code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __A =re.compile(R'''\s+''') def lowerCamelCase_ ( lowerCamelCase__ ): return {"hash": hashlib.mda(re.sub(lowerCamelCase__ , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [len(lowerCamelCase__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(lowerCamelCase__ ), "line_max": max(lowerCamelCase__ )} def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=5 ): lowerCamelCase_ = ["auto-generated", "autogenerated", "automatically generated"] lowerCamelCase_ = example["content"].splitlines() for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=5 , lowerCamelCase__=0.05 ): lowerCamelCase_ = ["unit tests", "test file", "configuration file"] lowerCamelCase_ = example["content"].splitlines() lowerCamelCase_ = 0 lowerCamelCase_ = 0 # first test for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCamelCase_ = example["content"].count("\n" ) lowerCamelCase_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = ["def ", "class ", "for ", "while "] lowerCamelCase_ = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=4 ): lowerCamelCase_ = example["content"].splitlines() lowerCamelCase_ = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = tokenizer(example["content"] , truncation=lowerCamelCase__ )["input_ids"] lowerCamelCase_ = len(example["content"] ) / len(lowerCamelCase__ ) return {"ratio": ratio} def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = {} results.update(get_hash(lowerCamelCase__ ) ) results.update(line_stats(lowerCamelCase__ ) ) results.update(alpha_stats(lowerCamelCase__ ) ) results.update(char_token_ratio(lowerCamelCase__ ) ) results.update(is_autogenerated(lowerCamelCase__ ) ) results.update(is_config_or_test(lowerCamelCase__ ) ) results.update(has_no_keywords(lowerCamelCase__ ) ) results.update(has_few_assignments(lowerCamelCase__ ) ) return results def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if not check_uniques(lowerCamelCase__ , lowerCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_ ( lowerCamelCase__ ): with open(lowerCamelCase__ , "rb" ) as f_in: with gzip.open(str(lowerCamelCase__ ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCamelCase__ , lowerCamelCase__ ) os.unlink(lowerCamelCase__ ) # Settings __A =HfArgumentParser(PreprocessingArguments) __A =parser.parse_args() if args.num_workers is None: __A =multiprocessing.cpu_count() __A =AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __A =time.time() __A =load_dataset(args.dataset_name, split='''train''') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing __A =time.time() __A =ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes __A =set(ds.unique('''hash''')) __A =len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics __A =time.time() __A =ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __A =time.time() __A, __A =deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file __A =Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __A =output_dir / '''data''' data_dir.mkdir(exist_ok=True) __A =time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __A =str(data_dir / F"""file-{file_number+1:012}.json""") __A =min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
463
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def SCREAMING_SNAKE_CASE_( self ) -> str: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE_( self ) -> torch.Tensor: lowerCamelCase_ = torch.arange(self.height * self.width ) lowerCamelCase_ = torch.stack( [ pixel_indices % self.width, torch.div(lowercase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ , *lowerCamelCase_ = self.shape lowerCamelCase_ = int(np.prod(lowercase ) ) lowerCamelCase_ = self.get_image_coords() lowerCamelCase_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCamelCase_ = self.get_camera_rays(lowercase ) lowerCamelCase_ = rays.view(lowercase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def SCREAMING_SNAKE_CASE_( self , lowercase ) -> torch.Tensor: lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCamelCase_ = coords.view(lowercase , -1 , 2 ) lowerCamelCase_ = self.resolution() lowerCamelCase_ = self.fov() lowerCamelCase_ = (flat.float() / (res - 1)) * 2 - 1 lowerCamelCase_ = fracs * torch.tan(fov / 2 ) lowerCamelCase_ = fracs.view(lowercase , -1 , 2 ) lowerCamelCase_ = ( self.z.view(lowercase , 1 , 3 ) + self.x.view(lowercase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowercase , 1 , 3 ) * fracs[:, :, 1:] ) lowerCamelCase_ = directions / directions.norm(dim=-1 , keepdim=lowercase ) lowerCamelCase_ = torch.stack( [ torch.broadcast_to(self.origin.view(lowercase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowercase , *lowercase , 2 , 3 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowercase , height=lowercase , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): lowerCamelCase_ = np.array([np.sin(lowerCamelCase__ ), np.cos(lowerCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCamelCase_ = -z * 4 lowerCamelCase_ = np.array([np.cos(lowerCamelCase__ ), -np.sin(lowerCamelCase__ ), 0.0] ) lowerCamelCase_ = np.cross(lowerCamelCase__ , lowerCamelCase__ ) origins.append(lowerCamelCase__ ) xs.append(lowerCamelCase__ ) ys.append(lowerCamelCase__ ) zs.append(lowerCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCamelCase__ )) , )
463
1
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCamelCase (a_ :str = "isbn/0140328726") -> dict: lowercase :List[Any] = olid.strip().strip('''/''') # Remove leading/trailing whitespace & slashes if new_olid.count('''/''') != 1: lowercase :Optional[int] = F"""{olid} is not a valid Open Library olid""" raise ValueError(a_) return requests.get(F"""https://openlibrary.org/{new_olid}.json""").json() def lowerCamelCase (a_ :dict) -> dict: lowercase :str = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } lowercase :str = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowercase :Dict = [ get_openlibrary_data(author['''key'''])['''name'''] for author in data['''Authors'''] ] lowercase :Optional[Any] = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(a_ , a_): lowercase :int = ''', '''.join(a_) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCAmelCase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: UpperCAmelCase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
475
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( __UpperCAmelCase ): __A : torch.FloatTensor __A : torch.FloatTensor class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ): __A : Any = 1 @register_to_config def __init__( self : int , snake_case__ : int = 2_0_0_0 , snake_case__ : float = 0.15 , snake_case__ : float = 0.01 , snake_case__ : float = 13_48.0 , snake_case__ : float = 1e-5 , snake_case__ : int = 1 , ): '''simple docstring''' lowercase :List[Any] = sigma_max # setable values lowercase :List[str] = None self.set_sigmas(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __snake_case ( self : Optional[int] , snake_case__ : int , snake_case__ : float = None , snake_case__ : Union[str, torch.device] = None ): '''simple docstring''' lowercase :Optional[int] = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase :Tuple = torch.linspace(1 , snake_case__ , snake_case__ , device=snake_case__ ) def __snake_case ( self : List[str] , snake_case__ : int , snake_case__ : float = None , snake_case__ : float = None , snake_case__ : float = None ): '''simple docstring''' lowercase :int = sigma_min if sigma_min is not None else self.config.sigma_min lowercase :Any = sigma_max if sigma_max is not None else self.config.sigma_max lowercase :Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case__ , snake_case__ ) lowercase :Union[str, Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase :str = torch.exp(torch.linspace(math.log(snake_case__ ) , math.log(snake_case__ ) , snake_case__ ) ) lowercase :List[str] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __snake_case ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : int ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __snake_case ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase :Optional[int] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase :Optional[int] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase :Union[str, Any] = timesteps.to(self.discrete_sigmas.device ) lowercase :List[Any] = self.discrete_sigmas[timesteps].to(sample.device ) lowercase :str = self.get_adjacent_sigma(snake_case__ , snake_case__ ).to(sample.device ) lowercase :Optional[Any] = torch.zeros_like(snake_case__ ) lowercase :List[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase :Union[str, Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase :Dict = diffusion.unsqueeze(-1 ) lowercase :List[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase :List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case__ , device=sample.device , dtype=sample.dtype ) lowercase :int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase :Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case__ , prev_sample_mean=snake_case__ ) def __snake_case ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase :Tuple = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase :List[Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowercase :List[str] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowercase :int = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase :Optional[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase :Union[str, Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase :Union[str, Any] = step_size.unsqueeze(-1 ) lowercase :Union[str, Any] = sample + step_size * model_output lowercase :Any = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def __snake_case ( self : List[str] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , ): '''simple docstring''' lowercase :List[Any] = timesteps.to(original_samples.device ) lowercase :str = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase :Optional[int] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case__ ) * sigmas[:, None, None, None] ) lowercase :str = noise + original_samples return noisy_samples def __len__( self : Optional[Any] ): '''simple docstring''' return self.config.num_train_timesteps
475
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" a__ : Tuple = JukeboxTokenizer a__ : Union[str, Any] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def snake_case_ ( self : str ) -> Union[str, Any]: import torch _A = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) _A = tokenizer(**self.metas )['''input_ids'''] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def snake_case_ ( self : Tuple ) -> Tuple: import torch _A = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) _A = tokenizer(**self.metas )['''input_ids'''] # fmt: off _A = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
2
def SCREAMING_SNAKE_CASE_ ( _snake_case :bytes ) -> str: return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" stooge(SCREAMING_SNAKE_CASE_ ,0 ,len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _UpperCamelCase, _UpperCamelCase : Any = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _UpperCamelCase : str = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,(h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ ,i + t ,(SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,(h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
715
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("KEY") lowerCamelCase__ = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :KEY SCREAMING_SNAKE_CASE__ :VAL class __SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self : List[str] ) -> None: super().__init__(__a , __a ) def __bool__( self : Dict ) -> bool: return False lowerCamelCase__ = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : int , __a : int = 8 , __a : float = 0.75 ) -> None: _UpperCamelCase : str = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : List[str] = capacity_factor _UpperCamelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( self : int , __a : KEY ) -> int: return hash(__a ) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int ) -> int: return (ind + 1) % len(self._buckets ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int , __a : KEY , __a : VAL ) -> bool: _UpperCamelCase : List[Any] = self._buckets[ind] if not stored: _UpperCamelCase : Tuple = _Item(__a , __a ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(__a , __a ) return True else: return False def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: _UpperCamelCase : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int ) -> None: _UpperCamelCase : Any = self._buckets _UpperCamelCase : List[Any] = [None] * new_size _UpperCamelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __SCREAMING_SNAKE_CASE ( self : int ) -> None: self._resize(len(self._buckets ) * 2 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: self._resize(len(self._buckets ) // 2 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : KEY ) -> Iterator[int]: _UpperCamelCase : str = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Tuple = self._get_next_ind(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : KEY , __a : VAL ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a , __a , __a ): break def __setitem__( self : int , __a : KEY , __a : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(__a , __a ) def __delitem__( self : str , __a : KEY ) -> None: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: _UpperCamelCase : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __a : KEY ) -> VAL: for ind in self._iterate_buckets(__a ): _UpperCamelCase : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : List[str] ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ) -> str: _UpperCamelCase : Optional[int] = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
51
0
"""simple docstring""" from math import isqrt def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCamelCase ) + 1 ) ) def lowerCAmelCase ( __UpperCamelCase = 10**6 ): '''simple docstring''' UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : Optional[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
65
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Optional[Any]: '''simple docstring''' a : Any = [] a : List[str] = set({"(", "[", "{"} ) a : int = set({")", "]", "}"} ) a : int = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowercase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowercase ) == 0 or (len(_lowercase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowercase ) == 0 def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : Any = input("Enter sequence of brackets: " ) if is_balanced(_lowercase ): print(_lowercase , "is balanced" ) else: print(_lowercase , "is not balanced" ) if __name__ == "__main__": main()
633
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } lowerCAmelCase__ = { '''abeja/gpt-neox-japanese-2.7b''': 2_048, } def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = collections.OrderedDict() UpperCamelCase = collections.OrderedDict() UpperCamelCase = collections.OrderedDict() with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase = b UpperCamelCase = idx for wd in b: UpperCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["input_ids", "attention_mask"] def __init__(self , __a , __a , __a="<|endoftext|>" , __a="<|endoftext|>" , __a="<|startoftext|>" , __a="<|endoftext|>" , __a=False , **__a , ) -> List[Any]: super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__a ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCamelCase = do_clean_text UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = load_vocab_and_emoji(__a , __a ) UpperCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def snake_case_ (self ) -> List[str]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case_ (self ) -> List[Any]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def snake_case_ (self , __a ) -> Any: return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def snake_case_ (self , __a ) -> Any: return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def snake_case_ (self , __a ) -> Optional[Any]: return self.subword_tokenizer.convert_id_to_token(__a ) def snake_case_ (self , __a ) -> Tuple: UpperCamelCase = "".join(__a ).strip() return out_string def snake_case_ (self , __a ) -> List[int]: UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCamelCase = input_ids[-self.model_max_length :] return input_ids def snake_case_ (self , __a , __a = None ) -> Tuple[str]: UpperCamelCase = 0 if os.path.isdir(__a ): UpperCamelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCamelCase = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__a , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) UpperCamelCase = token_index writer.write(",".join(__a ) + "\n" ) index += 1 with open(__a , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a , __a ) -> List[Any]: UpperCamelCase = vocab # same as swe UpperCamelCase = ids_to_tokens # same as bpe UpperCamelCase = emoji UpperCamelCase = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCamelCase = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCamelCase = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCamelCase = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCamelCase = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCamelCase = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCamelCase = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCamelCase = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCamelCase = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCamelCase = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__(self ) -> Tuple: return len(self.ids_to_tokens ) def snake_case_ (self , __a ) -> Optional[Any]: UpperCamelCase = self.content_repattera.sub("<URL>" , __a ) UpperCamelCase = self.content_repattera.sub("<EMAIL>" , __a ) UpperCamelCase = self.content_repattera.sub("<TEL>" , __a ) UpperCamelCase = self.content_repattera.sub("<DATE>" , __a ) UpperCamelCase = self.content_repattera.sub("<DATE>" , __a ) UpperCamelCase = self.content_repattera.sub("<PRICE>" , __a ) UpperCamelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCamelCase = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def snake_case_ (self , __a , __a=False ) -> str: UpperCamelCase = text.replace(" " , "<SP>" ) UpperCamelCase = text.replace(" " , "<SP>" ) UpperCamelCase = text.replace("\r\n" , "<BR>" ) UpperCamelCase = text.replace("\n" , "<BR>" ) UpperCamelCase = text.replace("\r" , "<BR>" ) UpperCamelCase = text.replace("\t" , "<TAB>" ) UpperCamelCase = text.replace("—" , "ー" ) UpperCamelCase = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCamelCase = text.replace(__a , __a ) if clean: UpperCamelCase = self.clean_text(__a ) def check_simbol(__a ): UpperCamelCase = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCamelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(__a ): UpperCamelCase = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCamelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28080 and c <= 0Xe2b07f: return True return False UpperCamelCase = 0 UpperCamelCase = [] while pos < len(__a ): UpperCamelCase = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCamelCase = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCamelCase , UpperCamelCase , UpperCamelCase = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCamelCase = e else: UpperCamelCase = pos + 1 UpperCamelCase = text[pos:end] if check_simbol(__a ): result.append("<KIGOU>" ) elif checkuae(__a ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCamelCase = end return result def snake_case_ (self , __a , __a="\n" ) -> int: UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCamelCase = "".join(__a ) return text
544
"""simple docstring""" lowerCAmelCase__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
544
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
124
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ = 2_0_0_0_0_0_0 ): UpperCamelCase__ : Dict = [0 for i in range(n + 1 )] UpperCamelCase__ : Any = 1 UpperCamelCase__ : int = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , UpperCamelCase__ ): UpperCamelCase__ : Any = 1 UpperCamelCase__ : Optional[Any] = 0 for i in range(UpperCamelCase__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
285
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class a__ ( _snake_case , unittest.TestCase ): """simple docstring""" A__ : Any = AlbertTokenizer A__ : List[str] = AlbertTokenizerFast A__ : Optional[Any] = True A__ : List[str] = True A__ : Optional[int] = True def __UpperCAmelCase ( self :int ): super().setUp() # We have a SentencePiece fixture for testing lowercase = AlbertTokenizer(lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self :List[str] , lowercase__ :Optional[Any] ): lowercase = 'this is a test' lowercase = 'this is a test' return input_text, output_text def __UpperCAmelCase ( self :List[str] ): lowercase = '<pad>' lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCAmelCase ( self :List[Any] ): lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(lowercase__ ) , 3_0000 ) def __UpperCAmelCase ( self :Any ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __UpperCAmelCase ( self :Tuple ): if not self.test_rust_tokenizer: return lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = 'I was born in 92000, and this is falsé.' lowercase = tokenizer.tokenize(lowercase__ ) lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) lowercase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) lowercase = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) lowercase = self.get_rust_tokenizer() lowercase = tokenizer.encode(lowercase__ ) lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCAmelCase ( self :str ): lowercase = AlbertTokenizer(lowercase__ , keep_accents=lowercase__ ) lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [48, 25, 21, 1289] ) lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) lowercase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowercase = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def __UpperCAmelCase ( self :Any ): lowercase = AlbertTokenizer(lowercase__ ) lowercase = tokenizer.encode('sequence builders' ) lowercase = tokenizer.encode('multi-sequence build' ) lowercase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) lowercase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __UpperCAmelCase ( self :int ): # fmt: off lowercase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
314
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int=7 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : List[Any]=1_8 , UpperCamelCase__ : Dict=3_0 , UpperCamelCase__ : Optional[int]=4_0_0 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=True , ): """simple docstring""" UpperCamelCase = size if size is not None else {'shortest_edge': 2_0} UpperCamelCase = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_flip_channel_order def A ( self : Optional[int] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MobileViTImageProcessor if is_vision_available() else None def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MobileViTImageProcessingTester(self ) @property def A ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , 'do_resize' ) ) self.assertTrue(hasattr(a_ , 'size' ) ) self.assertTrue(hasattr(a_ , 'do_center_crop' ) ) self.assertTrue(hasattr(a_ , 'center_crop' ) ) self.assertTrue(hasattr(a_ , 'do_flip_channel_order' ) ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def A ( self : Tuple ): """simple docstring""" pass def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCamelCase = image_processing(a_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCamelCase = image_processing(a_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCamelCase = image_processing(a_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
430
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 'wavlm' def __init__( self ,a_=32 ,a_=768 ,a_=12 ,a_=12 ,a_=3072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=0.1 ,a_=0.0 ,a_=0.1 ,a_=0.1 ,a_=0.02 ,a_=1e-5 ,a_="group" ,a_="gelu" ,a_=(512, 512, 512, 512, 512, 512, 512) ,a_=(5, 2, 2, 2, 2, 2, 2) ,a_=(10, 3, 3, 3, 3, 2, 2) ,a_=False ,a_=128 ,a_=16 ,a_=320 ,a_=800 ,a_=False ,a_=True ,a_=0.05 ,a_=10 ,a_=2 ,a_=0.0 ,a_=10 ,a_=320 ,a_=2 ,a_=0.1 ,a_=100 ,a_=256 ,a_=256 ,a_=0.1 ,a_="mean" ,a_=False ,a_=False ,a_=256 ,a_=(512, 512, 512, 512, 1500) ,a_=(5, 3, 3, 1, 1) ,a_=(1, 2, 3, 1, 1) ,a_=512 ,a_=80 ,a_=0 ,a_=1 ,a_=2 ,a_=False ,a_=3 ,a_=2 ,a_=3 ,a_=None ,**a_ ,): """simple docstring""" super().__init__(**a_ ,pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = feat_extract_norm lowerCAmelCase__ = feat_extract_activation lowerCAmelCase__ = list(a_ ) lowerCAmelCase__ = list(a_ ) lowerCAmelCase__ = list(a_ ) lowerCAmelCase__ = conv_bias lowerCAmelCase__ = num_buckets lowerCAmelCase__ = max_bucket_distance lowerCAmelCase__ = num_conv_pos_embeddings lowerCAmelCase__ = num_conv_pos_embedding_groups lowerCAmelCase__ = len(self.conv_dim ) lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = feat_proj_dropout lowerCAmelCase__ = final_dropout lowerCAmelCase__ = layerdrop lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_ctc_classes lowerCAmelCase__ = vocab_size lowerCAmelCase__ = do_stable_layer_norm lowerCAmelCase__ = use_weighted_layer_sum lowerCAmelCase__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ = apply_spec_augment lowerCAmelCase__ = mask_time_prob lowerCAmelCase__ = mask_time_length lowerCAmelCase__ = mask_time_min_masks lowerCAmelCase__ = mask_feature_prob lowerCAmelCase__ = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase__ = num_codevectors_per_group lowerCAmelCase__ = num_codevector_groups lowerCAmelCase__ = contrastive_logits_temperature lowerCAmelCase__ = num_negatives lowerCAmelCase__ = codevector_dim lowerCAmelCase__ = proj_codevector_dim lowerCAmelCase__ = diversity_loss_weight # ctc loss lowerCAmelCase__ = ctc_loss_reduction lowerCAmelCase__ = ctc_zero_infinity # adapter lowerCAmelCase__ = add_adapter lowerCAmelCase__ = adapter_kernel_size lowerCAmelCase__ = adapter_stride lowerCAmelCase__ = num_adapter_layers lowerCAmelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase__ = list(a_ ) lowerCAmelCase__ = list(a_ ) lowerCAmelCase__ = list(a_ ) lowerCAmelCase__ = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return functools.reduce(operator.mul ,self.conv_stride ,1 )
193
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __lowerCAmelCase : Tuple =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ['''pixel_values'''] def __init__( self :List[str] , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[int, float] = 1 / 255 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :Optional[int] , ) -> None: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} __SCREAMING_SNAKE_CASE : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} __SCREAMING_SNAKE_CASE : Any = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE : List[str] = do_resize __SCREAMING_SNAKE_CASE : List[Any] = size __SCREAMING_SNAKE_CASE : Optional[Any] = resample __SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale __SCREAMING_SNAKE_CASE : Any = rescale_factor __SCREAMING_SNAKE_CASE : int = do_center_crop __SCREAMING_SNAKE_CASE : Optional[int] = crop_size __SCREAMING_SNAKE_CASE : Any = do_flip_channel_order def __magic_name__( self :Dict , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :PILImageResampling = PIL.Image.BILINEAR , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :List[str] , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : str = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) __SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Tuple , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Dict , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[int, float] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :List[Any] , ) -> Dict: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Any , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: return flip_channel_order(lowerCAmelCase__ , data_format=lowerCAmelCase__ ) def __magic_name__( self :Any , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :float = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ :Tuple , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE : Dict = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : str = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE : Optional[Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else self.size __SCREAMING_SNAKE_CASE : List[str] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Tuple = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : Any = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE : List[str] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : int = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.flip_channel_order(image=lowerCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE : Optional[Any] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE : str = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Tuple] = None ) -> Any: __SCREAMING_SNAKE_CASE : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = target_sizes.numpy() __SCREAMING_SNAKE_CASE : Any = [] for idx in range(len(lowerCAmelCase__ ) ): __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
260
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __lowerCAmelCase : str ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'allenai/led-base-16384': 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Any = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : Any = bs[:] __SCREAMING_SNAKE_CASE : List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : List[str] = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = set() __SCREAMING_SNAKE_CASE : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = char return pairs class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple="replace" , lowerCAmelCase__ :List[str]="<s>" , lowerCAmelCase__ :List[str]="</s>" , lowerCAmelCase__ :Any="</s>" , lowerCAmelCase__ :int="<s>" , lowerCAmelCase__ :List[str]="<unk>" , lowerCAmelCase__ :List[str]="<pad>" , lowerCAmelCase__ :Dict="<mask>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :int , ) -> str: __SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: __SCREAMING_SNAKE_CASE : List[Any] = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : int = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : List[Any] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] __SCREAMING_SNAKE_CASE : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __magic_name__( self :Optional[Any] ) -> Dict: return len(self.encoder ) def __magic_name__( self :Union[str, Any] ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__( self :Dict , lowerCAmelCase__ :Any ) -> Tuple: if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : List[Any] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = bigram __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : Optional[Any] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : int = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : List[str] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Union[str, Any] = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = ''' '''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = word return word def __magic_name__( self :str , lowerCAmelCase__ :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(''' ''' ) ) return bpe_tokens def __magic_name__( self :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __magic_name__( self :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '''\n''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __SCREAMING_SNAKE_CASE : str = token_index writer.write(''' '''.join(lowerCAmelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__( self :Any , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__( self :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict=False , **lowerCAmelCase__ :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : str = ''' ''' + text return (text, kwargs) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[bool] = None , ) -> dict: __SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __SCREAMING_SNAKE_CASE : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __SCREAMING_SNAKE_CASE : Dict = len(encoded_inputs['''global_attention_mask'''] ) != len(lowerCAmelCase__ ) if needs_to_be_padded: __SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase__ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __SCREAMING_SNAKE_CASE : int = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __SCREAMING_SNAKE_CASE : Tuple = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
260
1
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : int = BarthezTokenizer __lowercase : Any = BarthezTokenizerFast __lowercase : Dict = True __lowercase : Optional[int] = True def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' super().setUp() __snake_case = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = '''<pad>''' __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_1122 ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __snake_case = [0, 57, 3018, 7_0307, 91, 2] __snake_case = self.tokenizer( __SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE ) , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __snake_case = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__SCREAMING_SNAKE_CASE , )
24
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
112
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=UpperCAmelCase__ , ) assert hasattr(self , "env" ) def lowerCAmelCase__ ( self , UpperCAmelCase__=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-single''' , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) def lowerCAmelCase__ ( self ): # create estimator SCREAMING_SNAKE_CASE__ = self.create_estimator() # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) SCREAMING_SNAKE_CASE__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCAmelCase__ )
112
1
from maths.prime_factors import prime_factors def lowerCamelCase_(lowerCamelCase_ ) -> str: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase__ ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowerCAmelCase__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
323
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' a__ : List[str] = False def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]: '''simple docstring''' if not self.initialized: a__ : Optional[Any] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : Union[str, Any] = True def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: a__ , a__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ ) a__ : str = rag_tokenizer.question_encoder a__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: a__ : List[Any] = '''custom''' a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ ) else: a__ : Optional[Any] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
688
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE__ = tuple[int, int] class A__ : def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Node | None , ) -> None: """simple docstring""" __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def a__ ( self : List[Any] ) -> float: """simple docstring""" __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , _UpperCAmelCase : Node ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A__ : def __init__( self : Tuple , _UpperCAmelCase : TPosition , _UpperCAmelCase : TPosition ) -> Optional[Any]: """simple docstring""" __lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _UpperCAmelCase ) __lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _UpperCAmelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def a__ ( self : Tuple ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_UpperCAmelCase ) self.closed_nodes.append(_UpperCAmelCase ) __lowercase = self.get_successors(_UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_UpperCAmelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_UpperCAmelCase ) else: self.open_nodes.append(_UpperCAmelCase ) return [self.start.pos] def a__ ( self : List[str] , _UpperCAmelCase : Node ) -> list[Node]: """simple docstring""" __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _UpperCAmelCase , ) ) return successors def a__ ( self : Optional[int] , _UpperCAmelCase : Node | None ) -> list[TPosition]: """simple docstring""" __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class A__ : def __init__( self : List[str] , _UpperCAmelCase : TPosition , _UpperCAmelCase : TPosition ) -> None: """simple docstring""" __lowercase = AStar(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = AStar(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = False def a__ ( self : List[Any] ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) self.fwd_astar.closed_nodes.append(_UpperCAmelCase ) self.bwd_astar.closed_nodes.append(_UpperCAmelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_UpperCAmelCase ), self.bwd_astar: self.bwd_astar.get_successors(_UpperCAmelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_UpperCAmelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_UpperCAmelCase ) else: astar.open_nodes.append(_UpperCAmelCase ) return [self.fwd_astar.start.pos] def a__ ( self : Dict , _UpperCAmelCase : Node , _UpperCAmelCase : Node ) -> list[TPosition]: """simple docstring""" __lowercase = self.fwd_astar.retrace_path(_UpperCAmelCase ) __lowercase = self.bwd_astar.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE__ = (0, 0) SCREAMING_SNAKE_CASE__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = AStar(init, goal) SCREAMING_SNAKE_CASE__ = a_star.search() SCREAMING_SNAKE_CASE__ = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE__ = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
710
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A ( __lowercase ): _snake_case =42 class A ( nn.Module ): def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: str=3 , _lowerCAmelCase: Tuple=("DownEncoderBlock2D",) , _lowerCAmelCase: Optional[int]=(64,) , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: Optional[Any]=32 , _lowerCAmelCase: List[Any]="silu" , _lowerCAmelCase: str=True , ) -> Tuple: '''simple docstring''' super().__init__() UpperCAmelCase_ =layers_per_block UpperCAmelCase_ =torch.nn.Convad( _lowerCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase_ =None UpperCAmelCase_ =nn.ModuleList([] ) # down UpperCAmelCase_ =block_out_channels[0] for i, down_block_type in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =output_channel UpperCAmelCase_ =block_out_channels[i] UpperCAmelCase_ =i == len(_lowerCAmelCase ) - 1 UpperCAmelCase_ =get_down_block( _lowerCAmelCase , num_layers=self.layers_per_block , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_lowerCAmelCase , resnet_groups=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) self.down_blocks.append(_lowerCAmelCase ) # mid UpperCAmelCase_ =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) # out UpperCAmelCase_ =nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_lowerCAmelCase , eps=1e-6 ) UpperCAmelCase_ =nn.SiLU() UpperCAmelCase_ =2 * out_channels if double_z else out_channels UpperCAmelCase_ =nn.Convad(block_out_channels[-1] , _lowerCAmelCase , 3 , padding=1 ) UpperCAmelCase_ =False def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: int ) -> int: '''simple docstring''' UpperCAmelCase_ =x UpperCAmelCase_ =self.conv_in(_lowerCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCAmelCase: Optional[Any] ): def custom_forward(*_lowerCAmelCase: Union[str, Any] ): return module(*_lowerCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) # middle UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) else: for down_block in self.down_blocks: UpperCAmelCase_ =torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase ) # middle UpperCAmelCase_ =torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _lowerCAmelCase ) else: # down for down_block in self.down_blocks: UpperCAmelCase_ =down_block(_lowerCAmelCase ) # middle UpperCAmelCase_ =self.mid_block(_lowerCAmelCase ) # post-process UpperCAmelCase_ =self.conv_norm_out(_lowerCAmelCase ) UpperCAmelCase_ =self.conv_act(_lowerCAmelCase ) UpperCAmelCase_ =self.conv_out(_lowerCAmelCase ) return sample class A ( nn.Module ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Dict=3 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: int=("UpDecoderBlock2D",) , _lowerCAmelCase: Optional[int]=(64,) , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: Dict=32 , _lowerCAmelCase: Tuple="silu" , _lowerCAmelCase: str="group" , ) -> Union[str, Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =layers_per_block UpperCAmelCase_ =nn.Convad( _lowerCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase_ =None UpperCAmelCase_ =nn.ModuleList([] ) UpperCAmelCase_ =in_channels if norm_type == "spatial" else None # mid UpperCAmelCase_ =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) # up UpperCAmelCase_ =list(reversed(_lowerCAmelCase ) ) UpperCAmelCase_ =reversed_block_out_channels[0] for i, up_block_type in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =output_channel UpperCAmelCase_ =reversed_block_out_channels[i] UpperCAmelCase_ =i == len(_lowerCAmelCase ) - 1 UpperCAmelCase_ =get_up_block( _lowerCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_lowerCAmelCase , resnet_groups=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , temb_channels=_lowerCAmelCase , resnet_time_scale_shift=_lowerCAmelCase , ) self.up_blocks.append(_lowerCAmelCase ) UpperCAmelCase_ =output_channel # out if norm_type == "spatial": UpperCAmelCase_ =SpatialNorm(block_out_channels[0] , _lowerCAmelCase ) else: UpperCAmelCase_ =nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_lowerCAmelCase , eps=1e-6 ) UpperCAmelCase_ =nn.SiLU() UpperCAmelCase_ =nn.Convad(block_out_channels[0] , _lowerCAmelCase , 3 , padding=1 ) UpperCAmelCase_ =False def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int]=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =z UpperCAmelCase_ =self.conv_in(_lowerCAmelCase ) UpperCAmelCase_ =next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCAmelCase: Dict ): def custom_forward(*_lowerCAmelCase: Union[str, Any] ): return module(*_lowerCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) UpperCAmelCase_ =sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) else: # middle UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase_ =torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) else: # middle UpperCAmelCase_ =self.mid_block(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase_ =up_block(_lowerCAmelCase , _lowerCAmelCase ) # post-process if latent_embeds is None: UpperCAmelCase_ =self.conv_norm_out(_lowerCAmelCase ) else: UpperCAmelCase_ =self.conv_norm_out(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =self.conv_act(_lowerCAmelCase ) UpperCAmelCase_ =self.conv_out(_lowerCAmelCase ) return sample class A ( nn.Module ): def __init__( self: Tuple , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: int=None , _lowerCAmelCase: Union[str, Any]="random" , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Union[str, Any]=True ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase_ =n_e UpperCAmelCase_ =vq_embed_dim UpperCAmelCase_ =beta UpperCAmelCase_ =legacy UpperCAmelCase_ =nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase_ =remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase_ =self.used.shape[0] UpperCAmelCase_ =unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase_ =self.re_embed UpperCAmelCase_ =self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: UpperCAmelCase_ =n_e UpperCAmelCase_ =sane_index_shape def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =inds.shape assert len(_lowerCAmelCase ) > 1 UpperCAmelCase_ =inds.reshape(ishape[0] , -1 ) UpperCAmelCase_ =self.used.to(_lowerCAmelCase ) UpperCAmelCase_ =(inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase_ =match.argmax(-1 ) UpperCAmelCase_ =match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase_ =torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase_ =self.unknown_index return new.reshape(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =inds.shape assert len(_lowerCAmelCase ) > 1 UpperCAmelCase_ =inds.reshape(ishape[0] , -1 ) UpperCAmelCase_ =self.used.to(_lowerCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase_ =0 # simply set to zero UpperCAmelCase_ =torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _lowerCAmelCase ) return back.reshape(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase_ =z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase_ =torch.argmin(torch.cdist(_lowerCAmelCase , self.embedding.weight ) , dim=1 ) UpperCAmelCase_ =self.embedding(_lowerCAmelCase ).view(z.shape ) UpperCAmelCase_ =None UpperCAmelCase_ =None # compute loss for embedding if not self.legacy: UpperCAmelCase_ =self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase_ =torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase_ =z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase_ =z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase_ =min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase_ =self.remap_to_used(_lowerCAmelCase ) UpperCAmelCase_ =min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase_ =min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: Dict ) -> Union[str, Any]: '''simple docstring''' if self.remap is not None: UpperCAmelCase_ =indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase_ =self.unmap_to_all(_lowerCAmelCase ) UpperCAmelCase_ =indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase_ =self.embedding(_lowerCAmelCase ) if shape is not None: UpperCAmelCase_ =z_q.view(_lowerCAmelCase ) # reshape back to match original input shape UpperCAmelCase_ =z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A ( __lowercase ): def __init__( self: Any , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any]=False ) -> Dict: '''simple docstring''' UpperCAmelCase_ =parameters UpperCAmelCase_ , UpperCAmelCase_ =torch.chunk(_lowerCAmelCase , 2 , dim=1 ) UpperCAmelCase_ =torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase_ =deterministic UpperCAmelCase_ =torch.exp(0.5 * self.logvar ) UpperCAmelCase_ =torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase_ =UpperCAmelCase_ =torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Optional[torch.Generator] = None ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase_ =randn_tensor( self.mean.shape , generator=_lowerCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase_ =self.mean + self.std * sample return x def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: str=None ) -> Tuple: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any]=[1, 2, 3] ) -> Union[str, Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase_ =np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] ) -> str: '''simple docstring''' return self.mean
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
def lowerCamelCase ( UpperCAmelCase_ : Optional[int] )-> List[str]: """simple docstring""" a =len(UpperCAmelCase_ ) a =sum(UpperCAmelCase_ ) a =[[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): a =True for i in range(1 , s + 1 ): a =False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): a =dp[i][j - 1] if arr[i - 1] <= j: a =dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: a =s - 2 * j break return diff
321
from __future__ import annotations def lowerCamelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): a , a =array[indexa], array[indexa] def lowerCamelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> None: """simple docstring""" if length > 1: a =int(length / 2 ) for i in range(UpperCAmelCase_ , low + middle ): comp_and_swap(UpperCAmelCase_ , UpperCAmelCase_ , i + middle , UpperCAmelCase_ ) bitonic_merge(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) bitonic_merge(UpperCAmelCase_ , low + middle , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> None: """simple docstring""" if length > 1: a =int(length / 2 ) bitonic_sort(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 1 ) bitonic_sort(UpperCAmelCase_ , low + middle , UpperCAmelCase_ , 0 ) bitonic_merge(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase = input('''Enter numbers separated by a comma:\n''').strip() _lowerCamelCase = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
321
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def A_ ( snake_case , snake_case=False ): SCREAMING_SNAKE_CASE:Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE:List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( snake_case , snake_case , snake_case=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE:Any = "" else: SCREAMING_SNAKE_CASE:str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE:List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE:int = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE:Optional[Any] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE:Tuple = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE:Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE:Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE:Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE:List[str] = in_proj_bias[-config.hidden_size :] def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = dct.pop(snake_case ) SCREAMING_SNAKE_CASE:int = val def A_ ( ): SCREAMING_SNAKE_CASE:Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE:int = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def A_ ( snake_case , snake_case , snake_case=True ): SCREAMING_SNAKE_CASE:Optional[int] = ViTConfig() # patch_size if model_name[-1] == "8": SCREAMING_SNAKE_CASE:Tuple = 8 # set labels if required if not base_model: SCREAMING_SNAKE_CASE:Union[str, Any] = 1000 SCREAMING_SNAKE_CASE:str = "huggingface/label-files" SCREAMING_SNAKE_CASE:Tuple = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE:Any = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE:Optional[Any] = {int(snake_case ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE:Union[str, Any] = idalabel SCREAMING_SNAKE_CASE:Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: SCREAMING_SNAKE_CASE:str = 384 SCREAMING_SNAKE_CASE:Any = 1536 SCREAMING_SNAKE_CASE:Union[str, Any] = 12 SCREAMING_SNAKE_CASE:str = 6 # load original model from torch hub SCREAMING_SNAKE_CASE:int = torch.hub.load("facebookresearch/dino:main" , snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE:List[str] = original_model.state_dict() if base_model: remove_classification_head_(snake_case ) SCREAMING_SNAKE_CASE:str = create_rename_keys(snake_case , base_model=snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case , snake_case ) # load HuggingFace model if base_model: SCREAMING_SNAKE_CASE:Any = ViTModel(snake_case , add_pooling_layer=snake_case ).eval() else: SCREAMING_SNAKE_CASE:Dict = ViTForImageClassification(snake_case ).eval() model.load_state_dict(snake_case ) # Check outputs on an image, prepared by ViTImageProcessor SCREAMING_SNAKE_CASE:List[str] = ViTImageProcessor() SCREAMING_SNAKE_CASE:Optional[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE:str = encoding["pixel_values"] SCREAMING_SNAKE_CASE:str = model(snake_case ) if base_model: SCREAMING_SNAKE_CASE:Dict = original_model(snake_case ) assert torch.allclose(snake_case , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: SCREAMING_SNAKE_CASE:str = original_model(snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(snake_case , outputs.logits , atol=1e-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) A_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
143
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: List[Any] = logging.get_logger(__name__) _lowercase: int = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ ="mgp-str" def __init__( self : int , lowercase__ : List[Any]=[32, 1_28] , lowercase__ : str=4 , lowercase__ : List[str]=3 , lowercase__ : Tuple=27 , lowercase__ : Optional[Any]=38 , lowercase__ : Optional[Any]=5_02_57 , lowercase__ : Dict=3_05_22 , lowercase__ : Dict=7_68 , lowercase__ : Tuple=12 , lowercase__ : int=12 , lowercase__ : int=4.0 , lowercase__ : Tuple=True , lowercase__ : List[Any]=False , lowercase__ : int=1e-5 , lowercase__ : int=0.0 , lowercase__ : Optional[Any]=0.0 , lowercase__ : List[Any]=0.0 , lowercase__ : Union[str, Any]=False , lowercase__ : str=0.0_2 , **lowercase__ : Optional[int] , ): super().__init__(**lowercase__ ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = max_token_length _lowerCAmelCase = num_character_labels _lowerCAmelCase = num_bpe_labels _lowerCAmelCase = num_wordpiece_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = mlp_ratio _lowerCAmelCase = distilled _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = drop_rate _lowerCAmelCase = qkv_bias _lowerCAmelCase = attn_drop_rate _lowerCAmelCase = drop_path_rate _lowerCAmelCase = output_aa_attentions _lowerCAmelCase = initializer_range
192
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _SCREAMING_SNAKE_CASE : def __init__( self : Any , __UpperCamelCase : int ) -> None: """simple docstring""" snake_case__ : Optional[int] = value snake_case__ : Node | None = None snake_case__ : Node | None = None class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __UpperCamelCase : Node ) -> None: """simple docstring""" snake_case__ : Optional[int] = tree def lowerCAmelCase ( self : Any , __UpperCamelCase : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : str ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
574
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _lowercase : List[Any] =TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _lowercase : List[Any] =[] _lowercase : List[str] =[] _lowercase : Tuple ={"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _lowercase : Union[str, Any] =[ { "type": "header", "text": { "type": "plain_text", "text": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", "emoji": True, }, } ] _lowercase : int =0 for log in Path().glob("*.log"): _lowercase : Tuple =0 with open(log, "r") as f: for line in f: _lowercase : str =json.loads(line) if line.get("nodeid", "") != "": _lowercase : List[Any] =line["nodeid"] if line.get("duration", None) is not None: _lowercase : Optional[int] =F"{line['duration']:.4f}" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _lowercase : Optional[int] =[] log.unlink() _lowercase : Optional[int] ="" _lowercase : List[Any] =[] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _lowercase : Dict =[] _lowercase : Dict ={} for test in failed_tests: _lowercase : Union[str, Any] =test[0].split("::") _lowercase : Dict =data[0].split("/")[-1] if data[0] not in filesafailed: _lowercase : Union[str, Any] =[data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _lowercase : Dict =[test[0] for test in failed_table] _lowercase : Dict =list(set(files)) # Count number of instances in failed_tests _lowercase : Tuple =[] for file in individual_files: table.append([file, len(filesafailed[file])]) _lowercase : Dict =tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _lowercase : Tuple ="Too many failed tests, please see the full report in the Action results." _lowercase : Optional[int] =len(err) + 10 _lowercase : str =message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: _lowercase : Union[str, Any] ="No failed tests! 🤗" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _lowercase : List[str] =WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _lowercase : Optional[Any] ={ "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _lowercase : Union[str, Any] ={ "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) _lowercase : Tuple ={ "type": "context", "elements": [ { "type": "plain_text", "text": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) _lowercase : List[str] =client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _lowercase : int =response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _lowercase : Tuple ="" for i, row in enumerate(test_failures): if row[0] != test_class: _lowercase : List[str] =row[0] else: _lowercase : int ="" _lowercase : Tuple ={ "type": "section", "text": { "type": "mrkdwn", "text": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
574
1
from timeit import timeit UpperCamelCase : Dict = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def UpperCamelCase_ ( __a ) -> bool: a__ : Union[str, Any] = 0 a__ : List[Any] = len(__a ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def UpperCamelCase_ ( __a ) -> bool: a__ : Any = len(__a ) // 2 a__ : Optional[Any] = len(__a ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(__a ) ) def UpperCamelCase_ ( __a ) -> bool: if len(__a ) <= 2: return True if s[0] == s[len(__a ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def UpperCamelCase_ ( __a ) -> bool: return s == s[::-1] def UpperCamelCase_ ( __a ) -> None: a__ : str = f'''all({name}(key) is value for key, value in test_data.items())''' a__ : Tuple = f'''from __main__ import test_data, {name}''' a__ : Optional[int] = 500_000 a__ : Dict = timeit(stmt=__a , setup=__a , number=__a ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
37
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __magic_name__ : str = ProphetNetTokenizer __magic_name__ : Dict = False def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().setUp() __UpperCamelCase : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __UpperCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : int ) -> List[str]: """simple docstring""" __UpperCamelCase : Union[str, Any] = """UNwant\u00E9d,running""" __UpperCamelCase : List[str] = """unwanted, running""" return input_text, output_text def lowerCamelCase__ ( self : List[Any] ) -> int: """simple docstring""" __UpperCamelCase : Optional[int] = self.tokenizer_class(self.vocab_file ) __UpperCamelCase : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def lowerCamelCase__ ( self : str ) -> List[Any]: """simple docstring""" __UpperCamelCase : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCamelCase__ ( self : int ) -> Tuple: """simple docstring""" __UpperCamelCase : Any = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : Dict ) -> List[str]: """simple docstring""" __UpperCamelCase : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCamelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __UpperCamelCase : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __UpperCamelCase : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __UpperCamelCase : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __UpperCamelCase : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __UpperCamelCase : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __UpperCamelCase : int = BasicTokenizer(do_lower_case=lowerCAmelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __UpperCamelCase : List[Any] = {} for i, token in enumerate(lowerCAmelCase ): __UpperCamelCase : Dict = i __UpperCamelCase : Any = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __UpperCamelCase : str = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __UpperCamelCase : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCamelCase : Optional[int] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __UpperCamelCase : Optional[int] = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) __UpperCamelCase : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : int ) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCamelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" __UpperCamelCase : List[str] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __UpperCamelCase : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase ) __UpperCamelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase ) __UpperCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
279
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a__ : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __magic_name__ ( _UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Optional[int] = XLNetTokenizer UpperCamelCase : Optional[int] = XLNetTokenizerFast UpperCamelCase : Tuple = True UpperCamelCase : Dict = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = XLNetTokenizer(__magic_name__ , keep_accents=__magic_name__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = '<s>' _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(__magic_name__ ) , 1_0_0_6 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = XLNetTokenizer(__magic_name__ , keep_accents=__magic_name__ ) _lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(__magic_name__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) _lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = XLNetTokenizer(__magic_name__ , do_lower_case=__magic_name__ ) _lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = XLNetTokenizer(__magic_name__ , do_lower_case=__magic_name__ ) _lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) _lowerCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=__magic_name__ ) _lowerCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=__magic_name__ ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = {'input_ids': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
702
"""simple docstring""" from __future__ import annotations import numpy as np def A__ ( __lowerCamelCase ): """simple docstring""" return np.maximum(0, __lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
import heapq def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase__ , [-1 * len(lowercase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __SCREAMING_SNAKE_CASE : List[str] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __SCREAMING_SNAKE_CASE : List[Any] = heapq.heappop(lowercase__ )[1][0] chosen_vertices.add(lowercase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __SCREAMING_SNAKE_CASE : List[Any] = elem[1][1].index(lowercase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Union[str, Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
696
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCAmelCase_ = data_utils.TransfoXLTokenizer UpperCAmelCase_ = data_utils.TransfoXLCorpus UpperCAmelCase_ = data_utils UpperCAmelCase_ = data_utils def lowerCAmelCase_ ( lowercase: Tuple , lowercase: Union[str, Any] , lowercase: Any , lowercase: List[Any] ) -> List[Any]: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowercase , '''rb''' ) as fp: _UpperCamelCase: Optional[int] = pickle.load(lowercase , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _UpperCamelCase: Tuple = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) _UpperCamelCase: List[str] = corpus.vocab.__dict__ torch.save(lowercase , lowercase ) _UpperCamelCase: str = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , lowercase ) _UpperCamelCase: str = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(lowercase , lowercase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _UpperCamelCase: Optional[Any] = os.path.abspath(lowercase ) _UpperCamelCase: List[str] = os.path.abspath(lowercase ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": _UpperCamelCase: Tuple = TransfoXLConfig() else: _UpperCamelCase: Union[str, Any] = TransfoXLConfig.from_json_file(lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase: Optional[int] = TransfoXLLMHeadModel(lowercase ) _UpperCamelCase: int = load_tf_weights_in_transfo_xl(lowercase , lowercase , lowercase ) # Save pytorch-model _UpperCamelCase: List[str] = os.path.join(lowercase , lowercase ) _UpperCamelCase: Union[str, Any] = os.path.join(lowercase , lowercase ) print(F"""Save PyTorch model to {os.path.abspath(lowercase )}""" ) torch.save(model.state_dict() , lowercase ) print(F"""Save configuration file to {os.path.abspath(lowercase )}""" ) with open(lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) UpperCAmelCase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
271
0
def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [int(snake_case_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(snake_case_ ) == 4 and all(0 <= int(snake_case_ ) <= 254 for octet in octets ) if __name__ == "__main__": _snake_case = input().strip() _snake_case = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
def _a ( __UpperCamelCase : int ,__UpperCamelCase : int ): if b == 0: return 1 if (b % 2) == 0: return actual_power(__UpperCamelCase ,int(b / 2 ) ) * actual_power(__UpperCamelCase ,int(b / 2 ) ) else: return a * actual_power(__UpperCamelCase ,int(b / 2 ) ) * actual_power(__UpperCamelCase ,int(b / 2 ) ) def _a ( __UpperCamelCase : int ,__UpperCamelCase : int ): if b < 0: return 1 / actual_power(__UpperCamelCase ,__UpperCamelCase ) return actual_power(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": print(power(-2, -3))
233
from math import log from scipy.constants import Boltzmann, physical_constants A__ : Optional[Any] = 3_0_0 # TEMPERATURE (unit = K) def _a ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ,): if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
233
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = DiTPipeline __SCREAMING_SNAKE_CASE : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Any = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } __SCREAMING_SNAKE_CASE : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Tuple = False def UpperCAmelCase__ ( self : int ): torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowercase__ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_000 , norm_type="ada_norm_zero" , norm_elementwise_affine=lowercase__ , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any]=0 ): if str(lowercase__ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(lowercase__ ) else: _UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) _UpperCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = """cpu""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) _UpperCAmelCase = self.get_dummy_inputs(lowercase__ ) _UpperCAmelCase = pipe(**lowercase__ ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase__ , 1e-3 ) def UpperCAmelCase__ ( self : Tuple ): self._test_inference_batch_single_identical(relax_max_difference=lowercase__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase__ ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) _UpperCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _UpperCAmelCase = pipe.get_label_ids(lowercase__ ) _UpperCAmelCase = pipe(lowercase__ , generator=lowercase__ , num_inference_steps=40 , output_type="np" ).images for word, image in zip(lowercase__ , lowercase__ ): _UpperCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) _UpperCAmelCase = ["""vase""", """umbrella"""] _UpperCAmelCase = pipe.get_label_ids(lowercase__ ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(lowercase__ , generator=lowercase__ , num_inference_steps=25 , output_type="np" ).images for word, image in zip(lowercase__ , lowercase__ ): _UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
704
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : str , __UpperCamelCase : Any , __UpperCamelCase : List[str]=13 , __UpperCamelCase : Dict=32 , __UpperCamelCase : str=2 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : str=16 , __UpperCamelCase : Any=[1, 2, 1] , __UpperCamelCase : Dict=[2, 2, 4] , __UpperCamelCase : List[str]=2 , __UpperCamelCase : int=2.0 , __UpperCamelCase : str=True , __UpperCamelCase : str=0.0 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : int=0.1 , __UpperCamelCase : str="gelu" , __UpperCamelCase : str=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : str=0.02 , __UpperCamelCase : int=1e-5 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Tuple=None , __UpperCamelCase : List[str]=True , __UpperCamelCase : Dict=10 , __UpperCamelCase : Any=8 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : List[str] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ): _UpperCAmelCase = SwinvaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : List[str] ): _UpperCAmelCase = SwinvaForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = SwinvaForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = SwinvaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = SwinvaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , embed_dim=37 ) def UpperCAmelCase__ ( self : Dict ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def UpperCAmelCase__ ( self : Optional[int] ): pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def UpperCAmelCase__ ( self : str ): pass def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions _UpperCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = config.window_size**2 _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _UpperCAmelCase = len(__UpperCamelCase ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): _UpperCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _UpperCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # Swinv2 has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reshaped_hidden_states[0].shape _UpperCAmelCase = ( reshaped_hidden_states[0].view(__UpperCamelCase , __UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SwinvaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Optional[int] ): return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( __UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
129
0
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCAmelCase: List[Any] =logging.get_logger("transformers.models.speecht5") def __snake_case ( __A ,__A ,__A ) -> List[str]: hf_model.apply_weight_norm() lowercase : Tuple = checkpoint["""input_conv.weight_g"""] lowercase : Union[str, Any] = checkpoint["""input_conv.weight_v"""] lowercase : Optional[int] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowercase : Any = checkpoint[F'''upsamples.{i}.1.weight_g'''] lowercase : str = checkpoint[F'''upsamples.{i}.1.weight_v'''] lowercase : Optional[int] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase : Dict = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] lowercase : Optional[int] = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] lowercase : int = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] lowercase : Optional[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] lowercase : Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] lowercase : Optional[int] = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] lowercase : str = checkpoint["""output_conv.1.weight_g"""] lowercase : List[Any] = checkpoint["""output_conv.1.weight_v"""] lowercase : str = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __snake_case ( __A ,__A ,__A ,__A=None ,__A=None ,) -> Optional[Any]: if config_path is not None: lowercase : List[str] = SpeechTaHifiGanConfig.from_pretrained(__A ) else: lowercase : Tuple = SpeechTaHifiGanConfig() lowercase : List[str] = SpeechTaHifiGan(__A ) lowercase : Optional[int] = torch.load(__A ) load_weights(orig_checkpoint["""model"""]["""generator"""] ,__A ,__A ) lowercase : int = np.load(__A ) lowercase : List[str] = stats[0].reshape(-1 ) lowercase : Optional[Any] = stats[1].reshape(-1 ) lowercase : List[Any] = torch.from_numpy(__A ).float() lowercase : List[Any] = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(__A ) if __name__ == "__main__": lowerCAmelCase: List[str] =argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowerCAmelCase: Dict =parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
607
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __snake_case ( __A ) -> Any: lowercase : List[str] = os.path.join(args.tf_model_dir ,"""parameters.json""" ) lowercase : Any = json.loads(open(__A ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(""".pt""" ): lowercase : List[str] = args.output + """.pt""" lowercase : Dict = OrderedDict() with tf.device("""/CPU:0""" ): lowercase : Any = tf.train.load_checkpoint(args.tf_model_dir ) lowercase : List[Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase : Optional[Any] = reader.get_tensor(__A ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): lowercase : str = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): lowercase : List[Any] = 8 lowercase : Optional[int] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name.startswith("""model/moe""" ): lowercase : Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): lowercase : Any = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player lowercase : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Tuple = torch.tensor(__A ) elif key_name.endswith("""/softmlp/kernel""" ): lowercase : str = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player lowercase : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[int] = torch.tensor(__A ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): lowercase : Union[str, Any] = key_name[-9:-7] for i in range(16 ): lowercase : int = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) lowercase : str = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase : List[Any] = torch.tensor(__A ) elif key_name.startswith("""model/mlp""" ): lowercase : Any = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): lowercase : Dict = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player lowercase : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name.endswith("""/p1/bias""" ): lowercase : Tuple = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player lowercase : Tuple = vnp.copy() # same because it is one dimensional lowercase : Tuple = torch.tensor(__A ) elif key_name.endswith("""/p2/kernel""" ): lowercase : int = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player lowercase : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[Any] = torch.tensor(__A ) elif key_name.endswith("""/p2/bias""" ): lowercase : Any = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player lowercase : str = vnp.copy() # same because it is one dimensional lowercase : str = torch.tensor(__A ) elif key_name.startswith("""model/ln""" ): lowercase : Union[str, Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase : Any = """model.blocks.%d.feed_forward.norm.bias""" % player lowercase : List[str] = vnp.copy() # same because it is one dimensional lowercase : Any = torch.tensor(__A ) elif key_name.endswith("""/g""" ): lowercase : int = """model.blocks.%d.feed_forward.norm.weight""" % player lowercase : Union[str, Any] = vnp.copy() # same because it is one dimensional lowercase : Optional[Any] = torch.tensor(__A ) elif key_name.startswith("""model/att""" ): lowercase : Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): lowercase : Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase : Any = state[:, 0, :, :] lowercase : List[Any] = state[:, 1, :, :] lowercase : Optional[Any] = state[:, 2, :, :] lowercase : Dict = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : List[str] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : str = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player lowercase : Optional[int] = torch.tensor(__A ) lowercase : int = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player lowercase : Optional[Any] = torch.tensor(__A ) lowercase : Tuple = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player lowercase : List[str] = torch.tensor(__A ) elif key_name.endswith("""/o/kernel""" ): lowercase : Any = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player lowercase : List[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[int] = torch.tensor(__A ) elif key_name.startswith("""model/an""" ): lowercase : Tuple = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase : List[str] = """model.blocks.%d.self_attn.norm.bias""" % player lowercase : List[str] = vnp.copy() # same because it is one dimensional lowercase : int = torch.tensor(__A ) elif key_name.endswith("""/g""" ): lowercase : Any = """model.blocks.%d.self_attn.norm.weight""" % player lowercase : Union[str, Any] = vnp.copy() # same because it is one dimensional lowercase : int = torch.tensor(__A ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): lowercase : Any = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] lowercase : Optional[int] = """model.%s.weight""" % nlayer lowercase : Any = vnp.copy() # same in embedded lowercase : Dict = torch.tensor(__A ) if key_name.startswith("""model/wte""" ): lowercase : Optional[Any] = """lm_head.weight""" lowercase : int = vnp.copy() # same in embedded lowercase : str = torch.tensor(__A ) elif key_name.startswith("""model/wob""" ): lowercase : str = """final_logits_bias""" lowercase : List[str] = vnp.copy() # same in embedded lowercase : str = state.reshape((1, -1) ) lowercase : Tuple = torch.tensor(__A ) elif key_name == "model/dense/kernel": lowercase : Dict = """model.last_project.weight""" lowercase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name == "model/dense_1/bias": lowercase : List[str] = """model.last_project.bias""" lowercase : Dict = vnp.copy() # same because it is one dimensional lowercase : List[str] = torch.tensor(__A ) torch.save(__A ,args.output ) if __name__ == "__main__": lowerCAmelCase: Tuple =argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") lowerCAmelCase: Tuple =parser.parse_args() convert_tf_gptsan_to_pt(args)
607
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
715
import collections import os import re from pathlib import Path lowercase : int = """src/transformers""" # Matches is_xxx_available() lowercase : List[str] = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowercase : str = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase : List[str] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowercase : List[Any] = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowercase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase : Optional[Any] = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowercase : List[Any] = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase : Tuple = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowercase : str = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowercase : int = re.compile(r"""^\s*try:""") # Catches a line with else: lowercase : List[str] = re.compile(r"""^\s*else:""") def A_ ( A__ ) -> Optional[int]: if _re_test_backend.search(A__ ) is None: return None a__ : Optional[Any] = [b[0] for b in _re_backend.findall(A__ )] backends.sort() return "_and_".join(A__ ) def A_ ( A__ ) -> str: with open(A__ , 'r' , encoding='utf-8' , newline='\n' ) as f: a__ : Optional[Any] = f.readlines() a__ : Optional[Any] = 0 while line_index < len(A__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A__ ): return None # First grab the objects without a specific backend in _import_structure a__ : int = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: a__ : Optional[int] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A__ ): a__ : Optional[int] = _re_one_line_import_struct.search(A__ ).groups()[0] a__ : List[str] = re.findall(R'\[([^\]]+)\]' , A__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue a__ : int = _re_import_struct_key_value.search(A__ ) if single_line_import_search is not None: a__ : List[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(A__ ) > 0] objects.extend(A__ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 a__ : Any = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. a__ : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: a__ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 a__ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): a__ : Any = lines[line_index] if _re_import_struct_add_one.search(A__ ) is not None: objects.append(_re_import_struct_add_one.search(A__ ).groups()[0] ) elif _re_import_struct_add_many.search(A__ ) is not None: a__ : int = _re_import_struct_add_many.search(A__ ).groups()[0].split(', ' ) a__ : List[Any] = [obj[1:-1] for obj in imports if len(A__ ) > 0] objects.extend(A__ ) elif _re_between_brackets.search(A__ ) is not None: a__ : List[str] = _re_between_brackets.search(A__ ).groups()[0].split(', ' ) a__ : int = [obj[1:-1] for obj in imports if len(A__ ) > 0] objects.extend(A__ ) elif _re_quote_object.search(A__ ) is not None: objects.append(_re_quote_object.search(A__ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 a__ : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend a__ : Union[str, Any] = [] while ( line_index < len(A__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): a__ : List[Any] = lines[line_index] a__ : List[str] = _re_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 a__ : Dict = {'none': objects} # Let's continue with backend-specific objects while line_index < len(A__ ): # If the line is an if is_backend_available, we grab all objects associated. a__ : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: a__ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 a__ : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): a__ : List[str] = lines[line_index] a__ : Union[str, Any] = _re_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 a__ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A_ ( A__ , A__ ) -> Dict: def find_duplicates(A__ ): return [k for k, v in collections.Counter(A__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] a__ : Union[str, Any] = [] for key in import_dict_objects.keys(): a__ : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) a__ : Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): a__ : str = 'base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A_ ( ) -> List[Any]: a__ : Tuple = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: a__ : Tuple = os.path.join(A__ , '__init__.py' ) a__ : Optional[int] = parse_init(A__ ) if objects is not None: a__ : List[Any] = analyze_results(*A__ ) if len(A__ ) > 0: a__ : List[Any] = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(A__ ) ) if len(A__ ) > 0: raise ValueError('\n\n'.join(A__ ) ) def A_ ( ) -> List[Any]: a__ : List[str] = [] for path, directories, files in os.walk(A__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(A__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A__ ) / folder).glob('*.py' ) ) ) == 0: continue a__ : List[str] = str((Path(A__ ) / folder).relative_to(A__ ) ) a__ : List[Any] = short_path.replace(os.path.sep , '.' ) submodules.append(A__ ) for fname in files: if fname == "__init__.py": continue a__ : str = str((Path(A__ ) / fname).relative_to(A__ ) ) a__ : Any = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(A__ ) return submodules lowercase : Union[str, Any] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def A_ ( ) -> Dict: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import a__ : List[Any] = direct_transformers_import(A__ ) a__ : Optional[int] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(A__ , '__init__.py' ) , 'r' ) as f: a__ : Optional[Any] = f.read() import_structure_keys.update(set(re.findall(R'import_structure\[\"([^\"]*)\"\]' , A__ ) ) ) a__ : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(A__ ) > 0: a__ : Optional[int] = '\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
392
0
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if not (isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) UpperCAmelCase_ : Optional[Any] = len(_lowercase ) UpperCAmelCase_ : Optional[Any] = len(_lowercase ) UpperCAmelCase_ : Dict = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Tuple = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: UpperCAmelCase_ : Dict = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: UpperCAmelCase_ : Any = i UpperCAmelCase_ : Optional[Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
30
'''simple docstring''' import operator def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ): lowerCamelCase__ = operator.lt if reverse else operator.gt lowerCamelCase__ = solution or [] if not arr: return solution lowerCamelCase__ = [arr.pop(0 )] for i, item in enumerate(__lowerCAmelCase ): if _operator(__lowerCAmelCase , sublist[-1] ): sublist.append(__lowerCAmelCase ) arr.pop(__lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCAmelCase ) else: while sublist: lowerCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(__lowerCAmelCase ): if not _operator(__lowerCAmelCase , __lowerCAmelCase ): solution.insert(__lowerCAmelCase , __lowerCAmelCase ) break else: solution.append(__lowerCAmelCase ) strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
50
0
'''simple docstring''' from __future__ import annotations def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] ): # noqa: E741 """simple docstring""" while r - l > 1: __SCREAMING_SNAKE_CASE : str = (l + r) // 2 if v[m] >= key: __SCREAMING_SNAKE_CASE : Optional[int] = m else: __SCREAMING_SNAKE_CASE : Optional[int] = m # noqa: E741 return r def __A ( _SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 __SCREAMING_SNAKE_CASE : Any = [0] * len(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Dict = 1 __SCREAMING_SNAKE_CASE : Any = v[0] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): if v[i] < tail[0]: __SCREAMING_SNAKE_CASE : Any = v[i] elif v[i] > tail[length - 1]: __SCREAMING_SNAKE_CASE : Tuple = v[i] length += 1 else: __SCREAMING_SNAKE_CASE : Tuple = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
564
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def __A ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if not sentence: return "" __SCREAMING_SNAKE_CASE : str = dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
564
1
'''simple docstring''' def __lowerCamelCase ( __snake_case : list, __snake_case : list, __snake_case : int ) -> Any: """simple docstring""" if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. A__ : Any =[p / w for p, w in zip(_lowerCamelCase, _lowerCamelCase )] # Creating a copy of the list and sorting profit/weight in ascending order A__ : Optional[int] =sorted(_lowerCamelCase ) # declaring useful variables A__ : List[Any] =len(_lowerCamelCase ) A__ : List[Any] =0 A__ : List[Any] =0 A__ : Dict =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight A__ : Optional[Any] =sorted_profit_by_weight[length - i - 1] A__ : int =profit_by_weight.index(_lowerCamelCase ) A__ : int =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) __snake_case : Optional[Any] = [int(x) for x in input('Input profits separated by spaces: ').split()] __snake_case : Any = [int(x) for x in input('Input weights separated by spaces: ').split()] __snake_case : str = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
215
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } lowercase__ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } lowercase__ = { "facebook/m2m100_418M": 1024, } # fmt: off lowercase__ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__(self , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<pad>" , _lowercase="<unk>" , _lowercase="m2m100" , _lowercase = None , _lowercase=8 , **_lowercase , ): '''simple docstring''' __a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs __a : List[str] = language_codes __a : str = FAIRSEQ_LANGUAGE_CODES[language_codes] __a : Optional[int] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} __a : Optional[int] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(_lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowercase , tgt_lang=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , language_codes=_lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowercase , **_lowercase , ) __a : Optional[Any] = vocab_file __a : List[Any] = load_json(_lowercase ) __a : List[str] = {v: k for k, v in self.encoder.items()} __a : List[Any] = spm_file __a : int = load_spm(_lowercase , self.sp_model_kwargs ) __a : Dict = len(self.encoder ) __a : Optional[int] = { self.get_lang_token(_lowercase ): self.encoder_size + i for i, lang_code in enumerate(_lowercase ) } __a : Dict = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowercase )} __a : Tuple = {v: k for k, v in self.lang_token_to_id.items()} __a : List[str] = src_lang if src_lang is not None else """en""" __a : List[Any] = tgt_lang __a : List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __a : Optional[Any] = num_madeup_words @property def lowerCAmelCase__(self ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCAmelCase__(self ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return self.sp_model.encode(_lowercase , out_type=_lowercase ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowercase , self.encoder[self.unk_token] ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowercase , self.unk_token ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Any = [] __a : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase ) + token __a : Optional[Any] = [] else: current_sub_tokens.append(_lowercase ) out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) __a : str = [1] * len(self.prefix_tokens ) __a : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase )) + suffix_ones return prefix_ones + ([0] * len(_lowercase )) + ([0] * len(_lowercase )) + suffix_ones def lowerCAmelCase__(self , _lowercase , _lowercase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' __a : Optional[Any] = self.__dict__.copy() __a : List[str] = None return state def __setstate__(self , _lowercase ): '''simple docstring''' __a : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a : List[str] = {} __a : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase__(self , _lowercase , _lowercase = None ): '''simple docstring''' __a : Tuple = Path(_lowercase ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) __a : Union[str, Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __a : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowercase ) elif not os.path.isfile(self.spm_file ): with open(_lowercase , """wb""" ) as fi: __a : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (str(_lowercase ), str(_lowercase )) def lowerCAmelCase__(self , _lowercase , _lowercase = "en" , _lowercase = None , _lowercase = "ro" , **_lowercase , ): '''simple docstring''' __a : Dict = src_lang __a : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __a : Dict = src_lang __a : List[str] = self(_lowercase , add_special_tokens=_lowercase , **_lowercase ) __a : Union[str, Any] = self.get_lang_id(_lowercase ) __a : Tuple = tgt_lang_id return inputs def lowerCAmelCase__(self ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__(self ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : str = self.get_lang_token(_lowercase ) __a : Union[str, Any] = self.lang_token_to_id[lang_token] __a : Optional[Any] = [self.cur_lang_id] __a : List[str] = [self.eos_token_id] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Dict = self.get_lang_token(_lowercase ) __a : Union[str, Any] = self.lang_token_to_id[lang_token] __a : Tuple = [self.cur_lang_id] __a : Dict = [self.eos_token_id] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return self.lang_code_to_token[lang] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Union[str, Any] = self.get_lang_token(_lowercase ) return self.lang_token_to_id[lang_token] def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ): __a : Optional[int] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def __magic_name__ ( _lowerCamelCase : str ): with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str ): with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
581
0
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=6_4 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0 , lowercase_=0.0_2 , lowercase_=[1, 1_6, 4, 4] , lowercase_=None , ) -> Union[str, Any]: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase = (self.image_size // 3_2) ** 2 UpperCAmelCase = num_patches + 1 def a_ ( self ) -> List[str]: UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def a_ ( self ) -> Any: UpperCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase_ , ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: UpperCAmelCase = ViTHybridModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = ViTHybridForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Any = False def a_ ( self ) -> Tuple: UpperCAmelCase = ViTHybridModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7 ) def a_ ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def a_ ( self ) -> List[str]: pass def a_ ( self ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def a_ ( self ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase_ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def a_ ( self ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def a_ ( self ) -> int: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(lowercase_ ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowercase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def a_ ( self ) -> Tuple: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = ViTHybridModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowercase__ ( ) -> int: """simple docstring""" UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def a_ ( self ) -> Optional[int]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a_ ( self ) -> Tuple: UpperCAmelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowercase_ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowercase_ ) # verify the logits UpperCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow @require_accelerate def a_ ( self ) -> List[Any]: UpperCAmelCase = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) UpperCAmelCase = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase_ , return_tensors='pt' ) UpperCAmelCase = model(**lowercase_ ) UpperCAmelCase = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
719
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=3 , lowercase_=3_2 , lowercase_=3 , lowercase_=1_0 , lowercase_=[1_0, 2_0, 3_0, 4_0] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , ) -> str: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowercase_ ) def a_ ( self ) -> Optional[int]: UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a_ ( self , lowercase_ , lowercase_ ) -> List[Any]: UpperCAmelCase = FlaxRegNetModel(config=lowercase_ ) UpperCAmelCase = model(lowercase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def a_ ( self , lowercase_ , lowercase_ ) -> Union[str, Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowercase_ ) UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self ) -> List[Any]: UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Tuple = False def a_ ( self ) -> None: UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def a_ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self ) -> Optional[Any]: return def a_ ( self ) -> Any: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def a_ ( self ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def a_ ( self ) -> List[str]: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def a_ ( self ) -> Optional[int]: pass def a_ ( self ) -> Dict: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase_ ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def a_ ( self ) -> int: def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = model_class(lowercase_ ) UpperCAmelCase = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def a_ ( self ) -> List[Any]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ , **lowercase_ ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest('JIT Enabled' ): UpperCAmelCase = model_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( ) -> Tuple: """simple docstring""" UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): @cached_property def a_ ( self ) -> List[str]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase_ , return_tensors='np' ) UpperCAmelCase = model(**lowercase_ ) # verify the logits UpperCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
183
0
def lowercase ( __A : str , __A : str ) -> bool: '''simple docstring''' snake_case : str = len(__A ) snake_case : Union[str, Any] = len(__A ) snake_case : Union[str, Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] snake_case : List[Any] = True for i in range(__A ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: snake_case : Any = True if a[i].islower(): snake_case : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
36
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings( _A , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class _lowercase ( _A ): def lowercase__ ( self , a ): if self.framework == "tf": snake_case__ : int =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": snake_case__ : Optional[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=a ) else: raise ValueError("""Unsupported framework""" ) return masked_index def lowercase__ ( self , a ): snake_case__ : str =self.get_masked_index(a ) snake_case__ : Any =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def lowercase__ ( self , a ): if isinstance(a , a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(a ) def lowercase__ ( self , a , a=None , **a ): if return_tensors is None: snake_case__ : Optional[Any] =self.framework snake_case__ : List[str] =self.tokenizer(a , return_tensors=a ) self.ensure_exactly_one_mask_token(a ) return model_inputs def lowercase__ ( self , a ): snake_case__ : Optional[Any] =self.model(**a ) snake_case__ : str =model_inputs["""input_ids"""] return model_outputs def lowercase__ ( self , a , a=5 , a=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: snake_case__ : Union[str, Any] =target_ids.shape[0] snake_case__ : Union[str, Any] =model_outputs["""input_ids"""][0] snake_case__ : List[Any] =model_outputs["""logits"""] if self.framework == "tf": snake_case__ : str =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] snake_case__ : Any =outputs.numpy() snake_case__ : Optional[Any] =outputs[0, masked_index, :] snake_case__ : List[Any] =stable_softmax(a , axis=-1 ) if target_ids is not None: snake_case__ : str =tf.gather_nd(tf.squeeze(a , 0 ) , target_ids.reshape(-1 , 1 ) ) snake_case__ : List[str] =tf.expand_dims(a , 0 ) snake_case__ : Optional[Any] =tf.math.top_k(a , k=a ) snake_case__ , snake_case__ : int =topk.values.numpy(), topk.indices.numpy() else: snake_case__ : List[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample snake_case__ : int =outputs[0, masked_index, :] snake_case__ : Optional[int] =logits.softmax(dim=-1 ) if target_ids is not None: snake_case__ : Dict =probs[..., target_ids] snake_case__ , snake_case__ : List[Any] =probs.topk(a ) snake_case__ : List[Any] =[] snake_case__ : int =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): snake_case__ : Dict =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place snake_case__ : List[Any] =input_ids.numpy().copy() if target_ids is not None: snake_case__ : Tuple =target_ids[p].tolist() snake_case__ : Any =p # Filter padding out: snake_case__ : int =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back snake_case__ : Union[str, Any] =self.tokenizer.decode(a , skip_special_tokens=a ) snake_case__ : int ={"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(a ) result.append(a ) if single_mask: return result[0] return result def lowercase__ ( self , a , a=None ): if isinstance(a , a ): snake_case__ : Tuple =[targets] try: snake_case__ : Any =self.tokenizer.get_vocab() except Exception: snake_case__ : List[Any] ={} snake_case__ : Any =[] for target in targets: snake_case__ : Optional[int] =vocab.get(a , a ) if id_ is None: snake_case__ : str =self.tokenizer( a , add_special_tokens=a , return_attention_mask=a , return_token_type_ids=a , max_length=1 , truncation=a , )["""input_ids"""] if len(a ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue snake_case__ : Any =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) snake_case__ : Optional[Any] =list(set(a ) ) if len(a ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) snake_case__ : Tuple =np.array(a ) return target_ids def lowercase__ ( self , a=None , a=None ): snake_case__ : int ={} if targets is not None: snake_case__ : str =self.get_target_ids(a , a ) snake_case__ : Union[str, Any] =target_ids if top_k is not None: snake_case__ : Dict =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , a , *a , **a ): snake_case__ : List[Any] =super().__call__(a , **a ) if isinstance(a , a ) and len(a ) == 1: return outputs[0] return outputs
385
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline a : int = logging.get_logger(__name__) # pylint: disable=invalid-name class a ( _lowerCamelCase ): def __init__( self : List[Any] , lowercase_ : Any , lowercase_ : Tuple ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : Any , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: snake_case_ = self.unet.config.sample_size / self.unet.config.sample_rate snake_case_ = audio_length_in_s * self.unet.config.sample_rate snake_case_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) snake_case_ = int(lowercase_ ) if sample_size % down_scale_factor != 0: snake_case_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" ''' process.''' ) snake_case_ = int(lowercase_ ) snake_case_ = next(iter(self.unet.parameters() ) ).dtype snake_case_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) snake_case_ = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) snake_case_ = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 snake_case_ = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample snake_case_ = audio.clamp(-1 , 1 ).float().cpu().numpy() snake_case_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
593
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging a : Dict = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=False ) -> int: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: snake_case_ = os.path.abspath(__UpperCAmelCase ) logger.info(F"Loading PyTorch weights from {pt_path}" ) snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) snake_case_ = convert_pytorch_state_dict_to_flax(__UpperCAmelCase, __UpperCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files snake_case_ = convert_pytorch_sharded_state_dict_to_flax(__UpperCAmelCase, __UpperCAmelCase ) return flax_state_dict def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(__UpperCAmelCase ) -> bool: return len(set(__UpperCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm snake_case_ = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean snake_case_ = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var snake_case_ = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding snake_case_ = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer snake_case_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__UpperCAmelCase ): snake_case_ = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__UpperCAmelCase ): snake_case_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case_ = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case_ = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 snake_case_ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): snake_case_ = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): snake_case_ = pt_tuple_key[-2] + '''_v''' if name is not None: snake_case_ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case_ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: snake_case_ = flax_model.params['''params'''] else: snake_case_ = flax_model.params snake_case_ = flatten_dict(__UpperCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case_ = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__UpperCAmelCase ) snake_case_ = {} snake_case_ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) snake_case_ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case_ = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary snake_case_ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case_ = pt_tuple_key[1:] # Correctly rename weight parameters snake_case_ ,snake_case_ = rename_key_and_reshape_tensor( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # add model prefix if necessary snake_case_ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case_ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: snake_case_ = jnp.asarray(__UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__UpperCAmelCase, __UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(__UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(__UpperCAmelCase ) return unflatten_dict(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' import torch # Load the index snake_case_ = {} for shard_file in shard_filenames: # load using msgpack utils snake_case_ = torch.load(__UpperCAmelCase ) snake_case_ = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case_ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case_ = flax_model.params['''params'''] snake_case_ = flatten_dict(__UpperCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: snake_case_ = flax_model.params snake_case_ = flatten_dict(__UpperCAmelCase ) snake_case_ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) snake_case_ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case_ = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary snake_case_ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case_ = pt_tuple_key[1:] # Correctly rename weight parameters snake_case_ ,snake_case_ = rename_key_and_reshape_tensor( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # add model prefix if necessary snake_case_ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case_ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: snake_case_ = jnp.asarray(__UpperCAmelCase ) continue if "var" in flax_key[-1]: snake_case_ = jnp.asarray(__UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__UpperCAmelCase, __UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(__UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(__UpperCAmelCase ) return unflatten_dict(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = os.path.abspath(__UpperCAmelCase ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class snake_case_ = getattr(__UpperCAmelCase, '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__UpperCAmelCase, '''rb''' ) as state_f: try: snake_case_ = from_bytes(__UpperCAmelCase, state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights snake_case_ = flatten_dict(jax.tree_util.tree_map(lambda __UpperCAmelCase : x.dtype == jnp.bfloataa, __UpperCAmelCase ) ).values() if any(__UpperCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) snake_case_ = jax.tree_util.tree_map( lambda __UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, __UpperCAmelCase ) snake_case_ = flatten_dict(__UpperCAmelCase ) snake_case_ = pt_model.state_dict() snake_case_ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) snake_case_ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys snake_case_ = [] snake_case_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case_ = flax_key_tuple[0] == pt_model.base_model_prefix snake_case_ = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: snake_case_ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: snake_case_ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__UpperCAmelCase ) not in pt_model_dict: # conv layer snake_case_ = flax_key_tuple[:-1] + ('''weight''',) snake_case_ = jnp.transpose(__UpperCAmelCase, (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCAmelCase ) not in pt_model_dict: # linear layer snake_case_ = flax_key_tuple[:-1] + ('''weight''',) snake_case_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case_ = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: snake_case_ = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: snake_case_ = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: snake_case_ = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: snake_case_ = '''.'''.join(__UpperCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. snake_case_ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: snake_case_ = key.split('''.''' ) snake_case_ = None if key_components[-3::2] == ["parametrizations", "original0"]: snake_case_ = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: snake_case_ = key_components[-2] + '''_v''' if name is not None: snake_case_ = key_components[:-3] + [name] snake_case_ = '''.'''.join(__UpperCAmelCase ) snake_case_ = key if flax_key in special_pt_names: snake_case_ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict snake_case_ = np.asarray(__UpperCAmelCase ) if not isinstance(__UpperCAmelCase, np.ndarray ) else flax_tensor snake_case_ = torch.from_numpy(__UpperCAmelCase ) # remove from missing keys missing_keys.remove(__UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCAmelCase ) pt_model.load_state_dict(__UpperCAmelCase ) # re-transform missing_keys to list snake_case_ = list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(__UpperCAmelCase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ''' use it for predictions and inference.''' ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" '''If your task is similar to the task the model of the checkpoint was trained on, ''' F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
593
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase_ : """simple docstring""" A = None A = None A = None # sigma(t_i) @classmethod def lowerCamelCase_ ( cls ): return cls() @dataclass class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = 42 A = 42 A = 42 class UpperCamelCase_ ( __UpperCamelCase ,__UpperCamelCase ): """simple docstring""" @property def lowerCamelCase_ ( self ): return True @register_to_config def __init__( self , UpperCAmelCase = 0.02 , UpperCAmelCase = 1_0_0 , UpperCAmelCase = 1.0_07 , UpperCAmelCase = 8_0 , UpperCAmelCase = 0.05 , UpperCAmelCase = 5_0 , ): pass def lowerCamelCase_ ( self ): return KarrasVeSchedulerState.create() def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = () ): __lowerCamelCase = jnp.arange(0 , UpperCAmelCase )[::-1].copy() __lowerCamelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCAmelCase , schedule=jnp.array(UpperCAmelCase , dtype=jnp.floataa ) , timesteps=UpperCAmelCase , ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): if self.config.s_min <= sigma <= self.config.s_max: __lowerCamelCase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __lowerCamelCase = 0 # sample eps ~ N(0, S_noise^2 * I) __lowerCamelCase = random.split(UpperCAmelCase , num=1 ) __lowerCamelCase = self.config.s_noise * random.normal(key=UpperCAmelCase , shape=sample.shape ) __lowerCamelCase = sigma + gamma * sigma __lowerCamelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ): __lowerCamelCase = sample_hat + sigma_hat * model_output __lowerCamelCase = (sample_hat - pred_original_sample) / sigma_hat __lowerCamelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , state=UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ): __lowerCamelCase = sample_prev + sigma_prev * model_output __lowerCamelCase = (sample_prev - pred_original_sample) / sigma_prev __lowerCamelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , state=UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError()
479
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _a : List[Any] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __UpperCamelCase ,unittest.TestCase ): """simple docstring""" A = SpeechTaTokenizer A = False A = True def lowerCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = SpeechTaTokenizer(UpperCAmelCase ) __lowerCamelCase = AddedToken("""<mask>""" , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = """this is a test""" __lowerCamelCase = """this is a test""" return input_text, output_text def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=2_0 , UpperCAmelCase=5 ): __lowerCamelCase , __lowerCamelCase = self.get_input_output_texts(UpperCAmelCase ) __lowerCamelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __lowerCamelCase = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def lowerCamelCase_ ( self ): __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(UpperCAmelCase ) , 8_1 ) def lowerCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowerCamelCase = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] __lowerCamelCase = tokenizer.add_tokens(UpperCAmelCase ) __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , len(UpperCAmelCase ) ) self.assertEqual(UpperCAmelCase , all_size + len(UpperCAmelCase ) ) __lowerCamelCase = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=UpperCAmelCase ) self.assertGreaterEqual(len(UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __lowerCamelCase = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} __lowerCamelCase = tokenizer.add_special_tokens(UpperCAmelCase ) __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , len(UpperCAmelCase ) ) self.assertEqual(UpperCAmelCase , all_size_a + len(UpperCAmelCase ) ) __lowerCamelCase = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=UpperCAmelCase ) self.assertGreaterEqual(len(UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCamelCase_ ( self ): pass def lowerCamelCase_ ( self ): pass def lowerCamelCase_ ( self ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(UpperCAmelCase , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) __lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) # fmt: off self.assertListEqual(UpperCAmelCase , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on __lowerCamelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def lowerCamelCase_ ( self ): # Use custom sequence because this tokenizer does not handle numbers. __lowerCamelCase = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off __lowerCamelCase = { """input_ids""": [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=UpperCAmelCase , )
479
1
def __lowerCAmelCase ( __magic_name__ ): _lowercase: Any = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCAmelCase ( __magic_name__ = 1_0_0 ): _lowercase: Any = 1 _lowercase: Optional[int] = 2 for i in range(2 , max_n + 1 ): _lowercase: Any = pre_numerator _lowercase: Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 _lowercase: Dict = cur_numerator _lowercase: Dict = e_cont * pre_numerator + temp return sum_digits(__magic_name__ ) if __name__ == "__main__": print(f'''{solution() = }''')
206
def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__magic_name__ , n - 1 , __magic_name__ ) * a) % mod else: _lowercase: int = binary_exponentiation(__magic_name__ , n / 2 , __magic_name__ ) return (b * b) % mod # a prime number _SCREAMING_SNAKE_CASE : List[Any] = 701 _SCREAMING_SNAKE_CASE : Optional[int] = 1_000_000_000 _SCREAMING_SNAKE_CASE : Union[str, Any] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
206
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'marian' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self ,_lowerCAmelCase=5_81_01 ,_lowerCAmelCase=None ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=5_81_00 ,_lowerCAmelCase=False ,_lowerCAmelCase=5_81_00 ,_lowerCAmelCase=0 ,_lowerCAmelCase=0 ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = decoder_vocab_size or vocab_size lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = d_model lowerCamelCase__ = encoder_ffn_dim lowerCamelCase__ = encoder_layers lowerCamelCase__ = encoder_attention_heads lowerCamelCase__ = decoder_ffn_dim lowerCamelCase__ = decoder_layers lowerCamelCase__ = decoder_attention_heads lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = activation_function lowerCamelCase__ = init_std lowerCamelCase__ = encoder_layerdrop lowerCamelCase__ = decoder_layerdrop lowerCamelCase__ = use_cache lowerCamelCase__ = encoder_layers lowerCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,is_encoder_decoder=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,forced_eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,) class UpperCamelCase__ (a ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCamelCase_ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ = {0: """batch"""} lowerCamelCase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""} lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ = self.num_layers for i in range(_lowerCAmelCase ): lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} else: lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCamelCase_ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = super().outputs else: lowerCamelCase__ = super(_lowerCAmelCase ,self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ = self.num_layers for i in range(_lowerCAmelCase ): lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Generate decoder inputs lowerCamelCase__ = seq_length if not self.use_past else 1 lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ = dict(**_lowerCAmelCase ,**_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape lowerCamelCase__ = common_inputs["""decoder_input_ids"""].shape[1] lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads lowerCamelCase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ = decoder_seq_length + 3 lowerCamelCase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase )] ,dim=1 ) lowerCamelCase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ = self.num_layers lowerCamelCase__ = min(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = max(_lowerCAmelCase ,_lowerCAmelCase ) - min_num_layers lowerCamelCase__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. lowerCamelCase__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCAmelCase ,_lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ = self.num_layers lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads lowerCamelCase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ = common_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ = compute_effective_axis_dimension( _lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) lowerCamelCase__ = compute_effective_axis_dimension( _lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ = dict(tokenizer(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ) ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) else: lowerCamelCase__ = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = super()._flatten_past_key_values_(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) else: lowerCamelCase__ = super(_lowerCAmelCase ,self )._flatten_past_key_values_( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) @property def UpperCamelCase_ ( self ): return 1E-4
50
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =0 @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def UpperCamelCase_ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def UpperCamelCase_ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _SCREAMING_SNAKE_CASE =tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): _SCREAMING_SNAKE_CASE =tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TOKENIZER_MAPPING.values() _SCREAMING_SNAKE_CASE =[] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def UpperCamelCase_ ( self ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) _SCREAMING_SNAKE_CASE ='''Hello, world. How are you?''' _SCREAMING_SNAKE_CASE =tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) _SCREAMING_SNAKE_CASE =tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =get_tokenizer_config('''bert-base-cased''' ) _SCREAMING_SNAKE_CASE =config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. _SCREAMING_SNAKE_CASE =get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def UpperCamelCase_ ( self ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) _SCREAMING_SNAKE_CASE =CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase_ ( self ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(_A ): _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def UpperCamelCase_ ( self ): '''simple docstring''' class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Tuple = False class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[str] = NewTokenizer lowercase : Tuple = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''bert-base''' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
255
0
import os def A_ ( a = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: SCREAMING_SNAKE_CASE_ : Optional[int] = in_file.read() SCREAMING_SNAKE_CASE_ : List[str] = [[int(a ) for cell in row.split(',' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE_ : Tuple = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE_ : List[Any] = len(grid[0] ) SCREAMING_SNAKE_CASE_ : Tuple = [[0 for i in range(a )] for j in range(a )] SCREAMING_SNAKE_CASE_ : List[Any] = grid[0][0] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : str = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
702
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : str = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Union[str, Any] = '''table-transformer''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) SCREAMING_SNAKE_CASE_ : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = backbone_config.get('model_type' ) SCREAMING_SNAKE_CASE_ : str = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ : Union[str, Any] = config_class.from_dict(_SCREAMING_SNAKE_CASE ) # set timm attributes to None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = None, None, None SCREAMING_SNAKE_CASE_ : Any = use_timm_backbone SCREAMING_SNAKE_CASE_ : int = backbone_config SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = num_queries SCREAMING_SNAKE_CASE_ : int = d_model SCREAMING_SNAKE_CASE_ : int = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : Any = encoder_layers SCREAMING_SNAKE_CASE_ : str = encoder_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : str = decoder_layers SCREAMING_SNAKE_CASE_ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = dropout SCREAMING_SNAKE_CASE_ : int = attention_dropout SCREAMING_SNAKE_CASE_ : Dict = activation_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = activation_function SCREAMING_SNAKE_CASE_ : Optional[Any] = init_std SCREAMING_SNAKE_CASE_ : int = init_xavier_std SCREAMING_SNAKE_CASE_ : str = encoder_layerdrop SCREAMING_SNAKE_CASE_ : Any = decoder_layerdrop SCREAMING_SNAKE_CASE_ : Any = encoder_layers SCREAMING_SNAKE_CASE_ : List[str] = auxiliary_loss SCREAMING_SNAKE_CASE_ : List[str] = position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] = backbone SCREAMING_SNAKE_CASE_ : Tuple = use_pretrained_backbone SCREAMING_SNAKE_CASE_ : Union[str, Any] = dilation # Hungarian matcher SCREAMING_SNAKE_CASE_ : List[Any] = class_cost SCREAMING_SNAKE_CASE_ : List[Any] = bbox_cost SCREAMING_SNAKE_CASE_ : Union[str, Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ : Optional[Any] = mask_loss_coefficient SCREAMING_SNAKE_CASE_ : str = dice_loss_coefficient SCREAMING_SNAKE_CASE_ : Dict = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ : int = giou_loss_coefficient SCREAMING_SNAKE_CASE_ : Any = eos_coefficient super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCAmelCase ( self ): """simple docstring""" return self.d_model class _A ( __magic_name__): SCREAMING_SNAKE_CASE : List[Any] = version.parse('''1.11''') @property def UpperCAmelCase ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def UpperCAmelCase ( self ): """simple docstring""" return 1e-5 @property def UpperCAmelCase ( self ): """simple docstring""" return 12
353
0
'''simple docstring''' def a__ ( lowercase : int = 1, lowercase : int = 1000 ) -> int: """simple docstring""" _UpperCamelCase = 1 _UpperCamelCase = 0 for divide_by_number in range(lowercase, digit + 1 ): _UpperCamelCase = [] _UpperCamelCase = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase ): _UpperCamelCase = len(lowercase ) _UpperCamelCase = divide_by_number else: has_been_divided.append(lowercase ) _UpperCamelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
98
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A__ : List[Any] = 1_6 A__ : Union[str, Any] = 3_2 def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = 16 ): """simple docstring""" _lowercase: Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowercase: List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowercase: Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase: Tuple = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase: Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase: Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase: int = 16 elif accelerator.mixed_precision != "no": _lowercase: Tuple = 8 else: _lowercase: str = None return tokenizer.pad( _UpperCamelCase , padding='''longest''' , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowercase: List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) _lowercase: int = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A__ : List[Any] = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _UpperCamelCase ) == "1": _lowercase: Tuple = 2 # Initialize accelerator _lowercase: Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase: Optional[Any] = config['''lr'''] _lowercase: Tuple = int(config['''num_epochs'''] ) _lowercase: Any = int(config['''seed'''] ) _lowercase: List[Any] = int(config['''batch_size'''] ) _lowercase: Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase: Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase: List[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowercase: List[str] = AdamW(params=model.parameters() , lr=_UpperCamelCase ) _lowercase , _lowercase: Tuple = get_dataloaders(_UpperCamelCase , _UpperCamelCase ) # Instantiate scheduler _lowercase: str = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase: Union[str, Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase: Tuple = model(**_UpperCamelCase ) _lowercase: Union[str, Any] = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase: str = model(**_UpperCamelCase ) _lowercase: int = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase: List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) _lowercase: int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCamelCase , default=_UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowercase: Tuple = parser.parse_args() _lowercase: str = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
353
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''MCTCTFeatureExtractor''' SCREAMING_SNAKE_CASE_ = '''AutoTokenizer''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = self.feature_extractor UpperCamelCase__ : str = False def __call__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCamelCase__ : Any = kwargs.pop('''raw_speech''' ) else: UpperCamelCase__ : Optional[int] = kwargs.pop('''audio''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = kwargs.pop('''sampling_rate''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = kwargs.pop('''text''' , __SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ : Any = args[0] UpperCamelCase__ : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCamelCase__ : List[Any] = self.feature_extractor(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None: UpperCamelCase__ : Dict = self.tokenizer(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: UpperCamelCase__ : List[Any] = encodings['''input_ids'''] return inputs def __SCREAMING_SNAKE_CASE ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = kwargs.pop('''input_features''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = kwargs.pop('''labels''' , __SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ : Dict = args[0] UpperCamelCase__ : Dict = args[1:] if input_features is not None: UpperCamelCase__ : int = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if labels is not None: UpperCamelCase__ : Union[str, Any] = self.tokenizer.pad(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if labels is None: return input_features elif input_features is None: return labels else: UpperCamelCase__ : int = labels['''input_ids'''] return input_features def __SCREAMING_SNAKE_CASE ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @contextmanager def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : List[Any] = self.tokenizer yield UpperCamelCase__ : int = self.feature_extractor UpperCamelCase__ : Dict = False
705
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase =logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCamelCase__ ): return ext raise Exception( f'''Unable to determine file format from file extension {path}. ''' f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase__ : Any = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format UpperCamelCase__ : Tuple = PipelineDataFormat.from_str( format=UpperCamelCase__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCamelCase__ , UpperCamelCase__ ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = nlp UpperCamelCase__ : Dict = reader @staticmethod def __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=__SCREAMING_SNAKE_CASE , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=__SCREAMING_SNAKE_CASE , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=__SCREAMING_SNAKE_CASE , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=__SCREAMING_SNAKE_CASE , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=__SCREAMING_SNAKE_CASE , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=__SCREAMING_SNAKE_CASE , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self._nlp, [] for entry in self._reader: UpperCamelCase__ : List[str] = nlp(**__SCREAMING_SNAKE_CASE ) if self._reader.is_multi_columns else nlp(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): outputs.append(__SCREAMING_SNAKE_CASE ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase__ : Union[str, Any] = self._reader.save_binary(__SCREAMING_SNAKE_CASE ) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(__SCREAMING_SNAKE_CASE )
462
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : List[Any] = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A_ (a_ ): UpperCAmelCase__ = '''poolformer''' def __init__( self , _A=3 , _A=1_6 , _A=1_6 , _A=3 , _A=4.0 , _A=[2, 2, 6, 2] , _A=[6_4, 1_2_8, 3_2_0, 5_1_2] , _A=[7, 3, 3, 3] , _A=[4, 2, 2, 2] , _A=[2, 1, 1, 1] , _A=4 , _A=0.0 , _A="gelu" , _A=True , _A=1E-5 , _A=0.02 , **_A , ): '''simple docstring''' UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = stride UpperCAmelCase = padding UpperCAmelCase = pool_size UpperCAmelCase = hidden_sizes UpperCAmelCase = mlp_ratio UpperCAmelCase = depths UpperCAmelCase = patch_sizes UpperCAmelCase = strides UpperCAmelCase = num_encoder_blocks UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_layer_scale UpperCAmelCase = layer_scale_init_value UpperCAmelCase = initializer_range super().__init__(**_A ) class A_ (a_ ): UpperCAmelCase__ = version.parse('''1.11''' ) @property def _lowercase ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): '''simple docstring''' return 2E-3
130
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class A_ (a_ ): UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None class A_ (a_ ): def __init__( self , _A=1 , _A=0 , _A=2 , _A=5_1_2 , _A="cls" , _A=False , _A=True , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) UpperCAmelCase = project_dim UpperCAmelCase = pooler_fn UpperCAmelCase = learn_encoder UpperCAmelCase = use_attention_mask class A_ (a_ ): UpperCAmelCase__ = [r'''pooler''', r'''logit_scale'''] UpperCAmelCase__ = [r'''position_ids''', r'''predictions.decoder.bias'''] UpperCAmelCase__ = '''roberta''' UpperCAmelCase__ = RobertaSeriesConfig def __init__( self , _A ): '''simple docstring''' super().__init__(_A ) UpperCAmelCase = XLMRobertaModel(_A ) UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase = getattr(_A , '''has_pre_transformation''' , _A ) if self.has_pre_transformation: UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _lowercase ( self , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ): '''simple docstring''' UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = self.base_model( input_ids=_A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_attentions=_A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_A , ) if self.has_pre_transformation: UpperCAmelCase = outputs['''hidden_states'''][-2] UpperCAmelCase = self.pre_LN(_A ) UpperCAmelCase = self.transformation_pre(_A ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCAmelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
130
1
"""simple docstring""" def _lowerCAmelCase(a : str ) -> str: _SCREAMING_SNAKE_CASE =0 # if input_string is "aba" than new_input_string become "a|b|a" _SCREAMING_SNAKE_CASE ='''''' _SCREAMING_SNAKE_CASE ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =0, 0 # length[i] shows the length of palindromic substring with center i _SCREAMING_SNAKE_CASE =[1 for i in range(len(a ) )] # for each character in new_string find corresponding palindromic string _SCREAMING_SNAKE_CASE =0 for j in range(len(a ) ): _SCREAMING_SNAKE_CASE =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _SCREAMING_SNAKE_CASE =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _SCREAMING_SNAKE_CASE =j - k + 1 # noqa: E741 _SCREAMING_SNAKE_CASE =j + k - 1 # update max_length and start position if max_length < length[j]: _SCREAMING_SNAKE_CASE =length[j] _SCREAMING_SNAKE_CASE =j # create that string _SCREAMING_SNAKE_CASE =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
165
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated UpperCAmelCase_ : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ UpperCAmelCase_ : List[Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def _lowerCAmelCase(a : Union[str, Any] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE =numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=a )[0] @deprecated(a , '''Please use tf.data to implement this functionality.''' ) def _lowerCAmelCase(a : str ) -> Optional[int]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: _SCREAMING_SNAKE_CASE =_readaa(a ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =bytestream.read(rows * cols * num_images ) _SCREAMING_SNAKE_CASE =numpy.frombuffer(a , dtype=numpy.uinta ) _SCREAMING_SNAKE_CASE =data.reshape(a , a , a , 1 ) return data @deprecated(a , '''Please use tf.one_hot on tensors.''' ) def _lowerCAmelCase(a : Tuple , a : Dict ) -> Dict: _SCREAMING_SNAKE_CASE =labels_dense.shape[0] _SCREAMING_SNAKE_CASE =numpy.arange(a ) * num_classes _SCREAMING_SNAKE_CASE =numpy.zeros((num_labels, num_classes) ) _SCREAMING_SNAKE_CASE =1 return labels_one_hot @deprecated(a , '''Please use tf.data to implement this functionality.''' ) def _lowerCAmelCase(a : Any , a : Any=False , a : Tuple=10 ) -> Optional[int]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: _SCREAMING_SNAKE_CASE =_readaa(a ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =bytestream.read(a ) _SCREAMING_SNAKE_CASE =numpy.frombuffer(a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(a , a ) return labels class __UpperCAmelCase : '''simple docstring''' @deprecated( _A , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , _A , _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =random_seed.get_seed(_A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _SCREAMING_SNAKE_CASE =dtypes.as_dtype(_A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: _SCREAMING_SNAKE_CASE =1_0_0_0_0 _SCREAMING_SNAKE_CASE =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" _SCREAMING_SNAKE_CASE =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _SCREAMING_SNAKE_CASE =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _SCREAMING_SNAKE_CASE =images.astype(numpy.floataa ) _SCREAMING_SNAKE_CASE =numpy.multiply(_A , 1.0 / 255.0 ) _SCREAMING_SNAKE_CASE =images _SCREAMING_SNAKE_CASE =labels _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._images @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._labels @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._num_examples @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._epochs_completed def UpperCamelCase_ ( self , _A , _A=False , _A=True ): '''simple docstring''' if fake_data: _SCREAMING_SNAKE_CASE =[1] * 7_8_4 _SCREAMING_SNAKE_CASE =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_A )], [fake_label for _ in range(_A )], ) _SCREAMING_SNAKE_CASE =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples ) numpy.random.shuffle(_A ) _SCREAMING_SNAKE_CASE =self.images[perma] _SCREAMING_SNAKE_CASE =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _SCREAMING_SNAKE_CASE =self._num_examples - start _SCREAMING_SNAKE_CASE =self._images[start : self._num_examples] _SCREAMING_SNAKE_CASE =self._labels[start : self._num_examples] # Shuffle the data if shuffle: _SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples ) numpy.random.shuffle(_A ) _SCREAMING_SNAKE_CASE =self.images[perm] _SCREAMING_SNAKE_CASE =self.labels[perm] # Start next epoch _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =batch_size - rest_num_examples _SCREAMING_SNAKE_CASE =self._index_in_epoch _SCREAMING_SNAKE_CASE =self._images[start:end] _SCREAMING_SNAKE_CASE =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _SCREAMING_SNAKE_CASE =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(a , '''Please write your own downloading logic.''' ) def _lowerCAmelCase(a : Any , a : str , a : Optional[int] ) -> Optional[Any]: if not gfile.Exists(a ): gfile.MakeDirs(a ) _SCREAMING_SNAKE_CASE =os.path.join(a , a ) if not gfile.Exists(a ): urllib.request.urlretrieve(a , a ) # noqa: S310 with gfile.GFile(a ) as f: _SCREAMING_SNAKE_CASE =f.size() print('''Successfully downloaded''' , a , a , '''bytes.''' ) return filepath @deprecated( a , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def _lowerCAmelCase(a : Optional[int] , a : Tuple=False , a : str=False , a : Union[str, Any]=dtypes.floataa , a : Tuple=True , a : Tuple=5000 , a : Union[str, Any]=None , a : List[str]=DEFAULT_SOURCE_URL , ) -> List[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=a , one_hot=a , dtype=a , seed=a ) _SCREAMING_SNAKE_CASE =fake() _SCREAMING_SNAKE_CASE =fake() _SCREAMING_SNAKE_CASE =fake() return _Datasets(train=a , validation=a , test=a ) if not source_url: # empty string check _SCREAMING_SNAKE_CASE =DEFAULT_SOURCE_URL _SCREAMING_SNAKE_CASE ='''train-images-idx3-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''train-labels-idx1-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''t10k-images-idx3-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''t10k-labels-idx1-ubyte.gz''' _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + train_images_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_images(a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + train_labels_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_labels(a , one_hot=a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + test_images_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_images(a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + test_labels_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_labels(a , one_hot=a ) if not 0 <= validation_size <= len(a ): _SCREAMING_SNAKE_CASE =( '''Validation size should be between 0 and ''' f"""{len(a )}. Received: {validation_size}.""" ) raise ValueError(a ) _SCREAMING_SNAKE_CASE =train_images[:validation_size] _SCREAMING_SNAKE_CASE =train_labels[:validation_size] _SCREAMING_SNAKE_CASE =train_images[validation_size:] _SCREAMING_SNAKE_CASE =train_labels[validation_size:] _SCREAMING_SNAKE_CASE ={'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) return _Datasets(train=a , validation=a , test=a )
165
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[2, 2, 3, 2] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=10 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=["stage2", "stage3", "stage4"] , _UpperCAmelCase=[2, 3, 4] , _UpperCAmelCase=None , ): __a : Tuple = parent __a : Optional[Any] = batch_size __a : List[Any] = image_size __a : Optional[int] = num_channels __a : int = num_stages __a : List[str] = hidden_sizes __a : Tuple = depths __a : Union[str, Any] = is_training __a : Optional[int] = use_labels __a : Union[str, Any] = intermediate_size __a : str = hidden_act __a : List[str] = num_labels __a : Union[str, Any] = initializer_range __a : Dict = out_features __a : Union[str, Any] = out_indices __a : Optional[int] = scope def _lowerCamelCase ( self ): __a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[int] = None if self.use_labels: __a : Dict = ids_tensor([self.batch_size] , self.num_labels ) __a : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = ConvNextModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Tuple = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = ConvNextForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = ConvNextBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : List[str] = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __a : List[str] = None __a : Union[str, Any] = ConvNextBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : List[str] = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self ): __a : List[str] = self.prepare_config_and_inputs() __a , __a , __a : int = config_and_inputs __a : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __lowerCAmelCase = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Optional[int] = ConvNextModelTester(self ) __a : List[str] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self ): return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Tuple = model_class(_UpperCAmelCase ) __a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : str = [*signature.parameters.keys()] __a : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def _lowerCamelCase ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __a : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __a : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[Any] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : int = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Any = ConvNextModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __A ( ) -> Any: __a : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): __a : Optional[Any] = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_UpperCAmelCase ) __a : Optional[Any] = self.default_image_processor __a : Optional[Any] = prepare_img() __a : List[str] = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __a : int = model(**_UpperCAmelCase ) # verify the logits __a : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __a : int = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @require_torch class __lowercase ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (ConvNextBackbone,) if is_torch_available() else () __lowerCAmelCase = ConvNextConfig __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Tuple = ConvNextModelTester(self )
52
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __UpperCAmelCase ( snake_case_ : str = "isbn/0140328726" ) -> dict: """simple docstring""" _lowerCAmelCase = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: _lowerCAmelCase = F"""{olid} is not a valid Open Library olid""" raise ValueError(snake_case_ ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def __UpperCAmelCase ( snake_case_ : dict ) -> dict: """simple docstring""" _lowerCAmelCase = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } _lowerCAmelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _lowerCAmelCase = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] _lowerCAmelCase = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = """, """.join(snake_case_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE : List[Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: SCREAMING_SNAKE_CASE : Tuple = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print('''\n'''.join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
156
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Dict, _snake_case : Union[str, Any], _snake_case : Optional[int] ) ->List[Any]: return F'''gaussian_noise_s={seed}_shape={"_".join([str(_snake_case ) for s in shape] )}.npy''' def lowercase_ ( self : Union[str, Any] ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase_ ( self : List[str], _snake_case : List[Any]=0, _snake_case : Dict=(4, 4, 6_4, 6_4), _snake_case : List[Any]=False ) ->List[Any]: snake_case__ : str = jnp.bfloataa if fpaa else jnp.floataa snake_case__ : List[Any] = jnp.array(load_hf_numpy(self.get_file_format(_snake_case, _snake_case ) ), dtype=_snake_case ) return image def lowercase_ ( self : List[str], _snake_case : List[str]=False, _snake_case : str="CompVis/stable-diffusion-v1-4" ) ->Dict: snake_case__ : Tuple = jnp.bfloataa if fpaa else jnp.floataa snake_case__ : Tuple = 'bf16' if fpaa else None snake_case__ , snake_case__ : Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( _snake_case, subfolder='unet', dtype=_snake_case, revision=_snake_case ) return model, params def lowercase_ ( self : Any, _snake_case : int=0, _snake_case : Dict=(4, 7_7, 7_6_8), _snake_case : int=False ) ->Tuple: snake_case__ : List[Any] = jnp.bfloataa if fpaa else jnp.floataa snake_case__ : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(_snake_case, _snake_case ) ), dtype=_snake_case ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def lowercase_ ( self : Union[str, Any], _snake_case : Optional[Any], _snake_case : Optional[Any], _snake_case : Any ) ->str: snake_case__ , snake_case__ : Tuple = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4', fpaa=_snake_case ) snake_case__ : Union[str, Any] = self.get_latents(_snake_case, fpaa=_snake_case ) snake_case__ : Any = self.get_encoder_hidden_states(_snake_case, fpaa=_snake_case ) snake_case__ : str = model.apply( {'params': params}, _snake_case, jnp.array(_snake_case, dtype=jnp.intaa ), encoder_hidden_states=_snake_case, ).sample assert sample.shape == latents.shape snake_case__ : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ), dtype=jnp.floataa ) snake_case__ : List[str] = jnp.array(_snake_case, dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_snake_case, _snake_case, atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def lowercase_ ( self : Optional[int], _snake_case : List[Any], _snake_case : List[str], _snake_case : List[Any] ) ->Optional[Any]: snake_case__ , snake_case__ : List[Any] = self.get_unet_model(model_id='stabilityai/stable-diffusion-2', fpaa=_snake_case ) snake_case__ : int = self.get_latents(_snake_case, shape=(4, 4, 9_6, 9_6), fpaa=_snake_case ) snake_case__ : Any = self.get_encoder_hidden_states(_snake_case, shape=(4, 7_7, 1_0_2_4), fpaa=_snake_case ) snake_case__ : Optional[Any] = model.apply( {'params': params}, _snake_case, jnp.array(_snake_case, dtype=jnp.intaa ), encoder_hidden_states=_snake_case, ).sample assert sample.shape == latents.shape snake_case__ : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ), dtype=jnp.floataa ) snake_case__ : List[Any] = jnp.array(_snake_case, dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_snake_case, _snake_case, atol=1e-2 )
243
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :List[Any] = logging.get_logger(__name__) def lowercase_ (A : np.ndarray , A : Union[int, Iterable[int]] , A : bool , A : int ): def constraint_to_multiple_of(A : Any , A : List[str] , A : Dict=0 , A : Optional[int]=None ): snake_case__ : List[str] = round(val / multiple ) * multiple if max_val is not None and x > max_val: snake_case__ : Dict = math.floor(val / multiple ) * multiple if x < min_val: snake_case__ : Optional[Any] = math.ceil(val / multiple ) * multiple return x snake_case__ : str = (output_size, output_size) if isinstance(A , A ) else output_size snake_case__ , snake_case__ : Dict = get_image_size(A ) snake_case__ , snake_case__ : Any = output_size # determine new height and width snake_case__ : List[str] = output_height / input_height snake_case__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width snake_case__ : List[str] = scale_width else: # fit height snake_case__ : Union[str, Any] = scale_height snake_case__ : Any = constraint_to_multiple_of(scale_height * input_height , multiple=A ) snake_case__ : Tuple = constraint_to_multiple_of(scale_width * input_width , multiple=A ) return (new_height, new_width) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Tuple, _snake_case : bool = True, _snake_case : Dict[str, int] = None, _snake_case : PILImageResampling = PILImageResampling.BILINEAR, _snake_case : bool = False, _snake_case : int = 1, _snake_case : bool = True, _snake_case : Union[int, float] = 1 / 2_5_5, _snake_case : bool = True, _snake_case : Optional[Union[float, List[float]]] = None, _snake_case : Optional[Union[float, List[float]]] = None, **_snake_case : Dict, ) ->None: super().__init__(**_snake_case ) snake_case__ : Optional[int] = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} snake_case__ : List[str] = get_size_dict(_snake_case ) snake_case__ : Optional[int] = do_resize snake_case__ : Optional[int] = size snake_case__ : Optional[Any] = keep_aspect_ratio snake_case__ : Any = ensure_multiple_of snake_case__ : Dict = resample snake_case__ : int = do_rescale snake_case__ : Any = rescale_factor snake_case__ : Dict = do_normalize snake_case__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : str, _snake_case : np.ndarray, _snake_case : Dict[str, int], _snake_case : bool = False, _snake_case : int = 1, _snake_case : PILImageResampling = PILImageResampling.BICUBIC, _snake_case : Optional[Union[str, ChannelDimension]] = None, **_snake_case : Tuple, ) ->np.ndarray: snake_case__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) snake_case__ : Optional[Any] = get_resize_output_image_size( _snake_case, output_size=(size['height'], size['width']), keep_aspect_ratio=_snake_case, multiple=_snake_case, ) return resize(_snake_case, size=_snake_case, resample=_snake_case, data_format=_snake_case, **_snake_case ) def lowercase_ ( self : Optional[Any], _snake_case : np.ndarray, _snake_case : Union[int, float], _snake_case : Optional[Union[str, ChannelDimension]] = None, **_snake_case : Dict, ) ->str: return rescale(_snake_case, scale=_snake_case, data_format=_snake_case, **_snake_case ) def lowercase_ ( self : Union[str, Any], _snake_case : np.ndarray, _snake_case : Union[float, List[float]], _snake_case : Union[float, List[float]], _snake_case : Optional[Union[str, ChannelDimension]] = None, **_snake_case : List[str], ) ->np.ndarray: return normalize(_snake_case, mean=_snake_case, std=_snake_case, data_format=_snake_case, **_snake_case ) def lowercase_ ( self : Optional[int], _snake_case : ImageInput, _snake_case : bool = None, _snake_case : int = None, _snake_case : bool = None, _snake_case : int = None, _snake_case : PILImageResampling = None, _snake_case : bool = None, _snake_case : float = None, _snake_case : bool = None, _snake_case : Optional[Union[float, List[float]]] = None, _snake_case : Optional[Union[float, List[float]]] = None, _snake_case : Optional[Union[str, TensorType]] = None, _snake_case : ChannelDimension = ChannelDimension.FIRST, **_snake_case : List[Any], ) ->PIL.Image.Image: snake_case__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : int = size if size is not None else self.size snake_case__ : str = get_size_dict(_snake_case ) snake_case__ : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio snake_case__ : Union[str, Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of snake_case__ : str = resample if resample is not None else self.resample snake_case__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : List[str] = image_mean if image_mean is not None else self.image_mean snake_case__ : List[str] = image_std if image_std is not None else self.image_std snake_case__ : int = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ : Tuple = [to_numpy_array(_snake_case ) for image in images] if do_resize: snake_case__ : List[str] = [self.resize(image=_snake_case, size=_snake_case, resample=_snake_case ) for image in images] if do_rescale: snake_case__ : Any = [self.rescale(image=_snake_case, scale=_snake_case ) for image in images] if do_normalize: snake_case__ : int = [self.normalize(image=_snake_case, mean=_snake_case, std=_snake_case ) for image in images] snake_case__ : int = [to_channel_dimension_format(_snake_case, _snake_case ) for image in images] snake_case__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_snake_case, tensor_type=_snake_case ) def lowercase_ ( self : List[Any], _snake_case : Dict, _snake_case : List[Tuple] = None ) ->Optional[Any]: snake_case__ : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case ) != len(_snake_case ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_snake_case ): snake_case__ : Tuple = target_sizes.numpy() snake_case__ : int = [] for idx in range(len(_snake_case ) ): snake_case__ : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode='bilinear', align_corners=_snake_case ) snake_case__ : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_snake_case ) else: snake_case__ : str = logits.argmax(dim=1 ) snake_case__ : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
243
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=4 , ): UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : Union[str, Any] = seq_length UpperCAmelCase__ : List[Any] = is_training UpperCAmelCase__ : Tuple = use_attention_mask UpperCAmelCase__ : List[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : Optional[int] = vocab_size UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Tuple = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Any = num_choices def snake_case__ ( self): UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : Dict = None if self.use_attention_mask: UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : Dict = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Optional[int] = True lowerCAmelCase :Any = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self): UpperCAmelCase__ : int = FlaxRoFormerModelTester(self) @slow def snake_case__ ( self): for model_class_name in self.all_model_classes: UpperCAmelCase__ : str = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowerCamelCase) UpperCAmelCase__ : Dict = model(np.ones((1, 1))) self.assertIsNotNone(_lowerCamelCase) @require_flax class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Any = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""") UpperCAmelCase__ : Optional[Any] = jnp.array([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase)[0] UpperCAmelCase__ : Any = 5_0000 UpperCAmelCase__ : Optional[int] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4))
407
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __A ={ 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _UpperCamelCase ( UpperCamelCase__ ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if args.student_type == "roberta": UpperCAmelCase__ : Optional[Any] = False elif args.student_type == "gpt2": UpperCAmelCase__ : str = False def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if args.student_type == "roberta": UpperCAmelCase__ : str = False def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=UpperCamelCase__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=UpperCamelCase__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=UpperCamelCase__ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=UpperCamelCase__ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=UpperCamelCase__ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=UpperCamelCase__ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=UpperCamelCase__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=UpperCamelCase__ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=UpperCamelCase__ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=UpperCamelCase__ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=UpperCamelCase__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=UpperCamelCase__ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=UpperCamelCase__ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=UpperCamelCase__ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=UpperCamelCase__ , default=5_0 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=UpperCamelCase__ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCamelCase__ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=UpperCamelCase__ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=UpperCamelCase__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=UpperCamelCase__ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=UpperCamelCase__ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=UpperCamelCase__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=UpperCamelCase__ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=UpperCamelCase__ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=UpperCamelCase__ , default=5_6 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=UpperCamelCase__ , default=5_0_0 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=UpperCamelCase__ , default=4_0_0_0 , help="""Checkpoint interval.""" ) UpperCAmelCase__ : Dict = parser.parse_args() sanity_checks(UpperCamelCase__ ) # ARGS # init_gpu_params(UpperCamelCase__ ) set_seed(UpperCamelCase__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(UpperCamelCase__ ) , UpperCamelCase__ , indent=4 ) git_log(args.dump_path ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase__ : Optional[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase__ : Any = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase__ : Any = tokenizer.all_special_tokens.index(UpperCamelCase__ ) UpperCAmelCase__ : str = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) UpperCAmelCase__ : Any = special_tok_ids UpperCAmelCase__ : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: UpperCAmelCase__ : str = pickle.load(UpperCamelCase__ ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: UpperCAmelCase__ : int = pickle.load(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = np.maximum(UpperCamelCase__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase__ : Tuple = 0.0 # do not predict special tokens UpperCAmelCase__ : Any = torch.from_numpy(UpperCamelCase__ ) else: UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[int] = LmSeqsDataset(params=UpperCamelCase__ , data=UpperCamelCase__ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) UpperCAmelCase__ : int = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase__ : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) UpperCAmelCase__ : str = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCamelCase__ ) else: UpperCAmelCase__ : Any = student_model_class(UpperCamelCase__ ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # UpperCAmelCase__ : int = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCamelCase__ ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(UpperCamelCase__ , UpperCamelCase__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(UpperCamelCase__ , UpperCamelCase__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase__ : Optional[Any] = Distiller( params=UpperCamelCase__ , dataset=UpperCamelCase__ , token_probs=UpperCamelCase__ , student=UpperCamelCase__ , teacher=UpperCamelCase__ ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
407
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a , _a = analyze_text(UpperCamelCase ) _a = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. _a = sum(single_char_strings.values() ) # one length string _a = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _a = single_char_strings[ch] _a = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string _a = sum(two_char_strings.values() ) _a = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _a = cha + cha if sequence in two_char_strings: _a = two_char_strings[sequence] _a = int(UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = Counter() # type: ignore _a = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def snake_case_ (): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
377
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _snake_case : List[str] = '\nimport os\n' _snake_case : Dict = '\ndef foo():\n import os\n return False\n' _snake_case : List[Any] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' _snake_case : Dict = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' _snake_case : Optional[Any] = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' _snake_case : Optional[Any] = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' _snake_case : Any = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' _snake_case : List[str] = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' _snake_case : Dict = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' _snake_case : Any = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' _snake_case : Union[str, Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , UpperCamelCase ) def snake_case_ (UpperCamelCase : str , UpperCamelCase : List[Any] ): '''simple docstring''' _a = os.path.join(UpperCamelCase , '''test_file.py''' ) with open(UpperCamelCase , '''w''' ) as _tmp_file: _tmp_file.write(UpperCamelCase ) _a = get_imports(UpperCamelCase ) assert parsed_imports == ["os"]
377
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> Dict: """simple docstring""" if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase_ : def snake_case ( self ,snake_case__ ,snake_case__ ): pass def snake_case ( self ): pass def snake_case ( self ): pass def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = np.abs((a - b) ).max() self.assertLessEqual(snake_case__ ,snake_case__ ,F'Difference between torch and flax is {diff} (>= {tol}).' ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = FlaxVisionTextDualEncoderModel(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = model(input_ids=snake_case__ ,pixel_values=snake_case__ ,attention_mask=snake_case__ ) self.assertEqual(output['text_embeds'].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape ,(pixel_values.shape[0], config.projection_dim) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,**snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.get_vision_text_model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(input_ids=snake_case__ ,pixel_values=snake_case__ ,attention_mask=snake_case__ ) self.assertEqual(output['text_embeds'].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,**snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_vision_text_model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = model(input_ids=snake_case__ ,pixel_values=snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = model(input_ids=snake_case__ ,pixel_values=snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = after_output[0] SCREAMING_SNAKE_CASE_ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ ,1E-3 ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,**snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_vision_text_model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = model( input_ids=snake_case__ ,pixel_values=snake_case__ ,attention_mask=snake_case__ ,output_attentions=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = output.vision_model_output.attentions self.assertEqual(len(snake_case__ ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : Tuple = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE_ : int = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE_ : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE_ : str = output.text_model_output.attentions self.assertEqual(len(snake_case__ ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): pt_model.to(snake_case__ ) pt_model.eval() # prepare inputs SCREAMING_SNAKE_CASE_ : int = inputs_dict SCREAMING_SNAKE_CASE_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = pt_model(**snake_case__ ).to_tuple() SCREAMING_SNAKE_CASE_ : Optional[Any] = fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) ,len(snake_case__ ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(snake_case__ ,pt_output.numpy() ,4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case__ ,from_pt=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = fx_model_loaded(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) ,len(snake_case__ ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(snake_case__ ,pt_output.numpy() ,4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = VisionTextDualEncoderModel.from_pretrained(snake_case__ ,from_flax=snake_case__ ) pt_model_loaded.to(snake_case__ ) pt_model_loaded.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = pt_model_loaded(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) ,len(snake_case__ ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(snake_case__ ,pt_output_loaded.numpy() ,4E-2 ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = VisionTextDualEncoderModel(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxVisionTextDualEncoderModel(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = fx_state self.check_pt_flax_equivalence(snake_case__ ,snake_case__ ,snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = VisionTextDualEncoderModel(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxVisionTextDualEncoderModel(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = load_flax_weights_in_pytorch_model(snake_case__ ,fx_model.params ) self.check_pt_flax_equivalence(snake_case__ ,snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() self.check_save_load(**snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case__ ) @is_pt_flax_cross_test def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = config_inputs_dict.pop('vision_config' ) SCREAMING_SNAKE_CASE_ : Tuple = config_inputs_dict.pop('text_config' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(snake_case__ ,snake_case__ ,snake_case__ ) self.check_equivalence_flax_to_pt(snake_case__ ,snake_case__ ,snake_case__ ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE_ : Any = model_a(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = model_a(**snake_case__ ) SCREAMING_SNAKE_CASE_ : int = after_outputs[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ ,1E-5 ) @require_flax class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' ,'hf-internal-testing/tiny-bert' ,vision_from_pt=snake_case__ ,text_from_pt=snake_case__ ,) SCREAMING_SNAKE_CASE_ : List[Any] = 13 SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = FlaxViTModel(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = FlaxBertModel(snake_case__ ) return vision_model, text_model def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE_ : int = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : List[str] = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = vision_config_and_inputs SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' ,'hf-internal-testing/tiny-bert' ,vision_from_pt=snake_case__ ,text_from_pt=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Any = 13 SCREAMING_SNAKE_CASE_ : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ : int = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ : Any = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = FlaxCLIPVisionModel(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = FlaxBertModel(snake_case__ ) return vision_model, text_model def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = FlaxCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Optional[int] = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Tuple = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = vision_config_and_inputs SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' ,logit_scale_init_value=1.0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) SCREAMING_SNAKE_CASE_ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE_ : Optional[int] = processor( text=['una foto di un gatto', 'una foto di un cane'] ,images=snake_case__ ,padding=snake_case__ ,return_tensors='np' ) SCREAMING_SNAKE_CASE_ : List[Any] = model(**snake_case__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) SCREAMING_SNAKE_CASE_ : Dict = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,snake_case__ ,atol=1E-3 ) )
105
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __UpperCamelCase : Optional[Any] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str ,lowercase_ : Optional[Any] ,lowercase_ : Optional[Any]=1_6 ,lowercase_ : int=1_3 ,lowercase_ : Optional[int]=7 ,lowercase_ : int=1_4 ,lowercase_ : str=1_0 ,lowercase_ : List[Any]=1_9 ,lowercase_ : Any=5 ,lowercase_ : Any=4 ,lowercase_ : List[str]=True ,lowercase_ : Union[str, Any]=1_6 ,lowercase_ : Tuple=2 ,lowercase_ : str=4 ,lowercase_ : Tuple=4 ,lowercase_ : int="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : int=0.1 ,lowercase_ : Optional[int]=[1, 2, 3, 4, 5] ,lowercase_ : List[Any]=2_5 ,lowercase_ : Union[str, Any]=5 ,): lowerCAmelCase__ : List[str] = d_model lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Any = prediction_length lowerCAmelCase__ : str = context_length lowerCAmelCase__ : int = cardinality lowerCAmelCase__ : Dict = num_time_features lowerCAmelCase__ : str = lags_sequence lowerCAmelCase__ : int = embedding_dimension lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Optional[Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Dict = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = context_length lowerCAmelCase__ : Optional[Any] = prediction_length + label_length lowerCAmelCase__ : Union[str, Any] = label_length lowerCAmelCase__ : Optional[int] = moving_average lowerCAmelCase__ : Dict = autocorrelation_factor def __lowerCAmelCase ( self : Tuple ): return AutoformerConfig( d_model=self.d_model ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,prediction_length=self.prediction_length ,context_length=self.context_length ,label_length=self.label_length ,lags_sequence=self.lags_sequence ,num_time_features=self.num_time_features ,num_static_categorical_features=1 ,cardinality=[self.cardinality] ,embedding_dimension=[self.embedding_dimension] ,moving_average=self.moving_average ,) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ): lowerCAmelCase__ : str = config.context_length + max(config.lags_sequence ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, 1] ,config.cardinality[0] ) lowerCAmelCase__ : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase__ : Any = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase__ : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase__ : Optional[int] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = self.get_config() lowerCAmelCase__ : Dict = self.prepare_autoformer_inputs_dict(lowercase_ ) return config, inputs_dict def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self : Dict ,lowercase_ : Optional[int] ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : Any = AutoformerModel(config=lowercase_ ).to(lowercase_ ).eval() lowerCAmelCase__ : Tuple = model(**lowercase_ ) lowerCAmelCase__ : Any = outputs.encoder_last_hidden_state lowerCAmelCase__ : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : List[Any] = model.get_encoder() encoder.save_pretrained(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = AutoformerEncoder.from_pretrained(lowercase_ ).to(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : str = model.create_network_inputs(**lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase__ : int = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) ,dim=-1 ,) lowerCAmelCase__ : Dict = encoder(inputs_embeds=lowercase_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCAmelCase__ : Optional[int] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] ,dim=1 ) .unsqueeze(1 ) .repeat(1 ,config.prediction_length ,1 ) ) lowerCAmelCase__ : Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] ,device=enc_input.device ,) lowerCAmelCase__ : List[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) lowerCAmelCase__ : Any = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[int] = model.get_decoder() decoder.save_pretrained(lowercase_ ) lowerCAmelCase__ : Tuple = AutoformerDecoder.from_pretrained(lowercase_ ).to(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = decoder( trend=lowercase_ ,inputs_embeds=lowercase_ ,encoder_hidden_states=lowercase_ ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase__ = (AutoformerForPrediction,) if is_torch_available() else () lowercase__ = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : int = AutoformerModelTester(self ) lowerCAmelCase__ : Optional[int] = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ): lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = model_class.from_pretrained(lowercase_ ,output_loading_info=lowercase_ ) self.assertEqual(info['''missing_keys'''] ,[] ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __lowerCAmelCase ( self : Optional[int] ): pass def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : List[str] = inspect.signature(getattr(lowercase_ ,'''forward''' ) ) # The main input is the name of the argument after `self` lowerCAmelCase__ : Any = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name ,lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(lowercase_ ) lowerCAmelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : int = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[int] = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(lowercase_ )] ,lowercase_ ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : int = getattr(self.model_tester ,'''seq_length''' ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = getattr(self.model_tester ,'''decoder_seq_length''' ,lowercase_ ) lowerCAmelCase__ : Tuple = getattr(self.model_tester ,'''encoder_seq_length''' ,lowercase_ ) lowerCAmelCase__ : List[Any] = getattr(self.model_tester ,'''d_model''' ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = getattr(self.model_tester ,'''num_attention_heads''' ,lowercase_ ) lowerCAmelCase__ : str = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(lowercase_ ,lowercase_ ) ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Dict = model(**self._prepare_for_class(lowercase_ ,lowercase_ ) ) lowerCAmelCase__ : int = outputs.encoder_attentions self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) lowerCAmelCase__ : Tuple = len(lowercase_ ) lowerCAmelCase__ : List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowercase_ ,lowercase_ ) # decoder attentions lowerCAmelCase__ : str = outputs.decoder_attentions self.assertIsInstance(lowercase_ ,(list, tuple) ) self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # cross attentions lowerCAmelCase__ : Any = outputs.cross_attentions self.assertIsInstance(lowercase_ ,(list, tuple) ) self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(lowercase_ ,lowercase_ ) ) self.assertEqual(out_len + 2 ,len(lowercase_ ) ) lowerCAmelCase__ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) @is_flaky() def __lowerCAmelCase ( self : str ): super().test_retain_grad_hidden_states_attentions() def __SCREAMING_SNAKE_CASE ( A_="train-batch.pt" ): lowerCAmelCase__ : Any = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=A_ , repo_type='''dataset''' ) lowerCAmelCase__ : Union[str, Any] = torch.load(A_ , map_location=A_ ) return batch @require_torch @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : List[Any] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowercase_ ) lowerCAmelCase__ : int = prepare_batch() with torch.no_grad(): lowerCAmelCase__ : Any = model( past_values=batch['''past_values'''] ,past_time_features=batch['''past_time_features'''] ,past_observed_mask=batch['''past_observed_mask'''] ,static_categorical_features=batch['''static_categorical_features'''] ,future_values=batch['''future_values'''] ,future_time_features=batch['''future_time_features'''] ,)[0] lowerCAmelCase__ : Dict = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape ,lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] ,device=lowercase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] ,lowercase_ ,atol=lowercase_ ) ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : List[Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowercase_ ) lowerCAmelCase__ : Optional[int] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCAmelCase__ : str = model( past_values=batch['''past_values'''] ,past_time_features=batch['''past_time_features'''] ,past_observed_mask=batch['''past_observed_mask'''] ,static_categorical_features=batch['''static_categorical_features'''] ,).encoder_last_hidden_state lowerCAmelCase__ : Any = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape ,lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] ,device=lowercase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] ,lowercase_ ,atol=lowercase_ ) ) def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Union[str, Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowercase_ ) lowerCAmelCase__ : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCAmelCase__ : int = model.generate( static_categorical_features=batch['''static_categorical_features'''] ,past_time_features=batch['''past_time_features'''] ,past_values=batch['''past_values'''] ,future_time_features=batch['''future_time_features'''] ,past_observed_mask=batch['''past_observed_mask'''] ,) lowerCAmelCase__ : List[Any] = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] ,device=lowercase_ ) lowerCAmelCase__ : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] ,lowercase_ ,rtol=1E-1 ) )
450
0
def _UpperCamelCase ( lowerCAmelCase_ = 2_0_0_0_0_0_0 ) ->int: UpperCAmelCase = [0 for i in range(n + 1 )] UpperCAmelCase = 1 UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCAmelCase_ ): UpperCAmelCase = 1 UpperCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
627
from math import sqrt def _UpperCamelCase ( lowerCAmelCase_ = 1_0_0_0_0_0_0 ) ->int: UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCAmelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
627
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore A = "\nHuman: <<task>>\n\nAssistant: " A = "huggingface-tools/default-prompts" A = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __UpperCAmelCase ( __A , __A , __A="run" ) -> Union[str, Any]: '''simple docstring''' if prompt_or_repo_id is None: UpperCAmelCase__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , __A ) is not None: return prompt_or_repo_id UpperCAmelCase__ = cached_file( __A , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(__A , "r" , encoding="utf-8" ) as f: return f.read()
475
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase__ ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): def _UpperCAmelCase ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = load_tool("text-to-speech" ) self.tool.setup() def _UpperCAmelCase ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = self.tool("hey" ) UpperCAmelCase__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = self.tool("hey" ) UpperCAmelCase__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
475
1
from __future__ import annotations def _lowerCAmelCase( __A ): # This function is recursive UpperCAmelCase = len(__snake_case ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCAmelCase = array[0] UpperCAmelCase = False UpperCAmelCase = 1 UpperCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: UpperCAmelCase = True UpperCAmelCase = [element for element in array[i:] if element >= array[i]] UpperCAmelCase = longest_subsequence(__snake_case ) if len(__snake_case ) > len(__snake_case ): UpperCAmelCase = temp_array else: i += 1 UpperCAmelCase = [element for element in array[1:] if element >= pivot] UpperCAmelCase = [pivot, *longest_subsequence(__snake_case )] if len(__snake_case ) > len(__snake_case ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
711
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase( __A ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0] class __magic_name__ ( _snake_case ): def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self : Tuple ) -> List[str]: return len(self.file_names ) def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ ) UpperCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowerCAmelCase__ ) UpperCAmelCase = extract_label(lowerCAmelCase__ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase( __A , __A ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["lr"] UpperCAmelCase = int(config["num_epochs"] ) UpperCAmelCase = int(config["seed"] ) UpperCAmelCase = int(config["batch_size"] ) UpperCAmelCase = config["image_size"] if not isinstance(__A , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(__A )[-1].split("." )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase = [extract_label(__A ) for fname in file_names] UpperCAmelCase = list(set(__A ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(__A ) ) UpperCAmelCase = int(0.8 * len(__A ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(__A ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(__A )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std UpperCAmelCase = model(__A ) UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): UpperCAmelCase = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase = model(__A ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__A ), "epoch": epoch, } , step=__A , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"epoch_{epoch}" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase( ): UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__A , __A ) if __name__ == "__main__": main()
1
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __lowercase = None __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 __lowercase = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase_ : Any = TaTokenizer UpperCAmelCase_ : List[int] = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=100 , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase = [f"<extra_id_{i}>" for i in range(__lowerCAmelCase)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase = len(set(filter(lambda __lowerCAmelCase: bool("""extra_id_""" in str(__lowerCAmelCase)) , __lowerCAmelCase))) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""") super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , extra_ids=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase = vocab_file lowerCAmelCase = False if not self.vocab_file else True lowerCAmelCase = extra_ids @staticmethod def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __lowerCAmelCase , ) return max_model_length def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(__lowerCAmelCase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return lowerCAmelCase = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCAmelCase): copyfile(self.vocab_file , __lowerCAmelCase) logger.info(f"Copy vocab file to {out_vocab_file}") return (out_vocab_file,) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" lowerCAmelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def a_ ( self): """simple docstring""" return list( set(filter(lambda __lowerCAmelCase: bool(re.search(r"""<extra_id_\d+>""" , __lowerCAmelCase)) is not None , self.additional_special_tokens))) def a_ ( self): """simple docstring""" return [self.convert_tokens_to_ids(__lowerCAmelCase) for token in self.get_sentinel_tokens()]
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''ChineseCLIPFeatureExtractor'''] __lowercase = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): a_ = True from torch.cuda.amp import autocast a_ = logging.getLogger(__name__) def lowerCamelCase__ ( _a=None , _a=None): return field(default_factory=lambda: default , metadata=_a) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCamelCase__ =field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowerCamelCase__ =field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowerCamelCase__ =field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) lowerCamelCase__ =field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) lowerCamelCase__ =field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) lowerCamelCase__ =field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( default=__A , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ =field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ =list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =True lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None def __call__( self : str , a : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [{"input_values": feature["input_values"]} for feature in features] SCREAMING_SNAKE_CASE : int = [{"input_ids": feature["labels"]} for feature in features] SCREAMING_SNAKE_CASE : Any = self.processor.pad( a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : str = self.processor.pad( labels=a , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly SCREAMING_SNAKE_CASE : str = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) SCREAMING_SNAKE_CASE : Optional[Any] = labels return batch class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : Dict , a : nn.Module , a : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_inputs(a ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE : List[str] = self.compute_loss(a , a ) else: SCREAMING_SNAKE_CASE : Any = self.compute_loss(a , a ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE : Dict = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE : Tuple = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE : str = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(a ).backward() elif self.use_apex: with amp.scale_loss(a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(a ) else: loss.backward() return loss.detach() def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = parser.parse_args_into_dataclasses() # Detecting last checkpoint. SCREAMING_SNAKE_CASE : List[Any] = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Any = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}") # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _a) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: SCREAMING_SNAKE_CASE : Dict = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name) SCREAMING_SNAKE_CASE : Tuple = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test") # Create and save tokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = f"[{''.join(data_args.chars_to_ignore)}]" def remove_special_characters(_a): SCREAMING_SNAKE_CASE : int = re.sub(_a , "" , batch["sentence"]).lower() + " " return batch SCREAMING_SNAKE_CASE : Union[str, Any] = train_dataset.map(_a , remove_columns=["sentence"]) SCREAMING_SNAKE_CASE : Any = eval_dataset.map(_a , remove_columns=["sentence"]) def extract_all_chars(_a): SCREAMING_SNAKE_CASE : str = " ".join(batch["text"]) SCREAMING_SNAKE_CASE : Union[str, Any] = list(set(_a)) return {"vocab": [vocab], "all_text": [all_text]} SCREAMING_SNAKE_CASE : List[str] = train_dataset.map( _a , batched=_a , batch_size=-1 , keep_in_memory=_a , remove_columns=train_dataset.column_names , ) SCREAMING_SNAKE_CASE : Optional[int] = train_dataset.map( _a , batched=_a , batch_size=-1 , keep_in_memory=_a , remove_columns=eval_dataset.column_names , ) SCREAMING_SNAKE_CASE : Tuple = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0])) SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in enumerate(_a)} SCREAMING_SNAKE_CASE : Any = vocab_dict[" "] del vocab_dict[" "] SCREAMING_SNAKE_CASE : Dict = len(_a) SCREAMING_SNAKE_CASE : int = len(_a) with open("vocab.json" , "w") as vocab_file: json.dump(_a , _a) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : List[Any] = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=_a , return_attention_mask=_a) SCREAMING_SNAKE_CASE : List[str] = WavaVecaProcessor(feature_extractor=_a , tokenizer=_a) SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer) , ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = min(len(_a) , data_args.max_train_samples) SCREAMING_SNAKE_CASE : int = train_dataset.select(range(_a)) if data_args.max_val_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.select(range(data_args.max_val_samples)) SCREAMING_SNAKE_CASE : str = torchaudio.transforms.Resample(48000 , 16000) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = torchaudio.load(batch["path"]) SCREAMING_SNAKE_CASE : List[str] = resampler(_a).squeeze().numpy() SCREAMING_SNAKE_CASE : List[str] = 16000 SCREAMING_SNAKE_CASE : Union[str, Any] = batch["text"] return batch SCREAMING_SNAKE_CASE : Union[str, Any] = train_dataset.map( _a , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE : Any = eval_dataset.map( _a , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_a): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." SCREAMING_SNAKE_CASE : Tuple = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0]) batch.update(_a) return batch SCREAMING_SNAKE_CASE : Tuple = train_dataset.map( _a , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_a , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE : Optional[int] = eval_dataset.map( _a , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_a , num_proc=data_args.preprocessing_num_workers , ) # Metric SCREAMING_SNAKE_CASE : Tuple = datasets.load_metric("wer") def compute_metrics(_a): SCREAMING_SNAKE_CASE : Any = pred.predictions SCREAMING_SNAKE_CASE : Tuple = np.argmax(_a , axis=-1) SCREAMING_SNAKE_CASE : Optional[Any] = processor.tokenizer.pad_token_id SCREAMING_SNAKE_CASE : Union[str, Any] = processor.batch_decode(_a) # we do not want to group tokens when computing the metrics SCREAMING_SNAKE_CASE : Dict = processor.batch_decode(pred.label_ids , group_tokens=_a) SCREAMING_SNAKE_CASE : Any = wer_metric.compute(predictions=_a , references=_a) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator SCREAMING_SNAKE_CASE : str = DataCollatorCTCWithPadding(processor=_a , padding=_a) # Initialize our Trainer SCREAMING_SNAKE_CASE : Dict = CTCTrainer( model=_a , data_collator=_a , args=_a , compute_metrics=_a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: SCREAMING_SNAKE_CASE : Optional[Any] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): SCREAMING_SNAKE_CASE : Optional[Any] = model_args.model_name_or_path else: SCREAMING_SNAKE_CASE : Union[str, Any] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.train(resume_from_checkpoint=_a) trainer.save_model() SCREAMING_SNAKE_CASE : Tuple = train_result.metrics SCREAMING_SNAKE_CASE : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_a) ) SCREAMING_SNAKE_CASE : Optional[int] = min(_a , len(_a)) trainer.log_metrics("train" , _a) trainer.save_metrics("train" , _a) trainer.save_state() # Evaluation SCREAMING_SNAKE_CASE : Tuple = {} if training_args.do_eval: logger.info("*** Evaluate ***") SCREAMING_SNAKE_CASE : int = trainer.evaluate() SCREAMING_SNAKE_CASE : Optional[int] = data_args.max_val_samples if data_args.max_val_samples is not None else len(_a) SCREAMING_SNAKE_CASE : Dict = min(_a , len(_a)) trainer.log_metrics("eval" , _a) trainer.save_metrics("eval" , _a) return results if __name__ == "__main__": main()
193
from __future__ import annotations def lowerCamelCase__ ( _a , _a): if b == 0: return (1, 0) ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = extended_euclid(_a , a % b) SCREAMING_SNAKE_CASE : Dict = a // b return (y, x - k * y) def lowerCamelCase__ ( _a , _a , _a , _a): ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : str = extended_euclid(_a , _a) SCREAMING_SNAKE_CASE : str = na * na SCREAMING_SNAKE_CASE : int = ra * x * na + ra * y * na return (n % m + m) % m def lowerCamelCase__ ( _a , _a): ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : List[str] = extended_euclid(_a , _a) if b < 0: SCREAMING_SNAKE_CASE : int = (b % n + n) % n return b def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = invert_modulo(_a , _a), invert_modulo(_a , _a) SCREAMING_SNAKE_CASE : Optional[int] = na * na SCREAMING_SNAKE_CASE : Optional[Any] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
193
1
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : Dict = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # use last results for better performance - dynamic programming __a : Any = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __a : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __a : Optional[Any] = j return prefix_result def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): return max(prefix_function(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod()
476
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 3 ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(_SCREAMING_SNAKE_CASE ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __a : Dict = QuantumRegister(_SCREAMING_SNAKE_CASE , 'qr' ) __a : List[str] = ClassicalRegister(_SCREAMING_SNAKE_CASE , 'cr' ) __a : List[Any] = QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Optional[int] = number_of_qubits for i in range(_SCREAMING_SNAKE_CASE ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_SCREAMING_SNAKE_CASE ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # simulate with 10000 shots __a : Union[str, Any] = Aer.get_backend('qasm_simulator' ) __a : Any = execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=10_000 ) return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
476
1
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin SCREAMING_SNAKE_CASE = logging.get_logger(__name__) enable_full_determinism() class __a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : str = UNetaDModel UpperCamelCase_ : Optional[Any] = '''sample''' @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (32, 32) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) UpperCamelCase = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def _SCREAMING_SNAKE_CASE ( self : List[str] )-> int: """simple docstring""" return (3, 32, 32) @property def _SCREAMING_SNAKE_CASE ( self : int )-> List[str]: """simple docstring""" return (3, 32, 32) def _SCREAMING_SNAKE_CASE ( self : int )-> List[Any]: """simple docstring""" UpperCamelCase = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } UpperCamelCase = self.dummy_input return init_dict, inputs_dict class __a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = UNetaDModel UpperCamelCase_ : Any = '''sample''' @property def _SCREAMING_SNAKE_CASE ( self : str )-> int: """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 4 UpperCamelCase = (32, 32) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) UpperCamelCase = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def _SCREAMING_SNAKE_CASE ( self : Dict )-> Dict: """simple docstring""" return (4, 32, 32) @property def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[Any]: """simple docstring""" return (4, 32, 32) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCamelCase = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } UpperCamelCase = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) UpperCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) UpperCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model_accelerate.to(UpperCAmelCase_ ) model_accelerate.eval() UpperCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase = noise.to(UpperCAmelCase_ ) UpperCamelCase = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) UpperCamelCase = model_accelerate(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ , low_cpu_mem_usage=UpperCAmelCase_ ) model_normal_load.to(UpperCAmelCase_ ) model_normal_load.eval() UpperCamelCase = model_normal_load(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> List[str]: """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(UpperCAmelCase_ ) UpperCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase = noise.to(UpperCAmelCase_ ) UpperCamelCase = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) ) class __a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = UNetaDModel UpperCamelCase_ : Tuple = '''sample''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=(32, 32) )-> Dict: """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) UpperCamelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def _SCREAMING_SNAKE_CASE ( self : str )-> str: """simple docstring""" return (3, 32, 32) @property def _SCREAMING_SNAKE_CASE ( self : str )-> str: """simple docstring""" return (3, 32, 32) def _SCREAMING_SNAKE_CASE ( self : Any )-> List[str]: """simple docstring""" UpperCamelCase = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } UpperCamelCase = self.dummy_input return init_dict, inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> str: """simple docstring""" UpperCamelCase , UpperCamelCase = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) UpperCamelCase = self.dummy_input UpperCamelCase = floats_tensor((4, 3) + (256, 256) ).to(UpperCAmelCase_ ) UpperCamelCase = noise UpperCamelCase = model(**UpperCAmelCase_ ) assert image is not None, "Make sure output is not None" @slow def _SCREAMING_SNAKE_CASE ( self : str )-> List[Any]: """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(UpperCAmelCase_ ) UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (256, 256) UpperCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) UpperCamelCase = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample UpperCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(UpperCAmelCase_ ) UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (32, 32) UpperCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) UpperCamelCase = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample UpperCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[Any]: """simple docstring""" pass
717
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : str = FunnelTokenizer UpperCamelCase_ : Any = FunnelTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Optional[int]: """simple docstring""" super().setUp() UpperCamelCase = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **UpperCAmelCase_ : Optional[Any] )-> str: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , **UpperCAmelCase_ : Any )-> Union[str, Any]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Tuple )-> str: """simple docstring""" UpperCamelCase = "UNwant\u00E9d,running" UpperCamelCase = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : str )-> List[str]: """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file ) UpperCamelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: UpperCamelCase = tokenizer("UNwant\u00E9d,running" ) UpperCamelCase = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCamelCase = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
556
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''distilbert''' UpperCAmelCase__ = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self : int , UpperCAmelCase__ : Dict=30_522 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : int=False , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : List[Any]=4 * 768 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : List[str]=0.2 , UpperCAmelCase__ : List[str]=0 , **UpperCAmelCase__ : Optional[Any] , ) ->str: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = sinusoidal_pos_embds A__ = n_layers A__ = n_heads A__ = dim A__ = hidden_dim A__ = dropout A__ = attention_dropout A__ = activation A__ = initializer_range A__ = qa_dropout A__ = seq_classif_dropout super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : int) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
87
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : int = IFInpaintingSuperResolutionPipeline __magic_name__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __magic_name__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""}) __magic_name__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def _UpperCAmelCase ( self : Union[str, Any] ): return self._get_superresolution_dummy_components() def _UpperCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int]=0 ): if str(UpperCamelCase__ ).startswith("mps" ): A__ : Any =torch.manual_seed(UpperCamelCase__ ) else: A__ : Dict =torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ : Tuple =floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ : Optional[int] =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ : Any =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ : List[str] ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _UpperCAmelCase ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _UpperCAmelCase ( self : int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _UpperCAmelCase ( self : Tuple ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCAmelCase ( self : str ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCAmelCase ( self : Dict ): self._test_save_load_local() def _UpperCAmelCase ( self : Optional[int] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
656
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase : Tuple =sys.version_info >= (3, 10) def A__ ( __A=None , __A=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__A ) @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class __snake_case : '''simple docstring''' _snake_case = False _snake_case = True _snake_case = None class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'titi' _snake_case = 'toto' class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'titi' _snake_case = 'toto' _snake_case = 42 @dataclass class __snake_case : '''simple docstring''' _snake_case = 'toto' def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" _lowerCamelCase : Union[str, Any] = BasicEnum(self.foo) @dataclass class __snake_case : '''simple docstring''' _snake_case = 'toto' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = MixedTypeEnum(self.foo) @dataclass class __snake_case : '''simple docstring''' _snake_case = None _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'help message'} ) _snake_case = None _snake_case = list_field(default=[] ) _snake_case = list_field(default=[] ) @dataclass class __snake_case : '''simple docstring''' _snake_case = list_field(default=[] ) _snake_case = list_field(default=[1, 2, 3] ) _snake_case = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _snake_case = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __snake_case : '''simple docstring''' _snake_case = field() _snake_case = field() _snake_case = field() def _SCREAMING_SNAKE_CASE ( self : Dict) ->Any: """simple docstring""" _lowerCamelCase : Dict = BasicEnum(self.required_enum) @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = field() _snake_case = None _snake_case = field(default='toto' , metadata={'help': 'help message'} ) _snake_case = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class __snake_case : '''simple docstring''' _snake_case = False _snake_case = True _snake_case = None @dataclass class __snake_case : '''simple docstring''' _snake_case = None _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'help message'} ) _snake_case = None _snake_case = list_field(default=[] ) _snake_case = list_field(default=[] ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser) ->Tuple: """simple docstring""" self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): _lowerCamelCase : Optional[Any] = {k: v for k, v in vars(_UpperCamelCase).items() if k != """container"""} _lowerCamelCase : Any = {k: v for k, v in vars(_UpperCamelCase).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _UpperCamelCase) and yy.get("""choices""" , _UpperCamelCase): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_UpperCamelCase) , yy["""type"""](_UpperCamelCase)) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : List[Any] = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument("""--bar""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument("""--baz""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument("""--flag""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""") self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (_lowerCamelCase ) : Tuple = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase) self.assertFalse(example.flag) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Any = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=_UpperCamelCase) expected.add_argument("""--baz""" , default="""toto""" , type=_UpperCamelCase , help="""help message""") self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: """simple docstring""" _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""") expected.add_argument("""--baz""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""") # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_UpperCamelCase , dest="""baz""") expected.add_argument("""--opt""" , type=_UpperCamelCase , default=_UpperCamelCase) _lowerCamelCase : List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase) for dataclass_type in dataclass_types: _lowerCamelCase : Optional[Any] = HfArgumentParser(_UpperCamelCase) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = parser.parse_args([]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) _lowerCamelCase : Any = parser.parse_args(["""--foo""", """--no_baz"""]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) _lowerCamelCase : Union[str, Any] = parser.parse_args(["""--foo""", """--baz"""]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) _lowerCamelCase : int = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) _lowerCamelCase : Optional[Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" _lowerCamelCase : int = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Dict = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42]) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Dict = parser.parse_args([]) self.assertEqual(args.foo , """toto""") _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) _lowerCamelCase : Tuple = parser.parse_args(["""--foo""", """titi"""]) self.assertEqual(args.foo , """titi""") _lowerCamelCase : int = parser.parse_args_into_dataclasses(["""--foo""", """titi"""])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) _lowerCamelCase : List[str] = parser.parse_args(["""--foo""", """42"""]) self.assertEqual(args.foo , 42) _lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: """simple docstring""" @dataclass class __snake_case : '''simple docstring''' _snake_case = 'toto' _lowerCamelCase : List[Any] = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42]) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Tuple = parser.parse_args([]) self.assertEqual(args.foo , """toto""") _lowerCamelCase : Any = parser.parse_args(["""--foo""", """titi"""]) self.assertEqual(args.foo , """titi""") _lowerCamelCase : str = parser.parse_args(["""--foo""", """42"""]) self.assertEqual(args.foo , 42) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_UpperCamelCase) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_UpperCamelCase) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_UpperCamelCase) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = parser.parse_args([]) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3]) , ) _lowerCamelCase : Any = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split()) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7])) def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_UpperCamelCase , type=_UpperCamelCase) expected.add_argument("""--bar""" , default=_UpperCamelCase , type=_UpperCamelCase , help="""help message""") expected.add_argument("""--baz""" , default=_UpperCamelCase , type=_UpperCamelCase) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_UpperCamelCase) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_UpperCamelCase) _lowerCamelCase : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase) for dataclass_type in dataclass_types: _lowerCamelCase : Tuple = HfArgumentParser(_UpperCamelCase) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = parser.parse_args([]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[])) _lowerCamelCase : List[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split()) self.assertEqual(_UpperCamelCase , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3])) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" _lowerCamelCase : str = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument("""--required_str""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""]) , choices=["""titi""", """toto"""] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" _lowerCamelCase : str = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""]) , choices=["""titi""", """toto"""] , required=_UpperCamelCase , ) expected.add_argument("""--opt""" , type=_UpperCamelCase , default=_UpperCamelCase) expected.add_argument("""--baz""" , default="""toto""" , type=_UpperCamelCase , help="""help message""") expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_UpperCamelCase) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : List[Any] = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } _lowerCamelCase : int = parser.parse_dict(_UpperCamelCase)[0] _lowerCamelCase : List[Any] = BasicExample(**_UpperCamelCase) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Tuple = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" _lowerCamelCase : str = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : List[str] = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Union[str, Any] = os.path.join(_UpperCamelCase , """temp_json""") os.mkdir(_UpperCamelCase) with open(temp_local_path + """.json""" , """w+""") as f: json.dump(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.json"""))[0] _lowerCamelCase : Dict = BasicExample(**_UpperCamelCase) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" _lowerCamelCase : Tuple = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : int = os.path.join(_UpperCamelCase , """temp_yaml""") os.mkdir(_UpperCamelCase) with open(temp_local_path + """.yaml""" , """w+""") as f: yaml.dump(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + """.yaml"""))[0] _lowerCamelCase : Any = BasicExample(**_UpperCamelCase) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : Optional[int] = HfArgumentParser(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase)
710
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( __snake_case ): def __init__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=99 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[Any]="None" , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Optional[Any]=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : Union[str, Any] = seq_length lowerCAmelCase : List[Any] = is_training lowerCAmelCase : Any = use_input_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : List[Any] = type_vocab_size lowerCAmelCase : int = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Dict = num_labels lowerCAmelCase : Tuple = num_choices lowerCAmelCase : Optional[int] = relative_attention lowerCAmelCase : int = position_biased_input lowerCAmelCase : int = pos_att_type lowerCAmelCase : str = scope def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = None if self.use_input_mask: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[Any] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): lowerCAmelCase : Optional[Any] = DebertaVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase : Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )[0] lowerCAmelCase : int = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )[0] lowerCAmelCase : Tuple = model(_lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ): lowerCAmelCase : Optional[Any] = DebertaVaForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : Optional[int] = DebertaVaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_lowerCAmelCase ) def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Any = self.num_labels lowerCAmelCase : List[str] = DebertaVaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase : int = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Union[str, Any] = DebertaVaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase : Optional[int] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): lowerCAmelCase : Tuple = DebertaVaForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( lowerCAmelCase ) : int = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __A ( __snake_case , __snake_case , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCAmelCase_ : Optional[int] = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[Any] = False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Any = DebertaVaModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowercase__ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowerCAmelCase ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowerCAmelCase ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowerCAmelCase ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowerCAmelCase ) def lowercase__ ( self : Any ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowerCAmelCase ) def lowercase__ ( self : int ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_lowerCAmelCase ) @slow def lowercase__ ( self : int ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Any = DebertaVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def lowercase__ ( self : str ): pass @slow def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) lowerCAmelCase : Optional[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCAmelCase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase : Optional[int] = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) , f"{output[:, 1:4, 1:4]}" )
343
import sys UpperCamelCase = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : List[Any] = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE ) return product def __magic_name__ ( SCREAMING_SNAKE_CASE = N ) -> int: _lowercase : Dict = -sys.maxsize - 1 _lowercase : Tuple = n[:13] _lowercase : List[Any] = 13 while cur_index < len(SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _lowercase : List[str] = substr[1:] + n[cur_index] cur_index += 1 else: _lowercase : str = max(SCREAMING_SNAKE_CASE , str_eval(SCREAMING_SNAKE_CASE ) ) _lowercase : Dict = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
66
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a : str = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __a : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __a : int = logging.get_logger(__name__) __a : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __a : Any = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } __a : Optional[int] = {'''mobilebert-uncased''': 5_1_2} __a : Dict = {} class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Optional[int] = VOCAB_FILES_NAMES a : Any = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_INIT_CONFIGURATION a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Any = MobileBertTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> Dict: """simple docstring""" super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) lowercase__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ : List[str] = getattr(lowerCamelCase , normalizer_state.pop("type" ) ) lowercase__ : Dict = do_lower_case lowercase__ : Dict = strip_accents lowercase__ : List[Any] = tokenize_chinese_chars lowercase__ : Any = normalizer_class(**lowerCamelCase ) lowercase__ : Union[str, Any] = do_lower_case def __a ( self , lowerCamelCase , lowerCamelCase=None ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" lowercase__ : List[Any] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
298
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase_ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" _A = tmp_path / 'cache' _A = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def lowerCamelCase_ ( __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Any ) -> Optional[int]: """simple docstring""" _A = tmp_path / 'cache' _A = {'text': 'string'} _A = features.copy() if features else default_expected_features _A = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _A = TextDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase_ ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ) -> str: """simple docstring""" _A = tmp_path / 'cache' _A = {'text': 'string'} _A = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase_ ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int ) -> List[str]: """simple docstring""" if issubclass(__UpperCamelCase , __UpperCamelCase ): _A = text_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): _A = [text_path] _A = tmp_path / 'cache' _A = {'text': 'string'} _A = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : int=("train",) ) -> int: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: _A = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase_ ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" _A = tmp_path / 'cache' _A = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A = TextDatasetReader({'train': text_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def lowerCamelCase_ ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple ) -> Any: """simple docstring""" _A = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _A = {'text': 'string'} _A = features.copy() if features else default_expected_features _A = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _A = TextDatasetReader({'train': text_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase_ ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ) -> str: """simple docstring""" if split: _A = {split: text_path} else: _A = 'train' _A = {'train': text_path, 'test': text_path} _A = tmp_path / 'cache' _A = {'text': 'string'} _A = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
292
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( __UpperCamelCase : list , __UpperCamelCase : int | None = None , __UpperCamelCase : int | None = None ) -> None: """simple docstring""" if start is None: _A = 0 if end is None: _A = len(__UpperCamelCase ) - 1 if start >= end: return _A = (start + end) // 2 slowsort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) slowsort(__UpperCamelCase , mid + 1 , __UpperCamelCase ) if sequence[end] < sequence[mid]: _A , _A = sequence[mid], sequence[end] slowsort(__UpperCamelCase , __UpperCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
292
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowercase__ =datasets.load_iris() lowercase__ =np.array(data['data']) lowercase__ =np.array(data['target']) lowercase__ =data['target_names'] lowercase__ , lowercase__ , lowercase__ , lowercase__ =train_test_split(X, y) def UpperCamelCase_ ( A__ , A__ ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def UpperCamelCase_ ( A__ , A__ , A__ , A__ , A__=5 ): a_ = zip(A__ , A__ ) # List of distances of all points from the point to be classified a_ = [] for data_point in data: a_ = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. a_ = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified a_ = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
719
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def UpperCamelCase_ ( A__ ): # getting number of pixels in the image a_ , a_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A__ ): for j in range(A__ ): a_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image lowercase__ =imread('image_data/lena.jpg', 1) # convert to its negative lowercase__ =convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
511
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = args.pruning_method lowerCAmelCase = args.threshold lowerCAmelCase = args.model_name_or_path.rstrip('/' ) lowerCAmelCase = args.target_model_path print(F'Load fine-pruned model from {model_name_or_path}' ) lowerCAmelCase = torch.load(os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) ) lowerCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) elif "bias" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) else: if pruning_method == "magnitude": lowerCAmelCase = MagnitudeBinarizer.apply(inputs=_UpperCAmelCase , threshold=_UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase = TopKBinarizer.apply(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase = ThresholdBinarizer.apply(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase ,lowerCAmelCase = -0.1, 1.1 lowerCAmelCase = torch.sigmoid(_UpperCAmelCase ) lowerCAmelCase = s * (r - l) + l lowerCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowerCAmelCase = os.path.join( os.path.dirname(_UpperCAmelCase ) , F'bertarized_{os.path.basename(_UpperCAmelCase )}' ) if not os.path.isdir(_UpperCAmelCase ): shutil.copytree(_UpperCAmelCase , _UpperCAmelCase ) print(F'\nCreated folder {target_model_path}' ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) __UpperCamelCase : List[Any] = parser.parse_args() main(args)
4
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _snake_case ( lowerCamelCase ,lowerCamelCase ): """simple docstring""" lowerCamelCase_ = '''pixel_values''' lowerCamelCase_ = False lowerCamelCase_ = TimmBackboneConfig def __init__( self , a , **a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , '''timm''' ) super().__init__(a ) _A = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(a , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) _A = getattr(a , '''use_pretrained_backbone''' , a ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. _A = config.out_indices if getattr(a , '''out_indices''' , a ) is not None else (-1,) _A = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _A = self._backbone.return_layers _A = {layer['''module''']: str(a ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(a ) @classmethod def lowercase_ ( cls , a , *a , **a ) -> int: """simple docstring""" requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig _A = kwargs.pop('''config''' , TimmBackboneConfig() ) _A = kwargs.pop('''use_timm_backbone''' , a ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) _A = kwargs.pop('''num_channels''' , config.num_channels ) _A = kwargs.pop('''features_only''' , config.features_only ) _A = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) _A = kwargs.pop('''out_indices''' , config.out_indices ) _A = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a ) def lowercase_ ( self , a ) -> Optional[Any]: """simple docstring""" pass def lowercase_ ( self , a , a=None , a=None , a=None , **a ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: """simple docstring""" _A = return_dict if return_dict is not None else self.config.use_return_dict _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _A = self._all_layers _A = self._backbone(a , **a ) _A = self._return_layers _A = tuple(hidden_states[i] for i in self.out_indices ) else: _A = self._backbone(a , **a ) _A = None _A = tuple(a ) _A = tuple(a ) if hidden_states is not None else None if not return_dict: _A = (feature_maps,) if output_hidden_states: _A = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a )
317
0
'''simple docstring''' from __future__ import annotations import time import numpy as np A_ : Dict =[8, 5, 9, 7] A_ : List[Any] =[ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A_ : str =[ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCAmelCase_ = claim_vector lowerCAmelCase_ = allocated_resources_table lowerCAmelCase_ = maximum_claim_table def UpperCAmelCase_ ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ ( self ): return {self.__need().index(_lowerCamelCase ): i for i in self.__need()} def UpperCAmelCase_ ( self , **_lowerCamelCase ): lowerCAmelCase_ = self.__need() lowerCAmelCase_ = self.__allocated_resources_table lowerCAmelCase_ = self.__available_resources() lowerCAmelCase_ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: lowerCAmelCase_ = False for each_need in need_list: lowerCAmelCase_ = True for index, need in enumerate(_lowerCamelCase ): if need > available_resources[index]: lowerCAmelCase_ = False break if execution: lowerCAmelCase_ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCAmelCase_ = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_lowerCamelCase ) # update available/freed resources stack lowerCAmelCase_ = np.array(_lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(_lowerCamelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def UpperCAmelCase_ ( self ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(_lowerCamelCase ) + 1}''' + ''' '''.join(F'''{it:>8}''' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(_lowerCamelCase ) + 1}''' + ''' '''.join(F'''{it:>8}''' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(_lowerCamelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(_lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
606
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging A_ : List[str] =logging.get_logger(__name__) def snake_case_ ( __snake_case : int) -> int: lowerCAmelCase_ = R'''\w+[.]\d+''' lowerCAmelCase_ = re.findall(__snake_case , __snake_case) for pat in pats: lowerCAmelCase_ = key.replace(__snake_case , '''_'''.join(pat.split('''.'''))) return key def snake_case_ ( __snake_case : str , __snake_case : List[str] , __snake_case : List[Any]) -> List[str]: lowerCAmelCase_ = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def snake_case_ ( __snake_case : List[str] , __snake_case : Any , __snake_case : int=42) -> Optional[int]: # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__snake_case)) lowerCAmelCase_ = flatten_dict(__snake_case) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__snake_case) lowerCAmelCase_ = tuple(renamed_pt_key.split('''.''')) # Correctly rename weight parameters lowerCAmelCase_ ,lowerCAmelCase_ = rename_key_and_reshape_tensor(__snake_case , __snake_case , __snake_case) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''') # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__snake_case) return unflatten_dict(__snake_case)
606
1
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _a = """bert-base-cased""" _a = """google/pegasus-xsum""" _a = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] _a = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] _a = """patrickvonplaten/t5-tiny-random""" _a = """sshleifer/bart-tiny-random""" _a = """sshleifer/tiny-mbart""" _a = """sshleifer/tiny-marian-en-de""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = '''\n'''.join(__snake_case ) Path(__snake_case ).open('''w''' ).writelines(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case, F'''{split}.source''' ), __snake_case ) _dump_articles(os.path.join(__snake_case, F'''{split}.target''' ), __snake_case ) return tmp_dir class _UpperCAmelCase( lowerCamelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase ( self , __a) -> Dict: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a) _UpperCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) _UpperCamelCase = max(len(tokenizer.encode(__a)) for a in ARTICLES) _UpperCamelCase = max(len(tokenizer.encode(__a)) for a in SUMMARIES) _UpperCamelCase = 4 _UpperCamelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _UpperCamelCase , _UpperCamelCase = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. _UpperCamelCase = SeqaSeqDataset( __a , data_dir=__a , type_path='''train''' , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) _UpperCamelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(__a , __a) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _UpperCamelCase = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a) _UpperCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) _UpperCamelCase = max(len(tokenizer.encode(__a)) for a in ARTICLES) _UpperCamelCase = max(len(tokenizer.encode(__a)) for a in SUMMARIES) _UpperCamelCase = 4 _UpperCamelCase = LegacySeqaSeqDataset( __a , data_dir=__a , type_path='''train''' , max_source_length=20 , max_target_length=__a , ) _UpperCamelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''') _UpperCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) _UpperCamelCase = tmp_dir.joinpath('''train.source''').open().readlines() _UpperCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(__a , __a , 1_28 , __a) _UpperCamelCase = {x.name for x in tmp_dir.iterdir()} _UpperCamelCase = {x.name for x in save_dir.iterdir()} _UpperCamelCase = save_dir.joinpath('''train.source''').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a) < len(__a) assert len(__a) == 1 assert len(packed_examples[0]) == sum(len(__a) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''') def UpperCAmelCase ( self) -> str: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_dataset(max_len=64) _UpperCamelCase = 64 _UpperCamelCase = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a) _UpperCamelCase = [len(__a) for x in batch_sampler] assert len(set(__a)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a) == len(__a) # no dropped or added examples _UpperCamelCase = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2) _UpperCamelCase = [] _UpperCamelCase = [] for batch in data_loader: _UpperCamelCase = batch['''input_ids'''].shape _UpperCamelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _UpperCamelCase = np.product(batch['''input_ids'''].shape) num_src_per_batch.append(__a) if num_src_tokens > (max_tokens * 1.1): failures.append(__a) assert num_src_per_batch[0] == max(__a) if failures: raise AssertionError(F'''too many tokens in {len(__a)} batches''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_dataset(max_len=5_12) _UpperCamelCase = 2 _UpperCamelCase = ds.make_sortish_sampler(__a , shuffle=__a) _UpperCamelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2) _UpperCamelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a) _UpperCamelCase = tokenizer.pad_token_id def count_pad_tokens(__a , __a="input_ids"): return [batch[k].eq(__a).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k='''labels''')) < sum(count_pad_tokens(__a , k='''labels''')) assert sum(count_pad_tokens(__a)) < sum(count_pad_tokens(__a)) assert len(__a) == len(__a) def UpperCAmelCase ( self , __a=10_00 , __a=1_28) -> int: '''simple docstring''' if os.getenv('''USE_REAL_DATA''' , __a): _UpperCamelCase = '''examples/seq2seq/wmt_en_ro''' _UpperCamelCase = max_len * 2 * 64 if not Path(__a).joinpath('''train.len''').exists(): save_len_file(__a , __a) else: _UpperCamelCase = '''examples/seq2seq/test_data/wmt_en_ro''' _UpperCamelCase = max_len * 4 save_len_file(__a , __a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a) _UpperCamelCase = SeqaSeqDataset( __a , data_dir=__a , type_path='''train''' , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_dataset() _UpperCamelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__a)) _UpperCamelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__a)) assert idsa.intersection(__a) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase ( self , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a) if tok_name == MBART_TINY: _UpperCamelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) _UpperCamelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _UpperCamelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) _UpperCamelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a) == 1 if tok_name == BART_TINY else len(__a) == 0
19
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = jnp.ones((batch_size, length) ) / length return scores def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(batch_size=2 ,length=snake_case__ ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ : Any = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ : int = jax.nn.softmax(snake_case__ ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ : Any = jax.nn.softmax(temp_dist_warper_sharper(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : int = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ : int = 5 SCREAMING_SNAKE_CASE_ : Any = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp_safety_check(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : str = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ : Any = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.exp(top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ : List[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ : Any = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((batch_size, 20) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 5 SCREAMING_SNAKE_CASE_ : List[str] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = 15 SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = 20 SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, 1) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 20 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : Tuple = 5 SCREAMING_SNAKE_CASE_ : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, 4) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ : List[Any] = 3 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 4 SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : int = 15 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, sequence_length) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : int = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = 10 # no processor list SCREAMING_SNAKE_CASE_ : Optional[int] = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # with processor list SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ : Any = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : Dict = 15 SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, sequence_length) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = 10 # no processor list def run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) return scores # with processor list def run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ : List[str] = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) return scores SCREAMING_SNAKE_CASE_ : Tuple = jax.jit(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = jax.jit(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = jitted_run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = jitted_run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
105
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
0
"""simple docstring""" from timeit import timeit lowerCAmelCase = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCAmelCase_ ( snake_case_ : str ) ->bool: lowerCamelCase__ : str =0 lowerCamelCase__ : int =len(snake_case_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCAmelCase_ ( snake_case_ : str ) ->bool: lowerCamelCase__ : List[str] =len(snake_case_ ) // 2 lowerCamelCase__ : int =len(snake_case_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_ : str ) ->bool: if len(snake_case_ ) <= 2: return True if s[0] == s[len(snake_case_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCAmelCase_ ( snake_case_ : str ) ->bool: return s == s[::-1] def lowerCAmelCase_ ( snake_case_ : str ) ->None: lowerCamelCase__ : Optional[int] =f"""all({name}(key) is value for key, value in test_data.items())""" lowerCamelCase__ : int =f"""from __main__ import test_data, {name}""" lowerCamelCase__ : Optional[Any] =5_0_0_0_0_0 lowerCamelCase__ : int =timeit(stmt=snake_case_ , setup=snake_case_ , number=snake_case_ ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
174
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :Union[str, Any]=3 , lowerCamelCase_ :Tuple=18 , lowerCamelCase_ :Optional[int]=30 , lowerCamelCase_ :Optional[int]=400 , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Any=None , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :List[str]=[0.5, 0.5, 0.5] , lowerCamelCase_ :str=[0.5, 0.5, 0.5] , lowerCamelCase_ :List[str]=False , ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =size if size is not None else {'height': 20, 'width': 20} lowerCamelCase__ : List[str] =crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase__ : List[str] =parent lowerCamelCase__ : Any =batch_size lowerCamelCase__ : str =num_channels lowerCamelCase__ : Optional[Any] =image_size lowerCamelCase__ : Optional[Any] =min_resolution lowerCamelCase__ : Any =max_resolution lowerCamelCase__ : Any =do_resize lowerCamelCase__ : List[str] =size lowerCamelCase__ : Union[str, Any] =do_center_crop lowerCamelCase__ : str =crop_size lowerCamelCase__ : Tuple =do_normalize lowerCamelCase__ : Tuple =image_mean lowerCamelCase__ : Dict =image_std lowerCamelCase__ : Tuple =do_reduce_labels def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCAmelCase_ ( ) ->int: lowerCamelCase__ : List[str] =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCamelCase__ : Dict =Image.open(dataset[0]['file'] ) lowerCamelCase__ : List[str] =Image.open(dataset[1]['file'] ) return image, map def lowerCAmelCase_ ( ) ->Optional[Any]: lowerCamelCase__ : List[Any] =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCamelCase__ : Dict =Image.open(ds[0]['file'] ) lowerCamelCase__ : int =Image.open(ds[1]['file'] ) lowerCamelCase__ : Dict =Image.open(ds[2]['file'] ) lowerCamelCase__ : Union[str, Any] =Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class A_ ( A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ : str =BeitImageProcessingTester(self ) @property def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_std' ) ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : List[str] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) lowerCamelCase__ : List[Any] =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" pass def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input lowerCamelCase__ : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : List[str] =image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input lowerCamelCase__ : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : List[str] =image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : int =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input lowerCamelCase__ : Union[str, Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Optional[Any] =image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) lowerCamelCase__ : int =[] for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowerCamelCase__ : Dict =image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched lowerCamelCase__ : Tuple =image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) lowerCamelCase__ , lowerCamelCase__ : int =prepare_semantic_single_inputs() lowerCamelCase__ : Union[str, Any] =image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) lowerCamelCase__ , lowerCamelCase__ : int =prepare_semantic_batch_inputs() lowerCamelCase__ : List[Any] =image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : str =self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowerCamelCase__ , lowerCamelCase__ : Any =prepare_semantic_single_inputs() lowerCamelCase__ : Tuple =image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Any =image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
174
1
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = WavaVecaForSequenceClassification.from_pretrained(lowerCamelCase, config=lowerCamelCase) __lowerCAmelCase = downstream_dict['''projector.weight'''] __lowerCAmelCase = downstream_dict['''projector.bias'''] __lowerCAmelCase = downstream_dict['''model.post_net.linear.weight'''] __lowerCAmelCase = downstream_dict['''model.post_net.linear.bias'''] return model def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(lowerCamelCase, config=lowerCamelCase) __lowerCAmelCase = downstream_dict['''model.linear.weight'''] __lowerCAmelCase = downstream_dict['''model.linear.bias'''] return model def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = WavaVecaForXVector.from_pretrained(lowerCamelCase, config=lowerCamelCase) __lowerCAmelCase = downstream_dict['''connector.weight'''] __lowerCAmelCase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel): __lowerCAmelCase = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __lowerCAmelCase = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __lowerCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowerCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowerCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowerCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowerCAmelCase = downstream_dict['''objective.W'''] return model @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''') __lowerCAmelCase = checkpoint['''Downstream'''] __lowerCAmelCase = WavaVecaConfig.from_pretrained(lowerCamelCase) __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase, return_attention_mask=lowerCamelCase, do_normalize=lowerCamelCase) __lowerCAmelCase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification'''): __lowerCAmelCase = convert_classification(lowerCamelCase, lowerCamelCase, lowerCamelCase) elif arch.endswith('''ForAudioFrameClassification'''): __lowerCAmelCase = convert_diarization(lowerCamelCase, lowerCamelCase, lowerCamelCase) elif arch.endswith('''ForXVector'''): __lowerCAmelCase = convert_xvector(lowerCamelCase, lowerCamelCase, lowerCamelCase) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""") if hf_config.use_weighted_layer_sum: __lowerCAmelCase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase) hf_model.save_pretrained(lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _UpperCAmelCase : Any = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
713
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase : str = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
0
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = FlaxAutoencoderKL @property def _lowercase (self : List[str] ): UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0 ) UpperCAmelCase_ = jax.random.uniform(UpperCAmelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
78
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : Optional[Any] = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
343
0
import colorsys from PIL import Image # type: ignore def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : int ): __magic_name__ = x __magic_name__ = y for step in range(snake_case_ ): # noqa: B007 __magic_name__ = a * a - b * b + x __magic_name__ = 2 * a * b + y __magic_name__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _SCREAMING_SNAKE_CASE ( snake_case_ : float ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _SCREAMING_SNAKE_CASE ( snake_case_ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case_ , 1 , 1 ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 800 , snake_case_ : int = 600 , snake_case_ : float = -0.6 , snake_case_ : float = 0 , snake_case_ : float = 3.2 , snake_case_ : int = 50 , snake_case_ : bool = True , ): __magic_name__ = Image.new('''RGB''' , (image_width, image_height) ) __magic_name__ = img.load() # loop through the image-coordinates for image_x in range(snake_case_ ): for image_y in range(snake_case_ ): # determine the figure-coordinates based on the image-coordinates __magic_name__ = figure_width / image_width * image_height __magic_name__ = figure_center_x + (image_x / image_width - 0.5) * figure_width __magic_name__ = figure_center_y + (image_y / image_height - 0.5) * figure_height __magic_name__ = get_distance(snake_case_ , snake_case_ , snake_case_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __magic_name__ = get_color_coded_rgb(snake_case_ ) else: __magic_name__ = get_black_and_white_rgb(snake_case_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a_ : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
701
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
678
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ (__A ): __magic_name__ = '''''' __magic_name__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __magic_name__ = None # compression type in fsspec. ex: "gzip" __magic_name__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , lowerCAmelCase_ : str = "" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , **lowerCAmelCase_ : List[str] ) -> List[Any]: super().__init__(self , **lowerCAmelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase_ : Dict = fsspec.open( lowerCAmelCase_ , mode="rb" , protocol=lowerCAmelCase_ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase_ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) UpperCAmelCase_ : Any = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCAmelCase_ : Any = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCAmelCase_ ).lstrip("/" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: if self.dir_cache is None: UpperCAmelCase_ : Optional[Any] = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCAmelCase_ : str = {f["name"]: f} def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str ) -> Any: return self.file.open().read() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple , ) -> Tuple: UpperCAmelCase_ : List[str] = self._strip_protocol(lowerCAmelCase_ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class UpperCamelCase_ (__A ): __magic_name__ = '''bz2''' __magic_name__ = '''bz2''' __magic_name__ = '''.bz2''' class UpperCamelCase_ (__A ): __magic_name__ = '''gzip''' __magic_name__ = '''gzip''' __magic_name__ = '''.gz''' class UpperCamelCase_ (__A ): __magic_name__ = '''lz4''' __magic_name__ = '''lz4''' __magic_name__ = '''.lz4''' class UpperCamelCase_ (__A ): __magic_name__ = '''xz''' __magic_name__ = '''xz''' __magic_name__ = '''.xz''' class UpperCamelCase_ (__A ): __magic_name__ = '''zstd''' __magic_name__ = '''zstd''' __magic_name__ = '''.zst''' def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , lowerCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( fo=lowerCAmelCase_ , mode=lowerCAmelCase_ , target_protocol=lowerCAmelCase_ , target_options=lowerCAmelCase_ , block_size=lowerCAmelCase_ , **lowerCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase_ : Optional[Any] = self.file.__enter__ class UpperCamelCase_ : def __init__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = file_ def __enter__( self : Tuple ) -> List[Any]: self._file.__enter__() return self def __exit__( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : int ) -> Optional[int]: self._file.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __iter__( self : Optional[int] ) -> int: return iter(self._file ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return next(self._file ) def __getattr__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: return getattr(self._file , lowerCAmelCase_ ) def fixed_enter(*lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any] ): return WrappedFile(_enter(*lowerCAmelCase_ , **lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = fixed_enter
95
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = """glpn""" def __init__( self : str , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : Optional[int]=4 , _UpperCamelCase : Union[str, Any]=[2, 2, 2, 2] , _UpperCamelCase : Tuple=[8, 4, 2, 1] , _UpperCamelCase : Any=[32, 64, 160, 256] , _UpperCamelCase : Optional[Any]=[7, 3, 3, 3] , _UpperCamelCase : int=[4, 2, 2, 2] , _UpperCamelCase : str=[1, 2, 5, 8] , _UpperCamelCase : List[Any]=[4, 4, 4, 4] , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=1e-6 , _UpperCamelCase : Optional[Any]=64 , _UpperCamelCase : int=10 , _UpperCamelCase : Union[str, Any]=-1 , **_UpperCamelCase : List[str] , ): super().__init__(**_UpperCamelCase) _lowercase: str = num_channels _lowercase: Optional[int] = num_encoder_blocks _lowercase: List[str] = depths _lowercase: Dict = sr_ratios _lowercase: Any = hidden_sizes _lowercase: int = patch_sizes _lowercase: Tuple = strides _lowercase: List[str] = mlp_ratios _lowercase: Optional[int] = num_attention_heads _lowercase: Any = hidden_act _lowercase: Dict = hidden_dropout_prob _lowercase: Any = attention_probs_dropout_prob _lowercase: Tuple = initializer_range _lowercase: List[Any] = drop_path_rate _lowercase: str = layer_norm_eps _lowercase: str = decoder_hidden_size _lowercase: Optional[int] = max_depth _lowercase: List[Any] = head_in_index
226
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Union[str, Any] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return x if y == 0 else greatest_common_divisor(lowerCamelCase_ , x % y ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return (x * y) // greatest_common_divisor(lowerCamelCase_ , lowerCamelCase_ ) def snake_case__ ( lowerCamelCase_ = 20 ): A : Optional[Any] = 1 for i in range(1 , n + 1 ): A : Dict = lcm(lowerCamelCase_ , lowerCamelCase_ ) return g if __name__ == "__main__": print(F"{solution() = }")
423
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = GPTaTokenizer UpperCamelCase = GPTaTokenizerFast UpperCamelCase = True UpperCamelCase = {'''add_prefix_space''': True} UpperCamelCase = False def a__ ( self : int ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def a__ ( self : Union[str, Any] , **A_ : Tuple ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : int , **A_ : List[Any] ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : Union[str, Any] , A_ : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'lower newer' lowerCamelCase_ = 'lower newer' return input_text, output_text def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = 'lower newer' lowerCamelCase_ = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase_ = tokenizer.tokenize(A_ , add_prefix_space=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer(add_prefix_space=A_ ) lowerCamelCase_ = 'lower newer' # Testing tokenization lowerCamelCase_ = tokenizer.tokenize(A_ , add_prefix_space=A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = self.get_rust_tokenizer(add_prefix_space=A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_prefix_space=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # Testing the unknown token lowerCamelCase_ = tokens + [rust_tokenizer.unk_token] lowerCamelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def a__ ( self : int , *A_ : List[Any] , **A_ : List[Any] ) -> List[Any]: """simple docstring""" pass def a__ ( self : Dict , A_ : Tuple=15 ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) # Simple input lowerCamelCase_ = 'This is a simple input' lowerCamelCase_ = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase_ = ('This is a simple input', 'This is a pair') lowerCamelCase_ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='max_length' ) # Simple input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='max_length' ) # Simple input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='max_length' , ) # Pair input self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='max_length' ) # Pair input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='max_length' ) # Pair input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='max_length' , ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input lowerCamelCase_ = 'This is a simple input' lowerCamelCase_ = ['This is a simple input looooooooong', 'This is a simple input'] lowerCamelCase_ = ('This is a simple input', 'This is a pair') lowerCamelCase_ = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowerCamelCase_ = tokenizer.pad_token_id lowerCamelCase_ = tokenizer(A_ , padding='max_length' , max_length=30 , return_tensors='np' ) lowerCamelCase_ = tokenizer(A_ , padding=A_ , truncate=A_ , return_tensors='np' ) lowerCamelCase_ = tokenizer(*A_ , padding='max_length' , max_length=60 , return_tensors='np' ) lowerCamelCase_ = tokenizer(A_ , padding=A_ , truncate=A_ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = '$$$' lowerCamelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=A_ , add_bos_token=A_ ) lowerCamelCase_ = 'This is a simple input' lowerCamelCase_ = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase_ = tokenizer.bos_token_id lowerCamelCase_ = tokenizer(A_ ) lowerCamelCase_ = tokenizer(A_ ) self.assertEqual(out_s.input_ids[0] , A_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCamelCase_ = tokenizer.decode(out_s.input_ids ) lowerCamelCase_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , A_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [self.get_tokenizer(do_lower_case=A_ , add_bos_token=A_ )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ = 'Encode this.' lowerCamelCase_ = 'This one too please.' lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) encoded_sequence += tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode_plus( A_ , A_ , add_special_tokens=A_ , return_special_tokens_mask=A_ , ) lowerCamelCase_ = encoded_sequence_dict['input_ids'] lowerCamelCase_ = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(A_ ) , len(A_ ) ) lowerCamelCase_ = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(A_ ) ] lowerCamelCase_ = [x for x in filtered_sequence if x is not None] self.assertEqual(A_ , A_ ) @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=A_ ) lowerCamelCase_ = 'A photo of a cat' lowerCamelCase_ = tokenizer.encode( A_ , ) self.assertEqual(A_ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('./test_opt' ) lowerCamelCase_ = tokenizer.encode( A_ , ) self.assertEqual(A_ , [2, 250, 1345, 9, 10, 4758] ) def a__ ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=A_ ) lowerCamelCase_ = 'A photo of a cat' lowerCamelCase_ = tokenizer.encode( A_ , ) # Same as above self.assertEqual(A_ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=A_ ) lowerCamelCase_ = 'bos' lowerCamelCase_ = tokenizer.get_vocab()['bos'] lowerCamelCase_ = 'A photo of a cat' lowerCamelCase_ = tokenizer.encode( A_ , ) # We changed the bos token self.assertEqual(A_ , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) lowerCamelCase_ = tokenizer.encode( A_ , ) self.assertEqual(A_ , [31957, 250, 1345, 9, 10, 4758] )
70
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def _lowercase ( a__ : Optional[Any] , a__ : Any=BITS ) -> Dict: """simple docstring""" _UpperCamelCase = x.device _UpperCamelCase = (x * 2_55).int().clamp(0 , 2_55 ) _UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a__ ) _UpperCamelCase = rearrange(a__ , "d -> d 1 1" ) _UpperCamelCase = rearrange(a__ , "b c h w -> b c 1 h w" ) _UpperCamelCase = ((x & mask) != 0).float() _UpperCamelCase = rearrange(a__ , "b c d h w -> b (c d) h w" ) _UpperCamelCase = bits * 2 - 1 return bits def _lowercase ( a__ : Optional[Any] , a__ : str=BITS ) -> Tuple: """simple docstring""" _UpperCamelCase = x.device _UpperCamelCase = (x > 0).int() _UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a__ , dtype=torch.intaa ) _UpperCamelCase = rearrange(a__ , "d -> d 1 1" ) _UpperCamelCase = rearrange(a__ , "b (c d) h w -> b c d h w" , d=8 ) _UpperCamelCase = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 2_55).clamp(0.0 , 1.0 ) def _lowercase ( self : Optional[Any] , a__ : torch.FloatTensor , a__ : int , a__ : torch.FloatTensor , a__ : float = 0.0 , a__ : bool = True , a__ : Any=None , a__ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _UpperCamelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _UpperCamelCase = self.alphas_cumprod[timestep] _UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _UpperCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _UpperCamelCase = self.bit_scale if self.config.clip_sample: _UpperCamelCase = torch.clamp(a__ , -scale , a__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _UpperCamelCase = self._get_variance(a__ , a__ ) _UpperCamelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _UpperCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _UpperCamelCase = model_output.device if torch.is_tensor(a__ ) else "cpu" _UpperCamelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=a__ ).to(a__ ) _UpperCamelCase = self._get_variance(a__ , a__ ) ** 0.5 * eta * noise _UpperCamelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=a__ , pred_original_sample=a__ ) def _lowercase ( self : str , a__ : torch.FloatTensor , a__ : int , a__ : torch.FloatTensor , a__ : int="epsilon" , a__ : int=None , a__ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" _UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _UpperCamelCase , _UpperCamelCase = torch.split(a__ , sample.shape[1] , dim=1 ) else: _UpperCamelCase = None # 1. compute alphas, betas _UpperCamelCase = self.alphas_cumprod[t] _UpperCamelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _UpperCamelCase = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" _UpperCamelCase = self.bit_scale if self.config.clip_sample: _UpperCamelCase = torch.clamp(a__ , -scale , a__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _UpperCamelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCamelCase = 0 if t > 0: _UpperCamelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=a__ ).to(model_output.device ) _UpperCamelCase = (self._get_variance(a__ , predicted_variance=a__ ) ** 0.5) * noise _UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=a__ , pred_original_sample=a__ ) class lowerCamelCase_ ( lowercase ): def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1.0 , ) -> Dict: """simple docstring""" super().__init__() _UpperCamelCase = bit_scale _UpperCamelCase = ( ddim_bit_scheduler_step if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self , lowerCamelCase_ = 2_56 , lowerCamelCase_ = 2_56 , lowerCamelCase_ = 50 , lowerCamelCase_ = None , lowerCamelCase_ = 1 , lowerCamelCase_ = "pil" , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" _UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCamelCase_ , ) _UpperCamelCase = decimal_to_bits(lowerCamelCase_ ) * self.bit_scale _UpperCamelCase = latents.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample _UpperCamelCase = bits_to_decimal(lowerCamelCase_ ) if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
147
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = '▁' SCREAMING_SNAKE_CASE_ = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } SCREAMING_SNAKE_CASE_ = { 'facebook/xglm-564M': 20_48, } class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Optional[Any] =VOCAB_FILES_NAMES a_ :Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a_ :List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ :Optional[int] =["""input_ids""", """attention_mask"""] def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE__ : str="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<unk>" , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' __a = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __a = 7 __a = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __a = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) __a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __a = 1 # Mimic fairseq token-to-id alignment for the first 4 token __a = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __a = len(self.sp_model ) __a = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) __a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ): '''simple docstring''' __a = self.__dict__.copy() __a = None __a = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __a = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def __a ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __a ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __a ( self : Any ): '''simple docstring''' __a = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __a = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self : int , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a = """""".join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , """ """ ).strip() return out_string def __a ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
201
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
201
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _snake_case ( A__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =XLNetTokenizer UpperCamelCase__ =XLNetTokenizerFast UpperCamelCase__ =True UpperCamelCase__ =True def snake_case_ ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ :Tuple = XLNetTokenizer(snake_case , keep_accents=snake_case ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self : Optional[Any] ): UpperCAmelCase_ :int = '''<s>''' UpperCAmelCase_ :Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def snake_case_ ( self : int ): UpperCAmelCase_ :Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(snake_case ) , 1_006 ) def snake_case_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def snake_case_ ( self : Optional[int] ): UpperCAmelCase_ :Any = XLNetTokenizer(snake_case , keep_accents=snake_case ) UpperCAmelCase_ :Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [285, 46, 10, 170, 382] ) UpperCAmelCase_ :Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ :Any = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual(snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCAmelCase_ :Tuple = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case_ ( self : Optional[int] ): UpperCAmelCase_ :List[Any] = XLNetTokenizer(snake_case , do_lower_case=snake_case ) UpperCAmelCase_ :Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :List[str] = XLNetTokenizer(snake_case , do_lower_case=snake_case ) UpperCAmelCase_ :Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def snake_case_ ( self : Any ): UpperCAmelCase_ :List[str] = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) UpperCAmelCase_ :List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=snake_case ) UpperCAmelCase_ :int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=snake_case ) UpperCAmelCase_ :Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case ) UpperCAmelCase_ :Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case_ ( self : int ): # fmt: off UpperCAmelCase_ :str = {'''input_ids''': [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
608
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def a ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ :str = FileLock(str(tmpdir / '''foo.lock''' ) ) UpperCAmelCase_ :Tuple = FileLock(str(tmpdir / '''foo.lock''' ) ) UpperCAmelCase_ :int = 0.01 with locka.acquire(): with pytest.raises(__snake_case ): UpperCAmelCase_ :List[str] = time.time() locka.acquire(__snake_case ) assert time.time() - _start > timeout def a ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ :Optional[int] = '''a''' * 1000 + '''.lock''' UpperCAmelCase_ :Any = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__snake_case ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ :Optional[int] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__snake_case ): locka.acquire(0 )
608
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : List[str] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'canine' def __init__(self, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_6_3_8_4, lowerCamelCase_=1_6, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_=0xE000, lowerCamelCase_=0xE001, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=8, lowerCamelCase_=1_6_3_8_4, lowerCamelCase_=1_2_8, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : str = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : int = attention_probs_dropout_prob lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Tuple = type_vocab_size lowerCamelCase__ : Dict = layer_norm_eps # Character config: lowerCamelCase__ : Any = downsampling_rate lowerCamelCase__ : Optional[int] = upsampling_kernel_size lowerCamelCase__ : Union[str, Any] = num_hash_functions lowerCamelCase__ : str = num_hash_buckets lowerCamelCase__ : List[str] = local_transformer_stride
696
"""simple docstring""" A_ : List[str] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
696
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'speech_to_text_2' lowerCamelCase_ = ['past_key_values'] lowerCamelCase_ = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : int , UpperCAmelCase__ : Dict=10000 , UpperCAmelCase__ : Optional[int]=6 , UpperCAmelCase__ : str=2048 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]="relu" , UpperCAmelCase__ : List[str]=256 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Optional[Any]=0 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : List[Any]=1024 , **UpperCAmelCase__ : Dict , ): '''simple docstring''' lowercase : List[str] =vocab_size lowercase : Optional[int] =d_model lowercase : Optional[Any] =decoder_ffn_dim lowercase : Any =decoder_layers lowercase : Dict =decoder_attention_heads lowercase : List[Any] =dropout lowercase : List[Any] =attention_dropout lowercase : Any =activation_dropout lowercase : Optional[Any] =activation_function lowercase : Optional[int] =init_std lowercase : Dict =decoder_layerdrop lowercase : Optional[int] =use_cache lowercase : Optional[Any] =decoder_layers lowercase : List[str] =scale_embedding # scale factor will be sqrt(d_model) if True lowercase : str =max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
92
from __future__ import annotations from typing import TypedDict class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 42 __snake_case = 42 def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__lowerCamelCase ) )] def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _SCREAMING_SNAKE_CASE : Any = all_rotations(__lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _SCREAMING_SNAKE_CASE : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__lowerCamelCase ), } return response def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _SCREAMING_SNAKE_CASE : Optional[int] = int(__lowerCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__lowerCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _SCREAMING_SNAKE_CASE : Optional[int] = [""] * len(__lowerCamelCase ) for _ in range(len(__lowerCamelCase ) ): for i in range(len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE : List[str] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCamelCase__ ='Provide a string that I will generate its BWT transform: ' UpperCamelCase__ =input(entry_msg).strip() UpperCamelCase__ =bwt_transform(s) print( f"Burrows Wheeler transform for string '{s}' results " f"in '{result['bwt_string']}'" ) UpperCamelCase__ =reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " f"we get original string '{original_string}'" )
249
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) A_ = Features({"""text""": Value("""string""" )} ) A_ = Features({"""summary""": Value("""string""" )} ) A_ = "text" A_ = "summary" @property def __UpperCAmelCase ( self : List[str] ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
4
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _lowercase( __a : List[Any] ): a__ =[ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__a , __a ) def _lowercase( __a : str ): a__ , a__ =emb.weight.shape a__ =nn.Linear(__a , __a , bias=__a ) a__ =emb.weight.data return lin_layer def _lowercase( __a : int , __a : Optional[Any]=None ): a__ ={} for old_key in state_dict.keys(): a__ =old_key if "moe_layer.experts." in key: if expert_idx is not None: a__ =key.replace('moe_layer.experts.0' , f"""ffn.experts.expert_{expert_idx}""" ) else: a__ =key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: a__ =key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: a__ =key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: a__ =key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: a__ =key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: a__ =key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: a__ =key.replace('final_layer_norm' , 'ff_layer_norm' ) a__ =state_dict[old_key] return new_dict def _lowercase( __a : Optional[Any] , __a : Dict , __a : Optional[Any] , __a : Tuple , __a : str = WEIGHTS_NAME ): a__ =[] a__ =0 os.makedirs(__a , exist_ok=__a ) for expert in range(__a ): a__ =switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(__a ): a__ =torch.load(__a )['model'] remove_ignore_keys_(__a ) a__ =rename_fairseq_keys(__a , __a ) a__ =os.path.join( __a , weights_name.replace('.bin' , f"""-{len(__a )+1:05d}-of-???.bin""" ) ) torch.save(__a , __a ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__a )[0]].dtype ) # Add the last block a__ =os.path.join(__a , weights_name.replace('.bin' , f"""-{len(__a )+1:05d}-of-???.bin""" ) ) a__ =torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__a ) a__ =rename_fairseq_keys(__a , __a ) a__ =shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__a ) == 1: a__ =os.path.join(__a , __a ) torch.save(__a , __a ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__a , __a ) # Otherwise, let's build the index a__ ={} for idx, shard in enumerate(__a ): a__ =weights_name.replace('.bin' , f"""-{idx+1:05d}-of-{len(__a ):05d}.bin""" ) a__ =os.path.join(__a , weights_name.replace('.bin' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__a , os.path.join(__a , __a ) ) for key in shard: a__ =shard_file # Add the metadata a__ ={'total_size': total_size} a__ ={'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__a , __a ) , 'w' , encoding='utf-8' ) as f: a__ =json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) return metadata, index if __name__ == "__main__": _lowerCAmelCase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) _lowerCAmelCase: List[Any] = parser.parse_args() _lowerCAmelCase , _lowerCAmelCase: Dict = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCAmelCase: Union[str, Any] = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCAmelCase: str = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
20
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter SCREAMING_SNAKE_CASE : Union[str, Any] = "Create a default config file for Accelerate with only a few flags set." def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[Any]="no" , SCREAMING_SNAKE_CASE_ : str = default_json_config_file , SCREAMING_SNAKE_CASE_ : bool = False ): """simple docstring""" a_ : Optional[Any] = Path(SCREAMING_SNAKE_CASE_ ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False a_ : Tuple = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) a_ : str = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): a_ : Union[str, Any] = torch.cuda.device_count() a_ : Any = num_gpus a_ : Union[str, Any] = False if num_gpus > 1: a_ : str = """MULTI_GPU""" else: a_ : List[str] = """NO""" elif is_xpu_available() and use_xpu: a_ : List[Any] = torch.xpu.device_count() a_ : List[str] = num_xpus a_ : List[Any] = False if num_xpus > 1: a_ : List[str] = """MULTI_XPU""" else: a_ : Union[str, Any] = """NO""" elif is_npu_available(): a_ : Tuple = torch.npu.device_count() a_ : Union[str, Any] = num_npus a_ : List[Any] = False if num_npus > 1: a_ : List[str] = """MULTI_NPU""" else: a_ : Optional[int] = """NO""" else: a_ : List[str] = 0 a_ : Optional[int] = True a_ : Optional[Any] = 1 a_ : List[str] = """NO""" a_ : int = ClusterConfig(**SCREAMING_SNAKE_CASE_ ) config.to_json_file(SCREAMING_SNAKE_CASE_ ) return path def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" a_ : Dict = parser.add_parser("""default""" , parents=SCREAMING_SNAKE_CASE_ , help=SCREAMING_SNAKE_CASE_ , formatter_class=SCREAMING_SNAKE_CASE_ ) parser.add_argument( """--config_file""" , default=SCREAMING_SNAKE_CASE_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=SCREAMING_SNAKE_CASE_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" a_ : int = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
419
0
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 100 , _lowercase = 0.01 , _lowercase = 1 , ): '''simple docstring''' UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[Any] = search_prob UpperCAmelCase_ : List[str] = start_temperate UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Union[str, Any] = None while not search_end: UpperCAmelCase_ : Optional[int] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase_ : Tuple = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Tuple = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase_ : Tuple = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase_ : str = neighbors.pop(_lowercase ) UpperCAmelCase_ : int = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase_ : Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase_ : List[Any] = picked_neighbor else: UpperCAmelCase_ : int = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase_ : List[str] = picked_neighbor UpperCAmelCase_ : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase_ : List[Any] = True else: UpperCAmelCase_ : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __a = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __a = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) __a = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __a = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return (3 * x**2) - (6 * y) __a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __a = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) __a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __a = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
720
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = load_iris() UpperCAmelCase_, UpperCAmelCase_ : Any = data_handling(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = train_test_split( _lowercase , _lowercase , test_size=0.25 ) UpperCAmelCase_ : Dict = iris['''target_names'''] # Create an XGBoost Classifier from the training data UpperCAmelCase_ : int = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
300
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class A__ ( unittest.TestCase ): def __init__( self , lowerCamelCase ) -> int: """simple docstring""" __magic_name__ : str = parent def lowercase ( self ) -> List[str]: """simple docstring""" return {} def lowerCAmelCase ( ) ->List[str]: """simple docstring""" __magic_name__ : int = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __magic_name__ : Dict = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase__ : Optional[int] =MarkupLMFeatureExtractor if is_bsa_available() else None def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def lowercase ( self ) -> Any: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Optional[int] = self.feature_extraction_class() # Test not batched input __magic_name__ : Optional[int] = get_html_strings()[0] __magic_name__ : Union[str, Any] = feature_extractor(lowerCamelCase ) # fmt: off __magic_name__ : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __magic_name__ : Dict = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCamelCase ) self.assertEqual(encoding.xpaths , lowerCamelCase ) # Test batched __magic_name__ : Optional[int] = get_html_strings() __magic_name__ : Optional[int] = feature_extractor(lowerCamelCase ) # fmt: off __magic_name__ : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __magic_name__ : List[str] = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCamelCase ) self.assertEqual(encoding.xpaths , lowerCamelCase )
154
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowercase_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , lowerCamelCase = 101 ) -> Any: """simple docstring""" __magic_name__ : List[str] = length def __len__( self ) -> Union[str, Any]: """simple docstring""" return self.length def __getitem__( self , lowerCamelCase ) -> int: """simple docstring""" return i class A__ : def __call__( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" return {"input_ids": torch.tensor(lowerCamelCase ), "labels": torch.tensor(lowerCamelCase )} class A__ ( nn.Module ): def __init__( self ) -> Tuple: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. __magic_name__ : Tuple = nn.Linear(120 , 80 ) def lowercase ( self , lowerCamelCase , lowerCamelCase=None ) -> List[str]: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class A__ ( __SCREAMING_SNAKE_CASE ): @require_torch_neuroncore def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() __magic_name__ : Dict = self.get_auto_remove_tmp_dir() __magic_name__ : str = F'''--output_dir {output_dir}'''.split() __magic_name__ : Optional[Any] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A__ ( __SCREAMING_SNAKE_CASE ): @require_torch_multi_gpu def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Optional[Any] = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() __magic_name__ : str = self.get_auto_remove_tmp_dir() __magic_name__ : List[str] = F'''--output_dir {output_dir}'''.split() __magic_name__ : Tuple = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowercase_ = HfArgumentParser((TrainingArguments,)) lowercase_ = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowercase_ = DummyDataset(dataset_length) def lowerCAmelCase ( UpperCAmelCase ) ->Dict: """simple docstring""" __magic_name__ : str = list(range(len(UpperCAmelCase ) ) ) __magic_name__ : List[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} lowercase_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowercase_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase_ = 2 lowercase_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase_ = None
154
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=6_4 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): """simple docstring""" A_ : List[Any] = parent A_ : Dict = batch_size A_ : int = seq_length A_ : Optional[int] = is_training A_ : List[Any] = use_input_mask A_ : Any = use_token_type_ids A_ : Dict = use_labels A_ : List[str] = vocab_size A_ : Optional[Any] = hidden_size A_ : str = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : int = intermediate_size A_ : Union[str, Any] = hidden_act A_ : str = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : Union[str, Any] = type_sequence_label_size A_ : Tuple = initializer_range A_ : List[str] = num_labels A_ : Dict = num_choices A_ : str = scope A_ : List[str] = vocab_size - 1 def lowerCamelCase_ ( self ): """simple docstring""" A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[Any] = None if self.use_input_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self ): """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ , A_ , A_ : Tuple = self.prepare_config_and_inputs() A_ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = GPTNeoXModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() A_ : Dict = model(snake_case_ , attention_mask=snake_case_ ) A_ : List[str] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = True A_ : List[str] = GPTNeoXModel(snake_case_ ) model.to(snake_case_ ) model.eval() A_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Tuple = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() A_ : List[str] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[Any] = self.num_labels A_ : Tuple = GPTNeoXForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() A_ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = self.num_labels A_ : Optional[int] = GPTNeoXForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() A_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Tuple = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = self.num_labels A_ : List[str] = GPTNeoXForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() A_ : List[str] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Tuple = True A_ : Optional[Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass A_ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) A_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) A_ : Optional[int] = model(snake_case_ , attention_mask=snake_case_ , output_hidden_states=snake_case_ ) A_ : Tuple = output_from_no_past['hidden_states'][0] A_ : Any = model( snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['hidden_states'][0] # select random slice A_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ : List[Any] = config_and_inputs A_ : int = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowercase_ : List[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowercase_ : str = (GPTNeoXForCausalLM,) if is_torch_available() else () lowercase_ : int = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Tuple = False lowercase_ : Tuple = False lowercase_ : List[str] = False def lowerCamelCase_ ( self ): """simple docstring""" A_ : str = GPTNeoXModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=snake_case_ , hidden_size=6_4 , num_attention_heads=8 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ , A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ , A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ , A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() A_ : Tuple = None self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ , A_ , A_ , A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def lowerCamelCase_ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ids_tensor([1, 1_0] , config.vocab_size ) A_ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights A_ : Union[str, Any] = GPTNeoXModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() A_ : List[str] = original_model(snake_case_ ).last_hidden_state A_ : List[str] = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights A_ : Tuple = {'type': scaling_type, 'factor': 10.0} A_ : List[str] = GPTNeoXModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() A_ : Optional[Any] = scaled_model(snake_case_ ).last_hidden_state A_ : Optional[Any] = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: A_ : List[str] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case_ ) A_ : Tuple = tokenizer('My favorite food is' , return_tensors='pt' ).to(snake_case_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A_ : Dict = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' A_ : int = model.generate(**snake_case_ , do_sample=snake_case_ , max_new_tokens=2_0 ) A_ : Optional[Any] = tokenizer.batch_decode(snake_case_ )[0] self.assertEqual(snake_case_ , snake_case_ )
302
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCAmelCase : '''simple docstring''' lowercase_ : int lowercase_ : int class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : list[list[Edge]] = [[] for _ in range(snake_case_ )] A_ : Optional[int] = size def __getitem__( self , snake_case_ ): """simple docstring""" return iter(self._graph[vertex] ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self._size def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = deque([start_vertex] ) A_ : list[int | None] = [None] * self.size A_ : Optional[Any] = 0 while queue: A_ : Union[str, Any] = queue.popleft() A_ : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A_ : int = current_distance + edge.weight A_ : Union[str, Any] = distances[edge.destination_vertex] if ( isinstance(snake_case_ , snake_case_ ) and new_distance >= dest_vertex_distance ): continue A_ : Union[str, Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
302
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowercase : str = 'pt' elif is_tf_available(): __lowercase : Optional[Any] = 'tf' else: __lowercase : Tuple = 'jax' class __UpperCamelCase ( __a , unittest.TestCase ): A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() __a : Optional[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def __UpperCAmelCase ( self , __a , __a=False , __a=20 , __a=5 ): '''simple docstring''' __a : Optional[int] = [] for i in range(len(a__ ) ): try: __a : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=a__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __a : Tuple = list(filter(lambda __a : re.match(r'^[ a-zA-Z]+$' , t[1] ) , a__ ) ) __a : Optional[int] = list(filter(lambda __a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a__ ) , a__ ) ) if max_length is not None and len(a__ ) > max_length: __a : Optional[Any] = toks[:max_length] if min_length is not None and len(a__ ) < min_length and len(a__ ) > 0: while len(a__ ) < min_length: __a : str = toks + toks # toks_str = [t[1] for t in toks] __a : Any = [t[0] for t in toks] # Ensure consistency __a : Any = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) if " " not in output_txt and len(a__ ) > 1: __a : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a__ ) ) if with_prefix_space: __a : int = ' ' + output_txt __a : Optional[int] = tokenizer.encode(a__ , add_special_tokens=a__ ) return output_txt, output_ids def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.ta_base_tokenizer __a : Optional[int] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __a : str = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.ta_base_tokenizer __a : int = 'Unicode €.' __a : Optional[Any] = tokenizer(a__ ) __a : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , a__ ) # decoding __a : Optional[int] = tokenizer.decode(a__ ) self.assertEqual(a__ , 'Unicode €.</s>' ) __a : List[str] = tokenizer('e è é ê ë' ) __a : Optional[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , a__ ) # decoding __a : Any = tokenizer.decode(a__ ) self.assertEqual(a__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.ta_base_tokenizer __a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __a : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __a : List[Any] = tokenizer(a__ , padding=a__ , return_tensors=a__ ) self.assertIsInstance(a__ , a__ ) if FRAMEWORK != "jax": __a : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: __a : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a__ , a__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.ta_base_tokenizer __a : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __a : List[str] = tokenizer(a__ , padding=a__ , return_tensors=a__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , a__ ) self.assertIn('attention_mask' , a__ ) self.assertNotIn('decoder_input_ids' , a__ ) self.assertNotIn('decoder_attention_mask' , a__ ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.ta_base_tokenizer __a : Union[str, Any] = [ 'Summary of the text.', 'Another summary.', ] __a : List[Any] = tokenizer( text_target=a__ , max_length=32 , padding='max_length' , truncation=a__ , return_tensors=a__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.ta_base_tokenizer __a : Optional[Any] = ['A long paragraph for summarization. </s>'] __a : Union[str, Any] = ['Summary of the text. </s>'] # fmt: off __a : int = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __a : Dict = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __a : str = tokenizer(a__ , text_target=a__ ) self.assertEqual(a__ , batch['input_ids'][0] ) self.assertEqual(a__ , batch['labels'][0] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __a : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __a : List[str] = tempfile.mkdtemp() __a : Dict = ' He is very happy, UNwant\u00E9d,running' __a : int = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) __a : List[str] = tokenizer.__class__.from_pretrained(a__ ) __a : Optional[Any] = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) shutil.rmtree(a__ ) __a : Optional[int] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __a : Optional[int] = tempfile.mkdtemp() __a : Dict = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __a : int = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __a : List[Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) __a : List[str] = tokenizer.__class__.from_pretrained(a__ ) __a : List[str] = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __a : List[str] = tokenizer.__class__.from_pretrained(a__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a__ ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) with open(os.path.join(a__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __a : Any = json.load(a__ ) with open(os.path.join(a__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __a : Any = json.load(a__ ) __a : Tuple = [f"""<extra_id_{i}>""" for i in range(125 )] __a : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __a : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(a__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(a__ , a__ ) with open(os.path.join(a__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(a__ , a__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __a : Any = tokenizer_class.from_pretrained( a__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __a : Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=a__ )] __a : Dict = tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) __a : Union[str, Any] = tokenizer_class.from_pretrained(a__ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.get_tokenizers(fast=a__ , do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __a : List[str] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __a : Tuple = tokenizer.convert_tokens_to_string(a__ ) self.assertIsInstance(a__ , a__ ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __a : Any = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __a : Union[str, Any] = 0 __a : Dict = tokenizer.convert_ids_to_tokens( a__ , skip_special_tokens=a__ ) for attr in attributes_list: setattr(a__ , attr + '_id' , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + '_id' ) , a__ ) setattr(a__ , attr + '_id' , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + '_id' ) , a__ ) setattr(a__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens_ids' ) , [] ) setattr(a__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
476
'''simple docstring''' import math _lowerCAmelCase = 10 _lowerCAmelCase = 7 _lowerCAmelCase = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( a = 20 ) -> str: '''simple docstring''' __magic_name__ = math.comb(a , a ) __magic_name__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a ) __magic_name__ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
432
0
'''simple docstring''' __snake_case : List[Any] = 256 # Modulus to hash a string __snake_case : str = 1_000_003 def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str ) -> bool: A_ = len(_UpperCamelCase ) A_ = len(_UpperCamelCase ) if p_len > t_len: return False A_ = 0 A_ = 0 A_ = 1 # Calculating the hash of pattern and substring of text for i in range(_UpperCamelCase ): A_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A_ = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _UpperCAmelCase ( ) -> None: A_ = '''abc1abc12''' A_ = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' A_ = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) and not rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 2) A_ = '''ABABX''' A_ = '''ABABZABABYABABX''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 3) A_ = '''AAAB''' A_ = '''ABAAAAAB''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 4) A_ = '''abcdabcy''' A_ = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) # Test 5) A_ = '''Lü''' A_ = '''Lüsai''' assert rabin_karp(_UpperCamelCase, _UpperCamelCase ) A_ = '''Lue''' assert not rabin_karp(_UpperCamelCase, _UpperCamelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
174
'''simple docstring''' from itertools import product def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int ) -> list[int]: A_ = sides_number A_ = max_face_number * dice_number A_ = [0] * (max_total + 1) A_ = 1 A_ = range(_UpperCamelCase, max_face_number + 1 ) for dice_numbers in product(_UpperCamelCase, repeat=_UpperCamelCase ): A_ = sum(_UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def _UpperCAmelCase ( ) -> float: A_ = total_frequency_distribution( sides_number=4, dice_number=9 ) A_ = total_frequency_distribution( sides_number=6, dice_number=6 ) A_ = 0 A_ = 9 A_ = 4 * 9 A_ = 6 for peter_total in range(_UpperCamelCase, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) A_ = (4**9) * (6**6) A_ = peter_wins_count / total_games_number A_ = round(_UpperCamelCase, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
174
1
import json import sys def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict ) -> Dict: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Optional[Any] = json.load(snake_case__ ) UpperCamelCase : int = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(snake_case__ ): UpperCamelCase : List[str] = results[benchmark_name] UpperCamelCase : Tuple = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) UpperCamelCase : Optional[Any] = '| metric |' UpperCamelCase : List[Any] = '|--------|' UpperCamelCase : str = '| new / old (diff) |' for metric_name in sorted(snake_case__ ): UpperCamelCase : Dict = benchmark_res[metric_name] UpperCamelCase : str = metric_vals['new'] UpperCamelCase : Optional[int] = metric_vals.get('old' , snake_case__ ) UpperCamelCase : Optional[Any] = metric_vals.get('diff' , snake_case__ ) UpperCamelCase : Union[str, Any] = F""" {new_val:f}""" if isinstance(snake_case__ , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(snake_case__ , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(snake_case__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(snake_case__ ) ) if __name__ == "__main__": __UpperCAmelCase = sys.argv[1] __UpperCAmelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
40
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : Tuple = BlenderbotConfig lowercase : Optional[int] = {} lowercase : Union[str, Any] = "gelu" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : List[Any]=37 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=20 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : str=0 , ) -> List[str]: A : List[Any] =parent A : str =batch_size A : int =seq_length A : Optional[Any] =is_training A : List[str] =use_labels A : List[Any] =vocab_size A : Tuple =hidden_size A : List[Any] =num_hidden_layers A : int =num_attention_heads A : Optional[int] =intermediate_size A : List[Any] =hidden_dropout_prob A : Union[str, Any] =attention_probs_dropout_prob A : Optional[Any] =max_position_embeddings A : Optional[Any] =eos_token_id A : List[str] =pad_token_id A : Union[str, Any] =bos_token_id def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: A : Dict =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A : Optional[int] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A : List[Any] =tf.concat([input_ids, eos_tensor] , axis=1 ) A : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Any =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A : int =prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: A : List[Any] =TFBlenderbotModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder() A : int =inputs_dict['input_ids'] A : Any =input_ids[:1, :] A : Optional[Any] =inputs_dict['attention_mask'][:1, :] A : List[str] =inputs_dict['head_mask'] A : List[Any] =1 # first forward pass A : Any =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) A , A : Any =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A : List[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Tuple =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A : Union[str, Any] =tf.concat([input_ids, next_tokens] , axis=-1 ) A : List[Any] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A : List[str] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A : Tuple =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A : Tuple =output_from_no_past[:, -3:, random_slice_idx] A : str =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-3 ) def A__ ( lowercase: List[str], lowercase: List[str], lowercase: Optional[Any], lowercase: Optional[Any]=None, lowercase: Tuple=None, lowercase: List[str]=None, lowercase: Union[str, Any]=None, lowercase: Dict=None, ) -> Dict: if attention_mask is None: A : Any =tf.cast(tf.math.not_equal(lowercase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: A : Optional[Any] =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: A : List[Any] =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A : Tuple =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Tuple = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowercase : Any = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowercase : Tuple = True lowercase : Dict = False lowercase : int = False def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: A : Optional[Any] =TFBlenderbotModelTester(self ) A : Dict =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: A : Any =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ["My friends are cool but they eat too many carbs."] lowercase : str = "facebook/blenderbot-400M-distill" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Union[str, Any]: A : Tuple =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: A : Optional[Any] =self.tokenizer(self.src_text , return_tensors='tf' ) A : Tuple =self.model.generate( model_inputs.input_ids , ) A : Union[str, Any] =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=SCREAMING_SNAKE_CASE__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
305
0
def __lowerCAmelCase ( _UpperCamelCase : int = 2_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 for i in range(_UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
673
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version a_ : List[str] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize a_ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" a_ : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" a_ : int = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def UpperCamelCase ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[Any]=0.9 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: SCREAMING_SNAKE_CASE = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
673
1
from math import isqrt def __A ( _lowercase ): '''simple docstring''' _A = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowercase , _lowercase ): _A = False return [i for i in range(2 , _lowercase ) if is_prime[i]] def __A ( _lowercase = 10**8 ): '''simple docstring''' _A = calculate_prime_numbers(max_number // 2 ) _A = 0 _A = 0 _A = len(_lowercase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'{solution() = }')
484
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCamelCase = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
707
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch UpperCamelCase = True except ImportError: UpperCamelCase = False try: from torch.hub import _get_torch_home UpperCamelCase = _get_torch_home() except ImportError: UpperCamelCase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) UpperCamelCase = os.path.join(torch_cache_home, """transformers""") UpperCamelCase = """https://cdn.huggingface.co""" UpperCamelCase = """https://s3.amazonaws.com/models.huggingface.co/bert""" UpperCamelCase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) UpperCamelCase = os.path.join(PATH, """config.yaml""") UpperCamelCase = os.path.join(PATH, """attributes.txt""") UpperCamelCase = os.path.join(PATH, """objects.txt""") UpperCamelCase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) UpperCamelCase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) UpperCamelCase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) UpperCamelCase = """pytorch_model.bin""" UpperCamelCase = """config.yaml""" def lowerCAmelCase ( UpperCamelCase_: List[str]=OBJECTS , UpperCamelCase_: str=ATTRIBUTES ) -> str: '''simple docstring''' _a = [] with open(UpperCamelCase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _a = [] with open(UpperCamelCase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase ( UpperCamelCase_: Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a = OrderedDict() with open(UpperCamelCase_ , "rb" ) as f: _a = pkl.load(UpperCamelCase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _a = ckp.pop(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): _a = torch.tensor(UpperCamelCase_ ) else: assert isinstance(UpperCamelCase_ , torch.tensor ), type(UpperCamelCase_ ) _a = v return r class lowercase_ : A__ : Tuple = {} def __init__( self , a_ , a_ = "root" , a_=0 ) ->Optional[Any]: '''simple docstring''' _a = name _a = level _a = {} for k, v in dictionary.items(): if v is None: raise ValueError() _a = copy.deepcopy(a_ ) _a = copy.deepcopy(a_ ) if isinstance(a_ , a_ ): _a = Config(a_ , name=a_ , level=level + 1 ) _a = v setattr(self , a_ , a_ ) _a = d def __repr__( self ) ->Optional[int]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , a_ , a_ ) ->str: '''simple docstring''' _a = val _a = val _a = key.split("." ) _a = len(a_ ) - 1 _a = self._pointer if len(a_ ) > 1: for i, l in enumerate(a_ ): if hasattr(self , a_ ) and isinstance(getattr(self , a_ ) , a_ ): setattr(getattr(self , a_ ) , ".".join(levels[i:] ) , a_ ) if l == last_level: _a = val else: _a = pointer[l] def lowerCamelCase__ ( self ) ->int: '''simple docstring''' return self._pointer def lowerCamelCase__ ( self , a_ , a_ ) ->Any: '''simple docstring''' with open(f'''{file_name}''' , "w" ) as stream: dump(a_ , a_ ) def lowerCamelCase__ ( self , a_ , a_ ) ->int: '''simple docstring''' with open(f'''{file_name}''' , "w" ) as stream: json.dump(a_ , a_ ) @staticmethod def lowerCamelCase__ ( a_ ) ->Union[str, Any]: '''simple docstring''' with open(a_ ) as stream: _a = load(a_ , Loader=a_ ) return data def __str__( self ) ->List[Any]: '''simple docstring''' _a = " " if self._name != "root": _a = f'''{t * (self._level-1)}{self._name}:\n''' else: _a = "" _a = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(a_ , a_ ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(a_ ).__name__})\n''' _a = level return r[:-1] @classmethod def lowerCamelCase__ ( cls , a_ , **a_ ) ->Tuple: '''simple docstring''' _a , _a = cls.get_config_dict(a_ , **a_ ) return cls(a_ ) @classmethod def lowerCamelCase__ ( cls , a_ , **a_ ) ->List[Any]: '''simple docstring''' _a = kwargs.pop("cache_dir" , a_ ) _a = kwargs.pop("force_download" , a_ ) _a = kwargs.pop("resume_download" , a_ ) _a = kwargs.pop("proxies" , a_ ) _a = kwargs.pop("local_files_only" , a_ ) if os.path.isdir(a_ ): _a = os.path.join(a_ , a_ ) elif os.path.isfile(a_ ) or is_remote_url(a_ ): _a = pretrained_model_name_or_path else: _a = hf_bucket_url(a_ , filename=a_ , use_cdn=a_ ) try: # Load from URL or cache if already cached _a = cached_path( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _a = Config.load_yaml(a_ ) except EnvironmentError: _a = "Can't load config for" raise EnvironmentError(a_ ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(a_ ), kwargs def lowerCAmelCase ( UpperCamelCase_: Optional[int] ) -> Tuple: '''simple docstring''' _a = torch.load("dump.pt" , map_location=in_tensor.device ) _a = in_tensor.numpy() _a = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(UpperCamelCase_ , UpperCamelCase_ , rtol=0.01 , atol=0.1 ), ( f'''{sum([1 for x in np.isclose(UpperCamelCase_ , UpperCamelCase_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowerCAmelCase ( UpperCamelCase_: str ) -> List[str]: '''simple docstring''' _a = urlparse(UpperCamelCase_ ) return parsed.scheme in ("http", "https") def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Dict=True ) -> str: '''simple docstring''' _a = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _a = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def lowerCAmelCase ( UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Tuple=0 , UpperCamelCase_: Union[str, Any]=None , ) -> List[str]: '''simple docstring''' _a = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): ua += "; " + "; ".join("{}/{}".format(UpperCamelCase_ , UpperCamelCase_ ) for k, v in user_agent.items() ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): ua += "; " + user_agent _a = {"user-agent": ua} if resume_size > 0: _a = "bytes=%d-" % (resume_size,) _a = requests.get(UpperCamelCase_ , stream=UpperCamelCase_ , proxies=UpperCamelCase_ , headers=UpperCamelCase_ ) if response.status_code == 416: # Range not satisfiable return _a = response.headers.get("Content-Length" ) _a = resume_size + int(UpperCamelCase_ ) if content_length is not None else None _a = tqdm( unit="B" , unit_scale=UpperCamelCase_ , total=UpperCamelCase_ , initial=UpperCamelCase_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(UpperCamelCase_ ) ) temp_file.write(UpperCamelCase_ ) progress.close() def lowerCAmelCase ( UpperCamelCase_: Optional[int] , UpperCamelCase_: str=None , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: int=10 , UpperCamelCase_: List[str]=False , UpperCamelCase_: int=None , UpperCamelCase_: List[str]=False , ) -> int: '''simple docstring''' if cache_dir is None: _a = TRANSFORMERS_CACHE if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) _a = None if not local_files_only: try: _a = requests.head(UpperCamelCase_ , allow_redirects=UpperCamelCase_ , proxies=UpperCamelCase_ , timeout=UpperCamelCase_ ) if response.status_code == 200: _a = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _a = url_to_filename(UpperCamelCase_ , UpperCamelCase_ ) # get cache path to put the file _a = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(UpperCamelCase_ ): return cache_path else: _a = [ file for file in fnmatch.filter(os.listdir(UpperCamelCase_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(UpperCamelCase_ ) > 0: return os.path.join(UpperCamelCase_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(UpperCamelCase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _a = cache_path + ".lock" with FileLock(UpperCamelCase_ ): # If the download just completed while the lock was activated. if os.path.exists(UpperCamelCase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _a = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(UpperCamelCase_ , "a+b" ) as f: yield f _a = _resumable_file_manager if os.path.exists(UpperCamelCase_ ): _a = os.stat(UpperCamelCase_ ).st_size else: _a = 0 else: _a = partial(tempfile.NamedTemporaryFile , dir=UpperCamelCase_ , delete=UpperCamelCase_ ) _a = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , UpperCamelCase_ , temp_file.name , ) http_get( UpperCamelCase_ , UpperCamelCase_ , proxies=UpperCamelCase_ , resume_size=UpperCamelCase_ , user_agent=UpperCamelCase_ , ) os.replace(temp_file.name , UpperCamelCase_ ) _a = {"url": url, "etag": etag} _a = cache_path + ".json" with open(UpperCamelCase_ , "w" ) as meta_file: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return cache_path def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: Dict=None ) -> Any: '''simple docstring''' _a = url.encode("utf-8" ) _a = shaaaa(UpperCamelCase_ ) _a = url_hash.hexdigest() if etag: _a = etag.encode("utf-8" ) _a = shaaaa(UpperCamelCase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowerCAmelCase ( UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Tuple=False , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: str=False , UpperCamelCase_: Dict=None , UpperCamelCase_: int=False , UpperCamelCase_: Dict=False , UpperCamelCase_: Any=False , ) -> List[str]: '''simple docstring''' if cache_dir is None: _a = TRANSFORMERS_CACHE if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) if is_remote_url(UpperCamelCase_ ): # URL, so get it from the cache (downloading if necessary) _a = get_from_cache( UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , user_agent=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) elif os.path.exists(UpperCamelCase_ ): # File, and it exists. _a = url_or_filename elif urlparse(UpperCamelCase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(UpperCamelCase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(UpperCamelCase_ ) ) if extract_compressed_file: if not is_zipfile(UpperCamelCase_ ) and not tarfile.is_tarfile(UpperCamelCase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _a , _a = os.path.split(UpperCamelCase_ ) _a = output_file.replace("." , "-" ) + "-extracted" _a = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ) and os.listdir(UpperCamelCase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _a = output_path + ".lock" with FileLock(UpperCamelCase_ ): shutil.rmtree(UpperCamelCase_ , ignore_errors=UpperCamelCase_ ) os.makedirs(UpperCamelCase_ ) if is_zipfile(UpperCamelCase_ ): with ZipFile(UpperCamelCase_ , "r" ) as zip_file: zip_file.extractall(UpperCamelCase_ ) zip_file.close() elif tarfile.is_tarfile(UpperCamelCase_ ): _a = tarfile.open(UpperCamelCase_ ) tar_file.extractall(UpperCamelCase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(UpperCamelCase_ ) ) return output_path_extracted return output_path def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: str="," ) -> Tuple: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): with open(UpperCamelCase_ ) as f: _a = eval(f.read() ) else: _a = requests.get(UpperCamelCase_ ) try: _a = requests.json() except Exception: _a = req.content.decode() assert data is not None, "could not connect" try: _a = eval(UpperCamelCase_ ) except Exception: _a = data.split("\n" ) req.close() return data def lowerCAmelCase ( UpperCamelCase_: Dict ) -> Union[str, Any]: '''simple docstring''' _a = requests.get(UpperCamelCase_ ) _a = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase ( UpperCamelCase_: int ) -> Tuple: '''simple docstring''' _a = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(UpperCamelCase_ ) with open(UpperCamelCase_ , "rb" ) as stream: _a = pkl.load(UpperCamelCase_ ) _a = weights.pop("model" ) _a = {} for k, v in model.items(): _a = torch.from_numpy(UpperCamelCase_ ) if "running_var" in k: _a = torch.tensor([0] ) _a = k.replace("running_var" , "num_batches_tracked" ) _a = zero return new def lowerCAmelCase ( ) -> str: '''simple docstring''' print(f'''{os.path.abspath(os.path.join(UpperCamelCase_ , os.pardir ) )}/demo.ipynb''' ) def lowerCAmelCase ( UpperCamelCase_: List[str] , UpperCamelCase_: List[str]="RGB" ) -> List[Any]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): _a = cva.imread(UpperCamelCase_ ) else: _a = get_image_from_url(UpperCamelCase_ ) assert img is not None, f'''could not connect to: {im}''' _a = cva.cvtColor(UpperCamelCase_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": _a = img[:, :, ::-1] return img def lowerCAmelCase ( UpperCamelCase_: Any , UpperCamelCase_: str=1 ) -> Any: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ))
612
0
def UpperCamelCase_( __magic_name__ : int = 10**12 ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = 1 _lowerCAmelCase :str = 0 _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Any = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : torch.FloatTensor class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : str , lowerCamelCase__ : int = 6_55_36 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 0 , lowerCamelCase__ : str = "fourier" , lowerCamelCase__ : bool = True , lowerCamelCase__ : bool = False , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase__ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase__ : Tuple[str] = "UNetMidBlock1D" , lowerCamelCase__ : str = None , lowerCamelCase__ : Tuple[int] = (32, 32, 64) , lowerCamelCase__ : str = None , lowerCamelCase__ : int = 8 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : bool = False , ) ->Optional[Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[int] = sample_size # time if time_embedding_type == "fourier": _UpperCAmelCase : List[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase__ , log=lowerCamelCase__ , flip_sin_to_cos=lowerCamelCase__ ) _UpperCAmelCase : Tuple = 2 * block_out_channels[0] elif time_embedding_type == "positional": _UpperCAmelCase : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase__ , downscale_freq_shift=lowerCamelCase__ ) _UpperCAmelCase : List[str] = block_out_channels[0] if use_timestep_embedding: _UpperCAmelCase : List[Any] = block_out_channels[0] * 4 _UpperCAmelCase : List[str] = TimestepEmbedding( in_channels=lowerCamelCase__ , time_embed_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ , out_dim=block_out_channels[0] , ) _UpperCAmelCase : List[str] = nn.ModuleList([] ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Union[str, Any] = nn.ModuleList([] ) _UpperCAmelCase : Dict = None # down _UpperCAmelCase : List[str] = in_channels for i, down_block_type in enumerate(lowerCamelCase__ ): _UpperCAmelCase : str = output_channel _UpperCAmelCase : Any = block_out_channels[i] if i == 0: input_channel += extra_in_channels _UpperCAmelCase : Optional[int] = i == len(lowerCamelCase__ ) - 1 _UpperCAmelCase : List[str] = get_down_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase__ ) # mid _UpperCAmelCase : List[Any] = get_mid_block( lowerCamelCase__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase__ , add_downsample=lowerCamelCase__ , ) # up _UpperCAmelCase : Optional[Any] = list(reversed(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = reversed_block_out_channels[0] if out_block_type is None: _UpperCAmelCase : List[str] = out_channels else: _UpperCAmelCase : List[str] = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase__ ): _UpperCAmelCase : Any = output_channel _UpperCAmelCase : int = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase__ ) - 1 else final_upsample_channels ) _UpperCAmelCase : Tuple = i == len(lowerCamelCase__ ) - 1 _UpperCAmelCase : Dict = get_up_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase__ ) _UpperCAmelCase : Tuple = output_channel # out _UpperCAmelCase : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _UpperCAmelCase : Optional[Any] = get_out_block( out_block_type=lowerCamelCase__ , num_groups_out=lowerCamelCase__ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase__ , act_fn=lowerCamelCase__ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : Union[torch.Tensor, float, int] , lowerCamelCase__ : bool = True , ) ->Union[UNetaDOutput, Tuple]: '''simple docstring''' _UpperCAmelCase : Any = timestep if not torch.is_tensor(lowerCamelCase__ ): _UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: _UpperCAmelCase : List[Any] = timesteps[None].to(sample.device ) _UpperCAmelCase : List[str] = self.time_proj(lowerCamelCase__ ) if self.config.use_timestep_embedding: _UpperCAmelCase : Optional[int] = self.time_mlp(lowerCamelCase__ ) else: _UpperCAmelCase : Optional[int] = timestep_embed[..., None] _UpperCAmelCase : List[Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _UpperCAmelCase : Optional[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _UpperCAmelCase : List[Any] = () for downsample_block in self.down_blocks: _UpperCAmelCase , _UpperCAmelCase : Tuple = downsample_block(hidden_states=lowerCamelCase__ , temb=lowerCamelCase__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _UpperCAmelCase : List[Any] = self.mid_block(lowerCamelCase__ , lowerCamelCase__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _UpperCAmelCase : Tuple = down_block_res_samples[-1:] _UpperCAmelCase : Optional[int] = down_block_res_samples[:-1] _UpperCAmelCase : Optional[Any] = upsample_block(lowerCamelCase__ , res_hidden_states_tuple=lowerCamelCase__ , temb=lowerCamelCase__ ) # 5. post-process if self.out_block: _UpperCAmelCase : Union[str, Any] = self.out_block(lowerCamelCase__ , lowerCamelCase__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase__ )
40
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : List[Any]=10 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Tuple=32 * 8 , lowerCamelCase__ : int=32 * 8 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Any=64 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Dict = is_training _UpperCAmelCase : Optional[Any] = use_auxiliary_loss _UpperCAmelCase : Dict = num_queries _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Union[str, Any] = min_size _UpperCAmelCase : Optional[int] = max_size _UpperCAmelCase : str = num_labels _UpperCAmelCase : Optional[int] = hidden_dim _UpperCAmelCase : Any = hidden_dim def lowerCAmelCase__ ( self : str ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() _UpperCAmelCase : int = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() _UpperCAmelCase : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _UpperCAmelCase : List[str] = self.num_queries _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Union[str, Any] = [1, 1, 1, 1] _UpperCAmelCase : Any = self.num_channels _UpperCAmelCase : int = 64 _UpperCAmelCase : int = 1_28 _UpperCAmelCase : int = self.hidden_dim _UpperCAmelCase : List[Any] = self.hidden_dim _UpperCAmelCase : Any = self.hidden_dim return config def lowerCAmelCase__ ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = self.prepare_config_and_inputs() _UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : str = output.encoder_hidden_states _UpperCAmelCase : List[str] = output.pixel_decoder_hidden_states _UpperCAmelCase : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict=False ) ->str: '''simple docstring''' with torch.no_grad(): _UpperCAmelCase : List[Any] = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : int = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) _UpperCAmelCase : List[str] = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : str = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) _UpperCAmelCase : int = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCAmelCase : str = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Any = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = MaskaFormerModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Tuple ) ->List[str]: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model" ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: '''simple docstring''' pass def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(lowerCamelCase__ ) _UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Tuple = [*signature.parameters.keys()] _UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[int] ) ->Any: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _UpperCAmelCase : str = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : str = (self.model_tester.min_size,) * 2 _UpperCAmelCase : Optional[Any] = { "pixel_values": torch.randn((2, 3, *size) , device=lowerCamelCase__ ), "mask_labels": torch.randn((2, 10, *size) , device=lowerCamelCase__ ), "class_labels": torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } _UpperCAmelCase : int = self.model_tester.get_config() _UpperCAmelCase : str = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) _UpperCAmelCase : str = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) _UpperCAmelCase : List[str] = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: '''simple docstring''' if not self.model_tester.is_training: return _UpperCAmelCase : Optional[Any] = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase : Optional[int] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowerCAmelCase__ ( self : Dict ) ->Any: '''simple docstring''' _UpperCAmelCase : str = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() _UpperCAmelCase : Any = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _UpperCAmelCase : Optional[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ = 1e-4 def __lowerCAmelCase (): _UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase__ ( self : Tuple ) ->List[str]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) _UpperCAmelCase : int = self.default_image_processor _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : str = image_processor(lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) _UpperCAmelCase : Dict = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 3_84, 3_84) ) with torch.no_grad(): _UpperCAmelCase : str = model(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) _UpperCAmelCase : List[Any] = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) _UpperCAmelCase : Tuple = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() _UpperCAmelCase : List[Any] = self.default_image_processor _UpperCAmelCase : Union[str, Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 3_84, 3_84) ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCamelCase__ ) # masks_queries_logits _UpperCAmelCase : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _UpperCAmelCase : List[str] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _UpperCAmelCase : List[Any] = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits _UpperCAmelCase : Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase : str = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowerCAmelCase__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() _UpperCAmelCase : Tuple = self.default_image_processor _UpperCAmelCase : List[str] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="pt" , ) _UpperCAmelCase : str = inputs["pixel_values"].to(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [el.to(lowerCamelCase__ ) for el in inputs["mask_labels"]] _UpperCAmelCase : List[str] = [el.to(lowerCamelCase__ ) for el in inputs["class_labels"]] with torch.no_grad(): _UpperCAmelCase : int = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
40
1
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int = 3 , lowerCAmelCase_: int = 7 , lowerCAmelCase_: int = 1_0_0_0_0_0_0 ): snake_case_ : Optional[Any] = 0 snake_case_ : int = 1 for current_denominator in range(1 , limit + 1 ): snake_case_ : Dict = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case_ : int = current_numerator snake_case_ : Any = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
666
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=True , _UpperCamelCase=1 / 255 , _UpperCamelCase=True , )-> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def UpperCamelCase ( self )-> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase=False )-> List[str]: if not batched: _A = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['shortest_edge'] * h / w ) _A = self.size['shortest_edge'] elif w > h: _A = self.size['shortest_edge'] _A = int(self.size['shortest_edge'] * w / h ) else: _A = self.size['shortest_edge'] _A = self.size['shortest_edge'] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] _A = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase =DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase ( self )-> Optional[int]: _A = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase ( self )-> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self )-> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_rescale' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_pad' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'size' ) ) def UpperCamelCase ( self )-> Any: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def UpperCamelCase ( self )-> Optional[Any]: pass def UpperCamelCase ( self )-> Optional[Any]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) _A = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self )-> List[str]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self )-> Dict: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self )-> List[Any]: # prepare image and target _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _A = json.loads(f.read() ) _A = {'image_id': 3_9769, 'annotations': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors='pt' ) # verify pixel values _A = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify orig_size _A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size _A = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) ) @slow def UpperCamelCase ( self )-> Any: # prepare image, target and masks_path _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _A = json.loads(f.read() ) _A = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} _A = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _A = DeformableDetrImageProcessor(format='coco_panoptic' ) _A = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors='pt' ) # verify pixel values _A = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id _A = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify masks _A = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCamelCase ) # verify orig_size _A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size _A = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) )
292
0
'''simple docstring''' import math def lowerCAmelCase (__A): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase (__A = 0.1): """simple docstring""" _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(__A) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowercase_ = get_tests_dir("fixtures") class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> List[Any]: """simple docstring""" _a = mock.Mock() _a = 500 _a = {} _a = HTTPError _a = {} # Download this model to make sure it's in the cache. _a = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=A ) as mock_head: _a = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ) -> str: """simple docstring""" _a = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def a__ (self ) -> Dict: """simple docstring""" with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder _a = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) _a = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(A ) @is_staging_test class __A ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ) -> Any: """simple docstring""" _a = TOKEN HfFolder.save_token(A ) @classmethod def a__ (cls ) -> Union[str, Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def a__ (self ) -> str: """simple docstring""" _a = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id='''test-image-processor''' , push_to_hub=A , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def a__ (self ) -> List[Any]: """simple docstring""" _a = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=A , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" CustomImageProcessor.register_for_auto_class() _a = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) _a = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
352
0
from typing import TYPE_CHECKING from ...utils import _LazyModule __lowerCAmelCase : Optional[int] = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
509
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : str = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __lowerCAmelCase : Dict = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __lowerCAmelCase : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Any = '''whisper''' A__ : Optional[int] = ['''past_key_values'''] A__ : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[Any] , _snake_case : Optional[int]=5_1865 , _snake_case : str=80 , _snake_case : Any=6 , _snake_case : Union[str, Any]=4 , _snake_case : int=6 , _snake_case : Any=4 , _snake_case : int=1536 , _snake_case : Any=1536 , _snake_case : str=0.0 , _snake_case : Dict=0.0 , _snake_case : Dict=5_0257 , _snake_case : List[str]=True , _snake_case : Dict=True , _snake_case : List[str]="gelu" , _snake_case : Union[str, Any]=256 , _snake_case : Optional[Any]=0.0 , _snake_case : Dict=0.0 , _snake_case : Union[str, Any]=0.0 , _snake_case : str=0.02 , _snake_case : Dict=False , _snake_case : Dict=1500 , _snake_case : Optional[int]=448 , _snake_case : Optional[Any]=5_0256 , _snake_case : Tuple=5_0256 , _snake_case : Optional[int]=5_0256 , _snake_case : List[str]=None , _snake_case : Tuple=[220, 5_0256] , _snake_case : Union[str, Any]=False , _snake_case : str=256 , _snake_case : List[str]=False , _snake_case : List[Any]=0.05 , _snake_case : Dict=10 , _snake_case : Any=2 , _snake_case : Dict=0.0 , _snake_case : Dict=10 , _snake_case : Optional[int]=0 , _snake_case : Tuple=7 , **_snake_case : Union[str, Any] , ): __lowercase : Optional[Any] = vocab_size __lowercase : List[Any] = num_mel_bins __lowercase : Optional[int] = d_model __lowercase : Tuple = encoder_layers __lowercase : str = encoder_attention_heads __lowercase : Any = decoder_layers __lowercase : Tuple = decoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : Any = encoder_ffn_dim __lowercase : List[str] = dropout __lowercase : str = attention_dropout __lowercase : Tuple = activation_dropout __lowercase : Dict = activation_function __lowercase : Optional[Any] = init_std __lowercase : List[str] = encoder_layerdrop __lowercase : List[str] = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Dict = encoder_layers __lowercase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : str = max_source_positions __lowercase : Dict = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowercase : str = classifier_proj_size __lowercase : Any = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase : str = apply_spec_augment __lowercase : Optional[int] = mask_time_prob __lowercase : Any = mask_time_length __lowercase : str = mask_time_min_masks __lowercase : Any = mask_feature_prob __lowercase : str = mask_feature_length __lowercase : int = mask_feature_min_masks __lowercase : Tuple = median_filter_width super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , suppress_tokens=_snake_case , begin_suppress_tokens=_snake_case , **_snake_case , ) class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" @property def snake_case_ ( self : Tuple ): __lowercase : Union[str, Any] = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase : List[str] = {0: '''batch'''} else: __lowercase : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='''inputs''' ) return common_inputs def snake_case_ ( self : str , _snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional["TensorType"] = None , _snake_case : int = 2_2050 , _snake_case : float = 5.0 , _snake_case : int = 220 , ): __lowercase : List[str] = OrderedDict() __lowercase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_snake_case , framework=_snake_case , sampling_rate=_snake_case , time_duration=_snake_case , frequency=_snake_case , ) __lowercase : Any = encoder_inputs['''input_features'''].shape[2] __lowercase : Dict = encoder_sequence_length // 2 if self.use_past else seq_length __lowercase : List[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , _snake_case , _snake_case , _snake_case , _snake_case ) __lowercase : List[Any] = encoder_inputs.pop('''input_features''' ) __lowercase : Any = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __lowercase : Dict = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def snake_case_ ( self : Tuple ): return 1E-3
509
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __snake_case : List[str] = datasets.utils.logging.get_logger(__name__) class A ( folder_based_builder.FolderBasedBuilderConfig ): __UpperCAmelCase : bool = None __UpperCAmelCase : bool = None class A ( folder_based_builder.FolderBasedBuilder ): __UpperCAmelCase : Any = datasets.Audio() __UpperCAmelCase : int = """audio""" __UpperCAmelCase : Union[str, Any] = AudioFolderConfig __UpperCAmelCase : List[str] # definition at the bottom of the script __UpperCAmelCase : Optional[int] = AudioClassification(audio_column="""audio""" , label_column="""label""" ) __snake_case : Tuple = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __snake_case : Union[str, Any] = AUDIO_EXTENSIONS
691
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
1
def lowerCAmelCase_ ( A_): UpperCamelCase__: Union[str, Any] = len(A_) for i in range(A_): for j in range(i + 1 ,A_): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__: List[str] = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__: List[str] = input('''Enter numbers separated by a comma:\n''').strip() A__: Tuple = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
380
def lowerCAmelCase_ ( A_): if not all(char in "01" for char in bin_string): raise ValueError("Non-binary value was passed to the function") if not bin_string: raise ValueError("Empty string was passed to the function") UpperCamelCase__: List[Any] = "" while len(A_) % 3 != 0: UpperCamelCase__: int = "0" + bin_string UpperCamelCase__: Optional[int] = [ bin_string[index : index + 3] for index in range(len(A_)) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase__: Union[str, Any] = 0 for index, val in enumerate(A_): oct_val += int(2 ** (2 - index) * int(A_)) oct_string += str(A_) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
380
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
601
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[int] , __lowerCamelCase: list[int] , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [0] * no_of_processes lowercase_ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCamelCase ): lowercase_ = burst_time[i] lowercase_ = [] lowercase_ = 0 lowercase_ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowercase_ = [] lowercase_ = -1 for i in range(__lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowercase_ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowercase_ = i total_time += burst_time[target_process] completed += 1 lowercase_ = 0 lowercase_ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[int] , __lowerCamelCase: int , __lowerCamelCase: list[int] ): '''simple docstring''' lowercase_ = [0] * no_of_processes for i in range(__lowerCamelCase ): lowercase_ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE__ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE__ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
601
1
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : str = WavaVecaForSequenceClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) __lowercase : Any = downstream_dict['''projector.weight'''] __lowercase : Dict = downstream_dict['''projector.bias'''] __lowercase : str = downstream_dict['''model.post_net.linear.weight'''] __lowercase : Any = downstream_dict['''model.post_net.linear.bias'''] return model def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : str = WavaVecaForAudioFrameClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) __lowercase : Optional[int] = downstream_dict['''model.linear.weight'''] __lowercase : Dict = downstream_dict['''model.linear.bias'''] return model def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : int = WavaVecaForXVector.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) __lowercase : Optional[int] = downstream_dict['''connector.weight'''] __lowercase : List[str] = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase : Dict = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __lowercase : Optional[Any] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __lowercase : str = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase : str = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase : Optional[int] = downstream_dict['''objective.W'''] return model @torch.no_grad() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : int = torch.load(__UpperCamelCase , map_location='''cpu''' ) __lowercase : Union[str, Any] = checkpoint['''Downstream'''] __lowercase : Tuple = WavaVecaConfig.from_pretrained(__UpperCamelCase ) __lowercase : str = WavaVecaFeatureExtractor.from_pretrained( __UpperCamelCase , return_attention_mask=__UpperCamelCase , do_normalize=__UpperCamelCase ) __lowercase : List[Any] = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase : str = convert_classification(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase : int = convert_diarization(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith('''ForXVector''' ): __lowercase : Any = convert_xvector(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: __lowercase : Tuple = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
76
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> np.array: '''simple docstring''' A = int(np.ceil((x_end - xa) / step_size ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(lowerCAmelCase__ ): A = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) A = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase__ , y[k] ) + ode_func(x + step_size , lowerCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
106
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
438
'''simple docstring''' import math import os import sys def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = '' try: with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as binary_file: lowercase_ : Dict = binary_file.read() for dat in data: lowercase_ : Union[str, Any] = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lexicon.pop(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = last_match_id if math.loga(SCREAMING_SNAKE_CASE_ ).is_integer(): for curr_key in lexicon: lowercase_ : Tuple = '0' + lexicon[curr_key] lowercase_ : Any = bin(SCREAMING_SNAKE_CASE_ )[2:] def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : Dict = {'0': '0', '1': '1'} lowercase_ ,lowercase_ : Any = '', '' lowercase_ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase_ : str = lexicon[curr_string] result += last_match_id add_key_to_lexicon(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) index += 1 lowercase_ : List[Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase_ : Optional[Any] = lexicon[curr_string] result += last_match_id return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = os.path.getsize(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = bin(SCREAMING_SNAKE_CASE_ )[2:] lowercase_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) return "0" * (length_length - 1) + file_length_binary + compressed def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = 8 try: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as opened_file: lowercase_ : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(SCREAMING_SNAKE_CASE_ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = read_file_binary(SCREAMING_SNAKE_CASE_ ) lowercase_ : List[str] = compress_data(SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = add_file_length(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) write_file_binary(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
438
1
import qiskit def UpperCAmelCase ( a_ , a_ ) -> qiskit.result.counts.Counts: """simple docstring""" __A = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register __A = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __A = qiskit.execute(a_ , a_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
55
from __future__ import annotations def a__ ( A_, A_, A_, A_ ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __magic_name__ , __magic_name__ = array[indexa], array[indexa] def a__ ( A_, A_, A_, A_ ): '''simple docstring''' if length > 1: __magic_name__ = int(length / 2 ) for i in range(A_, low + middle ): comp_and_swap(A_, A_, i + middle, A_ ) bitonic_merge(A_, A_, A_, A_ ) bitonic_merge(A_, low + middle, A_, A_ ) def a__ ( A_, A_, A_, A_ ): '''simple docstring''' if length > 1: __magic_name__ = int(length / 2 ) bitonic_sort(A_, A_, A_, 1 ) bitonic_sort(A_, low + middle, A_, 0 ) bitonic_merge(A_, A_, A_, A_ ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase : List[Any] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
529
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __lowerCAmelCase (SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None )-> str: """simple docstring""" return field(default_factory=lambda: default , metadata=UpperCAmelCase__ ) @dataclass class lowerCAmelCase_ : '''simple docstring''' __snake_case = field( metadata={"help": "The csv file to plot."} , ) __snake_case = field( default=_a , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __snake_case = field( default=_a , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __snake_case = field( default=_a , metadata={"help": "Disable logarithmic scale when plotting"} , ) __snake_case = field( default=_a , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __snake_case = field( default=_a , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __snake_case = list_field( default=_a , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" try: int(UpperCAmelCase__ ) return True except ValueError: return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" try: float(UpperCAmelCase__ ) return True except ValueError: return False class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase ): snake_case_ = args snake_case_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: snake_case_ = csv.DictReader(_A ) for row in reader: snake_case_ = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None snake_case_ = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None snake_case_ = float(row['''result'''] ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = plt.subplots() snake_case_ = '''Time usage''' if self.args.is_time else '''Memory usage''' snake_case_ = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): snake_case_ = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) snake_case_ = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) snake_case_ = self.result_dict[model_name]['''result'''] ((snake_case_) , (snake_case_)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) snake_case_ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: snake_case_ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_A , ) else: snake_case_ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((snake_case_) , (snake_case_)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) snake_case_ = np.asarray(_A , _A )[: len(_A )] plt.scatter( _A , _A , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(_A , _A , '''--''' ) title_str += F''' {label_model_name} vs.''' snake_case_ = title_str[:-4] snake_case_ = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_A ) plt.xlabel(_A ) plt.ylabel(_A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __lowerCAmelCase ()-> Union[str, Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase__ ) snake_case_ = parser.parse_args_into_dataclasses()[0] snake_case_ = Plot(args=UpperCAmelCase__ ) plot.plot() if __name__ == "__main__": main()
714
def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 6008_5147_5143 )-> int: """simple docstring""" try: snake_case_ = int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) snake_case_ = 1 snake_case_ = 2 while i * i <= n: while n % i == 0: snake_case_ = i n //= i i += 1 if n > 1: snake_case_ = n return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
531
0
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : str = " " ) -> list: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = 0 for index, char in enumerate(_lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) _UpperCAmelCase : Dict = index + 1 elif index + 1 == len(_lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
238
"""simple docstring""" from __future__ import annotations from fractions import Fraction def UpperCamelCase ( _lowerCAmelCase : int, _lowerCAmelCase : int ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCamelCase ( _lowerCAmelCase : int ) -> list[str]: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Any = 11 _UpperCAmelCase : Tuple = int("""1""" + """0""" * digit_len ) for num in range(_lowerCAmelCase, _lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCAmelCase, _lowerCAmelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 _UpperCAmelCase : List[str] = 10 return solutions def UpperCamelCase ( _lowerCAmelCase : int = 2 ) -> int: _UpperCAmelCase : Dict = 1.0 for fraction in fraction_list(_lowerCAmelCase ): _UpperCAmelCase : Tuple = Fraction(_lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
238
1
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
702
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
0
def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: while b: _a , _a = b, a % b return a def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return a if b == 0 else euclidean_gcd_recursive(_UpperCamelCase , a % b ) def __snake_case ( ) -> Union[str, Any]: print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
487
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __snake_case ( _UpperCamelCase ) -> Optional[Any]: _a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __snake_case ( _UpperCamelCase ) -> List[str]: _a , _a = emb.weight.shape _a = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) _a = emb.weight.data return lin_layer def __snake_case ( _UpperCamelCase , _UpperCamelCase="facebook/mbart-large-en-ro" , _UpperCamelCase=False , _UpperCamelCase=False ) -> Union[str, Any]: _a = torch.load(_UpperCamelCase , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_UpperCamelCase ) _a = state_dict['''encoder.embed_tokens.weight'''].shape[0] _a = MBartConfig.from_pretrained(_UpperCamelCase , vocab_size=_UpperCamelCase ) if mbart_aa and finetuned: _a = '''relu''' _a = state_dict['''decoder.embed_tokens.weight'''] _a = MBartForConditionalGeneration(_UpperCamelCase ) model.model.load_state_dict(_UpperCamelCase ) if finetuned: _a = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase :Optional[int] = parser.parse_args() lowerCamelCase :Optional[int] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
487
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.ModuleList(_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(_lowercase , _lowercase , self.nets ) ): _lowerCAmelCase , _lowerCAmelCase = controlnet( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) # merge samples if i == 0: _lowerCAmelCase , _lowerCAmelCase = down_samples, mid_sample else: _lowerCAmelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_lowercase , _lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self , _lowercase , _lowercase = True , _lowercase = None , _lowercase = False , _lowercase = None , ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( _lowercase , is_main_process=_lowercase , save_function=_lowercase , safe_serialization=_lowercase , variant=_lowercase , ) idx += 1 _lowerCAmelCase = model_path_to_save + F'_{idx}' @classmethod def _lowercase ( cls , _lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCAmelCase = pretrained_model_path while os.path.isdir(_lowercase ): _lowerCAmelCase = ControlNetModel.from_pretrained(_lowercase , **_lowercase ) controlnets.append(_lowercase ) idx += 1 _lowerCAmelCase = pretrained_model_path + F'_{idx}' logger.info(F'{len(_lowercase )} controlnets loaded from {pretrained_model_path}.' ) if len(_lowercase ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(_lowercase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(_lowercase )
162
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _lowercase = 300 # TEMPERATURE (unit = K) def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
162
1