# masks_queries_logits
_A = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_A = [
[-1.3_737_124, -1.7_724_937, -1.9_364_233],
[-1.5_977_281, -1.9_867_939, -2.1_523_695],
[-1.5_795_398, -1.9_269_832, -2.093_942],
]
_A = torch.tensor(__A ).to(__A )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __A , atol=__A ) )
# class_queries_logits
_A = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_A = torch.tensor(
[
[1.65_12e00, -5.25_72e00, -3.35_19e00],
[3.61_69e-02, -5.90_25e00, -2.93_13e00],
[1.07_66e-04, -7.76_30e00, -5.12_63e00],
] ).to(__A )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __A , atol=__A ) )
def __A ( self: List[Any] ) -> Dict:
_A = (
MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' )
.to(__A )
.eval()
)
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(__A , return_tensors='''pt''' ).to(__A )
_A = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__A , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_A = model(**__A )
# masks_queries_logits
_A = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_A = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]]
_A = torch.tensor(__A ).to(__A )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __A , atol=__A ) )
# class_queries_logits
_A = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_A = torch.tensor(
[[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(__A )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __A , atol=__A ) )
def __A ( self: Optional[Any] ) -> str:
_A = (
MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' )
.to(__A )
.eval()
)
_A = self.default_image_processor
_A = image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , )
_A = inputs['''pixel_values'''].to(__A )
_A = [el.to(__A ) for el in inputs['''mask_labels''']]
_A = [el.to(__A ) for el in inputs['''class_labels''']]
with torch.no_grad():
_A = model(**__A )
self.assertTrue(outputs.loss is not None )
| 62 | 0 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class a ( snake_case__ ):
'''simple docstring'''
__lowerCAmelCase : int = 0
__lowerCAmelCase : bool = False
__lowerCAmelCase : float = 3.0
class a ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ) -> Dict:
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=lowerCamelCase_ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def __UpperCamelCase ( self ) -> int:
# If no defaults are changed, `to_kwargs` returns an empty dict.
_a : List[str] = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 )
AcceleratorState._reset_state()
_a : Optional[int] = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_a : Tuple = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_0_0_0 )
self.assertEqual(scaler._enabled , lowerCamelCase_ )
@require_multi_gpu
def __UpperCamelCase ( self ) -> Optional[Any]:
_a : List[str] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() )
if __name__ == "__main__":
UpperCAmelCase_ : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
UpperCAmelCase_ : str = Accelerator(kwargs_handlers=[ddp_scaler])
UpperCAmelCase_ : List[Any] = torch.nn.Linear(100, 200)
UpperCAmelCase_ : Tuple = accelerator.prepare(model)
# Check the values changed in kwargs
UpperCAmelCase_ : List[str] = ""
UpperCAmelCase_ : Any = model.bucket_bytes_cap // (1024 * 1024)
if observed_bucket_cap_map != 15:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 120 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
UpperCAmelCase_ : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase_ : Union[str, Any] = {
"vocab_file": {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt",
},
"tokenizer_file": {
"unc-nlp/lxmert-base-uncased": (
"https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase_ : str = {
"unc-nlp/lxmert-base-uncased": 512,
}
UpperCAmelCase_ : Optional[int] = {
"unc-nlp/lxmert-base-uncased": {"do_lower_case": True},
}
class a ( snake_case__ ):
'''simple docstring'''
__lowerCAmelCase : Tuple = VOCAB_FILES_NAMES
__lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
__lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : List[Any] = LxmertTokenizer
def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Optional[int]:
super().__init__(
lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , )
_a : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case
or normalizer_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , lowerCamelCase_ ) != tokenize_chinese_chars
):
_a : str = getattr(lowerCamelCase_ , normalizer_state.pop('type' ) )
_a : Tuple = do_lower_case
_a : str = strip_accents
_a : Optional[Any] = tokenize_chinese_chars
_a : Dict = normalizer_class(**lowerCamelCase_ )
_a : Optional[int] = do_lower_case
def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Optional[Any]:
_a : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]:
_a : Union[str, Any] = [self.sep_token_id]
_a : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]:
_a : Optional[Any] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ )
return tuple(lowerCamelCase_ )
| 120 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Optional[int] = ort.SessionOptions()
snake_case_ : List[str] = False
return options
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
snake_case_ : Any = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
snake_case_ : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
snake_case_ : Optional[int] = """A red cat sitting on a park bench"""
snake_case_ : Optional[Any] = np.random.RandomState(0 )
snake_case_ : Tuple = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowercase , output_type="""np""" , )
snake_case_ : str = output.images
snake_case_ : Any = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
snake_case_ : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
snake_case_ : Any = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
snake_case_ : Dict = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" )
snake_case_ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
snake_case_ : List[Any] = """A red cat sitting on a park bench"""
snake_case_ : List[Any] = np.random.RandomState(0 )
snake_case_ : List[Any] = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowercase , output_type="""np""" , )
snake_case_ : Tuple = output.images
snake_case_ : int = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ : Optional[int] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 706 |
"""simple docstring"""
def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ):
'''simple docstring'''
snake_case_ : Any = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
snake_case_ : Optional[int] = n - k
# Calculate C(n,k)
for i in range(__UpperCamelCase ):
result *= n - i
result //= i + 1
return result
def __lowerCAmelCase ( __UpperCamelCase : int ):
'''simple docstring'''
return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1)
def __lowerCAmelCase ( __UpperCamelCase : int ):
'''simple docstring'''
if n < 0:
raise ValueError("""factorial() not defined for negative values""" )
snake_case_ : Optional[int] = 1
for i in range(1 , n + 1 ):
result *= i
return result
def __lowerCAmelCase ( __UpperCamelCase : int ):
'''simple docstring'''
return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase )
if __name__ == "__main__":
__lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0)
if node_count <= 0:
raise ValueError('''We need some nodes to work with.''')
print(
F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} '''
F'''binary trees and {catalan_number(node_count)} binary search trees.'''
)
| 21 | 0 |
from typing import Any
def _UpperCamelCase ( lowercase__ ):
if not input_list:
return []
__SCREAMING_SNAKE_CASE : Dict = [input_list.count(snake_case__ ) for value in input_list]
__SCREAMING_SNAKE_CASE : Any = max(snake_case__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 696 |
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> list[int]:
_lowercase = str(snake_case__ )
_lowercase = [n]
for i in range(1 , len(snake_case__ ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool:
if len(str(snake_case__ ) ) > 3:
if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ):
return False
return True
def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 11 ) -> list[int]:
_lowercase = []
_lowercase = 13
while len(snake_case__ ) != count:
if validate(snake_case__ ):
_lowercase = list_truncated_nums(snake_case__ )
if all(is_prime(snake_case__ ) for i in list_nums ):
list_truncated_primes.append(snake_case__ )
num += 2
return list_truncated_primes
def SCREAMING_SNAKE_CASE__ ( ) -> int:
return sum(compute_truncated_primes(11 ) )
if __name__ == "__main__":
print(F"""{sum(compute_truncated_primes(1_1)) = }""") | 67 | 0 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def a__ ( __lowercase ) -> Optional[Any]:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e00 and cp <= 0x9_fff)
or (cp >= 0x3_400 and cp <= 0x4_dbf) #
or (cp >= 0x20_000 and cp <= 0x2a_6df) #
or (cp >= 0x2a_700 and cp <= 0x2b_73f) #
or (cp >= 0x2b_740 and cp <= 0x2b_81f) #
or (cp >= 0x2b_820 and cp <= 0x2c_eaf) #
or (cp >= 0xf_900 and cp <= 0xf_aff)
or (cp >= 0x2f_800 and cp <= 0x2f_a1f) #
): #
return True
return False
def a__ ( __lowercase ) -> List[str]:
# word like '180' or '身高' or '神'
for char in word:
_A = ord(__lowercase )
if not _is_chinese_char(__lowercase ):
return 0
return 1
def a__ ( __lowercase ) -> Dict:
_A = set()
for token in tokens:
_A = len(__lowercase ) > 1 and is_chinese(__lowercase )
if chinese_word:
word_set.add(__lowercase )
_A = list(__lowercase )
return word_list
def a__ ( __lowercase , __lowercase ) -> List[str]:
if not chinese_word_set:
return bert_tokens
_A = max([len(__lowercase ) for w in chinese_word_set] )
_A = bert_tokens
_A , _A = 0, len(__lowercase )
while start < end:
_A = True
if is_chinese(bert_word[start] ):
_A = min(end - start , __lowercase )
for i in range(__lowercase , 1 , -1 ):
_A = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_A = "##" + bert_word[j]
_A = start + i
_A = False
break
if single_word:
start += 1
return bert_word
def a__ ( __lowercase , __lowercase , __lowercase ) -> List[Any]:
_A = []
for i in range(0 , len(__lowercase ) , 100 ):
_A = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws
_A = [get_chinese_word(__lowercase ) for r in res]
ltp_res.extend(__lowercase )
assert len(__lowercase ) == len(__lowercase )
_A = []
for i in range(0 , len(__lowercase ) , 100 ):
_A = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowercase , truncation=__lowercase , max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__lowercase ) == len(__lowercase )
_A = []
for input_ids, chinese_word in zip(__lowercase , __lowercase ):
_A = []
for id in input_ids:
_A = bert_tokenizer._convert_id_to_token(__lowercase )
input_tokens.append(__lowercase )
_A = add_sub_symbol(__lowercase , __lowercase )
_A = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowercase ):
if token[:2] == "##":
_A = token[2:]
# save chinese tokens' pos
if len(__lowercase ) == 1 and _is_chinese_char(ord(__lowercase ) ):
ref_id.append(__lowercase )
ref_ids.append(__lowercase )
assert len(__lowercase ) == len(__lowercase )
return ref_ids
def a__ ( __lowercase ) -> Union[str, Any]:
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , "r" , encoding="utf-8" ) as f:
_A = f.readlines()
_A = [line.strip() for line in data if len(__lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_A = LTP(args.ltp ) # faster in GPU device
_A = BertTokenizer.from_pretrained(args.bert )
_A = prepare_ref(__lowercase , __lowercase , __lowercase )
with open(args.save_path , "w" , encoding="utf-8" ) as f:
_A = [json.dumps(__lowercase ) + "\n" for ref in ref_ids]
f.writelines(__lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
required=False,
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp",
required=False,
type=str,
default="./resources/ltp",
help="resources for LTP tokenizer, usually a path",
)
parser.add_argument(
"--bert",
required=False,
type=str,
default="./resources/robert",
help="resources for Bert tokenizer",
)
parser.add_argument(
"--save_path",
required=False,
type=str,
default="./resources/ref.txt",
help="path to save res",
)
__snake_case = parser.parse_args()
main(args) | 704 |
"""simple docstring"""
def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> str:
# Return True if there is node that has not iterated.
_A = [False] * len(__lowercase )
_A = []
queue.append(__lowercase )
_A = True
while queue:
_A = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__lowercase )
_A = True
_A = u
return visited[t]
def a__ ( __lowercase , __lowercase , __lowercase ) -> int:
# This array is filled by BFS and to store path
_A = [-1] * (len(__lowercase ))
_A = 0
while bfs(__lowercase , __lowercase , __lowercase , __lowercase ):
_A = float("Inf" )
_A = sink
while s != source:
# Find the minimum value in select path
_A = min(__lowercase , graph[parent[s]][s] )
_A = parent[s]
max_flow += path_flow
_A = sink
while v != source:
_A = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
_A = parent[v]
return max_flow
a_ = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
a_ , a_ = 0, 5
print(ford_fulkerson(graph, source, sink)) | 621 | 0 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( _A ):
a_ = (EulerDiscreteScheduler,)
a_ = 10
def lowerCamelCase_ ( self , **UpperCamelCase__ ) -> int:
"""simple docstring"""
UpperCAmelCase_ = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**UpperCamelCase__ )
return config
def lowerCamelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCamelCase__ )
def lowerCamelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ )
def lowerCamelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=UpperCamelCase__ )
def lowerCamelCase_ ( self ) -> Dict:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase__ )
def lowerCamelCase_ ( self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**UpperCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase_ = sample.to(UpperCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ = model(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ )
UpperCAmelCase_ = output.prev_sample
UpperCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) )
UpperCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def lowerCamelCase_ ( self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(prediction_type="v_prediction" )
UpperCAmelCase_ = scheduler_class(**UpperCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase_ = sample.to(UpperCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ = model(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ )
UpperCAmelCase_ = output.prev_sample
UpperCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) )
UpperCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def lowerCamelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**UpperCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ )
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase_ = sample.to(UpperCamelCase__ )
for t in scheduler.timesteps:
UpperCAmelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ = model(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ )
UpperCAmelCase_ = output.prev_sample
UpperCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) )
UpperCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def lowerCamelCase_ ( self ) -> int:
"""simple docstring"""
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**UpperCamelCase__ , use_karras_sigmas=UpperCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ )
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase_ = sample.to(UpperCamelCase__ )
for t in scheduler.timesteps:
UpperCAmelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ = model(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ )
UpperCAmelCase_ = output.prev_sample
UpperCAmelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) )
UpperCAmelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) )
assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2
assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
| 660 | '''simple docstring'''
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__snake_case : Tuple = logging.get_logger(__name__)
__snake_case : Tuple = {'''vocab_file''': '''spiece.model'''}
__snake_case : Dict = {
'''vocab_file''': {
'''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''',
}
}
__snake_case : Tuple = {
'''AI-Sweden/gpt-sw3-126m''': 20_48,
'''AI-Sweden/gpt-sw3-350m''': 20_48,
'''AI-Sweden/gpt-sw3-1.6b''': 20_48,
'''AI-Sweden/gpt-sw3-6.7b''': 20_48,
'''AI-Sweden/gpt-sw3-20b''': 20_48,
}
class lowercase_ ( _A ):
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["""input_ids""", """attention_mask"""]
def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None:
"""simple docstring"""
UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
UpperCAmelCase_ = kwargs.get("name_or_path" )
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored" )
UpperCAmelCase_ = "None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
UpperCAmelCase_ = "<|endoftext|>" if eos_token is None else eos_token
UpperCAmelCase_ = "<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
UpperCAmelCase_ = unk_token if pad_token is None else pad_token
UpperCAmelCase_ = eos_token if bos_token is None else bos_token
else:
UpperCAmelCase_ = "<pad>" if pad_token is None else pad_token
UpperCAmelCase_ = "<s>" if bos_token is None else bos_token
super().__init__(
do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , )
UpperCAmelCase_ = do_lower_case
UpperCAmelCase_ = remove_space
UpperCAmelCase_ = keep_accents
UpperCAmelCase_ = vocab_file
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCamelCase__ )
# Used for whitespace normalization in input texts
# fmt : off
UpperCAmelCase_ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
UpperCAmelCase_ = re.compile(
F"""[{"".join(map(UpperCamelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]""" )
def __getstate__( self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ = self.__dict__.copy()
UpperCAmelCase_ = None
return state
def __setstate__( self , UpperCamelCase__ ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def lowerCamelCase_ ( self ) -> int:
"""simple docstring"""
return len(self.sp_model )
def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str:
"""simple docstring"""
UpperCAmelCase_ = self.non_printing_characters_re.sub("" , UpperCamelCase__ )
# Normalize whitespaces
UpperCAmelCase_ = "".join([char if char not in self.whitespaces else " " for char in text] )
# NFC Unicode normalization
UpperCAmelCase_ = unicodedata.normalize("NFC" , UpperCamelCase__ )
return text
def lowerCamelCase_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = self.preprocess_text(UpperCamelCase__ )
return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ )
def lowerCamelCase_ ( self , UpperCamelCase__ ) -> int:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCamelCase__ )
def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCamelCase__ )
@staticmethod
def lowerCamelCase_ ( UpperCamelCase__ ) -> str:
"""simple docstring"""
return out_string
def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str:
"""simple docstring"""
UpperCAmelCase_ = []
UpperCAmelCase_ = ""
UpperCAmelCase_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCamelCase__ ) + token
UpperCAmelCase_ = True
UpperCAmelCase_ = []
else:
current_sub_tokens.append(UpperCamelCase__ )
UpperCAmelCase_ = False
out_string += self.sp_model.decode(UpperCamelCase__ )
return out_string
def lowerCamelCase_ ( self ) -> Dict[str, int]:
"""simple docstring"""
UpperCAmelCase_ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCamelCase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ = os.path.join(
UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase__ , "wb" ) as fi:
UpperCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase__ )
return (out_vocab_file,)
def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
"""simple docstring"""
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
UpperCAmelCase_ = self.preprocess_text(UpperCamelCase__ )
UpperCAmelCase_ = self.sp_model.encode(UpperCamelCase__ )
else:
UpperCAmelCase_ = [self.preprocess_text(UpperCamelCase__ ) for t in text]
UpperCAmelCase_ = self.sp_model.encode(UpperCamelCase__ )
if return_tensors is True or return_tensors == "pt":
UpperCAmelCase_ = torch.tensor(UpperCamelCase__ )
return token_ids
def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str:
"""simple docstring"""
return self.sp_model.decode(UpperCamelCase__ )
def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[int]:
"""simple docstring"""
UpperCAmelCase_ = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
UpperCAmelCase_ = (
F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(UpperCamelCase__ ) + F"""{self.bos_token}Bot:"""
)
return self.encode(text=UpperCamelCase__ )
| 660 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: Optional[Any] = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class a__ ( _a ):
snake_case_ = "canine"
def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1_6384, _UpperCAmelCase=16, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0Xe000, _UpperCAmelCase=0Xe001, _UpperCAmelCase=4, _UpperCAmelCase=4, _UpperCAmelCase=8, _UpperCAmelCase=1_6384, _UpperCAmelCase=128, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase )
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
# Character config:
lowercase__ = downsampling_rate
lowercase__ = upsampling_kernel_size
lowercase__ = num_hash_functions
lowercase__ = num_hash_buckets
lowercase__ = local_transformer_stride
| 668 | """simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ):
'''simple docstring'''
lowercase__ = symbols(A )
lowercase__ = lambdify(A , A )
lowercase__ = lambdify(A , diff(A , A ) )
lowercase__ = starting_point
while True:
if diff_function(A ) != 0:
lowercase__ = prev_guess - multiplicity * func(A ) / diff_function(
A )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowercase__ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
# Find fourth Root of 5
print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}')
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F'{newton_raphson("log(y) - 1", 2, variable="y")}',
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}',
)
# Find root of cos(x)
print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
| 668 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
snake_case = logging.get_logger(__name__)
class lowerCAmelCase ( UpperCamelCase_ ):
def __init__( self : List[Any] , *a__ : int , **a__ : Optional[Any] ):
'''simple docstring'''
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , a__ , )
super().__init__(*a__ , **a__ )
| 378 |
'''simple docstring'''
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
lowerCAmelCase__ : str = len(lowerCamelCase_ )
lowerCAmelCase__ : Optional[Any] = len(matrix[0] )
lowerCAmelCase__ : Any = min(lowerCamelCase_ , lowerCamelCase_ )
for row in range(lowerCamelCase_ ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , lowerCamelCase_ ):
lowerCAmelCase__ : Tuple = matrix[col][row] / matrix[row][row]
for i in range(lowerCamelCase_ , lowerCamelCase_ ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
lowerCAmelCase__ : Dict = True
for i in range(row + 1 , lowerCamelCase_ ):
if matrix[i][row] != 0:
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = matrix[i], matrix[row]
lowerCAmelCase__ : Optional[Any] = False
break
if reduce:
rank -= 1
for i in range(lowerCamelCase_ ):
lowerCAmelCase__ : Union[str, Any] = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 378 | 1 |
"""simple docstring"""
import math
def lowerCAmelCase__ ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float:
"""simple docstring"""
if initial_intensity < 0:
raise ValueError('The value of intensity cannot be negative' )
# handling of negative values of initial intensity
if angle < 0 or angle > 3_6_0:
raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name="malus_law")
| 104 | """simple docstring"""
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
SCREAMING_SNAKE_CASE__ = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
SCREAMING_SNAKE_CASE__ = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def lowerCAmelCase__ ( ) -> Union[str, Any]:
"""simple docstring"""
snake_case = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
snake_case = bs[:]
snake_case = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_UpperCamelCase )
cs.append(2**8 + n )
n += 1
snake_case = [chr(_UpperCamelCase ) for n in cs]
return dict(zip(_UpperCamelCase , _UpperCamelCase ) )
def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]:
"""simple docstring"""
snake_case = set()
snake_case = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case = char
return pairs
class lowerCAmelCase_ ( lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES
_lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP
_lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCAmelCase : str = ["""input_ids""", """attention_mask"""]
def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , **lowerCAmelCase , ):
"""simple docstring"""
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token
super().__init__(
errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , )
with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle:
snake_case = json.load(lowerCAmelCase )
snake_case = {v: k for k, v in self.encoder.items()}
snake_case = errors # how to handle errors in decoding
snake_case = bytes_to_unicode()
snake_case = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase , encoding='utf-8' ) as merges_handle:
snake_case = merges_handle.read().split('\n' )[1:-1]
snake_case = [tuple(merge.split() ) for merge in bpe_merges]
snake_case = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) )
snake_case = {}
snake_case = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
snake_case = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
def snake_case ( self ):
"""simple docstring"""
return len(self.encoder )
def snake_case ( self ):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
if token in self.cache:
return self.cache[token]
snake_case = tuple(lowerCAmelCase )
snake_case = get_pairs(lowerCAmelCase )
if not pairs:
return token
while True:
snake_case = min(lowerCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
snake_case ,snake_case = bigram
snake_case = []
snake_case = 0
while i < len(lowerCAmelCase ):
try:
snake_case = word.index(lowerCAmelCase , lowerCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case = j
if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case = tuple(lowerCAmelCase )
snake_case = new_word
if len(lowerCAmelCase ) == 1:
break
else:
snake_case = get_pairs(lowerCAmelCase )
snake_case = ' '.join(lowerCAmelCase )
snake_case = word
return word
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
snake_case = []
for token in re.findall(self.pat , lowerCAmelCase ):
snake_case = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase ).split(' ' ) )
return bpe_tokens
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) )
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
return self.decoder.get(lowerCAmelCase )
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
snake_case = ''.join(lowerCAmelCase )
snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ):
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
snake_case = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' )
snake_case = 0
with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
snake_case = token_index
writer.write(' '.join(lowerCAmelCase ) + '\n' )
index += 1
return vocab_file, merge_file
def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case = [self.cls_token_id]
snake_case = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase )) + [1]
return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1]
def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ):
"""simple docstring"""
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False , **lowerCAmelCase ):
"""simple docstring"""
snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase ) > 0 and not text[0].isspace()):
snake_case = ' ' + text
return (text, kwargs)
| 104 | 1 |
'''simple docstring'''
from __future__ import annotations
import numpy as np
def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : np.ndarray ):
UpperCAmelCase = np.shape(SCREAMING_SNAKE_CASE )
if rows != columns:
UpperCAmelCase = (
"'table' has to be of square shaped array but got a "
f'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(SCREAMING_SNAKE_CASE )
UpperCAmelCase = np.zeros((rows, columns) )
UpperCAmelCase = np.zeros((rows, columns) )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE ) )
if upper[j][j] == 0:
raise ArithmeticError('No LU decomposition exists' )
UpperCAmelCase = (table[i][j] - total) / upper[j][j]
UpperCAmelCase = 1
for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE ) )
UpperCAmelCase = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 447 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class a ( UpperCAmelCase ):
def _UpperCAmelCase ( self , A_ ):
'''simple docstring'''
return 0.0
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: np.ndarray , lowerCAmelCase: int ) -> tuple[int | float, int | float]:
_UpperCAmelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_UpperCAmelCase : List[str] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: FilterType , lowerCAmelCase: int ) -> None:
_UpperCAmelCase : Optional[int] = 512
_UpperCAmelCase : Dict = [1] + [0] * (size - 1)
_UpperCAmelCase : Union[str, Any] = [filter_type.process(lowerCAmelCase ) for item in inputs]
_UpperCAmelCase : str = [0] * (samplerate - size) # zero-padding
outputs += filler
_UpperCAmelCase : Union[str, Any] = np.abs(np.fft.fft(lowerCAmelCase ) )
_UpperCAmelCase : List[Any] = 20 * np.logaa(lowerCAmelCase )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
# Display within reasonable bounds
_UpperCAmelCase : Dict = get_bounds(lowerCAmelCase , lowerCAmelCase )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("Gain (dB)" )
plt.plot(lowerCAmelCase )
plt.show()
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: FilterType , lowerCAmelCase: int ) -> None:
_UpperCAmelCase : int = 512
_UpperCAmelCase : Optional[int] = [1] + [0] * (size - 1)
_UpperCAmelCase : Dict = [filter_type.process(lowerCAmelCase ) for item in inputs]
_UpperCAmelCase : Any = [0] * (samplerate - size) # zero-padding
outputs += filler
_UpperCAmelCase : Optional[int] = np.angle(np.fft.fft(lowerCAmelCase ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("Phase shift (Radians)" )
plt.plot(np.unwrap(lowerCAmelCase , -2 * pi ) )
plt.show()
| 300 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCamelCase : Optional[Any] = {
'''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''],
'''tokenization_cpmant''': ['''CpmAntTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[str] = [
'''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CpmAntForCausalLM''',
'''CpmAntModel''',
'''CpmAntPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 707 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def __UpperCAmelCase ( )-> int:
"""simple docstring"""
snake_case_ : Any = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 20, "a " * 30, "b " * 7],
}
snake_case_ : int = Dataset.from_dict(__magic_name__ )
return dataset
class A_ (a_ ):
"""simple docstring"""
def _A ( self :List[str] ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = get_dataset()
snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def _A ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[int] = get_dataset()
snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
print(lowerCAmelCase__ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
| 656 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.